xref: /openbmc/linux/block/blk-iocost.c (revision ccc319dc)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 
236 	/*
237 	 * As vtime is used to calculate the cost of each IO, it needs to
238 	 * be fairly high precision.  For example, it should be able to
239 	 * represent the cost of a single page worth of discard with
240 	 * suffificient accuracy.  At the same time, it should be able to
241 	 * represent reasonably long enough durations to be useful and
242 	 * convenient during operation.
243 	 *
244 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245 	 * granularity and days of wrap-around time even at extreme vrates.
246 	 */
247 	VTIME_PER_SEC_SHIFT	= 37,
248 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
249 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
250 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
251 
252 	/* bound vrate adjustments within two orders of magnitude */
253 	VRATE_MIN_PPM		= 10000,	/* 1% */
254 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
255 
256 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 	VRATE_CLAMP_ADJ_PCT	= 4,
258 
259 	/* if IOs end up waiting for requests, issue less */
260 	RQ_WAIT_BUSY_PCT	= 5,
261 
262 	/* unbusy hysterisis */
263 	UNBUSY_THR_PCT		= 75,
264 
265 	/*
266 	 * The effect of delay is indirect and non-linear and a huge amount of
267 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 	 * up delay as debt is going up and then let it decay exponentially.
269 	 * This gives us quick ramp ups while delay is accumulating and long
270 	 * tails which can help reducing the frequency of debt explosions on
271 	 * unthrottle. The parameters are experimentally determined.
272 	 *
273 	 * The delay mechanism provides adequate protection and behavior in many
274 	 * cases. However, this is far from ideal and falls shorts on both
275 	 * fronts. The debtors are often throttled too harshly costing a
276 	 * significant level of fairness and possibly total work while the
277 	 * protection against their impacts on the system can be choppy and
278 	 * unreliable.
279 	 *
280 	 * The shortcoming primarily stems from the fact that, unlike for page
281 	 * cache, the kernel doesn't have well-defined back-pressure propagation
282 	 * mechanism and policies for anonymous memory. Fully addressing this
283 	 * issue will likely require substantial improvements in the area.
284 	 */
285 	MIN_DELAY_THR_PCT	= 500,
286 	MAX_DELAY_THR_PCT	= 25000,
287 	MIN_DELAY		= 250,
288 	MAX_DELAY		= 250 * USEC_PER_MSEC,
289 
290 	/* halve debts if avg usage over 100ms is under 50% */
291 	DFGV_USAGE_PCT		= 50,
292 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
293 
294 	/* don't let cmds which take a very long time pin lagging for too long */
295 	MAX_LAGGING_PERIODS	= 10,
296 
297 	/* switch iff the conditions are met for longer than this */
298 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
299 
300 	/*
301 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
302 	 * size-proportional components of cost calculation in closer
303 	 * numbers of digits to per-IO cost components.
304 	 */
305 	IOC_PAGE_SHIFT		= 12,
306 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
307 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
308 
309 	/* if apart further than 16M, consider randio for linear model */
310 	LCOEF_RANDIO_PAGES	= 4096,
311 };
312 
313 enum ioc_running {
314 	IOC_IDLE,
315 	IOC_RUNNING,
316 	IOC_STOP,
317 };
318 
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 	QOS_ENABLE,
322 	QOS_CTRL,
323 	NR_QOS_CTRL_PARAMS,
324 };
325 
326 /* io.cost.qos params */
327 enum {
328 	QOS_RPPM,
329 	QOS_RLAT,
330 	QOS_WPPM,
331 	QOS_WLAT,
332 	QOS_MIN,
333 	QOS_MAX,
334 	NR_QOS_PARAMS,
335 };
336 
337 /* io.cost.model controls */
338 enum {
339 	COST_CTRL,
340 	COST_MODEL,
341 	NR_COST_CTRL_PARAMS,
342 };
343 
344 /* builtin linear cost model coefficients */
345 enum {
346 	I_LCOEF_RBPS,
347 	I_LCOEF_RSEQIOPS,
348 	I_LCOEF_RRANDIOPS,
349 	I_LCOEF_WBPS,
350 	I_LCOEF_WSEQIOPS,
351 	I_LCOEF_WRANDIOPS,
352 	NR_I_LCOEFS,
353 };
354 
355 enum {
356 	LCOEF_RPAGE,
357 	LCOEF_RSEQIO,
358 	LCOEF_RRANDIO,
359 	LCOEF_WPAGE,
360 	LCOEF_WSEQIO,
361 	LCOEF_WRANDIO,
362 	NR_LCOEFS,
363 };
364 
365 enum {
366 	AUTOP_INVALID,
367 	AUTOP_HDD,
368 	AUTOP_SSD_QD1,
369 	AUTOP_SSD_DFL,
370 	AUTOP_SSD_FAST,
371 };
372 
373 struct ioc_params {
374 	u32				qos[NR_QOS_PARAMS];
375 	u64				i_lcoefs[NR_I_LCOEFS];
376 	u64				lcoefs[NR_LCOEFS];
377 	u32				too_fast_vrate_pct;
378 	u32				too_slow_vrate_pct;
379 };
380 
381 struct ioc_margins {
382 	s64				min;
383 	s64				low;
384 	s64				target;
385 };
386 
387 struct ioc_missed {
388 	local_t				nr_met;
389 	local_t				nr_missed;
390 	u32				last_met;
391 	u32				last_missed;
392 };
393 
394 struct ioc_pcpu_stat {
395 	struct ioc_missed		missed[2];
396 
397 	local64_t			rq_wait_ns;
398 	u64				last_rq_wait_ns;
399 };
400 
401 /* per device */
402 struct ioc {
403 	struct rq_qos			rqos;
404 
405 	bool				enabled;
406 
407 	struct ioc_params		params;
408 	struct ioc_margins		margins;
409 	u32				period_us;
410 	u32				timer_slack_ns;
411 	u64				vrate_min;
412 	u64				vrate_max;
413 
414 	spinlock_t			lock;
415 	struct timer_list		timer;
416 	struct list_head		active_iocgs;	/* active cgroups */
417 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
418 
419 	enum ioc_running		running;
420 	atomic64_t			vtime_rate;
421 	u64				vtime_base_rate;
422 	s64				vtime_err;
423 
424 	seqcount_spinlock_t		period_seqcount;
425 	u64				period_at;	/* wallclock starttime */
426 	u64				period_at_vtime; /* vtime starttime */
427 
428 	atomic64_t			cur_period;	/* inc'd each period */
429 	int				busy_level;	/* saturation history */
430 
431 	bool				weights_updated;
432 	atomic_t			hweight_gen;	/* for lazy hweights */
433 
434 	/* debt forgivness */
435 	u64				dfgv_period_at;
436 	u64				dfgv_period_rem;
437 	u64				dfgv_usage_us_sum;
438 
439 	u64				autop_too_fast_at;
440 	u64				autop_too_slow_at;
441 	int				autop_idx;
442 	bool				user_qos_params:1;
443 	bool				user_cost_model:1;
444 };
445 
446 struct iocg_pcpu_stat {
447 	local64_t			abs_vusage;
448 };
449 
450 struct iocg_stat {
451 	u64				usage_us;
452 	u64				wait_us;
453 	u64				indebt_us;
454 	u64				indelay_us;
455 };
456 
457 /* per device-cgroup pair */
458 struct ioc_gq {
459 	struct blkg_policy_data		pd;
460 	struct ioc			*ioc;
461 
462 	/*
463 	 * A iocg can get its weight from two sources - an explicit
464 	 * per-device-cgroup configuration or the default weight of the
465 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466 	 * configuration.  `weight` is the effective considering both
467 	 * sources.
468 	 *
469 	 * When an idle cgroup becomes active its `active` goes from 0 to
470 	 * `weight`.  `inuse` is the surplus adjusted active weight.
471 	 * `active` and `inuse` are used to calculate `hweight_active` and
472 	 * `hweight_inuse`.
473 	 *
474 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 	 * surplus adjustments.
476 	 *
477 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 	 * to determine and track adjustments.
479 	 */
480 	u32				cfg_weight;
481 	u32				weight;
482 	u32				active;
483 	u32				inuse;
484 
485 	u32				last_inuse;
486 	s64				saved_margin;
487 
488 	sector_t			cursor;		/* to detect randio */
489 
490 	/*
491 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 	 * issued.  If lagging behind device vtime, the delta represents
493 	 * the currently available IO budget.  If running ahead, the
494 	 * overage.
495 	 *
496 	 * `vtime_done` is the same but progressed on completion rather
497 	 * than issue.  The delta behind `vtime` represents the cost of
498 	 * currently in-flight IOs.
499 	 */
500 	atomic64_t			vtime;
501 	atomic64_t			done_vtime;
502 	u64				abs_vdebt;
503 
504 	/* current delay in effect and when it started */
505 	u64				delay;
506 	u64				delay_at;
507 
508 	/*
509 	 * The period this iocg was last active in.  Used for deactivation
510 	 * and invalidating `vtime`.
511 	 */
512 	atomic64_t			active_period;
513 	struct list_head		active_list;
514 
515 	/* see __propagate_weights() and current_hweight() for details */
516 	u64				child_active_sum;
517 	u64				child_inuse_sum;
518 	u64				child_adjusted_sum;
519 	int				hweight_gen;
520 	u32				hweight_active;
521 	u32				hweight_inuse;
522 	u32				hweight_donating;
523 	u32				hweight_after_donation;
524 
525 	struct list_head		walk_list;
526 	struct list_head		surplus_list;
527 
528 	struct wait_queue_head		waitq;
529 	struct hrtimer			waitq_timer;
530 
531 	/* timestamp at the latest activation */
532 	u64				activated_at;
533 
534 	/* statistics */
535 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
536 	struct iocg_stat		stat;
537 	struct iocg_stat		last_stat;
538 	u64				last_stat_abs_vusage;
539 	u64				usage_delta_us;
540 	u64				wait_since;
541 	u64				indebt_since;
542 	u64				indelay_since;
543 
544 	/* this iocg's depth in the hierarchy and ancestors including self */
545 	int				level;
546 	struct ioc_gq			*ancestors[];
547 };
548 
549 /* per cgroup */
550 struct ioc_cgrp {
551 	struct blkcg_policy_data	cpd;
552 	unsigned int			dfl_weight;
553 };
554 
555 struct ioc_now {
556 	u64				now_ns;
557 	u64				now;
558 	u64				vnow;
559 	u64				vrate;
560 };
561 
562 struct iocg_wait {
563 	struct wait_queue_entry		wait;
564 	struct bio			*bio;
565 	u64				abs_cost;
566 	bool				committed;
567 };
568 
569 struct iocg_wake_ctx {
570 	struct ioc_gq			*iocg;
571 	u32				hw_inuse;
572 	s64				vbudget;
573 };
574 
575 static const struct ioc_params autop[] = {
576 	[AUTOP_HDD] = {
577 		.qos				= {
578 			[QOS_RLAT]		=        250000, /* 250ms */
579 			[QOS_WLAT]		=        250000,
580 			[QOS_MIN]		= VRATE_MIN_PPM,
581 			[QOS_MAX]		= VRATE_MAX_PPM,
582 		},
583 		.i_lcoefs			= {
584 			[I_LCOEF_RBPS]		=     174019176,
585 			[I_LCOEF_RSEQIOPS]	=         41708,
586 			[I_LCOEF_RRANDIOPS]	=           370,
587 			[I_LCOEF_WBPS]		=     178075866,
588 			[I_LCOEF_WSEQIOPS]	=         42705,
589 			[I_LCOEF_WRANDIOPS]	=           378,
590 		},
591 	},
592 	[AUTOP_SSD_QD1] = {
593 		.qos				= {
594 			[QOS_RLAT]		=         25000, /* 25ms */
595 			[QOS_WLAT]		=         25000,
596 			[QOS_MIN]		= VRATE_MIN_PPM,
597 			[QOS_MAX]		= VRATE_MAX_PPM,
598 		},
599 		.i_lcoefs			= {
600 			[I_LCOEF_RBPS]		=     245855193,
601 			[I_LCOEF_RSEQIOPS]	=         61575,
602 			[I_LCOEF_RRANDIOPS]	=          6946,
603 			[I_LCOEF_WBPS]		=     141365009,
604 			[I_LCOEF_WSEQIOPS]	=         33716,
605 			[I_LCOEF_WRANDIOPS]	=         26796,
606 		},
607 	},
608 	[AUTOP_SSD_DFL] = {
609 		.qos				= {
610 			[QOS_RLAT]		=         25000, /* 25ms */
611 			[QOS_WLAT]		=         25000,
612 			[QOS_MIN]		= VRATE_MIN_PPM,
613 			[QOS_MAX]		= VRATE_MAX_PPM,
614 		},
615 		.i_lcoefs			= {
616 			[I_LCOEF_RBPS]		=     488636629,
617 			[I_LCOEF_RSEQIOPS]	=          8932,
618 			[I_LCOEF_RRANDIOPS]	=          8518,
619 			[I_LCOEF_WBPS]		=     427891549,
620 			[I_LCOEF_WSEQIOPS]	=         28755,
621 			[I_LCOEF_WRANDIOPS]	=         21940,
622 		},
623 		.too_fast_vrate_pct		=           500,
624 	},
625 	[AUTOP_SSD_FAST] = {
626 		.qos				= {
627 			[QOS_RLAT]		=          5000, /* 5ms */
628 			[QOS_WLAT]		=          5000,
629 			[QOS_MIN]		= VRATE_MIN_PPM,
630 			[QOS_MAX]		= VRATE_MAX_PPM,
631 		},
632 		.i_lcoefs			= {
633 			[I_LCOEF_RBPS]		=    3102524156LLU,
634 			[I_LCOEF_RSEQIOPS]	=        724816,
635 			[I_LCOEF_RRANDIOPS]	=        778122,
636 			[I_LCOEF_WBPS]		=    1742780862LLU,
637 			[I_LCOEF_WSEQIOPS]	=        425702,
638 			[I_LCOEF_WRANDIOPS]	=	 443193,
639 		},
640 		.too_slow_vrate_pct		=            10,
641 	},
642 };
643 
644 /*
645  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
646  * vtime credit shortage and down on device saturation.
647  */
648 static u32 vrate_adj_pct[] =
649 	{ 0, 0, 0, 0,
650 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
651 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
652 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
653 
654 static struct blkcg_policy blkcg_policy_iocost;
655 
656 /* accessors and helpers */
657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
658 {
659 	return container_of(rqos, struct ioc, rqos);
660 }
661 
662 static struct ioc *q_to_ioc(struct request_queue *q)
663 {
664 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
665 }
666 
667 static const char *q_name(struct request_queue *q)
668 {
669 	if (blk_queue_registered(q))
670 		return kobject_name(q->kobj.parent);
671 	else
672 		return "<unknown>";
673 }
674 
675 static const char __maybe_unused *ioc_name(struct ioc *ioc)
676 {
677 	return q_name(ioc->rqos.q);
678 }
679 
680 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
681 {
682 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
683 }
684 
685 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
686 {
687 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
688 }
689 
690 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
691 {
692 	return pd_to_blkg(&iocg->pd);
693 }
694 
695 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
696 {
697 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
698 			    struct ioc_cgrp, cpd);
699 }
700 
701 /*
702  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
703  * weight, the more expensive each IO.  Must round up.
704  */
705 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
706 {
707 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
708 }
709 
710 /*
711  * The inverse of abs_cost_to_cost().  Must round up.
712  */
713 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
714 {
715 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
716 }
717 
718 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
719 			    u64 abs_cost, u64 cost)
720 {
721 	struct iocg_pcpu_stat *gcs;
722 
723 	bio->bi_iocost_cost = cost;
724 	atomic64_add(cost, &iocg->vtime);
725 
726 	gcs = get_cpu_ptr(iocg->pcpu_stat);
727 	local64_add(abs_cost, &gcs->abs_vusage);
728 	put_cpu_ptr(gcs);
729 }
730 
731 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
732 {
733 	if (lock_ioc) {
734 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
735 		spin_lock(&iocg->waitq.lock);
736 	} else {
737 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
738 	}
739 }
740 
741 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
742 {
743 	if (unlock_ioc) {
744 		spin_unlock(&iocg->waitq.lock);
745 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
746 	} else {
747 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
748 	}
749 }
750 
751 #define CREATE_TRACE_POINTS
752 #include <trace/events/iocost.h>
753 
754 static void ioc_refresh_margins(struct ioc *ioc)
755 {
756 	struct ioc_margins *margins = &ioc->margins;
757 	u32 period_us = ioc->period_us;
758 	u64 vrate = ioc->vtime_base_rate;
759 
760 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
761 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
762 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
763 }
764 
765 /* latency Qos params changed, update period_us and all the dependent params */
766 static void ioc_refresh_period_us(struct ioc *ioc)
767 {
768 	u32 ppm, lat, multi, period_us;
769 
770 	lockdep_assert_held(&ioc->lock);
771 
772 	/* pick the higher latency target */
773 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
774 		ppm = ioc->params.qos[QOS_RPPM];
775 		lat = ioc->params.qos[QOS_RLAT];
776 	} else {
777 		ppm = ioc->params.qos[QOS_WPPM];
778 		lat = ioc->params.qos[QOS_WLAT];
779 	}
780 
781 	/*
782 	 * We want the period to be long enough to contain a healthy number
783 	 * of IOs while short enough for granular control.  Define it as a
784 	 * multiple of the latency target.  Ideally, the multiplier should
785 	 * be scaled according to the percentile so that it would nominally
786 	 * contain a certain number of requests.  Let's be simpler and
787 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
788 	 */
789 	if (ppm)
790 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
791 	else
792 		multi = 2;
793 	period_us = multi * lat;
794 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
795 
796 	/* calculate dependent params */
797 	ioc->period_us = period_us;
798 	ioc->timer_slack_ns = div64_u64(
799 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
800 		100);
801 	ioc_refresh_margins(ioc);
802 }
803 
804 static int ioc_autop_idx(struct ioc *ioc)
805 {
806 	int idx = ioc->autop_idx;
807 	const struct ioc_params *p = &autop[idx];
808 	u32 vrate_pct;
809 	u64 now_ns;
810 
811 	/* rotational? */
812 	if (!blk_queue_nonrot(ioc->rqos.q))
813 		return AUTOP_HDD;
814 
815 	/* handle SATA SSDs w/ broken NCQ */
816 	if (blk_queue_depth(ioc->rqos.q) == 1)
817 		return AUTOP_SSD_QD1;
818 
819 	/* use one of the normal ssd sets */
820 	if (idx < AUTOP_SSD_DFL)
821 		return AUTOP_SSD_DFL;
822 
823 	/* if user is overriding anything, maintain what was there */
824 	if (ioc->user_qos_params || ioc->user_cost_model)
825 		return idx;
826 
827 	/* step up/down based on the vrate */
828 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
829 	now_ns = ktime_get_ns();
830 
831 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
832 		if (!ioc->autop_too_fast_at)
833 			ioc->autop_too_fast_at = now_ns;
834 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
835 			return idx + 1;
836 	} else {
837 		ioc->autop_too_fast_at = 0;
838 	}
839 
840 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
841 		if (!ioc->autop_too_slow_at)
842 			ioc->autop_too_slow_at = now_ns;
843 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
844 			return idx - 1;
845 	} else {
846 		ioc->autop_too_slow_at = 0;
847 	}
848 
849 	return idx;
850 }
851 
852 /*
853  * Take the followings as input
854  *
855  *  @bps	maximum sequential throughput
856  *  @seqiops	maximum sequential 4k iops
857  *  @randiops	maximum random 4k iops
858  *
859  * and calculate the linear model cost coefficients.
860  *
861  *  *@page	per-page cost		1s / (@bps / 4096)
862  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
863  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
864  */
865 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
866 			u64 *page, u64 *seqio, u64 *randio)
867 {
868 	u64 v;
869 
870 	*page = *seqio = *randio = 0;
871 
872 	if (bps)
873 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
874 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
875 
876 	if (seqiops) {
877 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
878 		if (v > *page)
879 			*seqio = v - *page;
880 	}
881 
882 	if (randiops) {
883 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
884 		if (v > *page)
885 			*randio = v - *page;
886 	}
887 }
888 
889 static void ioc_refresh_lcoefs(struct ioc *ioc)
890 {
891 	u64 *u = ioc->params.i_lcoefs;
892 	u64 *c = ioc->params.lcoefs;
893 
894 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
895 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
896 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
897 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
898 }
899 
900 static bool ioc_refresh_params(struct ioc *ioc, bool force)
901 {
902 	const struct ioc_params *p;
903 	int idx;
904 
905 	lockdep_assert_held(&ioc->lock);
906 
907 	idx = ioc_autop_idx(ioc);
908 	p = &autop[idx];
909 
910 	if (idx == ioc->autop_idx && !force)
911 		return false;
912 
913 	if (idx != ioc->autop_idx)
914 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
915 
916 	ioc->autop_idx = idx;
917 	ioc->autop_too_fast_at = 0;
918 	ioc->autop_too_slow_at = 0;
919 
920 	if (!ioc->user_qos_params)
921 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
922 	if (!ioc->user_cost_model)
923 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
924 
925 	ioc_refresh_period_us(ioc);
926 	ioc_refresh_lcoefs(ioc);
927 
928 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
929 					    VTIME_PER_USEC, MILLION);
930 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
931 				   VTIME_PER_USEC, MILLION);
932 
933 	return true;
934 }
935 
936 /*
937  * When an iocg accumulates too much vtime or gets deactivated, we throw away
938  * some vtime, which lowers the overall device utilization. As the exact amount
939  * which is being thrown away is known, we can compensate by accelerating the
940  * vrate accordingly so that the extra vtime generated in the current period
941  * matches what got lost.
942  */
943 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
944 {
945 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
946 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
947 	s64 vcomp, vcomp_min, vcomp_max;
948 
949 	lockdep_assert_held(&ioc->lock);
950 
951 	/* we need some time left in this period */
952 	if (pleft <= 0)
953 		goto done;
954 
955 	/*
956 	 * Calculate how much vrate should be adjusted to offset the error.
957 	 * Limit the amount of adjustment and deduct the adjusted amount from
958 	 * the error.
959 	 */
960 	vcomp = -div64_s64(ioc->vtime_err, pleft);
961 	vcomp_min = -(ioc->vtime_base_rate >> 1);
962 	vcomp_max = ioc->vtime_base_rate;
963 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
964 
965 	ioc->vtime_err += vcomp * pleft;
966 
967 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
968 done:
969 	/* bound how much error can accumulate */
970 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
971 }
972 
973 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
974 				  int nr_lagging, int nr_shortages,
975 				  int prev_busy_level, u32 *missed_ppm)
976 {
977 	u64 vrate = ioc->vtime_base_rate;
978 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
979 
980 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
981 		if (ioc->busy_level != prev_busy_level || nr_lagging)
982 			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
983 						   missed_ppm, rq_wait_pct,
984 						   nr_lagging, nr_shortages);
985 
986 		return;
987 	}
988 
989 	/*
990 	 * If vrate is out of bounds, apply clamp gradually as the
991 	 * bounds can change abruptly.  Otherwise, apply busy_level
992 	 * based adjustment.
993 	 */
994 	if (vrate < vrate_min) {
995 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
996 		vrate = min(vrate, vrate_min);
997 	} else if (vrate > vrate_max) {
998 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
999 		vrate = max(vrate, vrate_max);
1000 	} else {
1001 		int idx = min_t(int, abs(ioc->busy_level),
1002 				ARRAY_SIZE(vrate_adj_pct) - 1);
1003 		u32 adj_pct = vrate_adj_pct[idx];
1004 
1005 		if (ioc->busy_level > 0)
1006 			adj_pct = 100 - adj_pct;
1007 		else
1008 			adj_pct = 100 + adj_pct;
1009 
1010 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1011 			      vrate_min, vrate_max);
1012 	}
1013 
1014 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1015 				   nr_lagging, nr_shortages);
1016 
1017 	ioc->vtime_base_rate = vrate;
1018 	ioc_refresh_margins(ioc);
1019 }
1020 
1021 /* take a snapshot of the current [v]time and vrate */
1022 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1023 {
1024 	unsigned seq;
1025 
1026 	now->now_ns = ktime_get();
1027 	now->now = ktime_to_us(now->now_ns);
1028 	now->vrate = atomic64_read(&ioc->vtime_rate);
1029 
1030 	/*
1031 	 * The current vtime is
1032 	 *
1033 	 *   vtime at period start + (wallclock time since the start) * vrate
1034 	 *
1035 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1036 	 * needed, they're seqcount protected.
1037 	 */
1038 	do {
1039 		seq = read_seqcount_begin(&ioc->period_seqcount);
1040 		now->vnow = ioc->period_at_vtime +
1041 			(now->now - ioc->period_at) * now->vrate;
1042 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1043 }
1044 
1045 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1046 {
1047 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1048 
1049 	write_seqcount_begin(&ioc->period_seqcount);
1050 	ioc->period_at = now->now;
1051 	ioc->period_at_vtime = now->vnow;
1052 	write_seqcount_end(&ioc->period_seqcount);
1053 
1054 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1055 	add_timer(&ioc->timer);
1056 }
1057 
1058 /*
1059  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1060  * weight sums and propagate upwards accordingly. If @save, the current margin
1061  * is saved to be used as reference for later inuse in-period adjustments.
1062  */
1063 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1064 				bool save, struct ioc_now *now)
1065 {
1066 	struct ioc *ioc = iocg->ioc;
1067 	int lvl;
1068 
1069 	lockdep_assert_held(&ioc->lock);
1070 
1071 	/*
1072 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1073 	 * @active. An active internal node's inuse is solely determined by the
1074 	 * inuse to active ratio of its children regardless of @inuse.
1075 	 */
1076 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1077 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1078 					   iocg->child_active_sum);
1079 	} else {
1080 		inuse = clamp_t(u32, inuse, 1, active);
1081 	}
1082 
1083 	iocg->last_inuse = iocg->inuse;
1084 	if (save)
1085 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1086 
1087 	if (active == iocg->active && inuse == iocg->inuse)
1088 		return;
1089 
1090 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1091 		struct ioc_gq *parent = iocg->ancestors[lvl];
1092 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1093 		u32 parent_active = 0, parent_inuse = 0;
1094 
1095 		/* update the level sums */
1096 		parent->child_active_sum += (s32)(active - child->active);
1097 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1098 		/* apply the updates */
1099 		child->active = active;
1100 		child->inuse = inuse;
1101 
1102 		/*
1103 		 * The delta between inuse and active sums indicates that
1104 		 * much of weight is being given away.  Parent's inuse
1105 		 * and active should reflect the ratio.
1106 		 */
1107 		if (parent->child_active_sum) {
1108 			parent_active = parent->weight;
1109 			parent_inuse = DIV64_U64_ROUND_UP(
1110 				parent_active * parent->child_inuse_sum,
1111 				parent->child_active_sum);
1112 		}
1113 
1114 		/* do we need to keep walking up? */
1115 		if (parent_active == parent->active &&
1116 		    parent_inuse == parent->inuse)
1117 			break;
1118 
1119 		active = parent_active;
1120 		inuse = parent_inuse;
1121 	}
1122 
1123 	ioc->weights_updated = true;
1124 }
1125 
1126 static void commit_weights(struct ioc *ioc)
1127 {
1128 	lockdep_assert_held(&ioc->lock);
1129 
1130 	if (ioc->weights_updated) {
1131 		/* paired with rmb in current_hweight(), see there */
1132 		smp_wmb();
1133 		atomic_inc(&ioc->hweight_gen);
1134 		ioc->weights_updated = false;
1135 	}
1136 }
1137 
1138 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1139 			      bool save, struct ioc_now *now)
1140 {
1141 	__propagate_weights(iocg, active, inuse, save, now);
1142 	commit_weights(iocg->ioc);
1143 }
1144 
1145 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1146 {
1147 	struct ioc *ioc = iocg->ioc;
1148 	int lvl;
1149 	u32 hwa, hwi;
1150 	int ioc_gen;
1151 
1152 	/* hot path - if uptodate, use cached */
1153 	ioc_gen = atomic_read(&ioc->hweight_gen);
1154 	if (ioc_gen == iocg->hweight_gen)
1155 		goto out;
1156 
1157 	/*
1158 	 * Paired with wmb in commit_weights(). If we saw the updated
1159 	 * hweight_gen, all the weight updates from __propagate_weights() are
1160 	 * visible too.
1161 	 *
1162 	 * We can race with weight updates during calculation and get it
1163 	 * wrong.  However, hweight_gen would have changed and a future
1164 	 * reader will recalculate and we're guaranteed to discard the
1165 	 * wrong result soon.
1166 	 */
1167 	smp_rmb();
1168 
1169 	hwa = hwi = WEIGHT_ONE;
1170 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1171 		struct ioc_gq *parent = iocg->ancestors[lvl];
1172 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1173 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1174 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1175 		u32 active = READ_ONCE(child->active);
1176 		u32 inuse = READ_ONCE(child->inuse);
1177 
1178 		/* we can race with deactivations and either may read as zero */
1179 		if (!active_sum || !inuse_sum)
1180 			continue;
1181 
1182 		active_sum = max_t(u64, active, active_sum);
1183 		hwa = div64_u64((u64)hwa * active, active_sum);
1184 
1185 		inuse_sum = max_t(u64, inuse, inuse_sum);
1186 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1187 	}
1188 
1189 	iocg->hweight_active = max_t(u32, hwa, 1);
1190 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1191 	iocg->hweight_gen = ioc_gen;
1192 out:
1193 	if (hw_activep)
1194 		*hw_activep = iocg->hweight_active;
1195 	if (hw_inusep)
1196 		*hw_inusep = iocg->hweight_inuse;
1197 }
1198 
1199 /*
1200  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1201  * other weights stay unchanged.
1202  */
1203 static u32 current_hweight_max(struct ioc_gq *iocg)
1204 {
1205 	u32 hwm = WEIGHT_ONE;
1206 	u32 inuse = iocg->active;
1207 	u64 child_inuse_sum;
1208 	int lvl;
1209 
1210 	lockdep_assert_held(&iocg->ioc->lock);
1211 
1212 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1213 		struct ioc_gq *parent = iocg->ancestors[lvl];
1214 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1215 
1216 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1217 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1218 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1219 					   parent->child_active_sum);
1220 	}
1221 
1222 	return max_t(u32, hwm, 1);
1223 }
1224 
1225 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1226 {
1227 	struct ioc *ioc = iocg->ioc;
1228 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1229 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1230 	u32 weight;
1231 
1232 	lockdep_assert_held(&ioc->lock);
1233 
1234 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1235 	if (weight != iocg->weight && iocg->active)
1236 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1237 	iocg->weight = weight;
1238 }
1239 
1240 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1241 {
1242 	struct ioc *ioc = iocg->ioc;
1243 	u64 last_period, cur_period;
1244 	u64 vtime, vtarget;
1245 	int i;
1246 
1247 	/*
1248 	 * If seem to be already active, just update the stamp to tell the
1249 	 * timer that we're still active.  We don't mind occassional races.
1250 	 */
1251 	if (!list_empty(&iocg->active_list)) {
1252 		ioc_now(ioc, now);
1253 		cur_period = atomic64_read(&ioc->cur_period);
1254 		if (atomic64_read(&iocg->active_period) != cur_period)
1255 			atomic64_set(&iocg->active_period, cur_period);
1256 		return true;
1257 	}
1258 
1259 	/* racy check on internal node IOs, treat as root level IOs */
1260 	if (iocg->child_active_sum)
1261 		return false;
1262 
1263 	spin_lock_irq(&ioc->lock);
1264 
1265 	ioc_now(ioc, now);
1266 
1267 	/* update period */
1268 	cur_period = atomic64_read(&ioc->cur_period);
1269 	last_period = atomic64_read(&iocg->active_period);
1270 	atomic64_set(&iocg->active_period, cur_period);
1271 
1272 	/* already activated or breaking leaf-only constraint? */
1273 	if (!list_empty(&iocg->active_list))
1274 		goto succeed_unlock;
1275 	for (i = iocg->level - 1; i > 0; i--)
1276 		if (!list_empty(&iocg->ancestors[i]->active_list))
1277 			goto fail_unlock;
1278 
1279 	if (iocg->child_active_sum)
1280 		goto fail_unlock;
1281 
1282 	/*
1283 	 * Always start with the target budget. On deactivation, we throw away
1284 	 * anything above it.
1285 	 */
1286 	vtarget = now->vnow - ioc->margins.target;
1287 	vtime = atomic64_read(&iocg->vtime);
1288 
1289 	atomic64_add(vtarget - vtime, &iocg->vtime);
1290 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1291 	vtime = vtarget;
1292 
1293 	/*
1294 	 * Activate, propagate weight and start period timer if not
1295 	 * running.  Reset hweight_gen to avoid accidental match from
1296 	 * wrapping.
1297 	 */
1298 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1299 	list_add(&iocg->active_list, &ioc->active_iocgs);
1300 
1301 	propagate_weights(iocg, iocg->weight,
1302 			  iocg->last_inuse ?: iocg->weight, true, now);
1303 
1304 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1305 			last_period, cur_period, vtime);
1306 
1307 	iocg->activated_at = now->now;
1308 
1309 	if (ioc->running == IOC_IDLE) {
1310 		ioc->running = IOC_RUNNING;
1311 		ioc->dfgv_period_at = now->now;
1312 		ioc->dfgv_period_rem = 0;
1313 		ioc_start_period(ioc, now);
1314 	}
1315 
1316 succeed_unlock:
1317 	spin_unlock_irq(&ioc->lock);
1318 	return true;
1319 
1320 fail_unlock:
1321 	spin_unlock_irq(&ioc->lock);
1322 	return false;
1323 }
1324 
1325 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1326 {
1327 	struct ioc *ioc = iocg->ioc;
1328 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1329 	u64 tdelta, delay, new_delay;
1330 	s64 vover, vover_pct;
1331 	u32 hwa;
1332 
1333 	lockdep_assert_held(&iocg->waitq.lock);
1334 
1335 	/* calculate the current delay in effect - 1/2 every second */
1336 	tdelta = now->now - iocg->delay_at;
1337 	if (iocg->delay)
1338 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1339 	else
1340 		delay = 0;
1341 
1342 	/* calculate the new delay from the debt amount */
1343 	current_hweight(iocg, &hwa, NULL);
1344 	vover = atomic64_read(&iocg->vtime) +
1345 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1346 	vover_pct = div64_s64(100 * vover,
1347 			      ioc->period_us * ioc->vtime_base_rate);
1348 
1349 	if (vover_pct <= MIN_DELAY_THR_PCT)
1350 		new_delay = 0;
1351 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1352 		new_delay = MAX_DELAY;
1353 	else
1354 		new_delay = MIN_DELAY +
1355 			div_u64((MAX_DELAY - MIN_DELAY) *
1356 				(vover_pct - MIN_DELAY_THR_PCT),
1357 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1358 
1359 	/* pick the higher one and apply */
1360 	if (new_delay > delay) {
1361 		iocg->delay = new_delay;
1362 		iocg->delay_at = now->now;
1363 		delay = new_delay;
1364 	}
1365 
1366 	if (delay >= MIN_DELAY) {
1367 		if (!iocg->indelay_since)
1368 			iocg->indelay_since = now->now;
1369 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1370 		return true;
1371 	} else {
1372 		if (iocg->indelay_since) {
1373 			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1374 			iocg->indelay_since = 0;
1375 		}
1376 		iocg->delay = 0;
1377 		blkcg_clear_delay(blkg);
1378 		return false;
1379 	}
1380 }
1381 
1382 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1383 			    struct ioc_now *now)
1384 {
1385 	struct iocg_pcpu_stat *gcs;
1386 
1387 	lockdep_assert_held(&iocg->ioc->lock);
1388 	lockdep_assert_held(&iocg->waitq.lock);
1389 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1390 
1391 	/*
1392 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1393 	 * inuse donating all of it share to others until its debt is paid off.
1394 	 */
1395 	if (!iocg->abs_vdebt && abs_cost) {
1396 		iocg->indebt_since = now->now;
1397 		propagate_weights(iocg, iocg->active, 0, false, now);
1398 	}
1399 
1400 	iocg->abs_vdebt += abs_cost;
1401 
1402 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1403 	local64_add(abs_cost, &gcs->abs_vusage);
1404 	put_cpu_ptr(gcs);
1405 }
1406 
1407 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1408 			  struct ioc_now *now)
1409 {
1410 	lockdep_assert_held(&iocg->ioc->lock);
1411 	lockdep_assert_held(&iocg->waitq.lock);
1412 
1413 	/* make sure that nobody messed with @iocg */
1414 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1415 	WARN_ON_ONCE(iocg->inuse > 1);
1416 
1417 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1418 
1419 	/* if debt is paid in full, restore inuse */
1420 	if (!iocg->abs_vdebt) {
1421 		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1422 		iocg->indebt_since = 0;
1423 
1424 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1425 				  false, now);
1426 	}
1427 }
1428 
1429 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1430 			int flags, void *key)
1431 {
1432 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1433 	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1434 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1435 
1436 	ctx->vbudget -= cost;
1437 
1438 	if (ctx->vbudget < 0)
1439 		return -1;
1440 
1441 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1442 	wait->committed = true;
1443 
1444 	/*
1445 	 * autoremove_wake_function() removes the wait entry only when it
1446 	 * actually changed the task state. We want the wait always removed.
1447 	 * Remove explicitly and use default_wake_function(). Note that the
1448 	 * order of operations is important as finish_wait() tests whether
1449 	 * @wq_entry is removed without grabbing the lock.
1450 	 */
1451 	default_wake_function(wq_entry, mode, flags, key);
1452 	list_del_init_careful(&wq_entry->entry);
1453 	return 0;
1454 }
1455 
1456 /*
1457  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1458  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1459  * addition to iocg->waitq.lock.
1460  */
1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1462 			    struct ioc_now *now)
1463 {
1464 	struct ioc *ioc = iocg->ioc;
1465 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1466 	u64 vshortage, expires, oexpires;
1467 	s64 vbudget;
1468 	u32 hwa;
1469 
1470 	lockdep_assert_held(&iocg->waitq.lock);
1471 
1472 	current_hweight(iocg, &hwa, NULL);
1473 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1474 
1475 	/* pay off debt */
1476 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1477 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1478 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1479 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1480 
1481 		lockdep_assert_held(&ioc->lock);
1482 
1483 		atomic64_add(vpay, &iocg->vtime);
1484 		atomic64_add(vpay, &iocg->done_vtime);
1485 		iocg_pay_debt(iocg, abs_vpay, now);
1486 		vbudget -= vpay;
1487 	}
1488 
1489 	if (iocg->abs_vdebt || iocg->delay)
1490 		iocg_kick_delay(iocg, now);
1491 
1492 	/*
1493 	 * Debt can still be outstanding if we haven't paid all yet or the
1494 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1495 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1496 	 * not positive.
1497 	 */
1498 	if (iocg->abs_vdebt) {
1499 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1500 		vbudget = min_t(s64, 0, vbudget - vdebt);
1501 	}
1502 
1503 	/*
1504 	 * Wake up the ones which are due and see how much vtime we'll need for
1505 	 * the next one. As paying off debt restores hw_inuse, it must be read
1506 	 * after the above debt payment.
1507 	 */
1508 	ctx.vbudget = vbudget;
1509 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1510 
1511 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1512 
1513 	if (!waitqueue_active(&iocg->waitq)) {
1514 		if (iocg->wait_since) {
1515 			iocg->stat.wait_us += now->now - iocg->wait_since;
1516 			iocg->wait_since = 0;
1517 		}
1518 		return;
1519 	}
1520 
1521 	if (!iocg->wait_since)
1522 		iocg->wait_since = now->now;
1523 
1524 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1525 		return;
1526 
1527 	/* determine next wakeup, add a timer margin to guarantee chunking */
1528 	vshortage = -ctx.vbudget;
1529 	expires = now->now_ns +
1530 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1531 		NSEC_PER_USEC;
1532 	expires += ioc->timer_slack_ns;
1533 
1534 	/* if already active and close enough, don't bother */
1535 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1536 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1537 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1538 		return;
1539 
1540 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1541 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1542 }
1543 
1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1545 {
1546 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1547 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1548 	struct ioc_now now;
1549 	unsigned long flags;
1550 
1551 	ioc_now(iocg->ioc, &now);
1552 
1553 	iocg_lock(iocg, pay_debt, &flags);
1554 	iocg_kick_waitq(iocg, pay_debt, &now);
1555 	iocg_unlock(iocg, pay_debt, &flags);
1556 
1557 	return HRTIMER_NORESTART;
1558 }
1559 
1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1561 {
1562 	u32 nr_met[2] = { };
1563 	u32 nr_missed[2] = { };
1564 	u64 rq_wait_ns = 0;
1565 	int cpu, rw;
1566 
1567 	for_each_online_cpu(cpu) {
1568 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1569 		u64 this_rq_wait_ns;
1570 
1571 		for (rw = READ; rw <= WRITE; rw++) {
1572 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1573 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1574 
1575 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1576 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1577 			stat->missed[rw].last_met = this_met;
1578 			stat->missed[rw].last_missed = this_missed;
1579 		}
1580 
1581 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1582 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1583 		stat->last_rq_wait_ns = this_rq_wait_ns;
1584 	}
1585 
1586 	for (rw = READ; rw <= WRITE; rw++) {
1587 		if (nr_met[rw] + nr_missed[rw])
1588 			missed_ppm_ar[rw] =
1589 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1590 						   nr_met[rw] + nr_missed[rw]);
1591 		else
1592 			missed_ppm_ar[rw] = 0;
1593 	}
1594 
1595 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1596 				   ioc->period_us * NSEC_PER_USEC);
1597 }
1598 
1599 /* was iocg idle this period? */
1600 static bool iocg_is_idle(struct ioc_gq *iocg)
1601 {
1602 	struct ioc *ioc = iocg->ioc;
1603 
1604 	/* did something get issued this period? */
1605 	if (atomic64_read(&iocg->active_period) ==
1606 	    atomic64_read(&ioc->cur_period))
1607 		return false;
1608 
1609 	/* is something in flight? */
1610 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 /*
1617  * Call this function on the target leaf @iocg's to build pre-order traversal
1618  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1619  * ->walk_list and the caller is responsible for dissolving the list after use.
1620  */
1621 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1622 				  struct list_head *inner_walk)
1623 {
1624 	int lvl;
1625 
1626 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1627 
1628 	/* find the first ancestor which hasn't been visited yet */
1629 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1630 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1631 			break;
1632 	}
1633 
1634 	/* walk down and visit the inner nodes to get pre-order traversal */
1635 	while (++lvl <= iocg->level - 1) {
1636 		struct ioc_gq *inner = iocg->ancestors[lvl];
1637 
1638 		/* record traversal order */
1639 		list_add_tail(&inner->walk_list, inner_walk);
1640 	}
1641 }
1642 
1643 /* propagate the deltas to the parent */
1644 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1645 {
1646 	if (iocg->level > 0) {
1647 		struct iocg_stat *parent_stat =
1648 			&iocg->ancestors[iocg->level - 1]->stat;
1649 
1650 		parent_stat->usage_us +=
1651 			iocg->stat.usage_us - iocg->last_stat.usage_us;
1652 		parent_stat->wait_us +=
1653 			iocg->stat.wait_us - iocg->last_stat.wait_us;
1654 		parent_stat->indebt_us +=
1655 			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1656 		parent_stat->indelay_us +=
1657 			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1658 	}
1659 
1660 	iocg->last_stat = iocg->stat;
1661 }
1662 
1663 /* collect per-cpu counters and propagate the deltas to the parent */
1664 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1665 {
1666 	struct ioc *ioc = iocg->ioc;
1667 	u64 abs_vusage = 0;
1668 	u64 vusage_delta;
1669 	int cpu;
1670 
1671 	lockdep_assert_held(&iocg->ioc->lock);
1672 
1673 	/* collect per-cpu counters */
1674 	for_each_possible_cpu(cpu) {
1675 		abs_vusage += local64_read(
1676 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1677 	}
1678 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1679 	iocg->last_stat_abs_vusage = abs_vusage;
1680 
1681 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1682 	iocg->stat.usage_us += iocg->usage_delta_us;
1683 
1684 	iocg_flush_stat_upward(iocg);
1685 }
1686 
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1689 {
1690 	LIST_HEAD(inner_walk);
1691 	struct ioc_gq *iocg, *tiocg;
1692 
1693 	/* flush leaves and build inner node walk list */
1694 	list_for_each_entry(iocg, target_iocgs, active_list) {
1695 		iocg_flush_stat_leaf(iocg, now);
1696 		iocg_build_inner_walk(iocg, &inner_walk);
1697 	}
1698 
1699 	/* keep flushing upwards by walking the inner list backwards */
1700 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1701 		iocg_flush_stat_upward(iocg);
1702 		list_del_init(&iocg->walk_list);
1703 	}
1704 }
1705 
1706 /*
1707  * Determine what @iocg's hweight_inuse should be after donating unused
1708  * capacity. @hwm is the upper bound and used to signal no donation. This
1709  * function also throws away @iocg's excess budget.
1710  */
1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1712 				  u32 usage, struct ioc_now *now)
1713 {
1714 	struct ioc *ioc = iocg->ioc;
1715 	u64 vtime = atomic64_read(&iocg->vtime);
1716 	s64 excess, delta, target, new_hwi;
1717 
1718 	/* debt handling owns inuse for debtors */
1719 	if (iocg->abs_vdebt)
1720 		return 1;
1721 
1722 	/* see whether minimum margin requirement is met */
1723 	if (waitqueue_active(&iocg->waitq) ||
1724 	    time_after64(vtime, now->vnow - ioc->margins.min))
1725 		return hwm;
1726 
1727 	/* throw away excess above target */
1728 	excess = now->vnow - vtime - ioc->margins.target;
1729 	if (excess > 0) {
1730 		atomic64_add(excess, &iocg->vtime);
1731 		atomic64_add(excess, &iocg->done_vtime);
1732 		vtime += excess;
1733 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1734 	}
1735 
1736 	/*
1737 	 * Let's say the distance between iocg's and device's vtimes as a
1738 	 * fraction of period duration is delta. Assuming that the iocg will
1739 	 * consume the usage determined above, we want to determine new_hwi so
1740 	 * that delta equals MARGIN_TARGET at the end of the next period.
1741 	 *
1742 	 * We need to execute usage worth of IOs while spending the sum of the
1743 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1744 	 * (delta):
1745 	 *
1746 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1747 	 *
1748 	 * Therefore, the new_hwi is:
1749 	 *
1750 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1751 	 */
1752 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1753 			  now->vnow - ioc->period_at_vtime);
1754 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1755 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1756 
1757 	return clamp_t(s64, new_hwi, 1, hwm);
1758 }
1759 
1760 /*
1761  * For work-conservation, an iocg which isn't using all of its share should
1762  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1764  *
1765  * #1 is mathematically simpler but has the drawback of requiring synchronous
1766  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767  * change due to donation snapbacks as it has the possibility of grossly
1768  * overshooting what's allowed by the model and vrate.
1769  *
1770  * #2 is inherently safe with local operations. The donating iocg can easily
1771  * snap back to higher weights when needed without worrying about impacts on
1772  * other nodes as the impacts will be inherently correct. This also makes idle
1773  * iocg activations safe. The only effect activations have is decreasing
1774  * hweight_inuse of others, the right solution to which is for those iocgs to
1775  * snap back to higher weights.
1776  *
1777  * So, we go with #2. The challenge is calculating how each donating iocg's
1778  * inuse should be adjusted to achieve the target donation amounts. This is done
1779  * using Andy's method described in the following pdf.
1780  *
1781  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1782  *
1783  * Given the weights and target after-donation hweight_inuse values, Andy's
1784  * method determines how the proportional distribution should look like at each
1785  * sibling level to maintain the relative relationship between all non-donating
1786  * pairs. To roughly summarize, it divides the tree into donating and
1787  * non-donating parts, calculates global donation rate which is used to
1788  * determine the target hweight_inuse for each node, and then derives per-level
1789  * proportions.
1790  *
1791  * The following pdf shows that global distribution calculated this way can be
1792  * achieved by scaling inuse weights of donating leaves and propagating the
1793  * adjustments upwards proportionally.
1794  *
1795  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1796  *
1797  * Combining the above two, we can determine how each leaf iocg's inuse should
1798  * be adjusted to achieve the target donation.
1799  *
1800  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1801  *
1802  * The inline comments use symbols from the last pdf.
1803  *
1804  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1807  *   w is the weight of the node. w = w_f + w_t
1808  *   w_f is the non-donating portion of w. w_f = w * f / b
1809  *   w_b is the donating portion of w. w_t = w * t / b
1810  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1811  *   s_f and s_t are the non-donating and donating portions of s.
1812  *
1813  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815  * after adjustments. Subscript r denotes the root node's values.
1816  */
1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1818 {
1819 	LIST_HEAD(over_hwa);
1820 	LIST_HEAD(inner_walk);
1821 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1822 	u32 after_sum, over_sum, over_target, gamma;
1823 
1824 	/*
1825 	 * It's pretty unlikely but possible for the total sum of
1826 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827 	 * confuse the following calculations. If such condition is detected,
1828 	 * scale down everyone over its full share equally to keep the sum below
1829 	 * WEIGHT_ONE.
1830 	 */
1831 	after_sum = 0;
1832 	over_sum = 0;
1833 	list_for_each_entry(iocg, surpluses, surplus_list) {
1834 		u32 hwa;
1835 
1836 		current_hweight(iocg, &hwa, NULL);
1837 		after_sum += iocg->hweight_after_donation;
1838 
1839 		if (iocg->hweight_after_donation > hwa) {
1840 			over_sum += iocg->hweight_after_donation;
1841 			list_add(&iocg->walk_list, &over_hwa);
1842 		}
1843 	}
1844 
1845 	if (after_sum >= WEIGHT_ONE) {
1846 		/*
1847 		 * The delta should be deducted from the over_sum, calculate
1848 		 * target over_sum value.
1849 		 */
1850 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1851 		WARN_ON_ONCE(over_sum <= over_delta);
1852 		over_target = over_sum - over_delta;
1853 	} else {
1854 		over_target = 0;
1855 	}
1856 
1857 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1858 		if (over_target)
1859 			iocg->hweight_after_donation =
1860 				div_u64((u64)iocg->hweight_after_donation *
1861 					over_target, over_sum);
1862 		list_del_init(&iocg->walk_list);
1863 	}
1864 
1865 	/*
1866 	 * Build pre-order inner node walk list and prepare for donation
1867 	 * adjustment calculations.
1868 	 */
1869 	list_for_each_entry(iocg, surpluses, surplus_list) {
1870 		iocg_build_inner_walk(iocg, &inner_walk);
1871 	}
1872 
1873 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1874 	WARN_ON_ONCE(root_iocg->level > 0);
1875 
1876 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1877 		iocg->child_adjusted_sum = 0;
1878 		iocg->hweight_donating = 0;
1879 		iocg->hweight_after_donation = 0;
1880 	}
1881 
1882 	/*
1883 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1884 	 * up the hierarchy.
1885 	 */
1886 	list_for_each_entry(iocg, surpluses, surplus_list) {
1887 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888 
1889 		parent->hweight_donating += iocg->hweight_donating;
1890 		parent->hweight_after_donation += iocg->hweight_after_donation;
1891 	}
1892 
1893 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1894 		if (iocg->level > 0) {
1895 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1896 
1897 			parent->hweight_donating += iocg->hweight_donating;
1898 			parent->hweight_after_donation += iocg->hweight_after_donation;
1899 		}
1900 	}
1901 
1902 	/*
1903 	 * Calculate inner hwa's (b) and make sure the donation values are
1904 	 * within the accepted ranges as we're doing low res calculations with
1905 	 * roundups.
1906 	 */
1907 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1908 		if (iocg->level) {
1909 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910 
1911 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1912 				(u64)parent->hweight_active * iocg->active,
1913 				parent->child_active_sum);
1914 
1915 		}
1916 
1917 		iocg->hweight_donating = min(iocg->hweight_donating,
1918 					     iocg->hweight_active);
1919 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1920 						   iocg->hweight_donating - 1);
1921 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1922 				 iocg->hweight_donating <= 1 ||
1923 				 iocg->hweight_after_donation == 0)) {
1924 			pr_warn("iocg: invalid donation weights in ");
1925 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1926 			pr_cont(": active=%u donating=%u after=%u\n",
1927 				iocg->hweight_active, iocg->hweight_donating,
1928 				iocg->hweight_after_donation);
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * Calculate the global donation rate (gamma) - the rate to adjust
1934 	 * non-donating budgets by.
1935 	 *
1936 	 * No need to use 64bit multiplication here as the first operand is
1937 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1938 	 *
1939 	 * We know that there are beneficiary nodes and the sum of the donating
1940 	 * hweights can't be whole; however, due to the round-ups during hweight
1941 	 * calculations, root_iocg->hweight_donating might still end up equal to
1942 	 * or greater than whole. Limit the range when calculating the divider.
1943 	 *
1944 	 * gamma = (1 - t_r') / (1 - t_r)
1945 	 */
1946 	gamma = DIV_ROUND_UP(
1947 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1948 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1949 
1950 	/*
1951 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1952 	 * nodes.
1953 	 */
1954 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1955 		struct ioc_gq *parent;
1956 		u32 inuse, wpt, wptp;
1957 		u64 st, sf;
1958 
1959 		if (iocg->level == 0) {
1960 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1962 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1963 				WEIGHT_ONE - iocg->hweight_after_donation);
1964 			continue;
1965 		}
1966 
1967 		parent = iocg->ancestors[iocg->level - 1];
1968 
1969 		/* b' = gamma * b_f + b_t' */
1970 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1971 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1972 			WEIGHT_ONE) + iocg->hweight_after_donation;
1973 
1974 		/* w' = s' * b' / b'_p */
1975 		inuse = DIV64_U64_ROUND_UP(
1976 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1977 			parent->hweight_inuse);
1978 
1979 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980 		st = DIV64_U64_ROUND_UP(
1981 			iocg->child_active_sum * iocg->hweight_donating,
1982 			iocg->hweight_active);
1983 		sf = iocg->child_active_sum - st;
1984 		wpt = DIV64_U64_ROUND_UP(
1985 			(u64)iocg->active * iocg->hweight_donating,
1986 			iocg->hweight_active);
1987 		wptp = DIV64_U64_ROUND_UP(
1988 			(u64)inuse * iocg->hweight_after_donation,
1989 			iocg->hweight_inuse);
1990 
1991 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1992 	}
1993 
1994 	/*
1995 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996 	 * we can finally determine leaf adjustments.
1997 	 */
1998 	list_for_each_entry(iocg, surpluses, surplus_list) {
1999 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2000 		u32 inuse;
2001 
2002 		/*
2003 		 * In-debt iocgs participated in the donation calculation with
2004 		 * the minimum target hweight_inuse. Configuring inuse
2005 		 * accordingly would work fine but debt handling expects
2006 		 * @iocg->inuse stay at the minimum and we don't wanna
2007 		 * interfere.
2008 		 */
2009 		if (iocg->abs_vdebt) {
2010 			WARN_ON_ONCE(iocg->inuse > 1);
2011 			continue;
2012 		}
2013 
2014 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015 		inuse = DIV64_U64_ROUND_UP(
2016 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2017 			parent->hweight_inuse);
2018 
2019 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2020 				iocg->inuse, inuse,
2021 				iocg->hweight_inuse,
2022 				iocg->hweight_after_donation);
2023 
2024 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2025 	}
2026 
2027 	/* walk list should be dissolved after use */
2028 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2029 		list_del_init(&iocg->walk_list);
2030 }
2031 
2032 /*
2033  * A low weight iocg can amass a large amount of debt, for example, when
2034  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035  * memory paired with a slow IO device, the debt can span multiple seconds or
2036  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037  * up blocked paying its debt while the IO device is idle.
2038  *
2039  * The following protects against such cases. If the device has been
2040  * sufficiently idle for a while, the debts are halved and delays are
2041  * recalculated.
2042  */
2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2044 			      struct ioc_now *now)
2045 {
2046 	struct ioc_gq *iocg;
2047 	u64 dur, usage_pct, nr_cycles;
2048 
2049 	/* if no debtor, reset the cycle */
2050 	if (!nr_debtors) {
2051 		ioc->dfgv_period_at = now->now;
2052 		ioc->dfgv_period_rem = 0;
2053 		ioc->dfgv_usage_us_sum = 0;
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * Debtors can pass through a lot of writes choking the device and we
2059 	 * don't want to be forgiving debts while the device is struggling from
2060 	 * write bursts. If we're missing latency targets, consider the device
2061 	 * fully utilized.
2062 	 */
2063 	if (ioc->busy_level > 0)
2064 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2065 
2066 	ioc->dfgv_usage_us_sum += usage_us_sum;
2067 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2068 		return;
2069 
2070 	/*
2071 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2072 	 * average usage and reset the period counters.
2073 	 */
2074 	dur = now->now - ioc->dfgv_period_at;
2075 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2076 
2077 	ioc->dfgv_period_at = now->now;
2078 	ioc->dfgv_usage_us_sum = 0;
2079 
2080 	/* if was too busy, reset everything */
2081 	if (usage_pct > DFGV_USAGE_PCT) {
2082 		ioc->dfgv_period_rem = 0;
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2088 	 * forgiveness runs off of the usual ioc timer but its period usually
2089 	 * doesn't match ioc's. Compensate the difference by performing the
2090 	 * reduction as many times as would fit in the duration since the last
2091 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093 	 * reductions is doubled.
2094 	 */
2095 	nr_cycles = dur + ioc->dfgv_period_rem;
2096 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2097 
2098 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2099 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2100 
2101 		if (!iocg->abs_vdebt && !iocg->delay)
2102 			continue;
2103 
2104 		spin_lock(&iocg->waitq.lock);
2105 
2106 		old_debt = iocg->abs_vdebt;
2107 		old_delay = iocg->delay;
2108 
2109 		if (iocg->abs_vdebt)
2110 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2111 		if (iocg->delay)
2112 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2113 
2114 		iocg_kick_waitq(iocg, true, now);
2115 
2116 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2117 				old_debt, iocg->abs_vdebt,
2118 				old_delay, iocg->delay);
2119 
2120 		spin_unlock(&iocg->waitq.lock);
2121 	}
2122 }
2123 
2124 /*
2125  * Check the active iocgs' state to avoid oversleeping and deactive
2126  * idle iocgs.
2127  *
2128  * Since waiters determine the sleep durations based on the vrate
2129  * they saw at the time of sleep, if vrate has increased, some
2130  * waiters could be sleeping for too long. Wake up tardy waiters
2131  * which should have woken up in the last period and expire idle
2132  * iocgs.
2133  */
2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2135 {
2136 	int nr_debtors = 0;
2137 	struct ioc_gq *iocg, *tiocg;
2138 
2139 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2140 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2141 		    !iocg->delay && !iocg_is_idle(iocg))
2142 			continue;
2143 
2144 		spin_lock(&iocg->waitq.lock);
2145 
2146 		/* flush wait and indebt stat deltas */
2147 		if (iocg->wait_since) {
2148 			iocg->stat.wait_us += now->now - iocg->wait_since;
2149 			iocg->wait_since = now->now;
2150 		}
2151 		if (iocg->indebt_since) {
2152 			iocg->stat.indebt_us +=
2153 				now->now - iocg->indebt_since;
2154 			iocg->indebt_since = now->now;
2155 		}
2156 		if (iocg->indelay_since) {
2157 			iocg->stat.indelay_us +=
2158 				now->now - iocg->indelay_since;
2159 			iocg->indelay_since = now->now;
2160 		}
2161 
2162 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2163 		    iocg->delay) {
2164 			/* might be oversleeping vtime / hweight changes, kick */
2165 			iocg_kick_waitq(iocg, true, now);
2166 			if (iocg->abs_vdebt || iocg->delay)
2167 				nr_debtors++;
2168 		} else if (iocg_is_idle(iocg)) {
2169 			/* no waiter and idle, deactivate */
2170 			u64 vtime = atomic64_read(&iocg->vtime);
2171 			s64 excess;
2172 
2173 			/*
2174 			 * @iocg has been inactive for a full duration and will
2175 			 * have a high budget. Account anything above target as
2176 			 * error and throw away. On reactivation, it'll start
2177 			 * with the target budget.
2178 			 */
2179 			excess = now->vnow - vtime - ioc->margins.target;
2180 			if (excess > 0) {
2181 				u32 old_hwi;
2182 
2183 				current_hweight(iocg, NULL, &old_hwi);
2184 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2185 							    WEIGHT_ONE);
2186 			}
2187 
2188 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2189 					atomic64_read(&iocg->active_period),
2190 					atomic64_read(&ioc->cur_period), vtime);
2191 			__propagate_weights(iocg, 0, 0, false, now);
2192 			list_del_init(&iocg->active_list);
2193 		}
2194 
2195 		spin_unlock(&iocg->waitq.lock);
2196 	}
2197 
2198 	commit_weights(ioc);
2199 	return nr_debtors;
2200 }
2201 
2202 static void ioc_timer_fn(struct timer_list *timer)
2203 {
2204 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2205 	struct ioc_gq *iocg, *tiocg;
2206 	struct ioc_now now;
2207 	LIST_HEAD(surpluses);
2208 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2209 	u64 usage_us_sum = 0;
2210 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2211 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2212 	u32 missed_ppm[2], rq_wait_pct;
2213 	u64 period_vtime;
2214 	int prev_busy_level;
2215 
2216 	/* how were the latencies during the period? */
2217 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2218 
2219 	/* take care of active iocgs */
2220 	spin_lock_irq(&ioc->lock);
2221 
2222 	ioc_now(ioc, &now);
2223 
2224 	period_vtime = now.vnow - ioc->period_at_vtime;
2225 	if (WARN_ON_ONCE(!period_vtime)) {
2226 		spin_unlock_irq(&ioc->lock);
2227 		return;
2228 	}
2229 
2230 	nr_debtors = ioc_check_iocgs(ioc, &now);
2231 
2232 	/*
2233 	 * Wait and indebt stat are flushed above and the donation calculation
2234 	 * below needs updated usage stat. Let's bring stat up-to-date.
2235 	 */
2236 	iocg_flush_stat(&ioc->active_iocgs, &now);
2237 
2238 	/* calc usage and see whether some weights need to be moved around */
2239 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2240 		u64 vdone, vtime, usage_us;
2241 		u32 hw_active, hw_inuse;
2242 
2243 		/*
2244 		 * Collect unused and wind vtime closer to vnow to prevent
2245 		 * iocgs from accumulating a large amount of budget.
2246 		 */
2247 		vdone = atomic64_read(&iocg->done_vtime);
2248 		vtime = atomic64_read(&iocg->vtime);
2249 		current_hweight(iocg, &hw_active, &hw_inuse);
2250 
2251 		/*
2252 		 * Latency QoS detection doesn't account for IOs which are
2253 		 * in-flight for longer than a period.  Detect them by
2254 		 * comparing vdone against period start.  If lagging behind
2255 		 * IOs from past periods, don't increase vrate.
2256 		 */
2257 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2258 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2259 		    time_after64(vtime, vdone) &&
2260 		    time_after64(vtime, now.vnow -
2261 				 MAX_LAGGING_PERIODS * period_vtime) &&
2262 		    time_before64(vdone, now.vnow - period_vtime))
2263 			nr_lagging++;
2264 
2265 		/*
2266 		 * Determine absolute usage factoring in in-flight IOs to avoid
2267 		 * high-latency completions appearing as idle.
2268 		 */
2269 		usage_us = iocg->usage_delta_us;
2270 		usage_us_sum += usage_us;
2271 
2272 		/* see whether there's surplus vtime */
2273 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2274 		if (hw_inuse < hw_active ||
2275 		    (!waitqueue_active(&iocg->waitq) &&
2276 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2277 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2278 			u64 usage_dur;
2279 
2280 			if (vdone != vtime) {
2281 				u64 inflight_us = DIV64_U64_ROUND_UP(
2282 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2283 					ioc->vtime_base_rate);
2284 
2285 				usage_us = max(usage_us, inflight_us);
2286 			}
2287 
2288 			/* convert to hweight based usage ratio */
2289 			if (time_after64(iocg->activated_at, ioc->period_at))
2290 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2291 			else
2292 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2293 
2294 			usage = clamp_t(u32,
2295 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2296 						   usage_dur),
2297 				1, WEIGHT_ONE);
2298 
2299 			/*
2300 			 * Already donating or accumulated enough to start.
2301 			 * Determine the donation amount.
2302 			 */
2303 			current_hweight(iocg, &hwa, &old_hwi);
2304 			hwm = current_hweight_max(iocg);
2305 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2306 							 usage, &now);
2307 			/*
2308 			 * Donation calculation assumes hweight_after_donation
2309 			 * to be positive, a condition that a donor w/ hwa < 2
2310 			 * can't meet. Don't bother with donation if hwa is
2311 			 * below 2. It's not gonna make a meaningful difference
2312 			 * anyway.
2313 			 */
2314 			if (new_hwi < hwm && hwa >= 2) {
2315 				iocg->hweight_donating = hwa;
2316 				iocg->hweight_after_donation = new_hwi;
2317 				list_add(&iocg->surplus_list, &surpluses);
2318 			} else if (!iocg->abs_vdebt) {
2319 				/*
2320 				 * @iocg doesn't have enough to donate. Reset
2321 				 * its inuse to active.
2322 				 *
2323 				 * Don't reset debtors as their inuse's are
2324 				 * owned by debt handling. This shouldn't affect
2325 				 * donation calculuation in any meaningful way
2326 				 * as @iocg doesn't have a meaningful amount of
2327 				 * share anyway.
2328 				 */
2329 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2330 						iocg->inuse, iocg->active,
2331 						iocg->hweight_inuse, new_hwi);
2332 
2333 				__propagate_weights(iocg, iocg->active,
2334 						    iocg->active, true, &now);
2335 				nr_shortages++;
2336 			}
2337 		} else {
2338 			/* genuinely short on vtime */
2339 			nr_shortages++;
2340 		}
2341 	}
2342 
2343 	if (!list_empty(&surpluses) && nr_shortages)
2344 		transfer_surpluses(&surpluses, &now);
2345 
2346 	commit_weights(ioc);
2347 
2348 	/* surplus list should be dissolved after use */
2349 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2350 		list_del_init(&iocg->surplus_list);
2351 
2352 	/*
2353 	 * If q is getting clogged or we're missing too much, we're issuing
2354 	 * too much IO and should lower vtime rate.  If we're not missing
2355 	 * and experiencing shortages but not surpluses, we're too stingy
2356 	 * and should increase vtime rate.
2357 	 */
2358 	prev_busy_level = ioc->busy_level;
2359 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2360 	    missed_ppm[READ] > ppm_rthr ||
2361 	    missed_ppm[WRITE] > ppm_wthr) {
2362 		/* clearly missing QoS targets, slow down vrate */
2363 		ioc->busy_level = max(ioc->busy_level, 0);
2364 		ioc->busy_level++;
2365 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2366 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2367 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2368 		/* QoS targets are being met with >25% margin */
2369 		if (nr_shortages) {
2370 			/*
2371 			 * We're throttling while the device has spare
2372 			 * capacity.  If vrate was being slowed down, stop.
2373 			 */
2374 			ioc->busy_level = min(ioc->busy_level, 0);
2375 
2376 			/*
2377 			 * If there are IOs spanning multiple periods, wait
2378 			 * them out before pushing the device harder.
2379 			 */
2380 			if (!nr_lagging)
2381 				ioc->busy_level--;
2382 		} else {
2383 			/*
2384 			 * Nobody is being throttled and the users aren't
2385 			 * issuing enough IOs to saturate the device.  We
2386 			 * simply don't know how close the device is to
2387 			 * saturation.  Coast.
2388 			 */
2389 			ioc->busy_level = 0;
2390 		}
2391 	} else {
2392 		/* inside the hysterisis margin, we're good */
2393 		ioc->busy_level = 0;
2394 	}
2395 
2396 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2397 
2398 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2399 			      prev_busy_level, missed_ppm);
2400 
2401 	ioc_refresh_params(ioc, false);
2402 
2403 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2404 
2405 	/*
2406 	 * This period is done.  Move onto the next one.  If nothing's
2407 	 * going on with the device, stop the timer.
2408 	 */
2409 	atomic64_inc(&ioc->cur_period);
2410 
2411 	if (ioc->running != IOC_STOP) {
2412 		if (!list_empty(&ioc->active_iocgs)) {
2413 			ioc_start_period(ioc, &now);
2414 		} else {
2415 			ioc->busy_level = 0;
2416 			ioc->vtime_err = 0;
2417 			ioc->running = IOC_IDLE;
2418 		}
2419 
2420 		ioc_refresh_vrate(ioc, &now);
2421 	}
2422 
2423 	spin_unlock_irq(&ioc->lock);
2424 }
2425 
2426 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2427 				      u64 abs_cost, struct ioc_now *now)
2428 {
2429 	struct ioc *ioc = iocg->ioc;
2430 	struct ioc_margins *margins = &ioc->margins;
2431 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2432 	u32 hwi, adj_step;
2433 	s64 margin;
2434 	u64 cost, new_inuse;
2435 
2436 	current_hweight(iocg, NULL, &hwi);
2437 	old_hwi = hwi;
2438 	cost = abs_cost_to_cost(abs_cost, hwi);
2439 	margin = now->vnow - vtime - cost;
2440 
2441 	/* debt handling owns inuse for debtors */
2442 	if (iocg->abs_vdebt)
2443 		return cost;
2444 
2445 	/*
2446 	 * We only increase inuse during period and do so if the margin has
2447 	 * deteriorated since the previous adjustment.
2448 	 */
2449 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2450 	    iocg->inuse == iocg->active)
2451 		return cost;
2452 
2453 	spin_lock_irq(&ioc->lock);
2454 
2455 	/* we own inuse only when @iocg is in the normal active state */
2456 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2457 		spin_unlock_irq(&ioc->lock);
2458 		return cost;
2459 	}
2460 
2461 	/*
2462 	 * Bump up inuse till @abs_cost fits in the existing budget.
2463 	 * adj_step must be determined after acquiring ioc->lock - we might
2464 	 * have raced and lost to another thread for activation and could
2465 	 * be reading 0 iocg->active before ioc->lock which will lead to
2466 	 * infinite loop.
2467 	 */
2468 	new_inuse = iocg->inuse;
2469 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2470 	do {
2471 		new_inuse = new_inuse + adj_step;
2472 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2473 		current_hweight(iocg, NULL, &hwi);
2474 		cost = abs_cost_to_cost(abs_cost, hwi);
2475 	} while (time_after64(vtime + cost, now->vnow) &&
2476 		 iocg->inuse != iocg->active);
2477 
2478 	spin_unlock_irq(&ioc->lock);
2479 
2480 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2481 			old_inuse, iocg->inuse, old_hwi, hwi);
2482 
2483 	return cost;
2484 }
2485 
2486 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2487 				    bool is_merge, u64 *costp)
2488 {
2489 	struct ioc *ioc = iocg->ioc;
2490 	u64 coef_seqio, coef_randio, coef_page;
2491 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2492 	u64 seek_pages = 0;
2493 	u64 cost = 0;
2494 
2495 	switch (bio_op(bio)) {
2496 	case REQ_OP_READ:
2497 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2498 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2499 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2500 		break;
2501 	case REQ_OP_WRITE:
2502 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2503 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2504 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2505 		break;
2506 	default:
2507 		goto out;
2508 	}
2509 
2510 	if (iocg->cursor) {
2511 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2512 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2513 	}
2514 
2515 	if (!is_merge) {
2516 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2517 			cost += coef_randio;
2518 		} else {
2519 			cost += coef_seqio;
2520 		}
2521 	}
2522 	cost += pages * coef_page;
2523 out:
2524 	*costp = cost;
2525 }
2526 
2527 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2528 {
2529 	u64 cost;
2530 
2531 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2532 	return cost;
2533 }
2534 
2535 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2536 					 u64 *costp)
2537 {
2538 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2539 
2540 	switch (req_op(rq)) {
2541 	case REQ_OP_READ:
2542 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2543 		break;
2544 	case REQ_OP_WRITE:
2545 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2546 		break;
2547 	default:
2548 		*costp = 0;
2549 	}
2550 }
2551 
2552 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2553 {
2554 	u64 cost;
2555 
2556 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2557 	return cost;
2558 }
2559 
2560 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2561 {
2562 	struct blkcg_gq *blkg = bio->bi_blkg;
2563 	struct ioc *ioc = rqos_to_ioc(rqos);
2564 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2565 	struct ioc_now now;
2566 	struct iocg_wait wait;
2567 	u64 abs_cost, cost, vtime;
2568 	bool use_debt, ioc_locked;
2569 	unsigned long flags;
2570 
2571 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2572 	if (!ioc->enabled || !iocg || !iocg->level)
2573 		return;
2574 
2575 	/* calculate the absolute vtime cost */
2576 	abs_cost = calc_vtime_cost(bio, iocg, false);
2577 	if (!abs_cost)
2578 		return;
2579 
2580 	if (!iocg_activate(iocg, &now))
2581 		return;
2582 
2583 	iocg->cursor = bio_end_sector(bio);
2584 	vtime = atomic64_read(&iocg->vtime);
2585 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2586 
2587 	/*
2588 	 * If no one's waiting and within budget, issue right away.  The
2589 	 * tests are racy but the races aren't systemic - we only miss once
2590 	 * in a while which is fine.
2591 	 */
2592 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2593 	    time_before_eq64(vtime + cost, now.vnow)) {
2594 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2595 		return;
2596 	}
2597 
2598 	/*
2599 	 * We're over budget. This can be handled in two ways. IOs which may
2600 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2601 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2602 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2603 	 * whether debt handling is needed and acquire locks accordingly.
2604 	 */
2605 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2606 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2607 retry_lock:
2608 	iocg_lock(iocg, ioc_locked, &flags);
2609 
2610 	/*
2611 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2612 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2613 	 * get deactivated as long as we're waiting or has debt, so we're good
2614 	 * if we're activated here. In the unlikely cases that we aren't, just
2615 	 * issue the IO.
2616 	 */
2617 	if (unlikely(list_empty(&iocg->active_list))) {
2618 		iocg_unlock(iocg, ioc_locked, &flags);
2619 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2620 		return;
2621 	}
2622 
2623 	/*
2624 	 * We're over budget. If @bio has to be issued regardless, remember
2625 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2626 	 * off the debt before waking more IOs.
2627 	 *
2628 	 * This way, the debt is continuously paid off each period with the
2629 	 * actual budget available to the cgroup. If we just wound vtime, we
2630 	 * would incorrectly use the current hw_inuse for the entire amount
2631 	 * which, for example, can lead to the cgroup staying blocked for a
2632 	 * long time even with substantially raised hw_inuse.
2633 	 *
2634 	 * An iocg with vdebt should stay online so that the timer can keep
2635 	 * deducting its vdebt and [de]activate use_delay mechanism
2636 	 * accordingly. We don't want to race against the timer trying to
2637 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2638 	 * penalizing the cgroup and its descendants.
2639 	 */
2640 	if (use_debt) {
2641 		iocg_incur_debt(iocg, abs_cost, &now);
2642 		if (iocg_kick_delay(iocg, &now))
2643 			blkcg_schedule_throttle(rqos->q,
2644 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2645 		iocg_unlock(iocg, ioc_locked, &flags);
2646 		return;
2647 	}
2648 
2649 	/* guarantee that iocgs w/ waiters have maximum inuse */
2650 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2651 		if (!ioc_locked) {
2652 			iocg_unlock(iocg, false, &flags);
2653 			ioc_locked = true;
2654 			goto retry_lock;
2655 		}
2656 		propagate_weights(iocg, iocg->active, iocg->active, true,
2657 				  &now);
2658 	}
2659 
2660 	/*
2661 	 * Append self to the waitq and schedule the wakeup timer if we're
2662 	 * the first waiter.  The timer duration is calculated based on the
2663 	 * current vrate.  vtime and hweight changes can make it too short
2664 	 * or too long.  Each wait entry records the absolute cost it's
2665 	 * waiting for to allow re-evaluation using a custom wait entry.
2666 	 *
2667 	 * If too short, the timer simply reschedules itself.  If too long,
2668 	 * the period timer will notice and trigger wakeups.
2669 	 *
2670 	 * All waiters are on iocg->waitq and the wait states are
2671 	 * synchronized using waitq.lock.
2672 	 */
2673 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2674 	wait.wait.private = current;
2675 	wait.bio = bio;
2676 	wait.abs_cost = abs_cost;
2677 	wait.committed = false;	/* will be set true by waker */
2678 
2679 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2680 	iocg_kick_waitq(iocg, ioc_locked, &now);
2681 
2682 	iocg_unlock(iocg, ioc_locked, &flags);
2683 
2684 	while (true) {
2685 		set_current_state(TASK_UNINTERRUPTIBLE);
2686 		if (wait.committed)
2687 			break;
2688 		io_schedule();
2689 	}
2690 
2691 	/* waker already committed us, proceed */
2692 	finish_wait(&iocg->waitq, &wait.wait);
2693 }
2694 
2695 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2696 			   struct bio *bio)
2697 {
2698 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2699 	struct ioc *ioc = rqos_to_ioc(rqos);
2700 	sector_t bio_end = bio_end_sector(bio);
2701 	struct ioc_now now;
2702 	u64 vtime, abs_cost, cost;
2703 	unsigned long flags;
2704 
2705 	/* bypass if disabled, still initializing, or for root cgroup */
2706 	if (!ioc->enabled || !iocg || !iocg->level)
2707 		return;
2708 
2709 	abs_cost = calc_vtime_cost(bio, iocg, true);
2710 	if (!abs_cost)
2711 		return;
2712 
2713 	ioc_now(ioc, &now);
2714 
2715 	vtime = atomic64_read(&iocg->vtime);
2716 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2717 
2718 	/* update cursor if backmerging into the request at the cursor */
2719 	if (blk_rq_pos(rq) < bio_end &&
2720 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2721 		iocg->cursor = bio_end;
2722 
2723 	/*
2724 	 * Charge if there's enough vtime budget and the existing request has
2725 	 * cost assigned.
2726 	 */
2727 	if (rq->bio && rq->bio->bi_iocost_cost &&
2728 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2729 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2730 		return;
2731 	}
2732 
2733 	/*
2734 	 * Otherwise, account it as debt if @iocg is online, which it should
2735 	 * be for the vast majority of cases. See debt handling in
2736 	 * ioc_rqos_throttle() for details.
2737 	 */
2738 	spin_lock_irqsave(&ioc->lock, flags);
2739 	spin_lock(&iocg->waitq.lock);
2740 
2741 	if (likely(!list_empty(&iocg->active_list))) {
2742 		iocg_incur_debt(iocg, abs_cost, &now);
2743 		if (iocg_kick_delay(iocg, &now))
2744 			blkcg_schedule_throttle(rqos->q,
2745 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2746 	} else {
2747 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2748 	}
2749 
2750 	spin_unlock(&iocg->waitq.lock);
2751 	spin_unlock_irqrestore(&ioc->lock, flags);
2752 }
2753 
2754 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2755 {
2756 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2757 
2758 	if (iocg && bio->bi_iocost_cost)
2759 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2760 }
2761 
2762 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2763 {
2764 	struct ioc *ioc = rqos_to_ioc(rqos);
2765 	struct ioc_pcpu_stat *ccs;
2766 	u64 on_q_ns, rq_wait_ns, size_nsec;
2767 	int pidx, rw;
2768 
2769 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2770 		return;
2771 
2772 	switch (req_op(rq) & REQ_OP_MASK) {
2773 	case REQ_OP_READ:
2774 		pidx = QOS_RLAT;
2775 		rw = READ;
2776 		break;
2777 	case REQ_OP_WRITE:
2778 		pidx = QOS_WLAT;
2779 		rw = WRITE;
2780 		break;
2781 	default:
2782 		return;
2783 	}
2784 
2785 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2786 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2787 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2788 
2789 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2790 
2791 	if (on_q_ns <= size_nsec ||
2792 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2793 		local_inc(&ccs->missed[rw].nr_met);
2794 	else
2795 		local_inc(&ccs->missed[rw].nr_missed);
2796 
2797 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2798 
2799 	put_cpu_ptr(ccs);
2800 }
2801 
2802 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2803 {
2804 	struct ioc *ioc = rqos_to_ioc(rqos);
2805 
2806 	spin_lock_irq(&ioc->lock);
2807 	ioc_refresh_params(ioc, false);
2808 	spin_unlock_irq(&ioc->lock);
2809 }
2810 
2811 static void ioc_rqos_exit(struct rq_qos *rqos)
2812 {
2813 	struct ioc *ioc = rqos_to_ioc(rqos);
2814 
2815 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2816 
2817 	spin_lock_irq(&ioc->lock);
2818 	ioc->running = IOC_STOP;
2819 	spin_unlock_irq(&ioc->lock);
2820 
2821 	del_timer_sync(&ioc->timer);
2822 	free_percpu(ioc->pcpu_stat);
2823 	kfree(ioc);
2824 }
2825 
2826 static struct rq_qos_ops ioc_rqos_ops = {
2827 	.throttle = ioc_rqos_throttle,
2828 	.merge = ioc_rqos_merge,
2829 	.done_bio = ioc_rqos_done_bio,
2830 	.done = ioc_rqos_done,
2831 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2832 	.exit = ioc_rqos_exit,
2833 };
2834 
2835 static int blk_iocost_init(struct request_queue *q)
2836 {
2837 	struct ioc *ioc;
2838 	struct rq_qos *rqos;
2839 	int i, cpu, ret;
2840 
2841 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2842 	if (!ioc)
2843 		return -ENOMEM;
2844 
2845 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2846 	if (!ioc->pcpu_stat) {
2847 		kfree(ioc);
2848 		return -ENOMEM;
2849 	}
2850 
2851 	for_each_possible_cpu(cpu) {
2852 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2853 
2854 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2855 			local_set(&ccs->missed[i].nr_met, 0);
2856 			local_set(&ccs->missed[i].nr_missed, 0);
2857 		}
2858 		local64_set(&ccs->rq_wait_ns, 0);
2859 	}
2860 
2861 	rqos = &ioc->rqos;
2862 	rqos->id = RQ_QOS_COST;
2863 	rqos->ops = &ioc_rqos_ops;
2864 	rqos->q = q;
2865 
2866 	spin_lock_init(&ioc->lock);
2867 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2868 	INIT_LIST_HEAD(&ioc->active_iocgs);
2869 
2870 	ioc->running = IOC_IDLE;
2871 	ioc->vtime_base_rate = VTIME_PER_USEC;
2872 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2873 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2874 	ioc->period_at = ktime_to_us(ktime_get());
2875 	atomic64_set(&ioc->cur_period, 0);
2876 	atomic_set(&ioc->hweight_gen, 0);
2877 
2878 	spin_lock_irq(&ioc->lock);
2879 	ioc->autop_idx = AUTOP_INVALID;
2880 	ioc_refresh_params(ioc, true);
2881 	spin_unlock_irq(&ioc->lock);
2882 
2883 	/*
2884 	 * rqos must be added before activation to allow iocg_pd_init() to
2885 	 * lookup the ioc from q. This means that the rqos methods may get
2886 	 * called before policy activation completion, can't assume that the
2887 	 * target bio has an iocg associated and need to test for NULL iocg.
2888 	 */
2889 	rq_qos_add(q, rqos);
2890 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2891 	if (ret) {
2892 		rq_qos_del(q, rqos);
2893 		free_percpu(ioc->pcpu_stat);
2894 		kfree(ioc);
2895 		return ret;
2896 	}
2897 	return 0;
2898 }
2899 
2900 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2901 {
2902 	struct ioc_cgrp *iocc;
2903 
2904 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2905 	if (!iocc)
2906 		return NULL;
2907 
2908 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2909 	return &iocc->cpd;
2910 }
2911 
2912 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2913 {
2914 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2915 }
2916 
2917 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2918 					     struct blkcg *blkcg)
2919 {
2920 	int levels = blkcg->css.cgroup->level + 1;
2921 	struct ioc_gq *iocg;
2922 
2923 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2924 	if (!iocg)
2925 		return NULL;
2926 
2927 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2928 	if (!iocg->pcpu_stat) {
2929 		kfree(iocg);
2930 		return NULL;
2931 	}
2932 
2933 	return &iocg->pd;
2934 }
2935 
2936 static void ioc_pd_init(struct blkg_policy_data *pd)
2937 {
2938 	struct ioc_gq *iocg = pd_to_iocg(pd);
2939 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2940 	struct ioc *ioc = q_to_ioc(blkg->q);
2941 	struct ioc_now now;
2942 	struct blkcg_gq *tblkg;
2943 	unsigned long flags;
2944 
2945 	ioc_now(ioc, &now);
2946 
2947 	iocg->ioc = ioc;
2948 	atomic64_set(&iocg->vtime, now.vnow);
2949 	atomic64_set(&iocg->done_vtime, now.vnow);
2950 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2951 	INIT_LIST_HEAD(&iocg->active_list);
2952 	INIT_LIST_HEAD(&iocg->walk_list);
2953 	INIT_LIST_HEAD(&iocg->surplus_list);
2954 	iocg->hweight_active = WEIGHT_ONE;
2955 	iocg->hweight_inuse = WEIGHT_ONE;
2956 
2957 	init_waitqueue_head(&iocg->waitq);
2958 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2959 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2960 
2961 	iocg->level = blkg->blkcg->css.cgroup->level;
2962 
2963 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2964 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2965 		iocg->ancestors[tiocg->level] = tiocg;
2966 	}
2967 
2968 	spin_lock_irqsave(&ioc->lock, flags);
2969 	weight_updated(iocg, &now);
2970 	spin_unlock_irqrestore(&ioc->lock, flags);
2971 }
2972 
2973 static void ioc_pd_free(struct blkg_policy_data *pd)
2974 {
2975 	struct ioc_gq *iocg = pd_to_iocg(pd);
2976 	struct ioc *ioc = iocg->ioc;
2977 	unsigned long flags;
2978 
2979 	if (ioc) {
2980 		spin_lock_irqsave(&ioc->lock, flags);
2981 
2982 		if (!list_empty(&iocg->active_list)) {
2983 			struct ioc_now now;
2984 
2985 			ioc_now(ioc, &now);
2986 			propagate_weights(iocg, 0, 0, false, &now);
2987 			list_del_init(&iocg->active_list);
2988 		}
2989 
2990 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2991 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2992 
2993 		spin_unlock_irqrestore(&ioc->lock, flags);
2994 
2995 		hrtimer_cancel(&iocg->waitq_timer);
2996 	}
2997 	free_percpu(iocg->pcpu_stat);
2998 	kfree(iocg);
2999 }
3000 
3001 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3002 {
3003 	struct ioc_gq *iocg = pd_to_iocg(pd);
3004 	struct ioc *ioc = iocg->ioc;
3005 
3006 	if (!ioc->enabled)
3007 		return;
3008 
3009 	if (iocg->level == 0) {
3010 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3011 			ioc->vtime_base_rate * 10000,
3012 			VTIME_PER_USEC);
3013 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3014 	}
3015 
3016 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3017 
3018 	if (blkcg_debug_stats)
3019 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3020 			iocg->last_stat.wait_us,
3021 			iocg->last_stat.indebt_us,
3022 			iocg->last_stat.indelay_us);
3023 }
3024 
3025 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3026 			     int off)
3027 {
3028 	const char *dname = blkg_dev_name(pd->blkg);
3029 	struct ioc_gq *iocg = pd_to_iocg(pd);
3030 
3031 	if (dname && iocg->cfg_weight)
3032 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3033 	return 0;
3034 }
3035 
3036 
3037 static int ioc_weight_show(struct seq_file *sf, void *v)
3038 {
3039 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3040 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3041 
3042 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3043 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3044 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3045 	return 0;
3046 }
3047 
3048 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3049 				size_t nbytes, loff_t off)
3050 {
3051 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3052 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3053 	struct blkg_conf_ctx ctx;
3054 	struct ioc_now now;
3055 	struct ioc_gq *iocg;
3056 	u32 v;
3057 	int ret;
3058 
3059 	if (!strchr(buf, ':')) {
3060 		struct blkcg_gq *blkg;
3061 
3062 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3063 			return -EINVAL;
3064 
3065 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3066 			return -EINVAL;
3067 
3068 		spin_lock_irq(&blkcg->lock);
3069 		iocc->dfl_weight = v * WEIGHT_ONE;
3070 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3071 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3072 
3073 			if (iocg) {
3074 				spin_lock(&iocg->ioc->lock);
3075 				ioc_now(iocg->ioc, &now);
3076 				weight_updated(iocg, &now);
3077 				spin_unlock(&iocg->ioc->lock);
3078 			}
3079 		}
3080 		spin_unlock_irq(&blkcg->lock);
3081 
3082 		return nbytes;
3083 	}
3084 
3085 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3086 	if (ret)
3087 		return ret;
3088 
3089 	iocg = blkg_to_iocg(ctx.blkg);
3090 
3091 	if (!strncmp(ctx.body, "default", 7)) {
3092 		v = 0;
3093 	} else {
3094 		if (!sscanf(ctx.body, "%u", &v))
3095 			goto einval;
3096 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3097 			goto einval;
3098 	}
3099 
3100 	spin_lock(&iocg->ioc->lock);
3101 	iocg->cfg_weight = v * WEIGHT_ONE;
3102 	ioc_now(iocg->ioc, &now);
3103 	weight_updated(iocg, &now);
3104 	spin_unlock(&iocg->ioc->lock);
3105 
3106 	blkg_conf_finish(&ctx);
3107 	return nbytes;
3108 
3109 einval:
3110 	blkg_conf_finish(&ctx);
3111 	return -EINVAL;
3112 }
3113 
3114 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3115 			  int off)
3116 {
3117 	const char *dname = blkg_dev_name(pd->blkg);
3118 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3119 
3120 	if (!dname)
3121 		return 0;
3122 
3123 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3124 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3125 		   ioc->params.qos[QOS_RPPM] / 10000,
3126 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3127 		   ioc->params.qos[QOS_RLAT],
3128 		   ioc->params.qos[QOS_WPPM] / 10000,
3129 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3130 		   ioc->params.qos[QOS_WLAT],
3131 		   ioc->params.qos[QOS_MIN] / 10000,
3132 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3133 		   ioc->params.qos[QOS_MAX] / 10000,
3134 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3135 	return 0;
3136 }
3137 
3138 static int ioc_qos_show(struct seq_file *sf, void *v)
3139 {
3140 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3141 
3142 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3143 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3144 	return 0;
3145 }
3146 
3147 static const match_table_t qos_ctrl_tokens = {
3148 	{ QOS_ENABLE,		"enable=%u"	},
3149 	{ QOS_CTRL,		"ctrl=%s"	},
3150 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3151 };
3152 
3153 static const match_table_t qos_tokens = {
3154 	{ QOS_RPPM,		"rpct=%s"	},
3155 	{ QOS_RLAT,		"rlat=%u"	},
3156 	{ QOS_WPPM,		"wpct=%s"	},
3157 	{ QOS_WLAT,		"wlat=%u"	},
3158 	{ QOS_MIN,		"min=%s"	},
3159 	{ QOS_MAX,		"max=%s"	},
3160 	{ NR_QOS_PARAMS,	NULL		},
3161 };
3162 
3163 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3164 			     size_t nbytes, loff_t off)
3165 {
3166 	struct block_device *bdev;
3167 	struct ioc *ioc;
3168 	u32 qos[NR_QOS_PARAMS];
3169 	bool enable, user;
3170 	char *p;
3171 	int ret;
3172 
3173 	bdev = blkcg_conf_open_bdev(&input);
3174 	if (IS_ERR(bdev))
3175 		return PTR_ERR(bdev);
3176 
3177 	ioc = q_to_ioc(bdev_get_queue(bdev));
3178 	if (!ioc) {
3179 		ret = blk_iocost_init(bdev_get_queue(bdev));
3180 		if (ret)
3181 			goto err;
3182 		ioc = q_to_ioc(bdev_get_queue(bdev));
3183 	}
3184 
3185 	spin_lock_irq(&ioc->lock);
3186 	memcpy(qos, ioc->params.qos, sizeof(qos));
3187 	enable = ioc->enabled;
3188 	user = ioc->user_qos_params;
3189 	spin_unlock_irq(&ioc->lock);
3190 
3191 	while ((p = strsep(&input, " \t\n"))) {
3192 		substring_t args[MAX_OPT_ARGS];
3193 		char buf[32];
3194 		int tok;
3195 		s64 v;
3196 
3197 		if (!*p)
3198 			continue;
3199 
3200 		switch (match_token(p, qos_ctrl_tokens, args)) {
3201 		case QOS_ENABLE:
3202 			match_u64(&args[0], &v);
3203 			enable = v;
3204 			continue;
3205 		case QOS_CTRL:
3206 			match_strlcpy(buf, &args[0], sizeof(buf));
3207 			if (!strcmp(buf, "auto"))
3208 				user = false;
3209 			else if (!strcmp(buf, "user"))
3210 				user = true;
3211 			else
3212 				goto einval;
3213 			continue;
3214 		}
3215 
3216 		tok = match_token(p, qos_tokens, args);
3217 		switch (tok) {
3218 		case QOS_RPPM:
3219 		case QOS_WPPM:
3220 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3221 			    sizeof(buf))
3222 				goto einval;
3223 			if (cgroup_parse_float(buf, 2, &v))
3224 				goto einval;
3225 			if (v < 0 || v > 10000)
3226 				goto einval;
3227 			qos[tok] = v * 100;
3228 			break;
3229 		case QOS_RLAT:
3230 		case QOS_WLAT:
3231 			if (match_u64(&args[0], &v))
3232 				goto einval;
3233 			qos[tok] = v;
3234 			break;
3235 		case QOS_MIN:
3236 		case QOS_MAX:
3237 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3238 			    sizeof(buf))
3239 				goto einval;
3240 			if (cgroup_parse_float(buf, 2, &v))
3241 				goto einval;
3242 			if (v < 0)
3243 				goto einval;
3244 			qos[tok] = clamp_t(s64, v * 100,
3245 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3246 			break;
3247 		default:
3248 			goto einval;
3249 		}
3250 		user = true;
3251 	}
3252 
3253 	if (qos[QOS_MIN] > qos[QOS_MAX])
3254 		goto einval;
3255 
3256 	spin_lock_irq(&ioc->lock);
3257 
3258 	if (enable) {
3259 		blk_stat_enable_accounting(ioc->rqos.q);
3260 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3261 		ioc->enabled = true;
3262 	} else {
3263 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3264 		ioc->enabled = false;
3265 	}
3266 
3267 	if (user) {
3268 		memcpy(ioc->params.qos, qos, sizeof(qos));
3269 		ioc->user_qos_params = true;
3270 	} else {
3271 		ioc->user_qos_params = false;
3272 	}
3273 
3274 	ioc_refresh_params(ioc, true);
3275 	spin_unlock_irq(&ioc->lock);
3276 
3277 	blkdev_put_no_open(bdev);
3278 	return nbytes;
3279 einval:
3280 	ret = -EINVAL;
3281 err:
3282 	blkdev_put_no_open(bdev);
3283 	return ret;
3284 }
3285 
3286 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3287 				 struct blkg_policy_data *pd, int off)
3288 {
3289 	const char *dname = blkg_dev_name(pd->blkg);
3290 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3291 	u64 *u = ioc->params.i_lcoefs;
3292 
3293 	if (!dname)
3294 		return 0;
3295 
3296 	seq_printf(sf, "%s ctrl=%s model=linear "
3297 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3298 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3299 		   dname, ioc->user_cost_model ? "user" : "auto",
3300 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3301 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3302 	return 0;
3303 }
3304 
3305 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3306 {
3307 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3308 
3309 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3310 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3311 	return 0;
3312 }
3313 
3314 static const match_table_t cost_ctrl_tokens = {
3315 	{ COST_CTRL,		"ctrl=%s"	},
3316 	{ COST_MODEL,		"model=%s"	},
3317 	{ NR_COST_CTRL_PARAMS,	NULL		},
3318 };
3319 
3320 static const match_table_t i_lcoef_tokens = {
3321 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3322 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3323 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3324 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3325 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3326 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3327 	{ NR_I_LCOEFS,		NULL		},
3328 };
3329 
3330 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3331 				    size_t nbytes, loff_t off)
3332 {
3333 	struct block_device *bdev;
3334 	struct ioc *ioc;
3335 	u64 u[NR_I_LCOEFS];
3336 	bool user;
3337 	char *p;
3338 	int ret;
3339 
3340 	bdev = blkcg_conf_open_bdev(&input);
3341 	if (IS_ERR(bdev))
3342 		return PTR_ERR(bdev);
3343 
3344 	ioc = q_to_ioc(bdev_get_queue(bdev));
3345 	if (!ioc) {
3346 		ret = blk_iocost_init(bdev_get_queue(bdev));
3347 		if (ret)
3348 			goto err;
3349 		ioc = q_to_ioc(bdev_get_queue(bdev));
3350 	}
3351 
3352 	spin_lock_irq(&ioc->lock);
3353 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3354 	user = ioc->user_cost_model;
3355 	spin_unlock_irq(&ioc->lock);
3356 
3357 	while ((p = strsep(&input, " \t\n"))) {
3358 		substring_t args[MAX_OPT_ARGS];
3359 		char buf[32];
3360 		int tok;
3361 		u64 v;
3362 
3363 		if (!*p)
3364 			continue;
3365 
3366 		switch (match_token(p, cost_ctrl_tokens, args)) {
3367 		case COST_CTRL:
3368 			match_strlcpy(buf, &args[0], sizeof(buf));
3369 			if (!strcmp(buf, "auto"))
3370 				user = false;
3371 			else if (!strcmp(buf, "user"))
3372 				user = true;
3373 			else
3374 				goto einval;
3375 			continue;
3376 		case COST_MODEL:
3377 			match_strlcpy(buf, &args[0], sizeof(buf));
3378 			if (strcmp(buf, "linear"))
3379 				goto einval;
3380 			continue;
3381 		}
3382 
3383 		tok = match_token(p, i_lcoef_tokens, args);
3384 		if (tok == NR_I_LCOEFS)
3385 			goto einval;
3386 		if (match_u64(&args[0], &v))
3387 			goto einval;
3388 		u[tok] = v;
3389 		user = true;
3390 	}
3391 
3392 	spin_lock_irq(&ioc->lock);
3393 	if (user) {
3394 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3395 		ioc->user_cost_model = true;
3396 	} else {
3397 		ioc->user_cost_model = false;
3398 	}
3399 	ioc_refresh_params(ioc, true);
3400 	spin_unlock_irq(&ioc->lock);
3401 
3402 	blkdev_put_no_open(bdev);
3403 	return nbytes;
3404 
3405 einval:
3406 	ret = -EINVAL;
3407 err:
3408 	blkdev_put_no_open(bdev);
3409 	return ret;
3410 }
3411 
3412 static struct cftype ioc_files[] = {
3413 	{
3414 		.name = "weight",
3415 		.flags = CFTYPE_NOT_ON_ROOT,
3416 		.seq_show = ioc_weight_show,
3417 		.write = ioc_weight_write,
3418 	},
3419 	{
3420 		.name = "cost.qos",
3421 		.flags = CFTYPE_ONLY_ON_ROOT,
3422 		.seq_show = ioc_qos_show,
3423 		.write = ioc_qos_write,
3424 	},
3425 	{
3426 		.name = "cost.model",
3427 		.flags = CFTYPE_ONLY_ON_ROOT,
3428 		.seq_show = ioc_cost_model_show,
3429 		.write = ioc_cost_model_write,
3430 	},
3431 	{}
3432 };
3433 
3434 static struct blkcg_policy blkcg_policy_iocost = {
3435 	.dfl_cftypes	= ioc_files,
3436 	.cpd_alloc_fn	= ioc_cpd_alloc,
3437 	.cpd_free_fn	= ioc_cpd_free,
3438 	.pd_alloc_fn	= ioc_pd_alloc,
3439 	.pd_init_fn	= ioc_pd_init,
3440 	.pd_free_fn	= ioc_pd_free,
3441 	.pd_stat_fn	= ioc_pd_stat,
3442 };
3443 
3444 static int __init ioc_init(void)
3445 {
3446 	return blkcg_policy_register(&blkcg_policy_iocost);
3447 }
3448 
3449 static void __exit ioc_exit(void)
3450 {
3451 	blkcg_policy_unregister(&blkcg_policy_iocost);
3452 }
3453 
3454 module_init(ioc_init);
3455 module_exit(ioc_exit);
3456