1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * paramters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 50 * device-specific coefficients. 51 * 52 * 2. Control Strategy 53 * 54 * The device virtual time (vtime) is used as the primary control metric. 55 * The control strategy is composed of the following three parts. 56 * 57 * 2-1. Vtime Distribution 58 * 59 * When a cgroup becomes active in terms of IOs, its hierarchical share is 60 * calculated. Please consider the following hierarchy where the numbers 61 * inside parentheses denote the configured weights. 62 * 63 * root 64 * / \ 65 * A (w:100) B (w:300) 66 * / \ 67 * A0 (w:100) A1 (w:100) 68 * 69 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 70 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 71 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 72 * 12.5% each. The distribution mechanism only cares about these flattened 73 * shares. They're called hweights (hierarchical weights) and always add 74 * upto 1 (HWEIGHT_WHOLE). 75 * 76 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 77 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 78 * against the device vtime - an IO which takes 10ms on the underlying 79 * device is considered to take 80ms on A0. 80 * 81 * This constitutes the basis of IO capacity distribution. Each cgroup's 82 * vtime is running at a rate determined by its hweight. A cgroup tracks 83 * the vtime consumed by past IOs and can issue a new IO iff doing so 84 * wouldn't outrun the current device vtime. Otherwise, the IO is 85 * suspended until the vtime has progressed enough to cover it. 86 * 87 * 2-2. Vrate Adjustment 88 * 89 * It's unrealistic to expect the cost model to be perfect. There are too 90 * many devices and even on the same device the overall performance 91 * fluctuates depending on numerous factors such as IO mixture and device 92 * internal garbage collection. The controller needs to adapt dynamically. 93 * 94 * This is achieved by adjusting the overall IO rate according to how busy 95 * the device is. If the device becomes overloaded, we're sending down too 96 * many IOs and should generally slow down. If there are waiting issuers 97 * but the device isn't saturated, we're issuing too few and should 98 * generally speed up. 99 * 100 * To slow down, we lower the vrate - the rate at which the device vtime 101 * passes compared to the wall clock. For example, if the vtime is running 102 * at the vrate of 75%, all cgroups added up would only be able to issue 103 * 750ms worth of IOs per second, and vice-versa for speeding up. 104 * 105 * Device business is determined using two criteria - rq wait and 106 * completion latencies. 107 * 108 * When a device gets saturated, the on-device and then the request queues 109 * fill up and a bio which is ready to be issued has to wait for a request 110 * to become available. When this delay becomes noticeable, it's a clear 111 * indication that the device is saturated and we lower the vrate. This 112 * saturation signal is fairly conservative as it only triggers when both 113 * hardware and software queues are filled up, and is used as the default 114 * busy signal. 115 * 116 * As devices can have deep queues and be unfair in how the queued commands 117 * are executed, soley depending on rq wait may not result in satisfactory 118 * control quality. For a better control quality, completion latency QoS 119 * parameters can be configured so that the device is considered saturated 120 * if N'th percentile completion latency rises above the set point. 121 * 122 * The completion latency requirements are a function of both the 123 * underlying device characteristics and the desired IO latency quality of 124 * service. There is an inherent trade-off - the tighter the latency QoS, 125 * the higher the bandwidth lossage. Latency QoS is disabled by default 126 * and can be set through /sys/fs/cgroup/io.cost.qos. 127 * 128 * 2-3. Work Conservation 129 * 130 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 131 * periodically while B is sending out enough parallel IOs to saturate the 132 * device on its own. Let's say A's usage amounts to 100ms worth of IO 133 * cost per second, i.e., 10% of the device capacity. The naive 134 * distribution of half and half would lead to 60% utilization of the 135 * device, a significant reduction in the total amount of work done 136 * compared to free-for-all competition. This is too high a cost to pay 137 * for IO control. 138 * 139 * To conserve the total amount of work done, we keep track of how much 140 * each active cgroup is actually using and yield part of its weight if 141 * there are other cgroups which can make use of it. In the above case, 142 * A's weight will be lowered so that it hovers above the actual usage and 143 * B would be able to use the rest. 144 * 145 * As we don't want to penalize a cgroup for donating its weight, the 146 * surplus weight adjustment factors in a margin and has an immediate 147 * snapback mechanism in case the cgroup needs more IO vtime for itself. 148 * 149 * Note that adjusting down surplus weights has the same effects as 150 * accelerating vtime for other cgroups and work conservation can also be 151 * implemented by adjusting vrate dynamically. However, squaring who can 152 * donate and should take back how much requires hweight propagations 153 * anyway making it easier to implement and understand as a separate 154 * mechanism. 155 * 156 * 3. Monitoring 157 * 158 * Instead of debugfs or other clumsy monitoring mechanisms, this 159 * controller uses a drgn based monitoring script - 160 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 161 * https://github.com/osandov/drgn. The ouput looks like the following. 162 * 163 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 164 * active weight hweight% inflt% dbt delay usages% 165 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 166 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 167 * 168 * - per : Timer period 169 * - cur_per : Internal wall and device vtime clock 170 * - vrate : Device virtual time rate against wall clock 171 * - weight : Surplus-adjusted and configured weights 172 * - hweight : Surplus-adjusted and configured hierarchical weights 173 * - inflt : The percentage of in-flight IO cost at the end of last period 174 * - del_ms : Deferred issuer delay induction level and duration 175 * - usages : Usage history 176 */ 177 178 #include <linux/kernel.h> 179 #include <linux/module.h> 180 #include <linux/timer.h> 181 #include <linux/time64.h> 182 #include <linux/parser.h> 183 #include <linux/sched/signal.h> 184 #include <linux/blk-cgroup.h> 185 #include "blk-rq-qos.h" 186 #include "blk-stat.h" 187 #include "blk-wbt.h" 188 189 #ifdef CONFIG_TRACEPOINTS 190 191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 192 #define TRACE_IOCG_PATH_LEN 1024 193 static DEFINE_SPINLOCK(trace_iocg_path_lock); 194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 195 196 #define TRACE_IOCG_PATH(type, iocg, ...) \ 197 do { \ 198 unsigned long flags; \ 199 if (trace_iocost_##type##_enabled()) { \ 200 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 201 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 202 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 203 trace_iocost_##type(iocg, trace_iocg_path, \ 204 ##__VA_ARGS__); \ 205 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 206 } \ 207 } while (0) 208 209 #else /* CONFIG_TRACE_POINTS */ 210 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 211 #endif /* CONFIG_TRACE_POINTS */ 212 213 enum { 214 MILLION = 1000000, 215 216 /* timer period is calculated from latency requirements, bound it */ 217 MIN_PERIOD = USEC_PER_MSEC, 218 MAX_PERIOD = USEC_PER_SEC, 219 220 /* 221 * A cgroup's vtime can run 50% behind the device vtime, which 222 * serves as its IO credit buffer. Surplus weight adjustment is 223 * immediately canceled if the vtime margin runs below 10%. 224 */ 225 MARGIN_PCT = 50, 226 INUSE_MARGIN_PCT = 10, 227 228 /* Have some play in waitq timer operations */ 229 WAITQ_TIMER_MARGIN_PCT = 5, 230 231 /* 232 * vtime can wrap well within a reasonable uptime when vrate is 233 * consistently raised. Don't trust recorded cgroup vtime if the 234 * period counter indicates that it's older than 5mins. 235 */ 236 VTIME_VALID_DUR = 300 * USEC_PER_SEC, 237 238 /* 239 * Remember the past three non-zero usages and use the max for 240 * surplus calculation. Three slots guarantee that we remember one 241 * full period usage from the last active stretch even after 242 * partial deactivation and re-activation periods. Don't start 243 * giving away weight before collecting two data points to prevent 244 * hweight adjustments based on one partial activation period. 245 */ 246 NR_USAGE_SLOTS = 3, 247 MIN_VALID_USAGES = 2, 248 249 /* 1/64k is granular enough and can easily be handled w/ u32 */ 250 HWEIGHT_WHOLE = 1 << 16, 251 252 /* 253 * As vtime is used to calculate the cost of each IO, it needs to 254 * be fairly high precision. For example, it should be able to 255 * represent the cost of a single page worth of discard with 256 * suffificient accuracy. At the same time, it should be able to 257 * represent reasonably long enough durations to be useful and 258 * convenient during operation. 259 * 260 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 261 * granularity and days of wrap-around time even at extreme vrates. 262 */ 263 VTIME_PER_SEC_SHIFT = 37, 264 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 265 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 266 267 /* bound vrate adjustments within two orders of magnitude */ 268 VRATE_MIN_PPM = 10000, /* 1% */ 269 VRATE_MAX_PPM = 100000000, /* 10000% */ 270 271 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 272 VRATE_CLAMP_ADJ_PCT = 4, 273 274 /* if IOs end up waiting for requests, issue less */ 275 RQ_WAIT_BUSY_PCT = 5, 276 277 /* unbusy hysterisis */ 278 UNBUSY_THR_PCT = 75, 279 280 /* don't let cmds which take a very long time pin lagging for too long */ 281 MAX_LAGGING_PERIODS = 10, 282 283 /* 284 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%, 285 * donate the surplus. 286 */ 287 SURPLUS_SCALE_PCT = 125, /* * 125% */ 288 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */ 289 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */ 290 291 /* switch iff the conditions are met for longer than this */ 292 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 293 294 /* 295 * Count IO size in 4k pages. The 12bit shift helps keeping 296 * size-proportional components of cost calculation in closer 297 * numbers of digits to per-IO cost components. 298 */ 299 IOC_PAGE_SHIFT = 12, 300 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 301 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 302 303 /* if apart further than 16M, consider randio for linear model */ 304 LCOEF_RANDIO_PAGES = 4096, 305 }; 306 307 enum ioc_running { 308 IOC_IDLE, 309 IOC_RUNNING, 310 IOC_STOP, 311 }; 312 313 /* io.cost.qos controls including per-dev enable of the whole controller */ 314 enum { 315 QOS_ENABLE, 316 QOS_CTRL, 317 NR_QOS_CTRL_PARAMS, 318 }; 319 320 /* io.cost.qos params */ 321 enum { 322 QOS_RPPM, 323 QOS_RLAT, 324 QOS_WPPM, 325 QOS_WLAT, 326 QOS_MIN, 327 QOS_MAX, 328 NR_QOS_PARAMS, 329 }; 330 331 /* io.cost.model controls */ 332 enum { 333 COST_CTRL, 334 COST_MODEL, 335 NR_COST_CTRL_PARAMS, 336 }; 337 338 /* builtin linear cost model coefficients */ 339 enum { 340 I_LCOEF_RBPS, 341 I_LCOEF_RSEQIOPS, 342 I_LCOEF_RRANDIOPS, 343 I_LCOEF_WBPS, 344 I_LCOEF_WSEQIOPS, 345 I_LCOEF_WRANDIOPS, 346 NR_I_LCOEFS, 347 }; 348 349 enum { 350 LCOEF_RPAGE, 351 LCOEF_RSEQIO, 352 LCOEF_RRANDIO, 353 LCOEF_WPAGE, 354 LCOEF_WSEQIO, 355 LCOEF_WRANDIO, 356 NR_LCOEFS, 357 }; 358 359 enum { 360 AUTOP_INVALID, 361 AUTOP_HDD, 362 AUTOP_SSD_QD1, 363 AUTOP_SSD_DFL, 364 AUTOP_SSD_FAST, 365 }; 366 367 struct ioc_gq; 368 369 struct ioc_params { 370 u32 qos[NR_QOS_PARAMS]; 371 u64 i_lcoefs[NR_I_LCOEFS]; 372 u64 lcoefs[NR_LCOEFS]; 373 u32 too_fast_vrate_pct; 374 u32 too_slow_vrate_pct; 375 }; 376 377 struct ioc_missed { 378 u32 nr_met; 379 u32 nr_missed; 380 u32 last_met; 381 u32 last_missed; 382 }; 383 384 struct ioc_pcpu_stat { 385 struct ioc_missed missed[2]; 386 387 u64 rq_wait_ns; 388 u64 last_rq_wait_ns; 389 }; 390 391 /* per device */ 392 struct ioc { 393 struct rq_qos rqos; 394 395 bool enabled; 396 397 struct ioc_params params; 398 u32 period_us; 399 u32 margin_us; 400 u64 vrate_min; 401 u64 vrate_max; 402 403 spinlock_t lock; 404 struct timer_list timer; 405 struct list_head active_iocgs; /* active cgroups */ 406 struct ioc_pcpu_stat __percpu *pcpu_stat; 407 408 enum ioc_running running; 409 atomic64_t vtime_rate; 410 411 seqcount_t period_seqcount; 412 u32 period_at; /* wallclock starttime */ 413 u64 period_at_vtime; /* vtime starttime */ 414 415 atomic64_t cur_period; /* inc'd each period */ 416 int busy_level; /* saturation history */ 417 418 u64 inuse_margin_vtime; 419 bool weights_updated; 420 atomic_t hweight_gen; /* for lazy hweights */ 421 422 u64 autop_too_fast_at; 423 u64 autop_too_slow_at; 424 int autop_idx; 425 bool user_qos_params:1; 426 bool user_cost_model:1; 427 }; 428 429 /* per device-cgroup pair */ 430 struct ioc_gq { 431 struct blkg_policy_data pd; 432 struct ioc *ioc; 433 434 /* 435 * A iocg can get its weight from two sources - an explicit 436 * per-device-cgroup configuration or the default weight of the 437 * cgroup. `cfg_weight` is the explicit per-device-cgroup 438 * configuration. `weight` is the effective considering both 439 * sources. 440 * 441 * When an idle cgroup becomes active its `active` goes from 0 to 442 * `weight`. `inuse` is the surplus adjusted active weight. 443 * `active` and `inuse` are used to calculate `hweight_active` and 444 * `hweight_inuse`. 445 * 446 * `last_inuse` remembers `inuse` while an iocg is idle to persist 447 * surplus adjustments. 448 */ 449 u32 cfg_weight; 450 u32 weight; 451 u32 active; 452 u32 inuse; 453 u32 last_inuse; 454 455 sector_t cursor; /* to detect randio */ 456 457 /* 458 * `vtime` is this iocg's vtime cursor which progresses as IOs are 459 * issued. If lagging behind device vtime, the delta represents 460 * the currently available IO budget. If runnning ahead, the 461 * overage. 462 * 463 * `vtime_done` is the same but progressed on completion rather 464 * than issue. The delta behind `vtime` represents the cost of 465 * currently in-flight IOs. 466 * 467 * `last_vtime` is used to remember `vtime` at the end of the last 468 * period to calculate utilization. 469 */ 470 atomic64_t vtime; 471 atomic64_t done_vtime; 472 atomic64_t abs_vdebt; 473 u64 last_vtime; 474 475 /* 476 * The period this iocg was last active in. Used for deactivation 477 * and invalidating `vtime`. 478 */ 479 atomic64_t active_period; 480 struct list_head active_list; 481 482 /* see __propagate_active_weight() and current_hweight() for details */ 483 u64 child_active_sum; 484 u64 child_inuse_sum; 485 int hweight_gen; 486 u32 hweight_active; 487 u32 hweight_inuse; 488 bool has_surplus; 489 490 struct wait_queue_head waitq; 491 struct hrtimer waitq_timer; 492 struct hrtimer delay_timer; 493 494 /* usage is recorded as fractions of HWEIGHT_WHOLE */ 495 int usage_idx; 496 u32 usages[NR_USAGE_SLOTS]; 497 498 /* this iocg's depth in the hierarchy and ancestors including self */ 499 int level; 500 struct ioc_gq *ancestors[]; 501 }; 502 503 /* per cgroup */ 504 struct ioc_cgrp { 505 struct blkcg_policy_data cpd; 506 unsigned int dfl_weight; 507 }; 508 509 struct ioc_now { 510 u64 now_ns; 511 u32 now; 512 u64 vnow; 513 u64 vrate; 514 }; 515 516 struct iocg_wait { 517 struct wait_queue_entry wait; 518 struct bio *bio; 519 u64 abs_cost; 520 bool committed; 521 }; 522 523 struct iocg_wake_ctx { 524 struct ioc_gq *iocg; 525 u32 hw_inuse; 526 s64 vbudget; 527 }; 528 529 static const struct ioc_params autop[] = { 530 [AUTOP_HDD] = { 531 .qos = { 532 [QOS_RLAT] = 250000, /* 250ms */ 533 [QOS_WLAT] = 250000, 534 [QOS_MIN] = VRATE_MIN_PPM, 535 [QOS_MAX] = VRATE_MAX_PPM, 536 }, 537 .i_lcoefs = { 538 [I_LCOEF_RBPS] = 174019176, 539 [I_LCOEF_RSEQIOPS] = 41708, 540 [I_LCOEF_RRANDIOPS] = 370, 541 [I_LCOEF_WBPS] = 178075866, 542 [I_LCOEF_WSEQIOPS] = 42705, 543 [I_LCOEF_WRANDIOPS] = 378, 544 }, 545 }, 546 [AUTOP_SSD_QD1] = { 547 .qos = { 548 [QOS_RLAT] = 25000, /* 25ms */ 549 [QOS_WLAT] = 25000, 550 [QOS_MIN] = VRATE_MIN_PPM, 551 [QOS_MAX] = VRATE_MAX_PPM, 552 }, 553 .i_lcoefs = { 554 [I_LCOEF_RBPS] = 245855193, 555 [I_LCOEF_RSEQIOPS] = 61575, 556 [I_LCOEF_RRANDIOPS] = 6946, 557 [I_LCOEF_WBPS] = 141365009, 558 [I_LCOEF_WSEQIOPS] = 33716, 559 [I_LCOEF_WRANDIOPS] = 26796, 560 }, 561 }, 562 [AUTOP_SSD_DFL] = { 563 .qos = { 564 [QOS_RLAT] = 25000, /* 25ms */ 565 [QOS_WLAT] = 25000, 566 [QOS_MIN] = VRATE_MIN_PPM, 567 [QOS_MAX] = VRATE_MAX_PPM, 568 }, 569 .i_lcoefs = { 570 [I_LCOEF_RBPS] = 488636629, 571 [I_LCOEF_RSEQIOPS] = 8932, 572 [I_LCOEF_RRANDIOPS] = 8518, 573 [I_LCOEF_WBPS] = 427891549, 574 [I_LCOEF_WSEQIOPS] = 28755, 575 [I_LCOEF_WRANDIOPS] = 21940, 576 }, 577 .too_fast_vrate_pct = 500, 578 }, 579 [AUTOP_SSD_FAST] = { 580 .qos = { 581 [QOS_RLAT] = 5000, /* 5ms */ 582 [QOS_WLAT] = 5000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 3102524156LLU, 588 [I_LCOEF_RSEQIOPS] = 724816, 589 [I_LCOEF_RRANDIOPS] = 778122, 590 [I_LCOEF_WBPS] = 1742780862LLU, 591 [I_LCOEF_WSEQIOPS] = 425702, 592 [I_LCOEF_WRANDIOPS] = 443193, 593 }, 594 .too_slow_vrate_pct = 10, 595 }, 596 }; 597 598 /* 599 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 600 * vtime credit shortage and down on device saturation. 601 */ 602 static u32 vrate_adj_pct[] = 603 { 0, 0, 0, 0, 604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 605 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 606 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 607 608 static struct blkcg_policy blkcg_policy_iocost; 609 610 /* accessors and helpers */ 611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 612 { 613 return container_of(rqos, struct ioc, rqos); 614 } 615 616 static struct ioc *q_to_ioc(struct request_queue *q) 617 { 618 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 619 } 620 621 static const char *q_name(struct request_queue *q) 622 { 623 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) 624 return kobject_name(q->kobj.parent); 625 else 626 return "<unknown>"; 627 } 628 629 static const char __maybe_unused *ioc_name(struct ioc *ioc) 630 { 631 return q_name(ioc->rqos.q); 632 } 633 634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 635 { 636 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 637 } 638 639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 640 { 641 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 642 } 643 644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 645 { 646 return pd_to_blkg(&iocg->pd); 647 } 648 649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 650 { 651 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 652 struct ioc_cgrp, cpd); 653 } 654 655 /* 656 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 657 * weight, the more expensive each IO. Must round up. 658 */ 659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 660 { 661 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse); 662 } 663 664 /* 665 * The inverse of abs_cost_to_cost(). Must round up. 666 */ 667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 668 { 669 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE); 670 } 671 672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost) 673 { 674 bio->bi_iocost_cost = cost; 675 atomic64_add(cost, &iocg->vtime); 676 } 677 678 #define CREATE_TRACE_POINTS 679 #include <trace/events/iocost.h> 680 681 /* latency Qos params changed, update period_us and all the dependent params */ 682 static void ioc_refresh_period_us(struct ioc *ioc) 683 { 684 u32 ppm, lat, multi, period_us; 685 686 lockdep_assert_held(&ioc->lock); 687 688 /* pick the higher latency target */ 689 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 690 ppm = ioc->params.qos[QOS_RPPM]; 691 lat = ioc->params.qos[QOS_RLAT]; 692 } else { 693 ppm = ioc->params.qos[QOS_WPPM]; 694 lat = ioc->params.qos[QOS_WLAT]; 695 } 696 697 /* 698 * We want the period to be long enough to contain a healthy number 699 * of IOs while short enough for granular control. Define it as a 700 * multiple of the latency target. Ideally, the multiplier should 701 * be scaled according to the percentile so that it would nominally 702 * contain a certain number of requests. Let's be simpler and 703 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 704 */ 705 if (ppm) 706 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 707 else 708 multi = 2; 709 period_us = multi * lat; 710 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 711 712 /* calculate dependent params */ 713 ioc->period_us = period_us; 714 ioc->margin_us = period_us * MARGIN_PCT / 100; 715 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( 716 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100); 717 } 718 719 static int ioc_autop_idx(struct ioc *ioc) 720 { 721 int idx = ioc->autop_idx; 722 const struct ioc_params *p = &autop[idx]; 723 u32 vrate_pct; 724 u64 now_ns; 725 726 /* rotational? */ 727 if (!blk_queue_nonrot(ioc->rqos.q)) 728 return AUTOP_HDD; 729 730 /* handle SATA SSDs w/ broken NCQ */ 731 if (blk_queue_depth(ioc->rqos.q) == 1) 732 return AUTOP_SSD_QD1; 733 734 /* use one of the normal ssd sets */ 735 if (idx < AUTOP_SSD_DFL) 736 return AUTOP_SSD_DFL; 737 738 /* if user is overriding anything, maintain what was there */ 739 if (ioc->user_qos_params || ioc->user_cost_model) 740 return idx; 741 742 /* step up/down based on the vrate */ 743 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100, 744 VTIME_PER_USEC); 745 now_ns = ktime_get_ns(); 746 747 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 748 if (!ioc->autop_too_fast_at) 749 ioc->autop_too_fast_at = now_ns; 750 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 751 return idx + 1; 752 } else { 753 ioc->autop_too_fast_at = 0; 754 } 755 756 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 757 if (!ioc->autop_too_slow_at) 758 ioc->autop_too_slow_at = now_ns; 759 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 760 return idx - 1; 761 } else { 762 ioc->autop_too_slow_at = 0; 763 } 764 765 return idx; 766 } 767 768 /* 769 * Take the followings as input 770 * 771 * @bps maximum sequential throughput 772 * @seqiops maximum sequential 4k iops 773 * @randiops maximum random 4k iops 774 * 775 * and calculate the linear model cost coefficients. 776 * 777 * *@page per-page cost 1s / (@bps / 4096) 778 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 779 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 780 */ 781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 782 u64 *page, u64 *seqio, u64 *randio) 783 { 784 u64 v; 785 786 *page = *seqio = *randio = 0; 787 788 if (bps) 789 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 790 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 791 792 if (seqiops) { 793 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 794 if (v > *page) 795 *seqio = v - *page; 796 } 797 798 if (randiops) { 799 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 800 if (v > *page) 801 *randio = v - *page; 802 } 803 } 804 805 static void ioc_refresh_lcoefs(struct ioc *ioc) 806 { 807 u64 *u = ioc->params.i_lcoefs; 808 u64 *c = ioc->params.lcoefs; 809 810 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 811 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 812 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 813 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 814 } 815 816 static bool ioc_refresh_params(struct ioc *ioc, bool force) 817 { 818 const struct ioc_params *p; 819 int idx; 820 821 lockdep_assert_held(&ioc->lock); 822 823 idx = ioc_autop_idx(ioc); 824 p = &autop[idx]; 825 826 if (idx == ioc->autop_idx && !force) 827 return false; 828 829 if (idx != ioc->autop_idx) 830 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 831 832 ioc->autop_idx = idx; 833 ioc->autop_too_fast_at = 0; 834 ioc->autop_too_slow_at = 0; 835 836 if (!ioc->user_qos_params) 837 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 838 if (!ioc->user_cost_model) 839 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 840 841 ioc_refresh_period_us(ioc); 842 ioc_refresh_lcoefs(ioc); 843 844 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 845 VTIME_PER_USEC, MILLION); 846 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 847 VTIME_PER_USEC, MILLION); 848 849 return true; 850 } 851 852 /* take a snapshot of the current [v]time and vrate */ 853 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 854 { 855 unsigned seq; 856 857 now->now_ns = ktime_get(); 858 now->now = ktime_to_us(now->now_ns); 859 now->vrate = atomic64_read(&ioc->vtime_rate); 860 861 /* 862 * The current vtime is 863 * 864 * vtime at period start + (wallclock time since the start) * vrate 865 * 866 * As a consistent snapshot of `period_at_vtime` and `period_at` is 867 * needed, they're seqcount protected. 868 */ 869 do { 870 seq = read_seqcount_begin(&ioc->period_seqcount); 871 now->vnow = ioc->period_at_vtime + 872 (now->now - ioc->period_at) * now->vrate; 873 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 874 } 875 876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 877 { 878 lockdep_assert_held(&ioc->lock); 879 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 880 881 write_seqcount_begin(&ioc->period_seqcount); 882 ioc->period_at = now->now; 883 ioc->period_at_vtime = now->vnow; 884 write_seqcount_end(&ioc->period_seqcount); 885 886 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 887 add_timer(&ioc->timer); 888 } 889 890 /* 891 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 892 * weight sums and propagate upwards accordingly. 893 */ 894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) 895 { 896 struct ioc *ioc = iocg->ioc; 897 int lvl; 898 899 lockdep_assert_held(&ioc->lock); 900 901 inuse = min(active, inuse); 902 903 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 904 struct ioc_gq *parent = iocg->ancestors[lvl]; 905 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 906 u32 parent_active = 0, parent_inuse = 0; 907 908 /* update the level sums */ 909 parent->child_active_sum += (s32)(active - child->active); 910 parent->child_inuse_sum += (s32)(inuse - child->inuse); 911 /* apply the udpates */ 912 child->active = active; 913 child->inuse = inuse; 914 915 /* 916 * The delta between inuse and active sums indicates that 917 * that much of weight is being given away. Parent's inuse 918 * and active should reflect the ratio. 919 */ 920 if (parent->child_active_sum) { 921 parent_active = parent->weight; 922 parent_inuse = DIV64_U64_ROUND_UP( 923 parent_active * parent->child_inuse_sum, 924 parent->child_active_sum); 925 } 926 927 /* do we need to keep walking up? */ 928 if (parent_active == parent->active && 929 parent_inuse == parent->inuse) 930 break; 931 932 active = parent_active; 933 inuse = parent_inuse; 934 } 935 936 ioc->weights_updated = true; 937 } 938 939 static void commit_active_weights(struct ioc *ioc) 940 { 941 lockdep_assert_held(&ioc->lock); 942 943 if (ioc->weights_updated) { 944 /* paired with rmb in current_hweight(), see there */ 945 smp_wmb(); 946 atomic_inc(&ioc->hweight_gen); 947 ioc->weights_updated = false; 948 } 949 } 950 951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) 952 { 953 __propagate_active_weight(iocg, active, inuse); 954 commit_active_weights(iocg->ioc); 955 } 956 957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 958 { 959 struct ioc *ioc = iocg->ioc; 960 int lvl; 961 u32 hwa, hwi; 962 int ioc_gen; 963 964 /* hot path - if uptodate, use cached */ 965 ioc_gen = atomic_read(&ioc->hweight_gen); 966 if (ioc_gen == iocg->hweight_gen) 967 goto out; 968 969 /* 970 * Paired with wmb in commit_active_weights(). If we saw the 971 * updated hweight_gen, all the weight updates from 972 * __propagate_active_weight() are visible too. 973 * 974 * We can race with weight updates during calculation and get it 975 * wrong. However, hweight_gen would have changed and a future 976 * reader will recalculate and we're guaranteed to discard the 977 * wrong result soon. 978 */ 979 smp_rmb(); 980 981 hwa = hwi = HWEIGHT_WHOLE; 982 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 983 struct ioc_gq *parent = iocg->ancestors[lvl]; 984 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 985 u32 active_sum = READ_ONCE(parent->child_active_sum); 986 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum); 987 u32 active = READ_ONCE(child->active); 988 u32 inuse = READ_ONCE(child->inuse); 989 990 /* we can race with deactivations and either may read as zero */ 991 if (!active_sum || !inuse_sum) 992 continue; 993 994 active_sum = max(active, active_sum); 995 hwa = hwa * active / active_sum; /* max 16bits * 10000 */ 996 997 inuse_sum = max(inuse, inuse_sum); 998 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */ 999 } 1000 1001 iocg->hweight_active = max_t(u32, hwa, 1); 1002 iocg->hweight_inuse = max_t(u32, hwi, 1); 1003 iocg->hweight_gen = ioc_gen; 1004 out: 1005 if (hw_activep) 1006 *hw_activep = iocg->hweight_active; 1007 if (hw_inusep) 1008 *hw_inusep = iocg->hweight_inuse; 1009 } 1010 1011 static void weight_updated(struct ioc_gq *iocg) 1012 { 1013 struct ioc *ioc = iocg->ioc; 1014 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1015 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1016 u32 weight; 1017 1018 lockdep_assert_held(&ioc->lock); 1019 1020 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1021 if (weight != iocg->weight && iocg->active) 1022 propagate_active_weight(iocg, weight, 1023 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight)); 1024 iocg->weight = weight; 1025 } 1026 1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1028 { 1029 struct ioc *ioc = iocg->ioc; 1030 u64 last_period, cur_period, max_period_delta; 1031 u64 vtime, vmargin, vmin; 1032 int i; 1033 1034 /* 1035 * If seem to be already active, just update the stamp to tell the 1036 * timer that we're still active. We don't mind occassional races. 1037 */ 1038 if (!list_empty(&iocg->active_list)) { 1039 ioc_now(ioc, now); 1040 cur_period = atomic64_read(&ioc->cur_period); 1041 if (atomic64_read(&iocg->active_period) != cur_period) 1042 atomic64_set(&iocg->active_period, cur_period); 1043 return true; 1044 } 1045 1046 /* racy check on internal node IOs, treat as root level IOs */ 1047 if (iocg->child_active_sum) 1048 return false; 1049 1050 spin_lock_irq(&ioc->lock); 1051 1052 ioc_now(ioc, now); 1053 1054 /* update period */ 1055 cur_period = atomic64_read(&ioc->cur_period); 1056 last_period = atomic64_read(&iocg->active_period); 1057 atomic64_set(&iocg->active_period, cur_period); 1058 1059 /* already activated or breaking leaf-only constraint? */ 1060 if (!list_empty(&iocg->active_list)) 1061 goto succeed_unlock; 1062 for (i = iocg->level - 1; i > 0; i--) 1063 if (!list_empty(&iocg->ancestors[i]->active_list)) 1064 goto fail_unlock; 1065 1066 if (iocg->child_active_sum) 1067 goto fail_unlock; 1068 1069 /* 1070 * vtime may wrap when vrate is raised substantially due to 1071 * underestimated IO costs. Look at the period and ignore its 1072 * vtime if the iocg has been idle for too long. Also, cap the 1073 * budget it can start with to the margin. 1074 */ 1075 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us); 1076 vtime = atomic64_read(&iocg->vtime); 1077 vmargin = ioc->margin_us * now->vrate; 1078 vmin = now->vnow - vmargin; 1079 1080 if (last_period + max_period_delta < cur_period || 1081 time_before64(vtime, vmin)) { 1082 atomic64_add(vmin - vtime, &iocg->vtime); 1083 atomic64_add(vmin - vtime, &iocg->done_vtime); 1084 vtime = vmin; 1085 } 1086 1087 /* 1088 * Activate, propagate weight and start period timer if not 1089 * running. Reset hweight_gen to avoid accidental match from 1090 * wrapping. 1091 */ 1092 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1093 list_add(&iocg->active_list, &ioc->active_iocgs); 1094 propagate_active_weight(iocg, iocg->weight, 1095 iocg->last_inuse ?: iocg->weight); 1096 1097 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1098 last_period, cur_period, vtime); 1099 1100 iocg->last_vtime = vtime; 1101 1102 if (ioc->running == IOC_IDLE) { 1103 ioc->running = IOC_RUNNING; 1104 ioc_start_period(ioc, now); 1105 } 1106 1107 succeed_unlock: 1108 spin_unlock_irq(&ioc->lock); 1109 return true; 1110 1111 fail_unlock: 1112 spin_unlock_irq(&ioc->lock); 1113 return false; 1114 } 1115 1116 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1117 int flags, void *key) 1118 { 1119 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1120 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1121 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1122 1123 ctx->vbudget -= cost; 1124 1125 if (ctx->vbudget < 0) 1126 return -1; 1127 1128 iocg_commit_bio(ctx->iocg, wait->bio, cost); 1129 1130 /* 1131 * autoremove_wake_function() removes the wait entry only when it 1132 * actually changed the task state. We want the wait always 1133 * removed. Remove explicitly and use default_wake_function(). 1134 */ 1135 list_del_init(&wq_entry->entry); 1136 wait->committed = true; 1137 1138 default_wake_function(wq_entry, mode, flags, key); 1139 return 0; 1140 } 1141 1142 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now) 1143 { 1144 struct ioc *ioc = iocg->ioc; 1145 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1146 u64 margin_ns = (u64)(ioc->period_us * 1147 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC; 1148 u64 abs_vdebt, vdebt, vshortage, expires, oexpires; 1149 s64 vbudget; 1150 u32 hw_inuse; 1151 1152 lockdep_assert_held(&iocg->waitq.lock); 1153 1154 current_hweight(iocg, NULL, &hw_inuse); 1155 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1156 1157 /* pay off debt */ 1158 abs_vdebt = atomic64_read(&iocg->abs_vdebt); 1159 vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse); 1160 if (vdebt && vbudget > 0) { 1161 u64 delta = min_t(u64, vbudget, vdebt); 1162 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse), 1163 abs_vdebt); 1164 1165 atomic64_add(delta, &iocg->vtime); 1166 atomic64_add(delta, &iocg->done_vtime); 1167 atomic64_sub(abs_delta, &iocg->abs_vdebt); 1168 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0)) 1169 atomic64_set(&iocg->abs_vdebt, 0); 1170 } 1171 1172 /* 1173 * Wake up the ones which are due and see how much vtime we'll need 1174 * for the next one. 1175 */ 1176 ctx.hw_inuse = hw_inuse; 1177 ctx.vbudget = vbudget - vdebt; 1178 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1179 if (!waitqueue_active(&iocg->waitq)) 1180 return; 1181 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1182 return; 1183 1184 /* determine next wakeup, add a quarter margin to guarantee chunking */ 1185 vshortage = -ctx.vbudget; 1186 expires = now->now_ns + 1187 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC; 1188 expires += margin_ns / 4; 1189 1190 /* if already active and close enough, don't bother */ 1191 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1192 if (hrtimer_is_queued(&iocg->waitq_timer) && 1193 abs(oexpires - expires) <= margin_ns / 4) 1194 return; 1195 1196 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1197 margin_ns / 4, HRTIMER_MODE_ABS); 1198 } 1199 1200 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1201 { 1202 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1203 struct ioc_now now; 1204 unsigned long flags; 1205 1206 ioc_now(iocg->ioc, &now); 1207 1208 spin_lock_irqsave(&iocg->waitq.lock, flags); 1209 iocg_kick_waitq(iocg, &now); 1210 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1211 1212 return HRTIMER_NORESTART; 1213 } 1214 1215 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost) 1216 { 1217 struct ioc *ioc = iocg->ioc; 1218 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1219 u64 vtime = atomic64_read(&iocg->vtime); 1220 u64 vmargin = ioc->margin_us * now->vrate; 1221 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC; 1222 u64 expires, oexpires; 1223 u32 hw_inuse; 1224 1225 /* debt-adjust vtime */ 1226 current_hweight(iocg, NULL, &hw_inuse); 1227 vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse); 1228 1229 /* clear or maintain depending on the overage */ 1230 if (time_before_eq64(vtime, now->vnow)) { 1231 blkcg_clear_delay(blkg); 1232 return; 1233 } 1234 if (!atomic_read(&blkg->use_delay) && 1235 time_before_eq64(vtime, now->vnow + vmargin)) 1236 return; 1237 1238 /* use delay */ 1239 if (cost) { 1240 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC, 1241 now->vrate); 1242 blkcg_add_delay(blkg, now->now_ns, cost_ns); 1243 } 1244 blkcg_use_delay(blkg); 1245 1246 expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow, 1247 now->vrate) * NSEC_PER_USEC; 1248 1249 /* if already active and close enough, don't bother */ 1250 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer)); 1251 if (hrtimer_is_queued(&iocg->delay_timer) && 1252 abs(oexpires - expires) <= margin_ns / 4) 1253 return; 1254 1255 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires), 1256 margin_ns / 4, HRTIMER_MODE_ABS); 1257 } 1258 1259 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer) 1260 { 1261 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer); 1262 struct ioc_now now; 1263 1264 ioc_now(iocg->ioc, &now); 1265 iocg_kick_delay(iocg, &now, 0); 1266 1267 return HRTIMER_NORESTART; 1268 } 1269 1270 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1271 { 1272 u32 nr_met[2] = { }; 1273 u32 nr_missed[2] = { }; 1274 u64 rq_wait_ns = 0; 1275 int cpu, rw; 1276 1277 for_each_online_cpu(cpu) { 1278 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1279 u64 this_rq_wait_ns; 1280 1281 for (rw = READ; rw <= WRITE; rw++) { 1282 u32 this_met = READ_ONCE(stat->missed[rw].nr_met); 1283 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed); 1284 1285 nr_met[rw] += this_met - stat->missed[rw].last_met; 1286 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1287 stat->missed[rw].last_met = this_met; 1288 stat->missed[rw].last_missed = this_missed; 1289 } 1290 1291 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns); 1292 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1293 stat->last_rq_wait_ns = this_rq_wait_ns; 1294 } 1295 1296 for (rw = READ; rw <= WRITE; rw++) { 1297 if (nr_met[rw] + nr_missed[rw]) 1298 missed_ppm_ar[rw] = 1299 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1300 nr_met[rw] + nr_missed[rw]); 1301 else 1302 missed_ppm_ar[rw] = 0; 1303 } 1304 1305 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1306 ioc->period_us * NSEC_PER_USEC); 1307 } 1308 1309 /* was iocg idle this period? */ 1310 static bool iocg_is_idle(struct ioc_gq *iocg) 1311 { 1312 struct ioc *ioc = iocg->ioc; 1313 1314 /* did something get issued this period? */ 1315 if (atomic64_read(&iocg->active_period) == 1316 atomic64_read(&ioc->cur_period)) 1317 return false; 1318 1319 /* is something in flight? */ 1320 if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime)) 1321 return false; 1322 1323 return true; 1324 } 1325 1326 /* returns usage with margin added if surplus is large enough */ 1327 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse) 1328 { 1329 /* add margin */ 1330 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100); 1331 usage += SURPLUS_SCALE_ABS; 1332 1333 /* don't bother if the surplus is too small */ 1334 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse) 1335 return 0; 1336 1337 return usage; 1338 } 1339 1340 static void ioc_timer_fn(struct timer_list *timer) 1341 { 1342 struct ioc *ioc = container_of(timer, struct ioc, timer); 1343 struct ioc_gq *iocg, *tiocg; 1344 struct ioc_now now; 1345 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0; 1346 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 1347 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 1348 u32 missed_ppm[2], rq_wait_pct; 1349 u64 period_vtime; 1350 int prev_busy_level, i; 1351 1352 /* how were the latencies during the period? */ 1353 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 1354 1355 /* take care of active iocgs */ 1356 spin_lock_irq(&ioc->lock); 1357 1358 ioc_now(ioc, &now); 1359 1360 period_vtime = now.vnow - ioc->period_at_vtime; 1361 if (WARN_ON_ONCE(!period_vtime)) { 1362 spin_unlock_irq(&ioc->lock); 1363 return; 1364 } 1365 1366 /* 1367 * Waiters determine the sleep durations based on the vrate they 1368 * saw at the time of sleep. If vrate has increased, some waiters 1369 * could be sleeping for too long. Wake up tardy waiters which 1370 * should have woken up in the last period and expire idle iocgs. 1371 */ 1372 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 1373 if (!waitqueue_active(&iocg->waitq) && 1374 !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg)) 1375 continue; 1376 1377 spin_lock(&iocg->waitq.lock); 1378 1379 if (waitqueue_active(&iocg->waitq) || 1380 atomic64_read(&iocg->abs_vdebt)) { 1381 /* might be oversleeping vtime / hweight changes, kick */ 1382 iocg_kick_waitq(iocg, &now); 1383 iocg_kick_delay(iocg, &now, 0); 1384 } else if (iocg_is_idle(iocg)) { 1385 /* no waiter and idle, deactivate */ 1386 iocg->last_inuse = iocg->inuse; 1387 __propagate_active_weight(iocg, 0, 0); 1388 list_del_init(&iocg->active_list); 1389 } 1390 1391 spin_unlock(&iocg->waitq.lock); 1392 } 1393 commit_active_weights(ioc); 1394 1395 /* calc usages and see whether some weights need to be moved around */ 1396 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 1397 u64 vdone, vtime, vusage, vmargin, vmin; 1398 u32 hw_active, hw_inuse, usage; 1399 1400 /* 1401 * Collect unused and wind vtime closer to vnow to prevent 1402 * iocgs from accumulating a large amount of budget. 1403 */ 1404 vdone = atomic64_read(&iocg->done_vtime); 1405 vtime = atomic64_read(&iocg->vtime); 1406 current_hweight(iocg, &hw_active, &hw_inuse); 1407 1408 /* 1409 * Latency QoS detection doesn't account for IOs which are 1410 * in-flight for longer than a period. Detect them by 1411 * comparing vdone against period start. If lagging behind 1412 * IOs from past periods, don't increase vrate. 1413 */ 1414 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 1415 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 1416 time_after64(vtime, vdone) && 1417 time_after64(vtime, now.vnow - 1418 MAX_LAGGING_PERIODS * period_vtime) && 1419 time_before64(vdone, now.vnow - period_vtime)) 1420 nr_lagging++; 1421 1422 if (waitqueue_active(&iocg->waitq)) 1423 vusage = now.vnow - iocg->last_vtime; 1424 else if (time_before64(iocg->last_vtime, vtime)) 1425 vusage = vtime - iocg->last_vtime; 1426 else 1427 vusage = 0; 1428 1429 iocg->last_vtime += vusage; 1430 /* 1431 * Factor in in-flight vtime into vusage to avoid 1432 * high-latency completions appearing as idle. This should 1433 * be done after the above ->last_time adjustment. 1434 */ 1435 vusage = max(vusage, vtime - vdone); 1436 1437 /* calculate hweight based usage ratio and record */ 1438 if (vusage) { 1439 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse, 1440 period_vtime); 1441 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS; 1442 iocg->usages[iocg->usage_idx] = usage; 1443 } else { 1444 usage = 0; 1445 } 1446 1447 /* see whether there's surplus vtime */ 1448 vmargin = ioc->margin_us * now.vrate; 1449 vmin = now.vnow - vmargin; 1450 1451 iocg->has_surplus = false; 1452 1453 if (!waitqueue_active(&iocg->waitq) && 1454 time_before64(vtime, vmin)) { 1455 u64 delta = vmin - vtime; 1456 1457 /* throw away surplus vtime */ 1458 atomic64_add(delta, &iocg->vtime); 1459 atomic64_add(delta, &iocg->done_vtime); 1460 iocg->last_vtime += delta; 1461 /* if usage is sufficiently low, maybe it can donate */ 1462 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) { 1463 iocg->has_surplus = true; 1464 nr_surpluses++; 1465 } 1466 } else if (hw_inuse < hw_active) { 1467 u32 new_hwi, new_inuse; 1468 1469 /* was donating but might need to take back some */ 1470 if (waitqueue_active(&iocg->waitq)) { 1471 new_hwi = hw_active; 1472 } else { 1473 new_hwi = max(hw_inuse, 1474 usage * SURPLUS_SCALE_PCT / 100 + 1475 SURPLUS_SCALE_ABS); 1476 } 1477 1478 new_inuse = div64_u64((u64)iocg->inuse * new_hwi, 1479 hw_inuse); 1480 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active); 1481 1482 if (new_inuse > iocg->inuse) { 1483 TRACE_IOCG_PATH(inuse_takeback, iocg, &now, 1484 iocg->inuse, new_inuse, 1485 hw_inuse, new_hwi); 1486 __propagate_active_weight(iocg, iocg->weight, 1487 new_inuse); 1488 } 1489 } else { 1490 /* genuninely out of vtime */ 1491 nr_shortages++; 1492 } 1493 } 1494 1495 if (!nr_shortages || !nr_surpluses) 1496 goto skip_surplus_transfers; 1497 1498 /* there are both shortages and surpluses, transfer surpluses */ 1499 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 1500 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse; 1501 int nr_valid = 0; 1502 1503 if (!iocg->has_surplus) 1504 continue; 1505 1506 /* base the decision on max historical usage */ 1507 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) { 1508 if (iocg->usages[i]) { 1509 usage = max(usage, iocg->usages[i]); 1510 nr_valid++; 1511 } 1512 } 1513 if (nr_valid < MIN_VALID_USAGES) 1514 continue; 1515 1516 current_hweight(iocg, &hw_active, &hw_inuse); 1517 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse); 1518 if (!new_hwi) 1519 continue; 1520 1521 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi, 1522 hw_inuse); 1523 if (new_inuse < iocg->inuse) { 1524 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now, 1525 iocg->inuse, new_inuse, 1526 hw_inuse, new_hwi); 1527 __propagate_active_weight(iocg, iocg->weight, new_inuse); 1528 } 1529 } 1530 skip_surplus_transfers: 1531 commit_active_weights(ioc); 1532 1533 /* 1534 * If q is getting clogged or we're missing too much, we're issuing 1535 * too much IO and should lower vtime rate. If we're not missing 1536 * and experiencing shortages but not surpluses, we're too stingy 1537 * and should increase vtime rate. 1538 */ 1539 prev_busy_level = ioc->busy_level; 1540 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 1541 missed_ppm[READ] > ppm_rthr || 1542 missed_ppm[WRITE] > ppm_wthr) { 1543 ioc->busy_level = max(ioc->busy_level, 0); 1544 ioc->busy_level++; 1545 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 1546 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 1547 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 1548 /* take action iff there is contention */ 1549 if (nr_shortages && !nr_lagging) { 1550 ioc->busy_level = min(ioc->busy_level, 0); 1551 /* redistribute surpluses first */ 1552 if (!nr_surpluses) 1553 ioc->busy_level--; 1554 } 1555 } else { 1556 ioc->busy_level = 0; 1557 } 1558 1559 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 1560 1561 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { 1562 u64 vrate = atomic64_read(&ioc->vtime_rate); 1563 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 1564 1565 /* rq_wait signal is always reliable, ignore user vrate_min */ 1566 if (rq_wait_pct > RQ_WAIT_BUSY_PCT) 1567 vrate_min = VRATE_MIN; 1568 1569 /* 1570 * If vrate is out of bounds, apply clamp gradually as the 1571 * bounds can change abruptly. Otherwise, apply busy_level 1572 * based adjustment. 1573 */ 1574 if (vrate < vrate_min) { 1575 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 1576 100); 1577 vrate = min(vrate, vrate_min); 1578 } else if (vrate > vrate_max) { 1579 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 1580 100); 1581 vrate = max(vrate, vrate_max); 1582 } else { 1583 int idx = min_t(int, abs(ioc->busy_level), 1584 ARRAY_SIZE(vrate_adj_pct) - 1); 1585 u32 adj_pct = vrate_adj_pct[idx]; 1586 1587 if (ioc->busy_level > 0) 1588 adj_pct = 100 - adj_pct; 1589 else 1590 adj_pct = 100 + adj_pct; 1591 1592 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1593 vrate_min, vrate_max); 1594 } 1595 1596 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct, 1597 nr_lagging, nr_shortages, 1598 nr_surpluses); 1599 1600 atomic64_set(&ioc->vtime_rate, vrate); 1601 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( 1602 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100); 1603 } else if (ioc->busy_level != prev_busy_level || nr_lagging) { 1604 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 1605 &missed_ppm, rq_wait_pct, nr_lagging, 1606 nr_shortages, nr_surpluses); 1607 } 1608 1609 ioc_refresh_params(ioc, false); 1610 1611 /* 1612 * This period is done. Move onto the next one. If nothing's 1613 * going on with the device, stop the timer. 1614 */ 1615 atomic64_inc(&ioc->cur_period); 1616 1617 if (ioc->running != IOC_STOP) { 1618 if (!list_empty(&ioc->active_iocgs)) { 1619 ioc_start_period(ioc, &now); 1620 } else { 1621 ioc->busy_level = 0; 1622 ioc->running = IOC_IDLE; 1623 } 1624 } 1625 1626 spin_unlock_irq(&ioc->lock); 1627 } 1628 1629 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 1630 bool is_merge, u64 *costp) 1631 { 1632 struct ioc *ioc = iocg->ioc; 1633 u64 coef_seqio, coef_randio, coef_page; 1634 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 1635 u64 seek_pages = 0; 1636 u64 cost = 0; 1637 1638 switch (bio_op(bio)) { 1639 case REQ_OP_READ: 1640 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 1641 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 1642 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 1643 break; 1644 case REQ_OP_WRITE: 1645 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 1646 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 1647 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 1648 break; 1649 default: 1650 goto out; 1651 } 1652 1653 if (iocg->cursor) { 1654 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 1655 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 1656 } 1657 1658 if (!is_merge) { 1659 if (seek_pages > LCOEF_RANDIO_PAGES) { 1660 cost += coef_randio; 1661 } else { 1662 cost += coef_seqio; 1663 } 1664 } 1665 cost += pages * coef_page; 1666 out: 1667 *costp = cost; 1668 } 1669 1670 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 1671 { 1672 u64 cost; 1673 1674 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 1675 return cost; 1676 } 1677 1678 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 1679 { 1680 struct blkcg_gq *blkg = bio->bi_blkg; 1681 struct ioc *ioc = rqos_to_ioc(rqos); 1682 struct ioc_gq *iocg = blkg_to_iocg(blkg); 1683 struct ioc_now now; 1684 struct iocg_wait wait; 1685 u32 hw_active, hw_inuse; 1686 u64 abs_cost, cost, vtime; 1687 1688 /* bypass IOs if disabled or for root cgroup */ 1689 if (!ioc->enabled || !iocg->level) 1690 return; 1691 1692 /* always activate so that even 0 cost IOs get protected to some level */ 1693 if (!iocg_activate(iocg, &now)) 1694 return; 1695 1696 /* calculate the absolute vtime cost */ 1697 abs_cost = calc_vtime_cost(bio, iocg, false); 1698 if (!abs_cost) 1699 return; 1700 1701 iocg->cursor = bio_end_sector(bio); 1702 1703 vtime = atomic64_read(&iocg->vtime); 1704 current_hweight(iocg, &hw_active, &hw_inuse); 1705 1706 if (hw_inuse < hw_active && 1707 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) { 1708 TRACE_IOCG_PATH(inuse_reset, iocg, &now, 1709 iocg->inuse, iocg->weight, hw_inuse, hw_active); 1710 spin_lock_irq(&ioc->lock); 1711 propagate_active_weight(iocg, iocg->weight, iocg->weight); 1712 spin_unlock_irq(&ioc->lock); 1713 current_hweight(iocg, &hw_active, &hw_inuse); 1714 } 1715 1716 cost = abs_cost_to_cost(abs_cost, hw_inuse); 1717 1718 /* 1719 * If no one's waiting and within budget, issue right away. The 1720 * tests are racy but the races aren't systemic - we only miss once 1721 * in a while which is fine. 1722 */ 1723 if (!waitqueue_active(&iocg->waitq) && 1724 !atomic64_read(&iocg->abs_vdebt) && 1725 time_before_eq64(vtime + cost, now.vnow)) { 1726 iocg_commit_bio(iocg, bio, cost); 1727 return; 1728 } 1729 1730 /* 1731 * We're over budget. If @bio has to be issued regardless, 1732 * remember the abs_cost instead of advancing vtime. 1733 * iocg_kick_waitq() will pay off the debt before waking more IOs. 1734 * This way, the debt is continuously paid off each period with the 1735 * actual budget available to the cgroup. If we just wound vtime, 1736 * we would incorrectly use the current hw_inuse for the entire 1737 * amount which, for example, can lead to the cgroup staying 1738 * blocked for a long time even with substantially raised hw_inuse. 1739 */ 1740 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) { 1741 atomic64_add(abs_cost, &iocg->abs_vdebt); 1742 iocg_kick_delay(iocg, &now, cost); 1743 return; 1744 } 1745 1746 /* 1747 * Append self to the waitq and schedule the wakeup timer if we're 1748 * the first waiter. The timer duration is calculated based on the 1749 * current vrate. vtime and hweight changes can make it too short 1750 * or too long. Each wait entry records the absolute cost it's 1751 * waiting for to allow re-evaluation using a custom wait entry. 1752 * 1753 * If too short, the timer simply reschedules itself. If too long, 1754 * the period timer will notice and trigger wakeups. 1755 * 1756 * All waiters are on iocg->waitq and the wait states are 1757 * synchronized using waitq.lock. 1758 */ 1759 spin_lock_irq(&iocg->waitq.lock); 1760 1761 /* 1762 * We activated above but w/o any synchronization. Deactivation is 1763 * synchronized with waitq.lock and we won't get deactivated as 1764 * long as we're waiting, so we're good if we're activated here. 1765 * In the unlikely case that we are deactivated, just issue the IO. 1766 */ 1767 if (unlikely(list_empty(&iocg->active_list))) { 1768 spin_unlock_irq(&iocg->waitq.lock); 1769 iocg_commit_bio(iocg, bio, cost); 1770 return; 1771 } 1772 1773 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 1774 wait.wait.private = current; 1775 wait.bio = bio; 1776 wait.abs_cost = abs_cost; 1777 wait.committed = false; /* will be set true by waker */ 1778 1779 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 1780 iocg_kick_waitq(iocg, &now); 1781 1782 spin_unlock_irq(&iocg->waitq.lock); 1783 1784 while (true) { 1785 set_current_state(TASK_UNINTERRUPTIBLE); 1786 if (wait.committed) 1787 break; 1788 io_schedule(); 1789 } 1790 1791 /* waker already committed us, proceed */ 1792 finish_wait(&iocg->waitq, &wait.wait); 1793 } 1794 1795 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 1796 struct bio *bio) 1797 { 1798 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 1799 struct ioc *ioc = iocg->ioc; 1800 sector_t bio_end = bio_end_sector(bio); 1801 struct ioc_now now; 1802 u32 hw_inuse; 1803 u64 abs_cost, cost; 1804 1805 /* bypass if disabled or for root cgroup */ 1806 if (!ioc->enabled || !iocg->level) 1807 return; 1808 1809 abs_cost = calc_vtime_cost(bio, iocg, true); 1810 if (!abs_cost) 1811 return; 1812 1813 ioc_now(ioc, &now); 1814 current_hweight(iocg, NULL, &hw_inuse); 1815 cost = abs_cost_to_cost(abs_cost, hw_inuse); 1816 1817 /* update cursor if backmerging into the request at the cursor */ 1818 if (blk_rq_pos(rq) < bio_end && 1819 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 1820 iocg->cursor = bio_end; 1821 1822 /* 1823 * Charge if there's enough vtime budget and the existing request 1824 * has cost assigned. Otherwise, account it as debt. See debt 1825 * handling in ioc_rqos_throttle() for details. 1826 */ 1827 if (rq->bio && rq->bio->bi_iocost_cost && 1828 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) 1829 iocg_commit_bio(iocg, bio, cost); 1830 else 1831 atomic64_add(abs_cost, &iocg->abs_vdebt); 1832 } 1833 1834 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 1835 { 1836 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 1837 1838 if (iocg && bio->bi_iocost_cost) 1839 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 1840 } 1841 1842 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 1843 { 1844 struct ioc *ioc = rqos_to_ioc(rqos); 1845 u64 on_q_ns, rq_wait_ns; 1846 int pidx, rw; 1847 1848 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 1849 return; 1850 1851 switch (req_op(rq) & REQ_OP_MASK) { 1852 case REQ_OP_READ: 1853 pidx = QOS_RLAT; 1854 rw = READ; 1855 break; 1856 case REQ_OP_WRITE: 1857 pidx = QOS_WLAT; 1858 rw = WRITE; 1859 break; 1860 default: 1861 return; 1862 } 1863 1864 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 1865 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 1866 1867 if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC) 1868 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met); 1869 else 1870 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed); 1871 1872 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns); 1873 } 1874 1875 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 1876 { 1877 struct ioc *ioc = rqos_to_ioc(rqos); 1878 1879 spin_lock_irq(&ioc->lock); 1880 ioc_refresh_params(ioc, false); 1881 spin_unlock_irq(&ioc->lock); 1882 } 1883 1884 static void ioc_rqos_exit(struct rq_qos *rqos) 1885 { 1886 struct ioc *ioc = rqos_to_ioc(rqos); 1887 1888 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 1889 1890 spin_lock_irq(&ioc->lock); 1891 ioc->running = IOC_STOP; 1892 spin_unlock_irq(&ioc->lock); 1893 1894 del_timer_sync(&ioc->timer); 1895 free_percpu(ioc->pcpu_stat); 1896 kfree(ioc); 1897 } 1898 1899 static struct rq_qos_ops ioc_rqos_ops = { 1900 .throttle = ioc_rqos_throttle, 1901 .merge = ioc_rqos_merge, 1902 .done_bio = ioc_rqos_done_bio, 1903 .done = ioc_rqos_done, 1904 .queue_depth_changed = ioc_rqos_queue_depth_changed, 1905 .exit = ioc_rqos_exit, 1906 }; 1907 1908 static int blk_iocost_init(struct request_queue *q) 1909 { 1910 struct ioc *ioc; 1911 struct rq_qos *rqos; 1912 int ret; 1913 1914 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 1915 if (!ioc) 1916 return -ENOMEM; 1917 1918 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 1919 if (!ioc->pcpu_stat) { 1920 kfree(ioc); 1921 return -ENOMEM; 1922 } 1923 1924 rqos = &ioc->rqos; 1925 rqos->id = RQ_QOS_COST; 1926 rqos->ops = &ioc_rqos_ops; 1927 rqos->q = q; 1928 1929 spin_lock_init(&ioc->lock); 1930 timer_setup(&ioc->timer, ioc_timer_fn, 0); 1931 INIT_LIST_HEAD(&ioc->active_iocgs); 1932 1933 ioc->running = IOC_IDLE; 1934 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 1935 seqcount_init(&ioc->period_seqcount); 1936 ioc->period_at = ktime_to_us(ktime_get()); 1937 atomic64_set(&ioc->cur_period, 0); 1938 atomic_set(&ioc->hweight_gen, 0); 1939 1940 spin_lock_irq(&ioc->lock); 1941 ioc->autop_idx = AUTOP_INVALID; 1942 ioc_refresh_params(ioc, true); 1943 spin_unlock_irq(&ioc->lock); 1944 1945 rq_qos_add(q, rqos); 1946 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 1947 if (ret) { 1948 rq_qos_del(q, rqos); 1949 free_percpu(ioc->pcpu_stat); 1950 kfree(ioc); 1951 return ret; 1952 } 1953 return 0; 1954 } 1955 1956 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 1957 { 1958 struct ioc_cgrp *iocc; 1959 1960 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 1961 if (!iocc) 1962 return NULL; 1963 1964 iocc->dfl_weight = CGROUP_WEIGHT_DFL; 1965 return &iocc->cpd; 1966 } 1967 1968 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 1969 { 1970 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 1971 } 1972 1973 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 1974 struct blkcg *blkcg) 1975 { 1976 int levels = blkcg->css.cgroup->level + 1; 1977 struct ioc_gq *iocg; 1978 1979 iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]), 1980 gfp, q->node); 1981 if (!iocg) 1982 return NULL; 1983 1984 return &iocg->pd; 1985 } 1986 1987 static void ioc_pd_init(struct blkg_policy_data *pd) 1988 { 1989 struct ioc_gq *iocg = pd_to_iocg(pd); 1990 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 1991 struct ioc *ioc = q_to_ioc(blkg->q); 1992 struct ioc_now now; 1993 struct blkcg_gq *tblkg; 1994 unsigned long flags; 1995 1996 ioc_now(ioc, &now); 1997 1998 iocg->ioc = ioc; 1999 atomic64_set(&iocg->vtime, now.vnow); 2000 atomic64_set(&iocg->done_vtime, now.vnow); 2001 atomic64_set(&iocg->abs_vdebt, 0); 2002 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2003 INIT_LIST_HEAD(&iocg->active_list); 2004 iocg->hweight_active = HWEIGHT_WHOLE; 2005 iocg->hweight_inuse = HWEIGHT_WHOLE; 2006 2007 init_waitqueue_head(&iocg->waitq); 2008 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2009 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2010 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2011 iocg->delay_timer.function = iocg_delay_timer_fn; 2012 2013 iocg->level = blkg->blkcg->css.cgroup->level; 2014 2015 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2016 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2017 iocg->ancestors[tiocg->level] = tiocg; 2018 } 2019 2020 spin_lock_irqsave(&ioc->lock, flags); 2021 weight_updated(iocg); 2022 spin_unlock_irqrestore(&ioc->lock, flags); 2023 } 2024 2025 static void ioc_pd_free(struct blkg_policy_data *pd) 2026 { 2027 struct ioc_gq *iocg = pd_to_iocg(pd); 2028 struct ioc *ioc = iocg->ioc; 2029 2030 if (ioc) { 2031 spin_lock(&ioc->lock); 2032 if (!list_empty(&iocg->active_list)) { 2033 propagate_active_weight(iocg, 0, 0); 2034 list_del_init(&iocg->active_list); 2035 } 2036 spin_unlock(&ioc->lock); 2037 2038 hrtimer_cancel(&iocg->waitq_timer); 2039 hrtimer_cancel(&iocg->delay_timer); 2040 } 2041 kfree(iocg); 2042 } 2043 2044 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2045 int off) 2046 { 2047 const char *dname = blkg_dev_name(pd->blkg); 2048 struct ioc_gq *iocg = pd_to_iocg(pd); 2049 2050 if (dname && iocg->cfg_weight) 2051 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight); 2052 return 0; 2053 } 2054 2055 2056 static int ioc_weight_show(struct seq_file *sf, void *v) 2057 { 2058 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2059 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2060 2061 seq_printf(sf, "default %u\n", iocc->dfl_weight); 2062 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 2063 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2064 return 0; 2065 } 2066 2067 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 2068 size_t nbytes, loff_t off) 2069 { 2070 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 2071 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2072 struct blkg_conf_ctx ctx; 2073 struct ioc_gq *iocg; 2074 u32 v; 2075 int ret; 2076 2077 if (!strchr(buf, ':')) { 2078 struct blkcg_gq *blkg; 2079 2080 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 2081 return -EINVAL; 2082 2083 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 2084 return -EINVAL; 2085 2086 spin_lock(&blkcg->lock); 2087 iocc->dfl_weight = v; 2088 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 2089 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2090 2091 if (iocg) { 2092 spin_lock_irq(&iocg->ioc->lock); 2093 weight_updated(iocg); 2094 spin_unlock_irq(&iocg->ioc->lock); 2095 } 2096 } 2097 spin_unlock(&blkcg->lock); 2098 2099 return nbytes; 2100 } 2101 2102 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 2103 if (ret) 2104 return ret; 2105 2106 iocg = blkg_to_iocg(ctx.blkg); 2107 2108 if (!strncmp(ctx.body, "default", 7)) { 2109 v = 0; 2110 } else { 2111 if (!sscanf(ctx.body, "%u", &v)) 2112 goto einval; 2113 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 2114 goto einval; 2115 } 2116 2117 spin_lock(&iocg->ioc->lock); 2118 iocg->cfg_weight = v; 2119 weight_updated(iocg); 2120 spin_unlock(&iocg->ioc->lock); 2121 2122 blkg_conf_finish(&ctx); 2123 return nbytes; 2124 2125 einval: 2126 blkg_conf_finish(&ctx); 2127 return -EINVAL; 2128 } 2129 2130 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2131 int off) 2132 { 2133 const char *dname = blkg_dev_name(pd->blkg); 2134 struct ioc *ioc = pd_to_iocg(pd)->ioc; 2135 2136 if (!dname) 2137 return 0; 2138 2139 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 2140 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 2141 ioc->params.qos[QOS_RPPM] / 10000, 2142 ioc->params.qos[QOS_RPPM] % 10000 / 100, 2143 ioc->params.qos[QOS_RLAT], 2144 ioc->params.qos[QOS_WPPM] / 10000, 2145 ioc->params.qos[QOS_WPPM] % 10000 / 100, 2146 ioc->params.qos[QOS_WLAT], 2147 ioc->params.qos[QOS_MIN] / 10000, 2148 ioc->params.qos[QOS_MIN] % 10000 / 100, 2149 ioc->params.qos[QOS_MAX] / 10000, 2150 ioc->params.qos[QOS_MAX] % 10000 / 100); 2151 return 0; 2152 } 2153 2154 static int ioc_qos_show(struct seq_file *sf, void *v) 2155 { 2156 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2157 2158 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 2159 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2160 return 0; 2161 } 2162 2163 static const match_table_t qos_ctrl_tokens = { 2164 { QOS_ENABLE, "enable=%u" }, 2165 { QOS_CTRL, "ctrl=%s" }, 2166 { NR_QOS_CTRL_PARAMS, NULL }, 2167 }; 2168 2169 static const match_table_t qos_tokens = { 2170 { QOS_RPPM, "rpct=%s" }, 2171 { QOS_RLAT, "rlat=%u" }, 2172 { QOS_WPPM, "wpct=%s" }, 2173 { QOS_WLAT, "wlat=%u" }, 2174 { QOS_MIN, "min=%s" }, 2175 { QOS_MAX, "max=%s" }, 2176 { NR_QOS_PARAMS, NULL }, 2177 }; 2178 2179 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 2180 size_t nbytes, loff_t off) 2181 { 2182 struct gendisk *disk; 2183 struct ioc *ioc; 2184 u32 qos[NR_QOS_PARAMS]; 2185 bool enable, user; 2186 char *p; 2187 int ret; 2188 2189 disk = blkcg_conf_get_disk(&input); 2190 if (IS_ERR(disk)) 2191 return PTR_ERR(disk); 2192 2193 ioc = q_to_ioc(disk->queue); 2194 if (!ioc) { 2195 ret = blk_iocost_init(disk->queue); 2196 if (ret) 2197 goto err; 2198 ioc = q_to_ioc(disk->queue); 2199 } 2200 2201 spin_lock_irq(&ioc->lock); 2202 memcpy(qos, ioc->params.qos, sizeof(qos)); 2203 enable = ioc->enabled; 2204 user = ioc->user_qos_params; 2205 spin_unlock_irq(&ioc->lock); 2206 2207 while ((p = strsep(&input, " \t\n"))) { 2208 substring_t args[MAX_OPT_ARGS]; 2209 char buf[32]; 2210 int tok; 2211 s64 v; 2212 2213 if (!*p) 2214 continue; 2215 2216 switch (match_token(p, qos_ctrl_tokens, args)) { 2217 case QOS_ENABLE: 2218 match_u64(&args[0], &v); 2219 enable = v; 2220 continue; 2221 case QOS_CTRL: 2222 match_strlcpy(buf, &args[0], sizeof(buf)); 2223 if (!strcmp(buf, "auto")) 2224 user = false; 2225 else if (!strcmp(buf, "user")) 2226 user = true; 2227 else 2228 goto einval; 2229 continue; 2230 } 2231 2232 tok = match_token(p, qos_tokens, args); 2233 switch (tok) { 2234 case QOS_RPPM: 2235 case QOS_WPPM: 2236 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 2237 sizeof(buf)) 2238 goto einval; 2239 if (cgroup_parse_float(buf, 2, &v)) 2240 goto einval; 2241 if (v < 0 || v > 10000) 2242 goto einval; 2243 qos[tok] = v * 100; 2244 break; 2245 case QOS_RLAT: 2246 case QOS_WLAT: 2247 if (match_u64(&args[0], &v)) 2248 goto einval; 2249 qos[tok] = v; 2250 break; 2251 case QOS_MIN: 2252 case QOS_MAX: 2253 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 2254 sizeof(buf)) 2255 goto einval; 2256 if (cgroup_parse_float(buf, 2, &v)) 2257 goto einval; 2258 if (v < 0) 2259 goto einval; 2260 qos[tok] = clamp_t(s64, v * 100, 2261 VRATE_MIN_PPM, VRATE_MAX_PPM); 2262 break; 2263 default: 2264 goto einval; 2265 } 2266 user = true; 2267 } 2268 2269 if (qos[QOS_MIN] > qos[QOS_MAX]) 2270 goto einval; 2271 2272 spin_lock_irq(&ioc->lock); 2273 2274 if (enable) { 2275 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 2276 ioc->enabled = true; 2277 } else { 2278 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 2279 ioc->enabled = false; 2280 } 2281 2282 if (user) { 2283 memcpy(ioc->params.qos, qos, sizeof(qos)); 2284 ioc->user_qos_params = true; 2285 } else { 2286 ioc->user_qos_params = false; 2287 } 2288 2289 ioc_refresh_params(ioc, true); 2290 spin_unlock_irq(&ioc->lock); 2291 2292 put_disk_and_module(disk); 2293 return nbytes; 2294 einval: 2295 ret = -EINVAL; 2296 err: 2297 put_disk_and_module(disk); 2298 return ret; 2299 } 2300 2301 static u64 ioc_cost_model_prfill(struct seq_file *sf, 2302 struct blkg_policy_data *pd, int off) 2303 { 2304 const char *dname = blkg_dev_name(pd->blkg); 2305 struct ioc *ioc = pd_to_iocg(pd)->ioc; 2306 u64 *u = ioc->params.i_lcoefs; 2307 2308 if (!dname) 2309 return 0; 2310 2311 seq_printf(sf, "%s ctrl=%s model=linear " 2312 "rbps=%llu rseqiops=%llu rrandiops=%llu " 2313 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 2314 dname, ioc->user_cost_model ? "user" : "auto", 2315 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 2316 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 2317 return 0; 2318 } 2319 2320 static int ioc_cost_model_show(struct seq_file *sf, void *v) 2321 { 2322 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2323 2324 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 2325 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2326 return 0; 2327 } 2328 2329 static const match_table_t cost_ctrl_tokens = { 2330 { COST_CTRL, "ctrl=%s" }, 2331 { COST_MODEL, "model=%s" }, 2332 { NR_COST_CTRL_PARAMS, NULL }, 2333 }; 2334 2335 static const match_table_t i_lcoef_tokens = { 2336 { I_LCOEF_RBPS, "rbps=%u" }, 2337 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 2338 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 2339 { I_LCOEF_WBPS, "wbps=%u" }, 2340 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 2341 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 2342 { NR_I_LCOEFS, NULL }, 2343 }; 2344 2345 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 2346 size_t nbytes, loff_t off) 2347 { 2348 struct gendisk *disk; 2349 struct ioc *ioc; 2350 u64 u[NR_I_LCOEFS]; 2351 bool user; 2352 char *p; 2353 int ret; 2354 2355 disk = blkcg_conf_get_disk(&input); 2356 if (IS_ERR(disk)) 2357 return PTR_ERR(disk); 2358 2359 ioc = q_to_ioc(disk->queue); 2360 if (!ioc) { 2361 ret = blk_iocost_init(disk->queue); 2362 if (ret) 2363 goto err; 2364 ioc = q_to_ioc(disk->queue); 2365 } 2366 2367 spin_lock_irq(&ioc->lock); 2368 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 2369 user = ioc->user_cost_model; 2370 spin_unlock_irq(&ioc->lock); 2371 2372 while ((p = strsep(&input, " \t\n"))) { 2373 substring_t args[MAX_OPT_ARGS]; 2374 char buf[32]; 2375 int tok; 2376 u64 v; 2377 2378 if (!*p) 2379 continue; 2380 2381 switch (match_token(p, cost_ctrl_tokens, args)) { 2382 case COST_CTRL: 2383 match_strlcpy(buf, &args[0], sizeof(buf)); 2384 if (!strcmp(buf, "auto")) 2385 user = false; 2386 else if (!strcmp(buf, "user")) 2387 user = true; 2388 else 2389 goto einval; 2390 continue; 2391 case COST_MODEL: 2392 match_strlcpy(buf, &args[0], sizeof(buf)); 2393 if (strcmp(buf, "linear")) 2394 goto einval; 2395 continue; 2396 } 2397 2398 tok = match_token(p, i_lcoef_tokens, args); 2399 if (tok == NR_I_LCOEFS) 2400 goto einval; 2401 if (match_u64(&args[0], &v)) 2402 goto einval; 2403 u[tok] = v; 2404 user = true; 2405 } 2406 2407 spin_lock_irq(&ioc->lock); 2408 if (user) { 2409 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 2410 ioc->user_cost_model = true; 2411 } else { 2412 ioc->user_cost_model = false; 2413 } 2414 ioc_refresh_params(ioc, true); 2415 spin_unlock_irq(&ioc->lock); 2416 2417 put_disk_and_module(disk); 2418 return nbytes; 2419 2420 einval: 2421 ret = -EINVAL; 2422 err: 2423 put_disk_and_module(disk); 2424 return ret; 2425 } 2426 2427 static struct cftype ioc_files[] = { 2428 { 2429 .name = "weight", 2430 .flags = CFTYPE_NOT_ON_ROOT, 2431 .seq_show = ioc_weight_show, 2432 .write = ioc_weight_write, 2433 }, 2434 { 2435 .name = "cost.qos", 2436 .flags = CFTYPE_ONLY_ON_ROOT, 2437 .seq_show = ioc_qos_show, 2438 .write = ioc_qos_write, 2439 }, 2440 { 2441 .name = "cost.model", 2442 .flags = CFTYPE_ONLY_ON_ROOT, 2443 .seq_show = ioc_cost_model_show, 2444 .write = ioc_cost_model_write, 2445 }, 2446 {} 2447 }; 2448 2449 static struct blkcg_policy blkcg_policy_iocost = { 2450 .dfl_cftypes = ioc_files, 2451 .cpd_alloc_fn = ioc_cpd_alloc, 2452 .cpd_free_fn = ioc_cpd_free, 2453 .pd_alloc_fn = ioc_pd_alloc, 2454 .pd_init_fn = ioc_pd_init, 2455 .pd_free_fn = ioc_pd_free, 2456 }; 2457 2458 static int __init ioc_init(void) 2459 { 2460 return blkcg_policy_register(&blkcg_policy_iocost); 2461 } 2462 2463 static void __exit ioc_exit(void) 2464 { 2465 return blkcg_policy_unregister(&blkcg_policy_iocost); 2466 } 2467 2468 module_init(ioc_init); 2469 module_exit(ioc_exit); 2470