1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, solely depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 }; 236 237 enum { 238 /* 239 * As vtime is used to calculate the cost of each IO, it needs to 240 * be fairly high precision. For example, it should be able to 241 * represent the cost of a single page worth of discard with 242 * suffificient accuracy. At the same time, it should be able to 243 * represent reasonably long enough durations to be useful and 244 * convenient during operation. 245 * 246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 247 * granularity and days of wrap-around time even at extreme vrates. 248 */ 249 VTIME_PER_SEC_SHIFT = 37, 250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 253 254 /* bound vrate adjustments within two orders of magnitude */ 255 VRATE_MIN_PPM = 10000, /* 1% */ 256 VRATE_MAX_PPM = 100000000, /* 10000% */ 257 258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 259 VRATE_CLAMP_ADJ_PCT = 4, 260 261 /* switch iff the conditions are met for longer than this */ 262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 263 }; 264 265 enum { 266 /* if IOs end up waiting for requests, issue less */ 267 RQ_WAIT_BUSY_PCT = 5, 268 269 /* unbusy hysterisis */ 270 UNBUSY_THR_PCT = 75, 271 272 /* 273 * The effect of delay is indirect and non-linear and a huge amount of 274 * future debt can accumulate abruptly while unthrottled. Linearly scale 275 * up delay as debt is going up and then let it decay exponentially. 276 * This gives us quick ramp ups while delay is accumulating and long 277 * tails which can help reducing the frequency of debt explosions on 278 * unthrottle. The parameters are experimentally determined. 279 * 280 * The delay mechanism provides adequate protection and behavior in many 281 * cases. However, this is far from ideal and falls shorts on both 282 * fronts. The debtors are often throttled too harshly costing a 283 * significant level of fairness and possibly total work while the 284 * protection against their impacts on the system can be choppy and 285 * unreliable. 286 * 287 * The shortcoming primarily stems from the fact that, unlike for page 288 * cache, the kernel doesn't have well-defined back-pressure propagation 289 * mechanism and policies for anonymous memory. Fully addressing this 290 * issue will likely require substantial improvements in the area. 291 */ 292 MIN_DELAY_THR_PCT = 500, 293 MAX_DELAY_THR_PCT = 25000, 294 MIN_DELAY = 250, 295 MAX_DELAY = 250 * USEC_PER_MSEC, 296 297 /* halve debts if avg usage over 100ms is under 50% */ 298 DFGV_USAGE_PCT = 50, 299 DFGV_PERIOD = 100 * USEC_PER_MSEC, 300 301 /* don't let cmds which take a very long time pin lagging for too long */ 302 MAX_LAGGING_PERIODS = 10, 303 304 /* 305 * Count IO size in 4k pages. The 12bit shift helps keeping 306 * size-proportional components of cost calculation in closer 307 * numbers of digits to per-IO cost components. 308 */ 309 IOC_PAGE_SHIFT = 12, 310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 312 313 /* if apart further than 16M, consider randio for linear model */ 314 LCOEF_RANDIO_PAGES = 4096, 315 }; 316 317 enum ioc_running { 318 IOC_IDLE, 319 IOC_RUNNING, 320 IOC_STOP, 321 }; 322 323 /* io.cost.qos controls including per-dev enable of the whole controller */ 324 enum { 325 QOS_ENABLE, 326 QOS_CTRL, 327 NR_QOS_CTRL_PARAMS, 328 }; 329 330 /* io.cost.qos params */ 331 enum { 332 QOS_RPPM, 333 QOS_RLAT, 334 QOS_WPPM, 335 QOS_WLAT, 336 QOS_MIN, 337 QOS_MAX, 338 NR_QOS_PARAMS, 339 }; 340 341 /* io.cost.model controls */ 342 enum { 343 COST_CTRL, 344 COST_MODEL, 345 NR_COST_CTRL_PARAMS, 346 }; 347 348 /* builtin linear cost model coefficients */ 349 enum { 350 I_LCOEF_RBPS, 351 I_LCOEF_RSEQIOPS, 352 I_LCOEF_RRANDIOPS, 353 I_LCOEF_WBPS, 354 I_LCOEF_WSEQIOPS, 355 I_LCOEF_WRANDIOPS, 356 NR_I_LCOEFS, 357 }; 358 359 enum { 360 LCOEF_RPAGE, 361 LCOEF_RSEQIO, 362 LCOEF_RRANDIO, 363 LCOEF_WPAGE, 364 LCOEF_WSEQIO, 365 LCOEF_WRANDIO, 366 NR_LCOEFS, 367 }; 368 369 enum { 370 AUTOP_INVALID, 371 AUTOP_HDD, 372 AUTOP_SSD_QD1, 373 AUTOP_SSD_DFL, 374 AUTOP_SSD_FAST, 375 }; 376 377 struct ioc_params { 378 u32 qos[NR_QOS_PARAMS]; 379 u64 i_lcoefs[NR_I_LCOEFS]; 380 u64 lcoefs[NR_LCOEFS]; 381 u32 too_fast_vrate_pct; 382 u32 too_slow_vrate_pct; 383 }; 384 385 struct ioc_margins { 386 s64 min; 387 s64 low; 388 s64 target; 389 }; 390 391 struct ioc_missed { 392 local_t nr_met; 393 local_t nr_missed; 394 u32 last_met; 395 u32 last_missed; 396 }; 397 398 struct ioc_pcpu_stat { 399 struct ioc_missed missed[2]; 400 401 local64_t rq_wait_ns; 402 u64 last_rq_wait_ns; 403 }; 404 405 /* per device */ 406 struct ioc { 407 struct rq_qos rqos; 408 409 bool enabled; 410 411 struct ioc_params params; 412 struct ioc_margins margins; 413 u32 period_us; 414 u32 timer_slack_ns; 415 u64 vrate_min; 416 u64 vrate_max; 417 418 spinlock_t lock; 419 struct timer_list timer; 420 struct list_head active_iocgs; /* active cgroups */ 421 struct ioc_pcpu_stat __percpu *pcpu_stat; 422 423 enum ioc_running running; 424 atomic64_t vtime_rate; 425 u64 vtime_base_rate; 426 s64 vtime_err; 427 428 seqcount_spinlock_t period_seqcount; 429 u64 period_at; /* wallclock starttime */ 430 u64 period_at_vtime; /* vtime starttime */ 431 432 atomic64_t cur_period; /* inc'd each period */ 433 int busy_level; /* saturation history */ 434 435 bool weights_updated; 436 atomic_t hweight_gen; /* for lazy hweights */ 437 438 /* debt forgivness */ 439 u64 dfgv_period_at; 440 u64 dfgv_period_rem; 441 u64 dfgv_usage_us_sum; 442 443 u64 autop_too_fast_at; 444 u64 autop_too_slow_at; 445 int autop_idx; 446 bool user_qos_params:1; 447 bool user_cost_model:1; 448 }; 449 450 struct iocg_pcpu_stat { 451 local64_t abs_vusage; 452 }; 453 454 struct iocg_stat { 455 u64 usage_us; 456 u64 wait_us; 457 u64 indebt_us; 458 u64 indelay_us; 459 }; 460 461 /* per device-cgroup pair */ 462 struct ioc_gq { 463 struct blkg_policy_data pd; 464 struct ioc *ioc; 465 466 /* 467 * A iocg can get its weight from two sources - an explicit 468 * per-device-cgroup configuration or the default weight of the 469 * cgroup. `cfg_weight` is the explicit per-device-cgroup 470 * configuration. `weight` is the effective considering both 471 * sources. 472 * 473 * When an idle cgroup becomes active its `active` goes from 0 to 474 * `weight`. `inuse` is the surplus adjusted active weight. 475 * `active` and `inuse` are used to calculate `hweight_active` and 476 * `hweight_inuse`. 477 * 478 * `last_inuse` remembers `inuse` while an iocg is idle to persist 479 * surplus adjustments. 480 * 481 * `inuse` may be adjusted dynamically during period. `saved_*` are used 482 * to determine and track adjustments. 483 */ 484 u32 cfg_weight; 485 u32 weight; 486 u32 active; 487 u32 inuse; 488 489 u32 last_inuse; 490 s64 saved_margin; 491 492 sector_t cursor; /* to detect randio */ 493 494 /* 495 * `vtime` is this iocg's vtime cursor which progresses as IOs are 496 * issued. If lagging behind device vtime, the delta represents 497 * the currently available IO budget. If running ahead, the 498 * overage. 499 * 500 * `vtime_done` is the same but progressed on completion rather 501 * than issue. The delta behind `vtime` represents the cost of 502 * currently in-flight IOs. 503 */ 504 atomic64_t vtime; 505 atomic64_t done_vtime; 506 u64 abs_vdebt; 507 508 /* current delay in effect and when it started */ 509 u64 delay; 510 u64 delay_at; 511 512 /* 513 * The period this iocg was last active in. Used for deactivation 514 * and invalidating `vtime`. 515 */ 516 atomic64_t active_period; 517 struct list_head active_list; 518 519 /* see __propagate_weights() and current_hweight() for details */ 520 u64 child_active_sum; 521 u64 child_inuse_sum; 522 u64 child_adjusted_sum; 523 int hweight_gen; 524 u32 hweight_active; 525 u32 hweight_inuse; 526 u32 hweight_donating; 527 u32 hweight_after_donation; 528 529 struct list_head walk_list; 530 struct list_head surplus_list; 531 532 struct wait_queue_head waitq; 533 struct hrtimer waitq_timer; 534 535 /* timestamp at the latest activation */ 536 u64 activated_at; 537 538 /* statistics */ 539 struct iocg_pcpu_stat __percpu *pcpu_stat; 540 struct iocg_stat stat; 541 struct iocg_stat last_stat; 542 u64 last_stat_abs_vusage; 543 u64 usage_delta_us; 544 u64 wait_since; 545 u64 indebt_since; 546 u64 indelay_since; 547 548 /* this iocg's depth in the hierarchy and ancestors including self */ 549 int level; 550 struct ioc_gq *ancestors[]; 551 }; 552 553 /* per cgroup */ 554 struct ioc_cgrp { 555 struct blkcg_policy_data cpd; 556 unsigned int dfl_weight; 557 }; 558 559 struct ioc_now { 560 u64 now_ns; 561 u64 now; 562 u64 vnow; 563 }; 564 565 struct iocg_wait { 566 struct wait_queue_entry wait; 567 struct bio *bio; 568 u64 abs_cost; 569 bool committed; 570 }; 571 572 struct iocg_wake_ctx { 573 struct ioc_gq *iocg; 574 u32 hw_inuse; 575 s64 vbudget; 576 }; 577 578 static const struct ioc_params autop[] = { 579 [AUTOP_HDD] = { 580 .qos = { 581 [QOS_RLAT] = 250000, /* 250ms */ 582 [QOS_WLAT] = 250000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 174019176, 588 [I_LCOEF_RSEQIOPS] = 41708, 589 [I_LCOEF_RRANDIOPS] = 370, 590 [I_LCOEF_WBPS] = 178075866, 591 [I_LCOEF_WSEQIOPS] = 42705, 592 [I_LCOEF_WRANDIOPS] = 378, 593 }, 594 }, 595 [AUTOP_SSD_QD1] = { 596 .qos = { 597 [QOS_RLAT] = 25000, /* 25ms */ 598 [QOS_WLAT] = 25000, 599 [QOS_MIN] = VRATE_MIN_PPM, 600 [QOS_MAX] = VRATE_MAX_PPM, 601 }, 602 .i_lcoefs = { 603 [I_LCOEF_RBPS] = 245855193, 604 [I_LCOEF_RSEQIOPS] = 61575, 605 [I_LCOEF_RRANDIOPS] = 6946, 606 [I_LCOEF_WBPS] = 141365009, 607 [I_LCOEF_WSEQIOPS] = 33716, 608 [I_LCOEF_WRANDIOPS] = 26796, 609 }, 610 }, 611 [AUTOP_SSD_DFL] = { 612 .qos = { 613 [QOS_RLAT] = 25000, /* 25ms */ 614 [QOS_WLAT] = 25000, 615 [QOS_MIN] = VRATE_MIN_PPM, 616 [QOS_MAX] = VRATE_MAX_PPM, 617 }, 618 .i_lcoefs = { 619 [I_LCOEF_RBPS] = 488636629, 620 [I_LCOEF_RSEQIOPS] = 8932, 621 [I_LCOEF_RRANDIOPS] = 8518, 622 [I_LCOEF_WBPS] = 427891549, 623 [I_LCOEF_WSEQIOPS] = 28755, 624 [I_LCOEF_WRANDIOPS] = 21940, 625 }, 626 .too_fast_vrate_pct = 500, 627 }, 628 [AUTOP_SSD_FAST] = { 629 .qos = { 630 [QOS_RLAT] = 5000, /* 5ms */ 631 [QOS_WLAT] = 5000, 632 [QOS_MIN] = VRATE_MIN_PPM, 633 [QOS_MAX] = VRATE_MAX_PPM, 634 }, 635 .i_lcoefs = { 636 [I_LCOEF_RBPS] = 3102524156LLU, 637 [I_LCOEF_RSEQIOPS] = 724816, 638 [I_LCOEF_RRANDIOPS] = 778122, 639 [I_LCOEF_WBPS] = 1742780862LLU, 640 [I_LCOEF_WSEQIOPS] = 425702, 641 [I_LCOEF_WRANDIOPS] = 443193, 642 }, 643 .too_slow_vrate_pct = 10, 644 }, 645 }; 646 647 /* 648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 649 * vtime credit shortage and down on device saturation. 650 */ 651 static u32 vrate_adj_pct[] = 652 { 0, 0, 0, 0, 653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 656 657 static struct blkcg_policy blkcg_policy_iocost; 658 659 /* accessors and helpers */ 660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 661 { 662 return container_of(rqos, struct ioc, rqos); 663 } 664 665 static struct ioc *q_to_ioc(struct request_queue *q) 666 { 667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 668 } 669 670 static const char __maybe_unused *ioc_name(struct ioc *ioc) 671 { 672 struct gendisk *disk = ioc->rqos.disk; 673 674 if (!disk) 675 return "<unknown>"; 676 return disk->disk_name; 677 } 678 679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 680 { 681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 682 } 683 684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 685 { 686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 687 } 688 689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 690 { 691 return pd_to_blkg(&iocg->pd); 692 } 693 694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 695 { 696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 697 struct ioc_cgrp, cpd); 698 } 699 700 /* 701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 702 * weight, the more expensive each IO. Must round up. 703 */ 704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 705 { 706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 707 } 708 709 /* 710 * The inverse of abs_cost_to_cost(). Must round up. 711 */ 712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 713 { 714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 715 } 716 717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 718 u64 abs_cost, u64 cost) 719 { 720 struct iocg_pcpu_stat *gcs; 721 722 bio->bi_iocost_cost = cost; 723 atomic64_add(cost, &iocg->vtime); 724 725 gcs = get_cpu_ptr(iocg->pcpu_stat); 726 local64_add(abs_cost, &gcs->abs_vusage); 727 put_cpu_ptr(gcs); 728 } 729 730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 731 { 732 if (lock_ioc) { 733 spin_lock_irqsave(&iocg->ioc->lock, *flags); 734 spin_lock(&iocg->waitq.lock); 735 } else { 736 spin_lock_irqsave(&iocg->waitq.lock, *flags); 737 } 738 } 739 740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 741 { 742 if (unlock_ioc) { 743 spin_unlock(&iocg->waitq.lock); 744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 745 } else { 746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 747 } 748 } 749 750 #define CREATE_TRACE_POINTS 751 #include <trace/events/iocost.h> 752 753 static void ioc_refresh_margins(struct ioc *ioc) 754 { 755 struct ioc_margins *margins = &ioc->margins; 756 u32 period_us = ioc->period_us; 757 u64 vrate = ioc->vtime_base_rate; 758 759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 762 } 763 764 /* latency Qos params changed, update period_us and all the dependent params */ 765 static void ioc_refresh_period_us(struct ioc *ioc) 766 { 767 u32 ppm, lat, multi, period_us; 768 769 lockdep_assert_held(&ioc->lock); 770 771 /* pick the higher latency target */ 772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 773 ppm = ioc->params.qos[QOS_RPPM]; 774 lat = ioc->params.qos[QOS_RLAT]; 775 } else { 776 ppm = ioc->params.qos[QOS_WPPM]; 777 lat = ioc->params.qos[QOS_WLAT]; 778 } 779 780 /* 781 * We want the period to be long enough to contain a healthy number 782 * of IOs while short enough for granular control. Define it as a 783 * multiple of the latency target. Ideally, the multiplier should 784 * be scaled according to the percentile so that it would nominally 785 * contain a certain number of requests. Let's be simpler and 786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 787 */ 788 if (ppm) 789 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 790 else 791 multi = 2; 792 period_us = multi * lat; 793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 794 795 /* calculate dependent params */ 796 ioc->period_us = period_us; 797 ioc->timer_slack_ns = div64_u64( 798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 799 100); 800 ioc_refresh_margins(ioc); 801 } 802 803 /* 804 * ioc->rqos.disk isn't initialized when this function is called from 805 * the init path. 806 */ 807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk) 808 { 809 int idx = ioc->autop_idx; 810 const struct ioc_params *p = &autop[idx]; 811 u32 vrate_pct; 812 u64 now_ns; 813 814 /* rotational? */ 815 if (!blk_queue_nonrot(disk->queue)) 816 return AUTOP_HDD; 817 818 /* handle SATA SSDs w/ broken NCQ */ 819 if (blk_queue_depth(disk->queue) == 1) 820 return AUTOP_SSD_QD1; 821 822 /* use one of the normal ssd sets */ 823 if (idx < AUTOP_SSD_DFL) 824 return AUTOP_SSD_DFL; 825 826 /* if user is overriding anything, maintain what was there */ 827 if (ioc->user_qos_params || ioc->user_cost_model) 828 return idx; 829 830 /* step up/down based on the vrate */ 831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 832 now_ns = ktime_get_ns(); 833 834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 835 if (!ioc->autop_too_fast_at) 836 ioc->autop_too_fast_at = now_ns; 837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 838 return idx + 1; 839 } else { 840 ioc->autop_too_fast_at = 0; 841 } 842 843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 844 if (!ioc->autop_too_slow_at) 845 ioc->autop_too_slow_at = now_ns; 846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 847 return idx - 1; 848 } else { 849 ioc->autop_too_slow_at = 0; 850 } 851 852 return idx; 853 } 854 855 /* 856 * Take the followings as input 857 * 858 * @bps maximum sequential throughput 859 * @seqiops maximum sequential 4k iops 860 * @randiops maximum random 4k iops 861 * 862 * and calculate the linear model cost coefficients. 863 * 864 * *@page per-page cost 1s / (@bps / 4096) 865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 867 */ 868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 869 u64 *page, u64 *seqio, u64 *randio) 870 { 871 u64 v; 872 873 *page = *seqio = *randio = 0; 874 875 if (bps) { 876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); 877 878 if (bps_pages) 879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); 880 else 881 *page = 1; 882 } 883 884 if (seqiops) { 885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 886 if (v > *page) 887 *seqio = v - *page; 888 } 889 890 if (randiops) { 891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 892 if (v > *page) 893 *randio = v - *page; 894 } 895 } 896 897 static void ioc_refresh_lcoefs(struct ioc *ioc) 898 { 899 u64 *u = ioc->params.i_lcoefs; 900 u64 *c = ioc->params.lcoefs; 901 902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 906 } 907 908 /* 909 * struct gendisk is required as an argument because ioc->rqos.disk 910 * is not properly initialized when called from the init path. 911 */ 912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force, 913 struct gendisk *disk) 914 { 915 const struct ioc_params *p; 916 int idx; 917 918 lockdep_assert_held(&ioc->lock); 919 920 idx = ioc_autop_idx(ioc, disk); 921 p = &autop[idx]; 922 923 if (idx == ioc->autop_idx && !force) 924 return false; 925 926 if (idx != ioc->autop_idx) { 927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 928 ioc->vtime_base_rate = VTIME_PER_USEC; 929 } 930 931 ioc->autop_idx = idx; 932 ioc->autop_too_fast_at = 0; 933 ioc->autop_too_slow_at = 0; 934 935 if (!ioc->user_qos_params) 936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 937 if (!ioc->user_cost_model) 938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 939 940 ioc_refresh_period_us(ioc); 941 ioc_refresh_lcoefs(ioc); 942 943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 944 VTIME_PER_USEC, MILLION); 945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] * 946 VTIME_PER_USEC, MILLION); 947 948 return true; 949 } 950 951 static bool ioc_refresh_params(struct ioc *ioc, bool force) 952 { 953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk); 954 } 955 956 /* 957 * When an iocg accumulates too much vtime or gets deactivated, we throw away 958 * some vtime, which lowers the overall device utilization. As the exact amount 959 * which is being thrown away is known, we can compensate by accelerating the 960 * vrate accordingly so that the extra vtime generated in the current period 961 * matches what got lost. 962 */ 963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 964 { 965 s64 pleft = ioc->period_at + ioc->period_us - now->now; 966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 967 s64 vcomp, vcomp_min, vcomp_max; 968 969 lockdep_assert_held(&ioc->lock); 970 971 /* we need some time left in this period */ 972 if (pleft <= 0) 973 goto done; 974 975 /* 976 * Calculate how much vrate should be adjusted to offset the error. 977 * Limit the amount of adjustment and deduct the adjusted amount from 978 * the error. 979 */ 980 vcomp = -div64_s64(ioc->vtime_err, pleft); 981 vcomp_min = -(ioc->vtime_base_rate >> 1); 982 vcomp_max = ioc->vtime_base_rate; 983 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 984 985 ioc->vtime_err += vcomp * pleft; 986 987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 988 done: 989 /* bound how much error can accumulate */ 990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 991 } 992 993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 994 int nr_lagging, int nr_shortages, 995 int prev_busy_level, u32 *missed_ppm) 996 { 997 u64 vrate = ioc->vtime_base_rate; 998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 999 1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 1001 if (ioc->busy_level != prev_busy_level || nr_lagging) 1002 trace_iocost_ioc_vrate_adj(ioc, vrate, 1003 missed_ppm, rq_wait_pct, 1004 nr_lagging, nr_shortages); 1005 1006 return; 1007 } 1008 1009 /* 1010 * If vrate is out of bounds, apply clamp gradually as the 1011 * bounds can change abruptly. Otherwise, apply busy_level 1012 * based adjustment. 1013 */ 1014 if (vrate < vrate_min) { 1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 1016 vrate = min(vrate, vrate_min); 1017 } else if (vrate > vrate_max) { 1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1019 vrate = max(vrate, vrate_max); 1020 } else { 1021 int idx = min_t(int, abs(ioc->busy_level), 1022 ARRAY_SIZE(vrate_adj_pct) - 1); 1023 u32 adj_pct = vrate_adj_pct[idx]; 1024 1025 if (ioc->busy_level > 0) 1026 adj_pct = 100 - adj_pct; 1027 else 1028 adj_pct = 100 + adj_pct; 1029 1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1031 vrate_min, vrate_max); 1032 } 1033 1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1035 nr_lagging, nr_shortages); 1036 1037 ioc->vtime_base_rate = vrate; 1038 ioc_refresh_margins(ioc); 1039 } 1040 1041 /* take a snapshot of the current [v]time and vrate */ 1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1043 { 1044 unsigned seq; 1045 u64 vrate; 1046 1047 now->now_ns = ktime_get(); 1048 now->now = ktime_to_us(now->now_ns); 1049 vrate = atomic64_read(&ioc->vtime_rate); 1050 1051 /* 1052 * The current vtime is 1053 * 1054 * vtime at period start + (wallclock time since the start) * vrate 1055 * 1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1057 * needed, they're seqcount protected. 1058 */ 1059 do { 1060 seq = read_seqcount_begin(&ioc->period_seqcount); 1061 now->vnow = ioc->period_at_vtime + 1062 (now->now - ioc->period_at) * vrate; 1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1064 } 1065 1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1067 { 1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1069 1070 write_seqcount_begin(&ioc->period_seqcount); 1071 ioc->period_at = now->now; 1072 ioc->period_at_vtime = now->vnow; 1073 write_seqcount_end(&ioc->period_seqcount); 1074 1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1076 add_timer(&ioc->timer); 1077 } 1078 1079 /* 1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1081 * weight sums and propagate upwards accordingly. If @save, the current margin 1082 * is saved to be used as reference for later inuse in-period adjustments. 1083 */ 1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1085 bool save, struct ioc_now *now) 1086 { 1087 struct ioc *ioc = iocg->ioc; 1088 int lvl; 1089 1090 lockdep_assert_held(&ioc->lock); 1091 1092 /* 1093 * For an active leaf node, its inuse shouldn't be zero or exceed 1094 * @active. An active internal node's inuse is solely determined by the 1095 * inuse to active ratio of its children regardless of @inuse. 1096 */ 1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1099 iocg->child_active_sum); 1100 } else { 1101 /* 1102 * It may be tempting to turn this into a clamp expression with 1103 * a lower limit of 1 but active may be 0, which cannot be used 1104 * as an upper limit in that situation. This expression allows 1105 * active to clamp inuse unless it is 0, in which case inuse 1106 * becomes 1. 1107 */ 1108 inuse = min(inuse, active) ?: 1; 1109 } 1110 1111 iocg->last_inuse = iocg->inuse; 1112 if (save) 1113 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1114 1115 if (active == iocg->active && inuse == iocg->inuse) 1116 return; 1117 1118 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1119 struct ioc_gq *parent = iocg->ancestors[lvl]; 1120 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1121 u32 parent_active = 0, parent_inuse = 0; 1122 1123 /* update the level sums */ 1124 parent->child_active_sum += (s32)(active - child->active); 1125 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1126 /* apply the updates */ 1127 child->active = active; 1128 child->inuse = inuse; 1129 1130 /* 1131 * The delta between inuse and active sums indicates that 1132 * much of weight is being given away. Parent's inuse 1133 * and active should reflect the ratio. 1134 */ 1135 if (parent->child_active_sum) { 1136 parent_active = parent->weight; 1137 parent_inuse = DIV64_U64_ROUND_UP( 1138 parent_active * parent->child_inuse_sum, 1139 parent->child_active_sum); 1140 } 1141 1142 /* do we need to keep walking up? */ 1143 if (parent_active == parent->active && 1144 parent_inuse == parent->inuse) 1145 break; 1146 1147 active = parent_active; 1148 inuse = parent_inuse; 1149 } 1150 1151 ioc->weights_updated = true; 1152 } 1153 1154 static void commit_weights(struct ioc *ioc) 1155 { 1156 lockdep_assert_held(&ioc->lock); 1157 1158 if (ioc->weights_updated) { 1159 /* paired with rmb in current_hweight(), see there */ 1160 smp_wmb(); 1161 atomic_inc(&ioc->hweight_gen); 1162 ioc->weights_updated = false; 1163 } 1164 } 1165 1166 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1167 bool save, struct ioc_now *now) 1168 { 1169 __propagate_weights(iocg, active, inuse, save, now); 1170 commit_weights(iocg->ioc); 1171 } 1172 1173 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1174 { 1175 struct ioc *ioc = iocg->ioc; 1176 int lvl; 1177 u32 hwa, hwi; 1178 int ioc_gen; 1179 1180 /* hot path - if uptodate, use cached */ 1181 ioc_gen = atomic_read(&ioc->hweight_gen); 1182 if (ioc_gen == iocg->hweight_gen) 1183 goto out; 1184 1185 /* 1186 * Paired with wmb in commit_weights(). If we saw the updated 1187 * hweight_gen, all the weight updates from __propagate_weights() are 1188 * visible too. 1189 * 1190 * We can race with weight updates during calculation and get it 1191 * wrong. However, hweight_gen would have changed and a future 1192 * reader will recalculate and we're guaranteed to discard the 1193 * wrong result soon. 1194 */ 1195 smp_rmb(); 1196 1197 hwa = hwi = WEIGHT_ONE; 1198 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1199 struct ioc_gq *parent = iocg->ancestors[lvl]; 1200 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1201 u64 active_sum = READ_ONCE(parent->child_active_sum); 1202 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1203 u32 active = READ_ONCE(child->active); 1204 u32 inuse = READ_ONCE(child->inuse); 1205 1206 /* we can race with deactivations and either may read as zero */ 1207 if (!active_sum || !inuse_sum) 1208 continue; 1209 1210 active_sum = max_t(u64, active, active_sum); 1211 hwa = div64_u64((u64)hwa * active, active_sum); 1212 1213 inuse_sum = max_t(u64, inuse, inuse_sum); 1214 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1215 } 1216 1217 iocg->hweight_active = max_t(u32, hwa, 1); 1218 iocg->hweight_inuse = max_t(u32, hwi, 1); 1219 iocg->hweight_gen = ioc_gen; 1220 out: 1221 if (hw_activep) 1222 *hw_activep = iocg->hweight_active; 1223 if (hw_inusep) 1224 *hw_inusep = iocg->hweight_inuse; 1225 } 1226 1227 /* 1228 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1229 * other weights stay unchanged. 1230 */ 1231 static u32 current_hweight_max(struct ioc_gq *iocg) 1232 { 1233 u32 hwm = WEIGHT_ONE; 1234 u32 inuse = iocg->active; 1235 u64 child_inuse_sum; 1236 int lvl; 1237 1238 lockdep_assert_held(&iocg->ioc->lock); 1239 1240 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1241 struct ioc_gq *parent = iocg->ancestors[lvl]; 1242 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1243 1244 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1245 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1246 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1247 parent->child_active_sum); 1248 } 1249 1250 return max_t(u32, hwm, 1); 1251 } 1252 1253 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1254 { 1255 struct ioc *ioc = iocg->ioc; 1256 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1257 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1258 u32 weight; 1259 1260 lockdep_assert_held(&ioc->lock); 1261 1262 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1263 if (weight != iocg->weight && iocg->active) 1264 propagate_weights(iocg, weight, iocg->inuse, true, now); 1265 iocg->weight = weight; 1266 } 1267 1268 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1269 { 1270 struct ioc *ioc = iocg->ioc; 1271 u64 last_period, cur_period; 1272 u64 vtime, vtarget; 1273 int i; 1274 1275 /* 1276 * If seem to be already active, just update the stamp to tell the 1277 * timer that we're still active. We don't mind occassional races. 1278 */ 1279 if (!list_empty(&iocg->active_list)) { 1280 ioc_now(ioc, now); 1281 cur_period = atomic64_read(&ioc->cur_period); 1282 if (atomic64_read(&iocg->active_period) != cur_period) 1283 atomic64_set(&iocg->active_period, cur_period); 1284 return true; 1285 } 1286 1287 /* racy check on internal node IOs, treat as root level IOs */ 1288 if (iocg->child_active_sum) 1289 return false; 1290 1291 spin_lock_irq(&ioc->lock); 1292 1293 ioc_now(ioc, now); 1294 1295 /* update period */ 1296 cur_period = atomic64_read(&ioc->cur_period); 1297 last_period = atomic64_read(&iocg->active_period); 1298 atomic64_set(&iocg->active_period, cur_period); 1299 1300 /* already activated or breaking leaf-only constraint? */ 1301 if (!list_empty(&iocg->active_list)) 1302 goto succeed_unlock; 1303 for (i = iocg->level - 1; i > 0; i--) 1304 if (!list_empty(&iocg->ancestors[i]->active_list)) 1305 goto fail_unlock; 1306 1307 if (iocg->child_active_sum) 1308 goto fail_unlock; 1309 1310 /* 1311 * Always start with the target budget. On deactivation, we throw away 1312 * anything above it. 1313 */ 1314 vtarget = now->vnow - ioc->margins.target; 1315 vtime = atomic64_read(&iocg->vtime); 1316 1317 atomic64_add(vtarget - vtime, &iocg->vtime); 1318 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1319 vtime = vtarget; 1320 1321 /* 1322 * Activate, propagate weight and start period timer if not 1323 * running. Reset hweight_gen to avoid accidental match from 1324 * wrapping. 1325 */ 1326 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1327 list_add(&iocg->active_list, &ioc->active_iocgs); 1328 1329 propagate_weights(iocg, iocg->weight, 1330 iocg->last_inuse ?: iocg->weight, true, now); 1331 1332 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1333 last_period, cur_period, vtime); 1334 1335 iocg->activated_at = now->now; 1336 1337 if (ioc->running == IOC_IDLE) { 1338 ioc->running = IOC_RUNNING; 1339 ioc->dfgv_period_at = now->now; 1340 ioc->dfgv_period_rem = 0; 1341 ioc_start_period(ioc, now); 1342 } 1343 1344 succeed_unlock: 1345 spin_unlock_irq(&ioc->lock); 1346 return true; 1347 1348 fail_unlock: 1349 spin_unlock_irq(&ioc->lock); 1350 return false; 1351 } 1352 1353 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1354 { 1355 struct ioc *ioc = iocg->ioc; 1356 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1357 u64 tdelta, delay, new_delay, shift; 1358 s64 vover, vover_pct; 1359 u32 hwa; 1360 1361 lockdep_assert_held(&iocg->waitq.lock); 1362 1363 /* 1364 * If the delay is set by another CPU, we may be in the past. No need to 1365 * change anything if so. This avoids decay calculation underflow. 1366 */ 1367 if (time_before64(now->now, iocg->delay_at)) 1368 return false; 1369 1370 /* calculate the current delay in effect - 1/2 every second */ 1371 tdelta = now->now - iocg->delay_at; 1372 shift = div64_u64(tdelta, USEC_PER_SEC); 1373 if (iocg->delay && shift < BITS_PER_LONG) 1374 delay = iocg->delay >> shift; 1375 else 1376 delay = 0; 1377 1378 /* calculate the new delay from the debt amount */ 1379 current_hweight(iocg, &hwa, NULL); 1380 vover = atomic64_read(&iocg->vtime) + 1381 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1382 vover_pct = div64_s64(100 * vover, 1383 ioc->period_us * ioc->vtime_base_rate); 1384 1385 if (vover_pct <= MIN_DELAY_THR_PCT) 1386 new_delay = 0; 1387 else if (vover_pct >= MAX_DELAY_THR_PCT) 1388 new_delay = MAX_DELAY; 1389 else 1390 new_delay = MIN_DELAY + 1391 div_u64((MAX_DELAY - MIN_DELAY) * 1392 (vover_pct - MIN_DELAY_THR_PCT), 1393 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1394 1395 /* pick the higher one and apply */ 1396 if (new_delay > delay) { 1397 iocg->delay = new_delay; 1398 iocg->delay_at = now->now; 1399 delay = new_delay; 1400 } 1401 1402 if (delay >= MIN_DELAY) { 1403 if (!iocg->indelay_since) 1404 iocg->indelay_since = now->now; 1405 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1406 return true; 1407 } else { 1408 if (iocg->indelay_since) { 1409 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1410 iocg->indelay_since = 0; 1411 } 1412 iocg->delay = 0; 1413 blkcg_clear_delay(blkg); 1414 return false; 1415 } 1416 } 1417 1418 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1419 struct ioc_now *now) 1420 { 1421 struct iocg_pcpu_stat *gcs; 1422 1423 lockdep_assert_held(&iocg->ioc->lock); 1424 lockdep_assert_held(&iocg->waitq.lock); 1425 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1426 1427 /* 1428 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1429 * inuse donating all of it share to others until its debt is paid off. 1430 */ 1431 if (!iocg->abs_vdebt && abs_cost) { 1432 iocg->indebt_since = now->now; 1433 propagate_weights(iocg, iocg->active, 0, false, now); 1434 } 1435 1436 iocg->abs_vdebt += abs_cost; 1437 1438 gcs = get_cpu_ptr(iocg->pcpu_stat); 1439 local64_add(abs_cost, &gcs->abs_vusage); 1440 put_cpu_ptr(gcs); 1441 } 1442 1443 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1444 struct ioc_now *now) 1445 { 1446 lockdep_assert_held(&iocg->ioc->lock); 1447 lockdep_assert_held(&iocg->waitq.lock); 1448 1449 /* 1450 * make sure that nobody messed with @iocg. Check iocg->pd.online 1451 * to avoid warn when removing blkcg or disk. 1452 */ 1453 WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online); 1454 WARN_ON_ONCE(iocg->inuse > 1); 1455 1456 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1457 1458 /* if debt is paid in full, restore inuse */ 1459 if (!iocg->abs_vdebt) { 1460 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1461 iocg->indebt_since = 0; 1462 1463 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1464 false, now); 1465 } 1466 } 1467 1468 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1469 int flags, void *key) 1470 { 1471 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1472 struct iocg_wake_ctx *ctx = key; 1473 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1474 1475 ctx->vbudget -= cost; 1476 1477 if (ctx->vbudget < 0) 1478 return -1; 1479 1480 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1481 wait->committed = true; 1482 1483 /* 1484 * autoremove_wake_function() removes the wait entry only when it 1485 * actually changed the task state. We want the wait always removed. 1486 * Remove explicitly and use default_wake_function(). Note that the 1487 * order of operations is important as finish_wait() tests whether 1488 * @wq_entry is removed without grabbing the lock. 1489 */ 1490 default_wake_function(wq_entry, mode, flags, key); 1491 list_del_init_careful(&wq_entry->entry); 1492 return 0; 1493 } 1494 1495 /* 1496 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1497 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1498 * addition to iocg->waitq.lock. 1499 */ 1500 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1501 struct ioc_now *now) 1502 { 1503 struct ioc *ioc = iocg->ioc; 1504 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1505 u64 vshortage, expires, oexpires; 1506 s64 vbudget; 1507 u32 hwa; 1508 1509 lockdep_assert_held(&iocg->waitq.lock); 1510 1511 current_hweight(iocg, &hwa, NULL); 1512 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1513 1514 /* pay off debt */ 1515 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1516 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1517 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1518 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1519 1520 lockdep_assert_held(&ioc->lock); 1521 1522 atomic64_add(vpay, &iocg->vtime); 1523 atomic64_add(vpay, &iocg->done_vtime); 1524 iocg_pay_debt(iocg, abs_vpay, now); 1525 vbudget -= vpay; 1526 } 1527 1528 if (iocg->abs_vdebt || iocg->delay) 1529 iocg_kick_delay(iocg, now); 1530 1531 /* 1532 * Debt can still be outstanding if we haven't paid all yet or the 1533 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1534 * under debt. Make sure @vbudget reflects the outstanding amount and is 1535 * not positive. 1536 */ 1537 if (iocg->abs_vdebt) { 1538 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1539 vbudget = min_t(s64, 0, vbudget - vdebt); 1540 } 1541 1542 /* 1543 * Wake up the ones which are due and see how much vtime we'll need for 1544 * the next one. As paying off debt restores hw_inuse, it must be read 1545 * after the above debt payment. 1546 */ 1547 ctx.vbudget = vbudget; 1548 current_hweight(iocg, NULL, &ctx.hw_inuse); 1549 1550 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1551 1552 if (!waitqueue_active(&iocg->waitq)) { 1553 if (iocg->wait_since) { 1554 iocg->stat.wait_us += now->now - iocg->wait_since; 1555 iocg->wait_since = 0; 1556 } 1557 return; 1558 } 1559 1560 if (!iocg->wait_since) 1561 iocg->wait_since = now->now; 1562 1563 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1564 return; 1565 1566 /* determine next wakeup, add a timer margin to guarantee chunking */ 1567 vshortage = -ctx.vbudget; 1568 expires = now->now_ns + 1569 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1570 NSEC_PER_USEC; 1571 expires += ioc->timer_slack_ns; 1572 1573 /* if already active and close enough, don't bother */ 1574 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1575 if (hrtimer_is_queued(&iocg->waitq_timer) && 1576 abs(oexpires - expires) <= ioc->timer_slack_ns) 1577 return; 1578 1579 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1580 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1581 } 1582 1583 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1584 { 1585 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1586 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1587 struct ioc_now now; 1588 unsigned long flags; 1589 1590 ioc_now(iocg->ioc, &now); 1591 1592 iocg_lock(iocg, pay_debt, &flags); 1593 iocg_kick_waitq(iocg, pay_debt, &now); 1594 iocg_unlock(iocg, pay_debt, &flags); 1595 1596 return HRTIMER_NORESTART; 1597 } 1598 1599 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1600 { 1601 u32 nr_met[2] = { }; 1602 u32 nr_missed[2] = { }; 1603 u64 rq_wait_ns = 0; 1604 int cpu, rw; 1605 1606 for_each_online_cpu(cpu) { 1607 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1608 u64 this_rq_wait_ns; 1609 1610 for (rw = READ; rw <= WRITE; rw++) { 1611 u32 this_met = local_read(&stat->missed[rw].nr_met); 1612 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1613 1614 nr_met[rw] += this_met - stat->missed[rw].last_met; 1615 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1616 stat->missed[rw].last_met = this_met; 1617 stat->missed[rw].last_missed = this_missed; 1618 } 1619 1620 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1621 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1622 stat->last_rq_wait_ns = this_rq_wait_ns; 1623 } 1624 1625 for (rw = READ; rw <= WRITE; rw++) { 1626 if (nr_met[rw] + nr_missed[rw]) 1627 missed_ppm_ar[rw] = 1628 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1629 nr_met[rw] + nr_missed[rw]); 1630 else 1631 missed_ppm_ar[rw] = 0; 1632 } 1633 1634 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1635 ioc->period_us * NSEC_PER_USEC); 1636 } 1637 1638 /* was iocg idle this period? */ 1639 static bool iocg_is_idle(struct ioc_gq *iocg) 1640 { 1641 struct ioc *ioc = iocg->ioc; 1642 1643 /* did something get issued this period? */ 1644 if (atomic64_read(&iocg->active_period) == 1645 atomic64_read(&ioc->cur_period)) 1646 return false; 1647 1648 /* is something in flight? */ 1649 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1650 return false; 1651 1652 return true; 1653 } 1654 1655 /* 1656 * Call this function on the target leaf @iocg's to build pre-order traversal 1657 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1658 * ->walk_list and the caller is responsible for dissolving the list after use. 1659 */ 1660 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1661 struct list_head *inner_walk) 1662 { 1663 int lvl; 1664 1665 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1666 1667 /* find the first ancestor which hasn't been visited yet */ 1668 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1669 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1670 break; 1671 } 1672 1673 /* walk down and visit the inner nodes to get pre-order traversal */ 1674 while (++lvl <= iocg->level - 1) { 1675 struct ioc_gq *inner = iocg->ancestors[lvl]; 1676 1677 /* record traversal order */ 1678 list_add_tail(&inner->walk_list, inner_walk); 1679 } 1680 } 1681 1682 /* propagate the deltas to the parent */ 1683 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1684 { 1685 if (iocg->level > 0) { 1686 struct iocg_stat *parent_stat = 1687 &iocg->ancestors[iocg->level - 1]->stat; 1688 1689 parent_stat->usage_us += 1690 iocg->stat.usage_us - iocg->last_stat.usage_us; 1691 parent_stat->wait_us += 1692 iocg->stat.wait_us - iocg->last_stat.wait_us; 1693 parent_stat->indebt_us += 1694 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1695 parent_stat->indelay_us += 1696 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1697 } 1698 1699 iocg->last_stat = iocg->stat; 1700 } 1701 1702 /* collect per-cpu counters and propagate the deltas to the parent */ 1703 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1704 { 1705 struct ioc *ioc = iocg->ioc; 1706 u64 abs_vusage = 0; 1707 u64 vusage_delta; 1708 int cpu; 1709 1710 lockdep_assert_held(&iocg->ioc->lock); 1711 1712 /* collect per-cpu counters */ 1713 for_each_possible_cpu(cpu) { 1714 abs_vusage += local64_read( 1715 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1716 } 1717 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1718 iocg->last_stat_abs_vusage = abs_vusage; 1719 1720 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1721 iocg->stat.usage_us += iocg->usage_delta_us; 1722 1723 iocg_flush_stat_upward(iocg); 1724 } 1725 1726 /* get stat counters ready for reading on all active iocgs */ 1727 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1728 { 1729 LIST_HEAD(inner_walk); 1730 struct ioc_gq *iocg, *tiocg; 1731 1732 /* flush leaves and build inner node walk list */ 1733 list_for_each_entry(iocg, target_iocgs, active_list) { 1734 iocg_flush_stat_leaf(iocg, now); 1735 iocg_build_inner_walk(iocg, &inner_walk); 1736 } 1737 1738 /* keep flushing upwards by walking the inner list backwards */ 1739 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1740 iocg_flush_stat_upward(iocg); 1741 list_del_init(&iocg->walk_list); 1742 } 1743 } 1744 1745 /* 1746 * Determine what @iocg's hweight_inuse should be after donating unused 1747 * capacity. @hwm is the upper bound and used to signal no donation. This 1748 * function also throws away @iocg's excess budget. 1749 */ 1750 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1751 u32 usage, struct ioc_now *now) 1752 { 1753 struct ioc *ioc = iocg->ioc; 1754 u64 vtime = atomic64_read(&iocg->vtime); 1755 s64 excess, delta, target, new_hwi; 1756 1757 /* debt handling owns inuse for debtors */ 1758 if (iocg->abs_vdebt) 1759 return 1; 1760 1761 /* see whether minimum margin requirement is met */ 1762 if (waitqueue_active(&iocg->waitq) || 1763 time_after64(vtime, now->vnow - ioc->margins.min)) 1764 return hwm; 1765 1766 /* throw away excess above target */ 1767 excess = now->vnow - vtime - ioc->margins.target; 1768 if (excess > 0) { 1769 atomic64_add(excess, &iocg->vtime); 1770 atomic64_add(excess, &iocg->done_vtime); 1771 vtime += excess; 1772 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1773 } 1774 1775 /* 1776 * Let's say the distance between iocg's and device's vtimes as a 1777 * fraction of period duration is delta. Assuming that the iocg will 1778 * consume the usage determined above, we want to determine new_hwi so 1779 * that delta equals MARGIN_TARGET at the end of the next period. 1780 * 1781 * We need to execute usage worth of IOs while spending the sum of the 1782 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1783 * (delta): 1784 * 1785 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1786 * 1787 * Therefore, the new_hwi is: 1788 * 1789 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1790 */ 1791 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1792 now->vnow - ioc->period_at_vtime); 1793 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1794 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1795 1796 return clamp_t(s64, new_hwi, 1, hwm); 1797 } 1798 1799 /* 1800 * For work-conservation, an iocg which isn't using all of its share should 1801 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1802 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1803 * 1804 * #1 is mathematically simpler but has the drawback of requiring synchronous 1805 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1806 * change due to donation snapbacks as it has the possibility of grossly 1807 * overshooting what's allowed by the model and vrate. 1808 * 1809 * #2 is inherently safe with local operations. The donating iocg can easily 1810 * snap back to higher weights when needed without worrying about impacts on 1811 * other nodes as the impacts will be inherently correct. This also makes idle 1812 * iocg activations safe. The only effect activations have is decreasing 1813 * hweight_inuse of others, the right solution to which is for those iocgs to 1814 * snap back to higher weights. 1815 * 1816 * So, we go with #2. The challenge is calculating how each donating iocg's 1817 * inuse should be adjusted to achieve the target donation amounts. This is done 1818 * using Andy's method described in the following pdf. 1819 * 1820 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1821 * 1822 * Given the weights and target after-donation hweight_inuse values, Andy's 1823 * method determines how the proportional distribution should look like at each 1824 * sibling level to maintain the relative relationship between all non-donating 1825 * pairs. To roughly summarize, it divides the tree into donating and 1826 * non-donating parts, calculates global donation rate which is used to 1827 * determine the target hweight_inuse for each node, and then derives per-level 1828 * proportions. 1829 * 1830 * The following pdf shows that global distribution calculated this way can be 1831 * achieved by scaling inuse weights of donating leaves and propagating the 1832 * adjustments upwards proportionally. 1833 * 1834 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1835 * 1836 * Combining the above two, we can determine how each leaf iocg's inuse should 1837 * be adjusted to achieve the target donation. 1838 * 1839 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1840 * 1841 * The inline comments use symbols from the last pdf. 1842 * 1843 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1844 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1845 * t is the sum of the absolute budgets of donating nodes in the subtree. 1846 * w is the weight of the node. w = w_f + w_t 1847 * w_f is the non-donating portion of w. w_f = w * f / b 1848 * w_b is the donating portion of w. w_t = w * t / b 1849 * s is the sum of all sibling weights. s = Sum(w) for siblings 1850 * s_f and s_t are the non-donating and donating portions of s. 1851 * 1852 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1853 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1854 * after adjustments. Subscript r denotes the root node's values. 1855 */ 1856 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1857 { 1858 LIST_HEAD(over_hwa); 1859 LIST_HEAD(inner_walk); 1860 struct ioc_gq *iocg, *tiocg, *root_iocg; 1861 u32 after_sum, over_sum, over_target, gamma; 1862 1863 /* 1864 * It's pretty unlikely but possible for the total sum of 1865 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1866 * confuse the following calculations. If such condition is detected, 1867 * scale down everyone over its full share equally to keep the sum below 1868 * WEIGHT_ONE. 1869 */ 1870 after_sum = 0; 1871 over_sum = 0; 1872 list_for_each_entry(iocg, surpluses, surplus_list) { 1873 u32 hwa; 1874 1875 current_hweight(iocg, &hwa, NULL); 1876 after_sum += iocg->hweight_after_donation; 1877 1878 if (iocg->hweight_after_donation > hwa) { 1879 over_sum += iocg->hweight_after_donation; 1880 list_add(&iocg->walk_list, &over_hwa); 1881 } 1882 } 1883 1884 if (after_sum >= WEIGHT_ONE) { 1885 /* 1886 * The delta should be deducted from the over_sum, calculate 1887 * target over_sum value. 1888 */ 1889 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1890 WARN_ON_ONCE(over_sum <= over_delta); 1891 over_target = over_sum - over_delta; 1892 } else { 1893 over_target = 0; 1894 } 1895 1896 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1897 if (over_target) 1898 iocg->hweight_after_donation = 1899 div_u64((u64)iocg->hweight_after_donation * 1900 over_target, over_sum); 1901 list_del_init(&iocg->walk_list); 1902 } 1903 1904 /* 1905 * Build pre-order inner node walk list and prepare for donation 1906 * adjustment calculations. 1907 */ 1908 list_for_each_entry(iocg, surpluses, surplus_list) { 1909 iocg_build_inner_walk(iocg, &inner_walk); 1910 } 1911 1912 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1913 WARN_ON_ONCE(root_iocg->level > 0); 1914 1915 list_for_each_entry(iocg, &inner_walk, walk_list) { 1916 iocg->child_adjusted_sum = 0; 1917 iocg->hweight_donating = 0; 1918 iocg->hweight_after_donation = 0; 1919 } 1920 1921 /* 1922 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1923 * up the hierarchy. 1924 */ 1925 list_for_each_entry(iocg, surpluses, surplus_list) { 1926 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1927 1928 parent->hweight_donating += iocg->hweight_donating; 1929 parent->hweight_after_donation += iocg->hweight_after_donation; 1930 } 1931 1932 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1933 if (iocg->level > 0) { 1934 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1935 1936 parent->hweight_donating += iocg->hweight_donating; 1937 parent->hweight_after_donation += iocg->hweight_after_donation; 1938 } 1939 } 1940 1941 /* 1942 * Calculate inner hwa's (b) and make sure the donation values are 1943 * within the accepted ranges as we're doing low res calculations with 1944 * roundups. 1945 */ 1946 list_for_each_entry(iocg, &inner_walk, walk_list) { 1947 if (iocg->level) { 1948 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1949 1950 iocg->hweight_active = DIV64_U64_ROUND_UP( 1951 (u64)parent->hweight_active * iocg->active, 1952 parent->child_active_sum); 1953 1954 } 1955 1956 iocg->hweight_donating = min(iocg->hweight_donating, 1957 iocg->hweight_active); 1958 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1959 iocg->hweight_donating - 1); 1960 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1961 iocg->hweight_donating <= 1 || 1962 iocg->hweight_after_donation == 0)) { 1963 pr_warn("iocg: invalid donation weights in "); 1964 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1965 pr_cont(": active=%u donating=%u after=%u\n", 1966 iocg->hweight_active, iocg->hweight_donating, 1967 iocg->hweight_after_donation); 1968 } 1969 } 1970 1971 /* 1972 * Calculate the global donation rate (gamma) - the rate to adjust 1973 * non-donating budgets by. 1974 * 1975 * No need to use 64bit multiplication here as the first operand is 1976 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1977 * 1978 * We know that there are beneficiary nodes and the sum of the donating 1979 * hweights can't be whole; however, due to the round-ups during hweight 1980 * calculations, root_iocg->hweight_donating might still end up equal to 1981 * or greater than whole. Limit the range when calculating the divider. 1982 * 1983 * gamma = (1 - t_r') / (1 - t_r) 1984 */ 1985 gamma = DIV_ROUND_UP( 1986 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1987 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1988 1989 /* 1990 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1991 * nodes. 1992 */ 1993 list_for_each_entry(iocg, &inner_walk, walk_list) { 1994 struct ioc_gq *parent; 1995 u32 inuse, wpt, wptp; 1996 u64 st, sf; 1997 1998 if (iocg->level == 0) { 1999 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 2000 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 2001 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 2002 WEIGHT_ONE - iocg->hweight_after_donation); 2003 continue; 2004 } 2005 2006 parent = iocg->ancestors[iocg->level - 1]; 2007 2008 /* b' = gamma * b_f + b_t' */ 2009 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 2010 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 2011 WEIGHT_ONE) + iocg->hweight_after_donation; 2012 2013 /* w' = s' * b' / b'_p */ 2014 inuse = DIV64_U64_ROUND_UP( 2015 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 2016 parent->hweight_inuse); 2017 2018 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 2019 st = DIV64_U64_ROUND_UP( 2020 iocg->child_active_sum * iocg->hweight_donating, 2021 iocg->hweight_active); 2022 sf = iocg->child_active_sum - st; 2023 wpt = DIV64_U64_ROUND_UP( 2024 (u64)iocg->active * iocg->hweight_donating, 2025 iocg->hweight_active); 2026 wptp = DIV64_U64_ROUND_UP( 2027 (u64)inuse * iocg->hweight_after_donation, 2028 iocg->hweight_inuse); 2029 2030 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 2031 } 2032 2033 /* 2034 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2035 * we can finally determine leaf adjustments. 2036 */ 2037 list_for_each_entry(iocg, surpluses, surplus_list) { 2038 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2039 u32 inuse; 2040 2041 /* 2042 * In-debt iocgs participated in the donation calculation with 2043 * the minimum target hweight_inuse. Configuring inuse 2044 * accordingly would work fine but debt handling expects 2045 * @iocg->inuse stay at the minimum and we don't wanna 2046 * interfere. 2047 */ 2048 if (iocg->abs_vdebt) { 2049 WARN_ON_ONCE(iocg->inuse > 1); 2050 continue; 2051 } 2052 2053 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2054 inuse = DIV64_U64_ROUND_UP( 2055 parent->child_adjusted_sum * iocg->hweight_after_donation, 2056 parent->hweight_inuse); 2057 2058 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2059 iocg->inuse, inuse, 2060 iocg->hweight_inuse, 2061 iocg->hweight_after_donation); 2062 2063 __propagate_weights(iocg, iocg->active, inuse, true, now); 2064 } 2065 2066 /* walk list should be dissolved after use */ 2067 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2068 list_del_init(&iocg->walk_list); 2069 } 2070 2071 /* 2072 * A low weight iocg can amass a large amount of debt, for example, when 2073 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2074 * memory paired with a slow IO device, the debt can span multiple seconds or 2075 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2076 * up blocked paying its debt while the IO device is idle. 2077 * 2078 * The following protects against such cases. If the device has been 2079 * sufficiently idle for a while, the debts are halved and delays are 2080 * recalculated. 2081 */ 2082 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2083 struct ioc_now *now) 2084 { 2085 struct ioc_gq *iocg; 2086 u64 dur, usage_pct, nr_cycles, nr_cycles_shift; 2087 2088 /* if no debtor, reset the cycle */ 2089 if (!nr_debtors) { 2090 ioc->dfgv_period_at = now->now; 2091 ioc->dfgv_period_rem = 0; 2092 ioc->dfgv_usage_us_sum = 0; 2093 return; 2094 } 2095 2096 /* 2097 * Debtors can pass through a lot of writes choking the device and we 2098 * don't want to be forgiving debts while the device is struggling from 2099 * write bursts. If we're missing latency targets, consider the device 2100 * fully utilized. 2101 */ 2102 if (ioc->busy_level > 0) 2103 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2104 2105 ioc->dfgv_usage_us_sum += usage_us_sum; 2106 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2107 return; 2108 2109 /* 2110 * At least DFGV_PERIOD has passed since the last period. Calculate the 2111 * average usage and reset the period counters. 2112 */ 2113 dur = now->now - ioc->dfgv_period_at; 2114 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2115 2116 ioc->dfgv_period_at = now->now; 2117 ioc->dfgv_usage_us_sum = 0; 2118 2119 /* if was too busy, reset everything */ 2120 if (usage_pct > DFGV_USAGE_PCT) { 2121 ioc->dfgv_period_rem = 0; 2122 return; 2123 } 2124 2125 /* 2126 * Usage is lower than threshold. Let's forgive some debts. Debt 2127 * forgiveness runs off of the usual ioc timer but its period usually 2128 * doesn't match ioc's. Compensate the difference by performing the 2129 * reduction as many times as would fit in the duration since the last 2130 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2131 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2132 * reductions is doubled. 2133 */ 2134 nr_cycles = dur + ioc->dfgv_period_rem; 2135 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2136 2137 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2138 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2139 2140 if (!iocg->abs_vdebt && !iocg->delay) 2141 continue; 2142 2143 spin_lock(&iocg->waitq.lock); 2144 2145 old_debt = iocg->abs_vdebt; 2146 old_delay = iocg->delay; 2147 2148 nr_cycles_shift = min_t(u64, nr_cycles, BITS_PER_LONG - 1); 2149 if (iocg->abs_vdebt) 2150 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles_shift ?: 1; 2151 2152 if (iocg->delay) 2153 iocg->delay = iocg->delay >> nr_cycles_shift ?: 1; 2154 2155 iocg_kick_waitq(iocg, true, now); 2156 2157 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2158 old_debt, iocg->abs_vdebt, 2159 old_delay, iocg->delay); 2160 2161 spin_unlock(&iocg->waitq.lock); 2162 } 2163 } 2164 2165 /* 2166 * Check the active iocgs' state to avoid oversleeping and deactive 2167 * idle iocgs. 2168 * 2169 * Since waiters determine the sleep durations based on the vrate 2170 * they saw at the time of sleep, if vrate has increased, some 2171 * waiters could be sleeping for too long. Wake up tardy waiters 2172 * which should have woken up in the last period and expire idle 2173 * iocgs. 2174 */ 2175 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2176 { 2177 int nr_debtors = 0; 2178 struct ioc_gq *iocg, *tiocg; 2179 2180 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2181 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2182 !iocg->delay && !iocg_is_idle(iocg)) 2183 continue; 2184 2185 spin_lock(&iocg->waitq.lock); 2186 2187 /* flush wait and indebt stat deltas */ 2188 if (iocg->wait_since) { 2189 iocg->stat.wait_us += now->now - iocg->wait_since; 2190 iocg->wait_since = now->now; 2191 } 2192 if (iocg->indebt_since) { 2193 iocg->stat.indebt_us += 2194 now->now - iocg->indebt_since; 2195 iocg->indebt_since = now->now; 2196 } 2197 if (iocg->indelay_since) { 2198 iocg->stat.indelay_us += 2199 now->now - iocg->indelay_since; 2200 iocg->indelay_since = now->now; 2201 } 2202 2203 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2204 iocg->delay) { 2205 /* might be oversleeping vtime / hweight changes, kick */ 2206 iocg_kick_waitq(iocg, true, now); 2207 if (iocg->abs_vdebt || iocg->delay) 2208 nr_debtors++; 2209 } else if (iocg_is_idle(iocg)) { 2210 /* no waiter and idle, deactivate */ 2211 u64 vtime = atomic64_read(&iocg->vtime); 2212 s64 excess; 2213 2214 /* 2215 * @iocg has been inactive for a full duration and will 2216 * have a high budget. Account anything above target as 2217 * error and throw away. On reactivation, it'll start 2218 * with the target budget. 2219 */ 2220 excess = now->vnow - vtime - ioc->margins.target; 2221 if (excess > 0) { 2222 u32 old_hwi; 2223 2224 current_hweight(iocg, NULL, &old_hwi); 2225 ioc->vtime_err -= div64_u64(excess * old_hwi, 2226 WEIGHT_ONE); 2227 } 2228 2229 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2230 atomic64_read(&iocg->active_period), 2231 atomic64_read(&ioc->cur_period), vtime); 2232 __propagate_weights(iocg, 0, 0, false, now); 2233 list_del_init(&iocg->active_list); 2234 } 2235 2236 spin_unlock(&iocg->waitq.lock); 2237 } 2238 2239 commit_weights(ioc); 2240 return nr_debtors; 2241 } 2242 2243 static void ioc_timer_fn(struct timer_list *timer) 2244 { 2245 struct ioc *ioc = container_of(timer, struct ioc, timer); 2246 struct ioc_gq *iocg, *tiocg; 2247 struct ioc_now now; 2248 LIST_HEAD(surpluses); 2249 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2250 u64 usage_us_sum = 0; 2251 u32 ppm_rthr; 2252 u32 ppm_wthr; 2253 u32 missed_ppm[2], rq_wait_pct; 2254 u64 period_vtime; 2255 int prev_busy_level; 2256 2257 /* how were the latencies during the period? */ 2258 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2259 2260 /* take care of active iocgs */ 2261 spin_lock_irq(&ioc->lock); 2262 2263 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2264 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2265 ioc_now(ioc, &now); 2266 2267 period_vtime = now.vnow - ioc->period_at_vtime; 2268 if (WARN_ON_ONCE(!period_vtime)) { 2269 spin_unlock_irq(&ioc->lock); 2270 return; 2271 } 2272 2273 nr_debtors = ioc_check_iocgs(ioc, &now); 2274 2275 /* 2276 * Wait and indebt stat are flushed above and the donation calculation 2277 * below needs updated usage stat. Let's bring stat up-to-date. 2278 */ 2279 iocg_flush_stat(&ioc->active_iocgs, &now); 2280 2281 /* calc usage and see whether some weights need to be moved around */ 2282 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2283 u64 vdone, vtime, usage_us; 2284 u32 hw_active, hw_inuse; 2285 2286 /* 2287 * Collect unused and wind vtime closer to vnow to prevent 2288 * iocgs from accumulating a large amount of budget. 2289 */ 2290 vdone = atomic64_read(&iocg->done_vtime); 2291 vtime = atomic64_read(&iocg->vtime); 2292 current_hweight(iocg, &hw_active, &hw_inuse); 2293 2294 /* 2295 * Latency QoS detection doesn't account for IOs which are 2296 * in-flight for longer than a period. Detect them by 2297 * comparing vdone against period start. If lagging behind 2298 * IOs from past periods, don't increase vrate. 2299 */ 2300 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2301 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2302 time_after64(vtime, vdone) && 2303 time_after64(vtime, now.vnow - 2304 MAX_LAGGING_PERIODS * period_vtime) && 2305 time_before64(vdone, now.vnow - period_vtime)) 2306 nr_lagging++; 2307 2308 /* 2309 * Determine absolute usage factoring in in-flight IOs to avoid 2310 * high-latency completions appearing as idle. 2311 */ 2312 usage_us = iocg->usage_delta_us; 2313 usage_us_sum += usage_us; 2314 2315 /* see whether there's surplus vtime */ 2316 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2317 if (hw_inuse < hw_active || 2318 (!waitqueue_active(&iocg->waitq) && 2319 time_before64(vtime, now.vnow - ioc->margins.low))) { 2320 u32 hwa, old_hwi, hwm, new_hwi, usage; 2321 u64 usage_dur; 2322 2323 if (vdone != vtime) { 2324 u64 inflight_us = DIV64_U64_ROUND_UP( 2325 cost_to_abs_cost(vtime - vdone, hw_inuse), 2326 ioc->vtime_base_rate); 2327 2328 usage_us = max(usage_us, inflight_us); 2329 } 2330 2331 /* convert to hweight based usage ratio */ 2332 if (time_after64(iocg->activated_at, ioc->period_at)) 2333 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2334 else 2335 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2336 2337 usage = clamp_t(u32, 2338 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2339 usage_dur), 2340 1, WEIGHT_ONE); 2341 2342 /* 2343 * Already donating or accumulated enough to start. 2344 * Determine the donation amount. 2345 */ 2346 current_hweight(iocg, &hwa, &old_hwi); 2347 hwm = current_hweight_max(iocg); 2348 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2349 usage, &now); 2350 /* 2351 * Donation calculation assumes hweight_after_donation 2352 * to be positive, a condition that a donor w/ hwa < 2 2353 * can't meet. Don't bother with donation if hwa is 2354 * below 2. It's not gonna make a meaningful difference 2355 * anyway. 2356 */ 2357 if (new_hwi < hwm && hwa >= 2) { 2358 iocg->hweight_donating = hwa; 2359 iocg->hweight_after_donation = new_hwi; 2360 list_add(&iocg->surplus_list, &surpluses); 2361 } else if (!iocg->abs_vdebt) { 2362 /* 2363 * @iocg doesn't have enough to donate. Reset 2364 * its inuse to active. 2365 * 2366 * Don't reset debtors as their inuse's are 2367 * owned by debt handling. This shouldn't affect 2368 * donation calculuation in any meaningful way 2369 * as @iocg doesn't have a meaningful amount of 2370 * share anyway. 2371 */ 2372 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2373 iocg->inuse, iocg->active, 2374 iocg->hweight_inuse, new_hwi); 2375 2376 __propagate_weights(iocg, iocg->active, 2377 iocg->active, true, &now); 2378 nr_shortages++; 2379 } 2380 } else { 2381 /* genuinely short on vtime */ 2382 nr_shortages++; 2383 } 2384 } 2385 2386 if (!list_empty(&surpluses) && nr_shortages) 2387 transfer_surpluses(&surpluses, &now); 2388 2389 commit_weights(ioc); 2390 2391 /* surplus list should be dissolved after use */ 2392 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2393 list_del_init(&iocg->surplus_list); 2394 2395 /* 2396 * If q is getting clogged or we're missing too much, we're issuing 2397 * too much IO and should lower vtime rate. If we're not missing 2398 * and experiencing shortages but not surpluses, we're too stingy 2399 * and should increase vtime rate. 2400 */ 2401 prev_busy_level = ioc->busy_level; 2402 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2403 missed_ppm[READ] > ppm_rthr || 2404 missed_ppm[WRITE] > ppm_wthr) { 2405 /* clearly missing QoS targets, slow down vrate */ 2406 ioc->busy_level = max(ioc->busy_level, 0); 2407 ioc->busy_level++; 2408 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2409 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2410 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2411 /* QoS targets are being met with >25% margin */ 2412 if (nr_shortages) { 2413 /* 2414 * We're throttling while the device has spare 2415 * capacity. If vrate was being slowed down, stop. 2416 */ 2417 ioc->busy_level = min(ioc->busy_level, 0); 2418 2419 /* 2420 * If there are IOs spanning multiple periods, wait 2421 * them out before pushing the device harder. 2422 */ 2423 if (!nr_lagging) 2424 ioc->busy_level--; 2425 } else { 2426 /* 2427 * Nobody is being throttled and the users aren't 2428 * issuing enough IOs to saturate the device. We 2429 * simply don't know how close the device is to 2430 * saturation. Coast. 2431 */ 2432 ioc->busy_level = 0; 2433 } 2434 } else { 2435 /* inside the hysterisis margin, we're good */ 2436 ioc->busy_level = 0; 2437 } 2438 2439 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2440 2441 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2442 prev_busy_level, missed_ppm); 2443 2444 ioc_refresh_params(ioc, false); 2445 2446 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2447 2448 /* 2449 * This period is done. Move onto the next one. If nothing's 2450 * going on with the device, stop the timer. 2451 */ 2452 atomic64_inc(&ioc->cur_period); 2453 2454 if (ioc->running != IOC_STOP) { 2455 if (!list_empty(&ioc->active_iocgs)) { 2456 ioc_start_period(ioc, &now); 2457 } else { 2458 ioc->busy_level = 0; 2459 ioc->vtime_err = 0; 2460 ioc->running = IOC_IDLE; 2461 } 2462 2463 ioc_refresh_vrate(ioc, &now); 2464 } 2465 2466 spin_unlock_irq(&ioc->lock); 2467 } 2468 2469 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2470 u64 abs_cost, struct ioc_now *now) 2471 { 2472 struct ioc *ioc = iocg->ioc; 2473 struct ioc_margins *margins = &ioc->margins; 2474 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2475 u32 hwi, adj_step; 2476 s64 margin; 2477 u64 cost, new_inuse; 2478 unsigned long flags; 2479 2480 current_hweight(iocg, NULL, &hwi); 2481 old_hwi = hwi; 2482 cost = abs_cost_to_cost(abs_cost, hwi); 2483 margin = now->vnow - vtime - cost; 2484 2485 /* debt handling owns inuse for debtors */ 2486 if (iocg->abs_vdebt) 2487 return cost; 2488 2489 /* 2490 * We only increase inuse during period and do so if the margin has 2491 * deteriorated since the previous adjustment. 2492 */ 2493 if (margin >= iocg->saved_margin || margin >= margins->low || 2494 iocg->inuse == iocg->active) 2495 return cost; 2496 2497 spin_lock_irqsave(&ioc->lock, flags); 2498 2499 /* we own inuse only when @iocg is in the normal active state */ 2500 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2501 spin_unlock_irqrestore(&ioc->lock, flags); 2502 return cost; 2503 } 2504 2505 /* 2506 * Bump up inuse till @abs_cost fits in the existing budget. 2507 * adj_step must be determined after acquiring ioc->lock - we might 2508 * have raced and lost to another thread for activation and could 2509 * be reading 0 iocg->active before ioc->lock which will lead to 2510 * infinite loop. 2511 */ 2512 new_inuse = iocg->inuse; 2513 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2514 do { 2515 new_inuse = new_inuse + adj_step; 2516 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2517 current_hweight(iocg, NULL, &hwi); 2518 cost = abs_cost_to_cost(abs_cost, hwi); 2519 } while (time_after64(vtime + cost, now->vnow) && 2520 iocg->inuse != iocg->active); 2521 2522 spin_unlock_irqrestore(&ioc->lock, flags); 2523 2524 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2525 old_inuse, iocg->inuse, old_hwi, hwi); 2526 2527 return cost; 2528 } 2529 2530 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2531 bool is_merge, u64 *costp) 2532 { 2533 struct ioc *ioc = iocg->ioc; 2534 u64 coef_seqio, coef_randio, coef_page; 2535 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2536 u64 seek_pages = 0; 2537 u64 cost = 0; 2538 2539 /* Can't calculate cost for empty bio */ 2540 if (!bio->bi_iter.bi_size) 2541 goto out; 2542 2543 switch (bio_op(bio)) { 2544 case REQ_OP_READ: 2545 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2546 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2547 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2548 break; 2549 case REQ_OP_WRITE: 2550 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2551 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2552 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2553 break; 2554 default: 2555 goto out; 2556 } 2557 2558 if (iocg->cursor) { 2559 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2560 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2561 } 2562 2563 if (!is_merge) { 2564 if (seek_pages > LCOEF_RANDIO_PAGES) { 2565 cost += coef_randio; 2566 } else { 2567 cost += coef_seqio; 2568 } 2569 } 2570 cost += pages * coef_page; 2571 out: 2572 *costp = cost; 2573 } 2574 2575 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2576 { 2577 u64 cost; 2578 2579 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2580 return cost; 2581 } 2582 2583 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2584 u64 *costp) 2585 { 2586 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2587 2588 switch (req_op(rq)) { 2589 case REQ_OP_READ: 2590 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2591 break; 2592 case REQ_OP_WRITE: 2593 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2594 break; 2595 default: 2596 *costp = 0; 2597 } 2598 } 2599 2600 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2601 { 2602 u64 cost; 2603 2604 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2605 return cost; 2606 } 2607 2608 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2609 { 2610 struct blkcg_gq *blkg = bio->bi_blkg; 2611 struct ioc *ioc = rqos_to_ioc(rqos); 2612 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2613 struct ioc_now now; 2614 struct iocg_wait wait; 2615 u64 abs_cost, cost, vtime; 2616 bool use_debt, ioc_locked; 2617 unsigned long flags; 2618 2619 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2620 if (!ioc->enabled || !iocg || !iocg->level) 2621 return; 2622 2623 /* calculate the absolute vtime cost */ 2624 abs_cost = calc_vtime_cost(bio, iocg, false); 2625 if (!abs_cost) 2626 return; 2627 2628 if (!iocg_activate(iocg, &now)) 2629 return; 2630 2631 iocg->cursor = bio_end_sector(bio); 2632 vtime = atomic64_read(&iocg->vtime); 2633 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2634 2635 /* 2636 * If no one's waiting and within budget, issue right away. The 2637 * tests are racy but the races aren't systemic - we only miss once 2638 * in a while which is fine. 2639 */ 2640 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2641 time_before_eq64(vtime + cost, now.vnow)) { 2642 iocg_commit_bio(iocg, bio, abs_cost, cost); 2643 return; 2644 } 2645 2646 /* 2647 * We're over budget. This can be handled in two ways. IOs which may 2648 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2649 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2650 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2651 * whether debt handling is needed and acquire locks accordingly. 2652 */ 2653 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2654 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2655 retry_lock: 2656 iocg_lock(iocg, ioc_locked, &flags); 2657 2658 /* 2659 * @iocg must stay activated for debt and waitq handling. Deactivation 2660 * is synchronized against both ioc->lock and waitq.lock and we won't 2661 * get deactivated as long as we're waiting or has debt, so we're good 2662 * if we're activated here. In the unlikely cases that we aren't, just 2663 * issue the IO. 2664 */ 2665 if (unlikely(list_empty(&iocg->active_list))) { 2666 iocg_unlock(iocg, ioc_locked, &flags); 2667 iocg_commit_bio(iocg, bio, abs_cost, cost); 2668 return; 2669 } 2670 2671 /* 2672 * We're over budget. If @bio has to be issued regardless, remember 2673 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2674 * off the debt before waking more IOs. 2675 * 2676 * This way, the debt is continuously paid off each period with the 2677 * actual budget available to the cgroup. If we just wound vtime, we 2678 * would incorrectly use the current hw_inuse for the entire amount 2679 * which, for example, can lead to the cgroup staying blocked for a 2680 * long time even with substantially raised hw_inuse. 2681 * 2682 * An iocg with vdebt should stay online so that the timer can keep 2683 * deducting its vdebt and [de]activate use_delay mechanism 2684 * accordingly. We don't want to race against the timer trying to 2685 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2686 * penalizing the cgroup and its descendants. 2687 */ 2688 if (use_debt) { 2689 iocg_incur_debt(iocg, abs_cost, &now); 2690 if (iocg_kick_delay(iocg, &now)) 2691 blkcg_schedule_throttle(rqos->disk, 2692 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2693 iocg_unlock(iocg, ioc_locked, &flags); 2694 return; 2695 } 2696 2697 /* guarantee that iocgs w/ waiters have maximum inuse */ 2698 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2699 if (!ioc_locked) { 2700 iocg_unlock(iocg, false, &flags); 2701 ioc_locked = true; 2702 goto retry_lock; 2703 } 2704 propagate_weights(iocg, iocg->active, iocg->active, true, 2705 &now); 2706 } 2707 2708 /* 2709 * Append self to the waitq and schedule the wakeup timer if we're 2710 * the first waiter. The timer duration is calculated based on the 2711 * current vrate. vtime and hweight changes can make it too short 2712 * or too long. Each wait entry records the absolute cost it's 2713 * waiting for to allow re-evaluation using a custom wait entry. 2714 * 2715 * If too short, the timer simply reschedules itself. If too long, 2716 * the period timer will notice and trigger wakeups. 2717 * 2718 * All waiters are on iocg->waitq and the wait states are 2719 * synchronized using waitq.lock. 2720 */ 2721 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2722 wait.wait.private = current; 2723 wait.bio = bio; 2724 wait.abs_cost = abs_cost; 2725 wait.committed = false; /* will be set true by waker */ 2726 2727 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2728 iocg_kick_waitq(iocg, ioc_locked, &now); 2729 2730 iocg_unlock(iocg, ioc_locked, &flags); 2731 2732 while (true) { 2733 set_current_state(TASK_UNINTERRUPTIBLE); 2734 if (wait.committed) 2735 break; 2736 io_schedule(); 2737 } 2738 2739 /* waker already committed us, proceed */ 2740 finish_wait(&iocg->waitq, &wait.wait); 2741 } 2742 2743 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2744 struct bio *bio) 2745 { 2746 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2747 struct ioc *ioc = rqos_to_ioc(rqos); 2748 sector_t bio_end = bio_end_sector(bio); 2749 struct ioc_now now; 2750 u64 vtime, abs_cost, cost; 2751 unsigned long flags; 2752 2753 /* bypass if disabled, still initializing, or for root cgroup */ 2754 if (!ioc->enabled || !iocg || !iocg->level) 2755 return; 2756 2757 abs_cost = calc_vtime_cost(bio, iocg, true); 2758 if (!abs_cost) 2759 return; 2760 2761 ioc_now(ioc, &now); 2762 2763 vtime = atomic64_read(&iocg->vtime); 2764 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2765 2766 /* update cursor if backmerging into the request at the cursor */ 2767 if (blk_rq_pos(rq) < bio_end && 2768 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2769 iocg->cursor = bio_end; 2770 2771 /* 2772 * Charge if there's enough vtime budget and the existing request has 2773 * cost assigned. 2774 */ 2775 if (rq->bio && rq->bio->bi_iocost_cost && 2776 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2777 iocg_commit_bio(iocg, bio, abs_cost, cost); 2778 return; 2779 } 2780 2781 /* 2782 * Otherwise, account it as debt if @iocg is online, which it should 2783 * be for the vast majority of cases. See debt handling in 2784 * ioc_rqos_throttle() for details. 2785 */ 2786 spin_lock_irqsave(&ioc->lock, flags); 2787 spin_lock(&iocg->waitq.lock); 2788 2789 if (likely(!list_empty(&iocg->active_list))) { 2790 iocg_incur_debt(iocg, abs_cost, &now); 2791 if (iocg_kick_delay(iocg, &now)) 2792 blkcg_schedule_throttle(rqos->disk, 2793 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2794 } else { 2795 iocg_commit_bio(iocg, bio, abs_cost, cost); 2796 } 2797 2798 spin_unlock(&iocg->waitq.lock); 2799 spin_unlock_irqrestore(&ioc->lock, flags); 2800 } 2801 2802 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2803 { 2804 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2805 2806 if (iocg && bio->bi_iocost_cost) 2807 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2808 } 2809 2810 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2811 { 2812 struct ioc *ioc = rqos_to_ioc(rqos); 2813 struct ioc_pcpu_stat *ccs; 2814 u64 on_q_ns, rq_wait_ns, size_nsec; 2815 int pidx, rw; 2816 2817 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2818 return; 2819 2820 switch (req_op(rq)) { 2821 case REQ_OP_READ: 2822 pidx = QOS_RLAT; 2823 rw = READ; 2824 break; 2825 case REQ_OP_WRITE: 2826 pidx = QOS_WLAT; 2827 rw = WRITE; 2828 break; 2829 default: 2830 return; 2831 } 2832 2833 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2834 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2835 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2836 2837 ccs = get_cpu_ptr(ioc->pcpu_stat); 2838 2839 if (on_q_ns <= size_nsec || 2840 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2841 local_inc(&ccs->missed[rw].nr_met); 2842 else 2843 local_inc(&ccs->missed[rw].nr_missed); 2844 2845 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2846 2847 put_cpu_ptr(ccs); 2848 } 2849 2850 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2851 { 2852 struct ioc *ioc = rqos_to_ioc(rqos); 2853 2854 spin_lock_irq(&ioc->lock); 2855 ioc_refresh_params(ioc, false); 2856 spin_unlock_irq(&ioc->lock); 2857 } 2858 2859 static void ioc_rqos_exit(struct rq_qos *rqos) 2860 { 2861 struct ioc *ioc = rqos_to_ioc(rqos); 2862 2863 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost); 2864 2865 spin_lock_irq(&ioc->lock); 2866 ioc->running = IOC_STOP; 2867 spin_unlock_irq(&ioc->lock); 2868 2869 timer_shutdown_sync(&ioc->timer); 2870 free_percpu(ioc->pcpu_stat); 2871 kfree(ioc); 2872 } 2873 2874 static const struct rq_qos_ops ioc_rqos_ops = { 2875 .throttle = ioc_rqos_throttle, 2876 .merge = ioc_rqos_merge, 2877 .done_bio = ioc_rqos_done_bio, 2878 .done = ioc_rqos_done, 2879 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2880 .exit = ioc_rqos_exit, 2881 }; 2882 2883 static int blk_iocost_init(struct gendisk *disk) 2884 { 2885 struct ioc *ioc; 2886 int i, cpu, ret; 2887 2888 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2889 if (!ioc) 2890 return -ENOMEM; 2891 2892 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2893 if (!ioc->pcpu_stat) { 2894 kfree(ioc); 2895 return -ENOMEM; 2896 } 2897 2898 for_each_possible_cpu(cpu) { 2899 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2900 2901 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2902 local_set(&ccs->missed[i].nr_met, 0); 2903 local_set(&ccs->missed[i].nr_missed, 0); 2904 } 2905 local64_set(&ccs->rq_wait_ns, 0); 2906 } 2907 2908 spin_lock_init(&ioc->lock); 2909 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2910 INIT_LIST_HEAD(&ioc->active_iocgs); 2911 2912 ioc->running = IOC_IDLE; 2913 ioc->vtime_base_rate = VTIME_PER_USEC; 2914 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2915 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2916 ioc->period_at = ktime_to_us(ktime_get()); 2917 atomic64_set(&ioc->cur_period, 0); 2918 atomic_set(&ioc->hweight_gen, 0); 2919 2920 spin_lock_irq(&ioc->lock); 2921 ioc->autop_idx = AUTOP_INVALID; 2922 ioc_refresh_params_disk(ioc, true, disk); 2923 spin_unlock_irq(&ioc->lock); 2924 2925 /* 2926 * rqos must be added before activation to allow ioc_pd_init() to 2927 * lookup the ioc from q. This means that the rqos methods may get 2928 * called before policy activation completion, can't assume that the 2929 * target bio has an iocg associated and need to test for NULL iocg. 2930 */ 2931 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops); 2932 if (ret) 2933 goto err_free_ioc; 2934 2935 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost); 2936 if (ret) 2937 goto err_del_qos; 2938 return 0; 2939 2940 err_del_qos: 2941 rq_qos_del(&ioc->rqos); 2942 err_free_ioc: 2943 free_percpu(ioc->pcpu_stat); 2944 kfree(ioc); 2945 return ret; 2946 } 2947 2948 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2949 { 2950 struct ioc_cgrp *iocc; 2951 2952 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2953 if (!iocc) 2954 return NULL; 2955 2956 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2957 return &iocc->cpd; 2958 } 2959 2960 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2961 { 2962 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2963 } 2964 2965 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk, 2966 struct blkcg *blkcg, gfp_t gfp) 2967 { 2968 int levels = blkcg->css.cgroup->level + 1; 2969 struct ioc_gq *iocg; 2970 2971 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, 2972 disk->node_id); 2973 if (!iocg) 2974 return NULL; 2975 2976 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2977 if (!iocg->pcpu_stat) { 2978 kfree(iocg); 2979 return NULL; 2980 } 2981 2982 return &iocg->pd; 2983 } 2984 2985 static void ioc_pd_init(struct blkg_policy_data *pd) 2986 { 2987 struct ioc_gq *iocg = pd_to_iocg(pd); 2988 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2989 struct ioc *ioc = q_to_ioc(blkg->q); 2990 struct ioc_now now; 2991 struct blkcg_gq *tblkg; 2992 unsigned long flags; 2993 2994 ioc_now(ioc, &now); 2995 2996 iocg->ioc = ioc; 2997 atomic64_set(&iocg->vtime, now.vnow); 2998 atomic64_set(&iocg->done_vtime, now.vnow); 2999 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 3000 INIT_LIST_HEAD(&iocg->active_list); 3001 INIT_LIST_HEAD(&iocg->walk_list); 3002 INIT_LIST_HEAD(&iocg->surplus_list); 3003 iocg->hweight_active = WEIGHT_ONE; 3004 iocg->hweight_inuse = WEIGHT_ONE; 3005 3006 init_waitqueue_head(&iocg->waitq); 3007 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 3008 iocg->waitq_timer.function = iocg_waitq_timer_fn; 3009 3010 iocg->level = blkg->blkcg->css.cgroup->level; 3011 3012 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 3013 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 3014 iocg->ancestors[tiocg->level] = tiocg; 3015 } 3016 3017 spin_lock_irqsave(&ioc->lock, flags); 3018 weight_updated(iocg, &now); 3019 spin_unlock_irqrestore(&ioc->lock, flags); 3020 } 3021 3022 static void ioc_pd_free(struct blkg_policy_data *pd) 3023 { 3024 struct ioc_gq *iocg = pd_to_iocg(pd); 3025 struct ioc *ioc = iocg->ioc; 3026 unsigned long flags; 3027 3028 if (ioc) { 3029 spin_lock_irqsave(&ioc->lock, flags); 3030 3031 if (!list_empty(&iocg->active_list)) { 3032 struct ioc_now now; 3033 3034 ioc_now(ioc, &now); 3035 propagate_weights(iocg, 0, 0, false, &now); 3036 list_del_init(&iocg->active_list); 3037 } 3038 3039 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 3040 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 3041 3042 spin_unlock_irqrestore(&ioc->lock, flags); 3043 3044 hrtimer_cancel(&iocg->waitq_timer); 3045 } 3046 free_percpu(iocg->pcpu_stat); 3047 kfree(iocg); 3048 } 3049 3050 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3051 { 3052 struct ioc_gq *iocg = pd_to_iocg(pd); 3053 struct ioc *ioc = iocg->ioc; 3054 3055 if (!ioc->enabled) 3056 return; 3057 3058 if (iocg->level == 0) { 3059 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3060 ioc->vtime_base_rate * 10000, 3061 VTIME_PER_USEC); 3062 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3063 } 3064 3065 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3066 3067 if (blkcg_debug_stats) 3068 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3069 iocg->last_stat.wait_us, 3070 iocg->last_stat.indebt_us, 3071 iocg->last_stat.indelay_us); 3072 } 3073 3074 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3075 int off) 3076 { 3077 const char *dname = blkg_dev_name(pd->blkg); 3078 struct ioc_gq *iocg = pd_to_iocg(pd); 3079 3080 if (dname && iocg->cfg_weight) 3081 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3082 return 0; 3083 } 3084 3085 3086 static int ioc_weight_show(struct seq_file *sf, void *v) 3087 { 3088 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3089 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3090 3091 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3092 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3093 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3094 return 0; 3095 } 3096 3097 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3098 size_t nbytes, loff_t off) 3099 { 3100 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3101 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3102 struct blkg_conf_ctx ctx; 3103 struct ioc_now now; 3104 struct ioc_gq *iocg; 3105 u32 v; 3106 int ret; 3107 3108 if (!strchr(buf, ':')) { 3109 struct blkcg_gq *blkg; 3110 3111 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3112 return -EINVAL; 3113 3114 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3115 return -EINVAL; 3116 3117 spin_lock_irq(&blkcg->lock); 3118 iocc->dfl_weight = v * WEIGHT_ONE; 3119 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3120 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3121 3122 if (iocg) { 3123 spin_lock(&iocg->ioc->lock); 3124 ioc_now(iocg->ioc, &now); 3125 weight_updated(iocg, &now); 3126 spin_unlock(&iocg->ioc->lock); 3127 } 3128 } 3129 spin_unlock_irq(&blkcg->lock); 3130 3131 return nbytes; 3132 } 3133 3134 blkg_conf_init(&ctx, buf); 3135 3136 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx); 3137 if (ret) 3138 goto err; 3139 3140 iocg = blkg_to_iocg(ctx.blkg); 3141 3142 if (!strncmp(ctx.body, "default", 7)) { 3143 v = 0; 3144 } else { 3145 if (!sscanf(ctx.body, "%u", &v)) 3146 goto einval; 3147 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3148 goto einval; 3149 } 3150 3151 spin_lock(&iocg->ioc->lock); 3152 iocg->cfg_weight = v * WEIGHT_ONE; 3153 ioc_now(iocg->ioc, &now); 3154 weight_updated(iocg, &now); 3155 spin_unlock(&iocg->ioc->lock); 3156 3157 blkg_conf_exit(&ctx); 3158 return nbytes; 3159 3160 einval: 3161 ret = -EINVAL; 3162 err: 3163 blkg_conf_exit(&ctx); 3164 return ret; 3165 } 3166 3167 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3168 int off) 3169 { 3170 const char *dname = blkg_dev_name(pd->blkg); 3171 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3172 3173 if (!dname) 3174 return 0; 3175 3176 spin_lock_irq(&ioc->lock); 3177 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3178 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3179 ioc->params.qos[QOS_RPPM] / 10000, 3180 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3181 ioc->params.qos[QOS_RLAT], 3182 ioc->params.qos[QOS_WPPM] / 10000, 3183 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3184 ioc->params.qos[QOS_WLAT], 3185 ioc->params.qos[QOS_MIN] / 10000, 3186 ioc->params.qos[QOS_MIN] % 10000 / 100, 3187 ioc->params.qos[QOS_MAX] / 10000, 3188 ioc->params.qos[QOS_MAX] % 10000 / 100); 3189 spin_unlock_irq(&ioc->lock); 3190 return 0; 3191 } 3192 3193 static int ioc_qos_show(struct seq_file *sf, void *v) 3194 { 3195 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3196 3197 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3198 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3199 return 0; 3200 } 3201 3202 static const match_table_t qos_ctrl_tokens = { 3203 { QOS_ENABLE, "enable=%u" }, 3204 { QOS_CTRL, "ctrl=%s" }, 3205 { NR_QOS_CTRL_PARAMS, NULL }, 3206 }; 3207 3208 static const match_table_t qos_tokens = { 3209 { QOS_RPPM, "rpct=%s" }, 3210 { QOS_RLAT, "rlat=%u" }, 3211 { QOS_WPPM, "wpct=%s" }, 3212 { QOS_WLAT, "wlat=%u" }, 3213 { QOS_MIN, "min=%s" }, 3214 { QOS_MAX, "max=%s" }, 3215 { NR_QOS_PARAMS, NULL }, 3216 }; 3217 3218 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3219 size_t nbytes, loff_t off) 3220 { 3221 struct blkg_conf_ctx ctx; 3222 struct gendisk *disk; 3223 struct ioc *ioc; 3224 u32 qos[NR_QOS_PARAMS]; 3225 bool enable, user; 3226 char *body, *p; 3227 int ret; 3228 3229 blkg_conf_init(&ctx, input); 3230 3231 ret = blkg_conf_open_bdev(&ctx); 3232 if (ret) 3233 goto err; 3234 3235 body = ctx.body; 3236 disk = ctx.bdev->bd_disk; 3237 if (!queue_is_mq(disk->queue)) { 3238 ret = -EOPNOTSUPP; 3239 goto err; 3240 } 3241 3242 ioc = q_to_ioc(disk->queue); 3243 if (!ioc) { 3244 ret = blk_iocost_init(disk); 3245 if (ret) 3246 goto err; 3247 ioc = q_to_ioc(disk->queue); 3248 } 3249 3250 blk_mq_freeze_queue(disk->queue); 3251 blk_mq_quiesce_queue(disk->queue); 3252 3253 spin_lock_irq(&ioc->lock); 3254 memcpy(qos, ioc->params.qos, sizeof(qos)); 3255 enable = ioc->enabled; 3256 user = ioc->user_qos_params; 3257 3258 while ((p = strsep(&body, " \t\n"))) { 3259 substring_t args[MAX_OPT_ARGS]; 3260 char buf[32]; 3261 int tok; 3262 s64 v; 3263 3264 if (!*p) 3265 continue; 3266 3267 switch (match_token(p, qos_ctrl_tokens, args)) { 3268 case QOS_ENABLE: 3269 if (match_u64(&args[0], &v)) 3270 goto einval; 3271 enable = v; 3272 continue; 3273 case QOS_CTRL: 3274 match_strlcpy(buf, &args[0], sizeof(buf)); 3275 if (!strcmp(buf, "auto")) 3276 user = false; 3277 else if (!strcmp(buf, "user")) 3278 user = true; 3279 else 3280 goto einval; 3281 continue; 3282 } 3283 3284 tok = match_token(p, qos_tokens, args); 3285 switch (tok) { 3286 case QOS_RPPM: 3287 case QOS_WPPM: 3288 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3289 sizeof(buf)) 3290 goto einval; 3291 if (cgroup_parse_float(buf, 2, &v)) 3292 goto einval; 3293 if (v < 0 || v > 10000) 3294 goto einval; 3295 qos[tok] = v * 100; 3296 break; 3297 case QOS_RLAT: 3298 case QOS_WLAT: 3299 if (match_u64(&args[0], &v)) 3300 goto einval; 3301 qos[tok] = v; 3302 break; 3303 case QOS_MIN: 3304 case QOS_MAX: 3305 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3306 sizeof(buf)) 3307 goto einval; 3308 if (cgroup_parse_float(buf, 2, &v)) 3309 goto einval; 3310 if (v < 0) 3311 goto einval; 3312 qos[tok] = clamp_t(s64, v * 100, 3313 VRATE_MIN_PPM, VRATE_MAX_PPM); 3314 break; 3315 default: 3316 goto einval; 3317 } 3318 user = true; 3319 } 3320 3321 if (qos[QOS_MIN] > qos[QOS_MAX]) 3322 goto einval; 3323 3324 if (enable && !ioc->enabled) { 3325 blk_stat_enable_accounting(disk->queue); 3326 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3327 ioc->enabled = true; 3328 } else if (!enable && ioc->enabled) { 3329 blk_stat_disable_accounting(disk->queue); 3330 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3331 ioc->enabled = false; 3332 } 3333 3334 if (user) { 3335 memcpy(ioc->params.qos, qos, sizeof(qos)); 3336 ioc->user_qos_params = true; 3337 } else { 3338 ioc->user_qos_params = false; 3339 } 3340 3341 ioc_refresh_params(ioc, true); 3342 spin_unlock_irq(&ioc->lock); 3343 3344 if (enable) 3345 wbt_disable_default(disk); 3346 else 3347 wbt_enable_default(disk); 3348 3349 blk_mq_unquiesce_queue(disk->queue); 3350 blk_mq_unfreeze_queue(disk->queue); 3351 3352 blkg_conf_exit(&ctx); 3353 return nbytes; 3354 einval: 3355 spin_unlock_irq(&ioc->lock); 3356 3357 blk_mq_unquiesce_queue(disk->queue); 3358 blk_mq_unfreeze_queue(disk->queue); 3359 3360 ret = -EINVAL; 3361 err: 3362 blkg_conf_exit(&ctx); 3363 return ret; 3364 } 3365 3366 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3367 struct blkg_policy_data *pd, int off) 3368 { 3369 const char *dname = blkg_dev_name(pd->blkg); 3370 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3371 u64 *u = ioc->params.i_lcoefs; 3372 3373 if (!dname) 3374 return 0; 3375 3376 spin_lock_irq(&ioc->lock); 3377 seq_printf(sf, "%s ctrl=%s model=linear " 3378 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3379 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3380 dname, ioc->user_cost_model ? "user" : "auto", 3381 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3382 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3383 spin_unlock_irq(&ioc->lock); 3384 return 0; 3385 } 3386 3387 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3388 { 3389 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3390 3391 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3392 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3393 return 0; 3394 } 3395 3396 static const match_table_t cost_ctrl_tokens = { 3397 { COST_CTRL, "ctrl=%s" }, 3398 { COST_MODEL, "model=%s" }, 3399 { NR_COST_CTRL_PARAMS, NULL }, 3400 }; 3401 3402 static const match_table_t i_lcoef_tokens = { 3403 { I_LCOEF_RBPS, "rbps=%u" }, 3404 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3405 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3406 { I_LCOEF_WBPS, "wbps=%u" }, 3407 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3408 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3409 { NR_I_LCOEFS, NULL }, 3410 }; 3411 3412 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3413 size_t nbytes, loff_t off) 3414 { 3415 struct blkg_conf_ctx ctx; 3416 struct request_queue *q; 3417 struct ioc *ioc; 3418 u64 u[NR_I_LCOEFS]; 3419 bool user; 3420 char *body, *p; 3421 int ret; 3422 3423 blkg_conf_init(&ctx, input); 3424 3425 ret = blkg_conf_open_bdev(&ctx); 3426 if (ret) 3427 goto err; 3428 3429 body = ctx.body; 3430 q = bdev_get_queue(ctx.bdev); 3431 if (!queue_is_mq(q)) { 3432 ret = -EOPNOTSUPP; 3433 goto err; 3434 } 3435 3436 ioc = q_to_ioc(q); 3437 if (!ioc) { 3438 ret = blk_iocost_init(ctx.bdev->bd_disk); 3439 if (ret) 3440 goto err; 3441 ioc = q_to_ioc(q); 3442 } 3443 3444 blk_mq_freeze_queue(q); 3445 blk_mq_quiesce_queue(q); 3446 3447 spin_lock_irq(&ioc->lock); 3448 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3449 user = ioc->user_cost_model; 3450 3451 while ((p = strsep(&body, " \t\n"))) { 3452 substring_t args[MAX_OPT_ARGS]; 3453 char buf[32]; 3454 int tok; 3455 u64 v; 3456 3457 if (!*p) 3458 continue; 3459 3460 switch (match_token(p, cost_ctrl_tokens, args)) { 3461 case COST_CTRL: 3462 match_strlcpy(buf, &args[0], sizeof(buf)); 3463 if (!strcmp(buf, "auto")) 3464 user = false; 3465 else if (!strcmp(buf, "user")) 3466 user = true; 3467 else 3468 goto einval; 3469 continue; 3470 case COST_MODEL: 3471 match_strlcpy(buf, &args[0], sizeof(buf)); 3472 if (strcmp(buf, "linear")) 3473 goto einval; 3474 continue; 3475 } 3476 3477 tok = match_token(p, i_lcoef_tokens, args); 3478 if (tok == NR_I_LCOEFS) 3479 goto einval; 3480 if (match_u64(&args[0], &v)) 3481 goto einval; 3482 u[tok] = v; 3483 user = true; 3484 } 3485 3486 if (user) { 3487 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3488 ioc->user_cost_model = true; 3489 } else { 3490 ioc->user_cost_model = false; 3491 } 3492 ioc_refresh_params(ioc, true); 3493 spin_unlock_irq(&ioc->lock); 3494 3495 blk_mq_unquiesce_queue(q); 3496 blk_mq_unfreeze_queue(q); 3497 3498 blkg_conf_exit(&ctx); 3499 return nbytes; 3500 3501 einval: 3502 spin_unlock_irq(&ioc->lock); 3503 3504 blk_mq_unquiesce_queue(q); 3505 blk_mq_unfreeze_queue(q); 3506 3507 ret = -EINVAL; 3508 err: 3509 blkg_conf_exit(&ctx); 3510 return ret; 3511 } 3512 3513 static struct cftype ioc_files[] = { 3514 { 3515 .name = "weight", 3516 .flags = CFTYPE_NOT_ON_ROOT, 3517 .seq_show = ioc_weight_show, 3518 .write = ioc_weight_write, 3519 }, 3520 { 3521 .name = "cost.qos", 3522 .flags = CFTYPE_ONLY_ON_ROOT, 3523 .seq_show = ioc_qos_show, 3524 .write = ioc_qos_write, 3525 }, 3526 { 3527 .name = "cost.model", 3528 .flags = CFTYPE_ONLY_ON_ROOT, 3529 .seq_show = ioc_cost_model_show, 3530 .write = ioc_cost_model_write, 3531 }, 3532 {} 3533 }; 3534 3535 static struct blkcg_policy blkcg_policy_iocost = { 3536 .dfl_cftypes = ioc_files, 3537 .cpd_alloc_fn = ioc_cpd_alloc, 3538 .cpd_free_fn = ioc_cpd_free, 3539 .pd_alloc_fn = ioc_pd_alloc, 3540 .pd_init_fn = ioc_pd_init, 3541 .pd_free_fn = ioc_pd_free, 3542 .pd_stat_fn = ioc_pd_stat, 3543 }; 3544 3545 static int __init ioc_init(void) 3546 { 3547 return blkcg_policy_register(&blkcg_policy_iocost); 3548 } 3549 3550 static void __exit ioc_exit(void) 3551 { 3552 blkcg_policy_unregister(&blkcg_policy_iocost); 3553 } 3554 3555 module_init(ioc_init); 3556 module_exit(ioc_exit); 3557