xref: /openbmc/linux/block/blk-iocost.c (revision bef7a78d)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 
236 	/*
237 	 * As vtime is used to calculate the cost of each IO, it needs to
238 	 * be fairly high precision.  For example, it should be able to
239 	 * represent the cost of a single page worth of discard with
240 	 * suffificient accuracy.  At the same time, it should be able to
241 	 * represent reasonably long enough durations to be useful and
242 	 * convenient during operation.
243 	 *
244 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245 	 * granularity and days of wrap-around time even at extreme vrates.
246 	 */
247 	VTIME_PER_SEC_SHIFT	= 37,
248 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
249 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
250 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
251 
252 	/* bound vrate adjustments within two orders of magnitude */
253 	VRATE_MIN_PPM		= 10000,	/* 1% */
254 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
255 
256 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 	VRATE_CLAMP_ADJ_PCT	= 4,
258 
259 	/* if IOs end up waiting for requests, issue less */
260 	RQ_WAIT_BUSY_PCT	= 5,
261 
262 	/* unbusy hysterisis */
263 	UNBUSY_THR_PCT		= 75,
264 
265 	/*
266 	 * The effect of delay is indirect and non-linear and a huge amount of
267 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 	 * up delay as debt is going up and then let it decay exponentially.
269 	 * This gives us quick ramp ups while delay is accumulating and long
270 	 * tails which can help reducing the frequency of debt explosions on
271 	 * unthrottle. The parameters are experimentally determined.
272 	 *
273 	 * The delay mechanism provides adequate protection and behavior in many
274 	 * cases. However, this is far from ideal and falls shorts on both
275 	 * fronts. The debtors are often throttled too harshly costing a
276 	 * significant level of fairness and possibly total work while the
277 	 * protection against their impacts on the system can be choppy and
278 	 * unreliable.
279 	 *
280 	 * The shortcoming primarily stems from the fact that, unlike for page
281 	 * cache, the kernel doesn't have well-defined back-pressure propagation
282 	 * mechanism and policies for anonymous memory. Fully addressing this
283 	 * issue will likely require substantial improvements in the area.
284 	 */
285 	MIN_DELAY_THR_PCT	= 500,
286 	MAX_DELAY_THR_PCT	= 25000,
287 	MIN_DELAY		= 250,
288 	MAX_DELAY		= 250 * USEC_PER_MSEC,
289 
290 	/* halve debts if avg usage over 100ms is under 50% */
291 	DFGV_USAGE_PCT		= 50,
292 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
293 
294 	/* don't let cmds which take a very long time pin lagging for too long */
295 	MAX_LAGGING_PERIODS	= 10,
296 
297 	/* switch iff the conditions are met for longer than this */
298 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
299 
300 	/*
301 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
302 	 * size-proportional components of cost calculation in closer
303 	 * numbers of digits to per-IO cost components.
304 	 */
305 	IOC_PAGE_SHIFT		= 12,
306 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
307 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
308 
309 	/* if apart further than 16M, consider randio for linear model */
310 	LCOEF_RANDIO_PAGES	= 4096,
311 };
312 
313 enum ioc_running {
314 	IOC_IDLE,
315 	IOC_RUNNING,
316 	IOC_STOP,
317 };
318 
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 	QOS_ENABLE,
322 	QOS_CTRL,
323 	NR_QOS_CTRL_PARAMS,
324 };
325 
326 /* io.cost.qos params */
327 enum {
328 	QOS_RPPM,
329 	QOS_RLAT,
330 	QOS_WPPM,
331 	QOS_WLAT,
332 	QOS_MIN,
333 	QOS_MAX,
334 	NR_QOS_PARAMS,
335 };
336 
337 /* io.cost.model controls */
338 enum {
339 	COST_CTRL,
340 	COST_MODEL,
341 	NR_COST_CTRL_PARAMS,
342 };
343 
344 /* builtin linear cost model coefficients */
345 enum {
346 	I_LCOEF_RBPS,
347 	I_LCOEF_RSEQIOPS,
348 	I_LCOEF_RRANDIOPS,
349 	I_LCOEF_WBPS,
350 	I_LCOEF_WSEQIOPS,
351 	I_LCOEF_WRANDIOPS,
352 	NR_I_LCOEFS,
353 };
354 
355 enum {
356 	LCOEF_RPAGE,
357 	LCOEF_RSEQIO,
358 	LCOEF_RRANDIO,
359 	LCOEF_WPAGE,
360 	LCOEF_WSEQIO,
361 	LCOEF_WRANDIO,
362 	NR_LCOEFS,
363 };
364 
365 enum {
366 	AUTOP_INVALID,
367 	AUTOP_HDD,
368 	AUTOP_SSD_QD1,
369 	AUTOP_SSD_DFL,
370 	AUTOP_SSD_FAST,
371 };
372 
373 struct ioc_params {
374 	u32				qos[NR_QOS_PARAMS];
375 	u64				i_lcoefs[NR_I_LCOEFS];
376 	u64				lcoefs[NR_LCOEFS];
377 	u32				too_fast_vrate_pct;
378 	u32				too_slow_vrate_pct;
379 };
380 
381 struct ioc_margins {
382 	s64				min;
383 	s64				low;
384 	s64				target;
385 };
386 
387 struct ioc_missed {
388 	local_t				nr_met;
389 	local_t				nr_missed;
390 	u32				last_met;
391 	u32				last_missed;
392 };
393 
394 struct ioc_pcpu_stat {
395 	struct ioc_missed		missed[2];
396 
397 	local64_t			rq_wait_ns;
398 	u64				last_rq_wait_ns;
399 };
400 
401 /* per device */
402 struct ioc {
403 	struct rq_qos			rqos;
404 
405 	bool				enabled;
406 
407 	struct ioc_params		params;
408 	struct ioc_margins		margins;
409 	u32				period_us;
410 	u32				timer_slack_ns;
411 	u64				vrate_min;
412 	u64				vrate_max;
413 
414 	spinlock_t			lock;
415 	struct timer_list		timer;
416 	struct list_head		active_iocgs;	/* active cgroups */
417 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
418 
419 	enum ioc_running		running;
420 	atomic64_t			vtime_rate;
421 	u64				vtime_base_rate;
422 	s64				vtime_err;
423 
424 	seqcount_spinlock_t		period_seqcount;
425 	u64				period_at;	/* wallclock starttime */
426 	u64				period_at_vtime; /* vtime starttime */
427 
428 	atomic64_t			cur_period;	/* inc'd each period */
429 	int				busy_level;	/* saturation history */
430 
431 	bool				weights_updated;
432 	atomic_t			hweight_gen;	/* for lazy hweights */
433 
434 	/* debt forgivness */
435 	u64				dfgv_period_at;
436 	u64				dfgv_period_rem;
437 	u64				dfgv_usage_us_sum;
438 
439 	u64				autop_too_fast_at;
440 	u64				autop_too_slow_at;
441 	int				autop_idx;
442 	bool				user_qos_params:1;
443 	bool				user_cost_model:1;
444 };
445 
446 struct iocg_pcpu_stat {
447 	local64_t			abs_vusage;
448 };
449 
450 struct iocg_stat {
451 	u64				usage_us;
452 	u64				wait_us;
453 	u64				indebt_us;
454 	u64				indelay_us;
455 };
456 
457 /* per device-cgroup pair */
458 struct ioc_gq {
459 	struct blkg_policy_data		pd;
460 	struct ioc			*ioc;
461 
462 	/*
463 	 * A iocg can get its weight from two sources - an explicit
464 	 * per-device-cgroup configuration or the default weight of the
465 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466 	 * configuration.  `weight` is the effective considering both
467 	 * sources.
468 	 *
469 	 * When an idle cgroup becomes active its `active` goes from 0 to
470 	 * `weight`.  `inuse` is the surplus adjusted active weight.
471 	 * `active` and `inuse` are used to calculate `hweight_active` and
472 	 * `hweight_inuse`.
473 	 *
474 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 	 * surplus adjustments.
476 	 *
477 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 	 * to determine and track adjustments.
479 	 */
480 	u32				cfg_weight;
481 	u32				weight;
482 	u32				active;
483 	u32				inuse;
484 
485 	u32				last_inuse;
486 	s64				saved_margin;
487 
488 	sector_t			cursor;		/* to detect randio */
489 
490 	/*
491 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 	 * issued.  If lagging behind device vtime, the delta represents
493 	 * the currently available IO budget.  If running ahead, the
494 	 * overage.
495 	 *
496 	 * `vtime_done` is the same but progressed on completion rather
497 	 * than issue.  The delta behind `vtime` represents the cost of
498 	 * currently in-flight IOs.
499 	 */
500 	atomic64_t			vtime;
501 	atomic64_t			done_vtime;
502 	u64				abs_vdebt;
503 
504 	/* current delay in effect and when it started */
505 	u64				delay;
506 	u64				delay_at;
507 
508 	/*
509 	 * The period this iocg was last active in.  Used for deactivation
510 	 * and invalidating `vtime`.
511 	 */
512 	atomic64_t			active_period;
513 	struct list_head		active_list;
514 
515 	/* see __propagate_weights() and current_hweight() for details */
516 	u64				child_active_sum;
517 	u64				child_inuse_sum;
518 	u64				child_adjusted_sum;
519 	int				hweight_gen;
520 	u32				hweight_active;
521 	u32				hweight_inuse;
522 	u32				hweight_donating;
523 	u32				hweight_after_donation;
524 
525 	struct list_head		walk_list;
526 	struct list_head		surplus_list;
527 
528 	struct wait_queue_head		waitq;
529 	struct hrtimer			waitq_timer;
530 
531 	/* timestamp at the latest activation */
532 	u64				activated_at;
533 
534 	/* statistics */
535 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
536 	struct iocg_stat		local_stat;
537 	struct iocg_stat		desc_stat;
538 	struct iocg_stat		last_stat;
539 	u64				last_stat_abs_vusage;
540 	u64				usage_delta_us;
541 	u64				wait_since;
542 	u64				indebt_since;
543 	u64				indelay_since;
544 
545 	/* this iocg's depth in the hierarchy and ancestors including self */
546 	int				level;
547 	struct ioc_gq			*ancestors[];
548 };
549 
550 /* per cgroup */
551 struct ioc_cgrp {
552 	struct blkcg_policy_data	cpd;
553 	unsigned int			dfl_weight;
554 };
555 
556 struct ioc_now {
557 	u64				now_ns;
558 	u64				now;
559 	u64				vnow;
560 	u64				vrate;
561 };
562 
563 struct iocg_wait {
564 	struct wait_queue_entry		wait;
565 	struct bio			*bio;
566 	u64				abs_cost;
567 	bool				committed;
568 };
569 
570 struct iocg_wake_ctx {
571 	struct ioc_gq			*iocg;
572 	u32				hw_inuse;
573 	s64				vbudget;
574 };
575 
576 static const struct ioc_params autop[] = {
577 	[AUTOP_HDD] = {
578 		.qos				= {
579 			[QOS_RLAT]		=        250000, /* 250ms */
580 			[QOS_WLAT]		=        250000,
581 			[QOS_MIN]		= VRATE_MIN_PPM,
582 			[QOS_MAX]		= VRATE_MAX_PPM,
583 		},
584 		.i_lcoefs			= {
585 			[I_LCOEF_RBPS]		=     174019176,
586 			[I_LCOEF_RSEQIOPS]	=         41708,
587 			[I_LCOEF_RRANDIOPS]	=           370,
588 			[I_LCOEF_WBPS]		=     178075866,
589 			[I_LCOEF_WSEQIOPS]	=         42705,
590 			[I_LCOEF_WRANDIOPS]	=           378,
591 		},
592 	},
593 	[AUTOP_SSD_QD1] = {
594 		.qos				= {
595 			[QOS_RLAT]		=         25000, /* 25ms */
596 			[QOS_WLAT]		=         25000,
597 			[QOS_MIN]		= VRATE_MIN_PPM,
598 			[QOS_MAX]		= VRATE_MAX_PPM,
599 		},
600 		.i_lcoefs			= {
601 			[I_LCOEF_RBPS]		=     245855193,
602 			[I_LCOEF_RSEQIOPS]	=         61575,
603 			[I_LCOEF_RRANDIOPS]	=          6946,
604 			[I_LCOEF_WBPS]		=     141365009,
605 			[I_LCOEF_WSEQIOPS]	=         33716,
606 			[I_LCOEF_WRANDIOPS]	=         26796,
607 		},
608 	},
609 	[AUTOP_SSD_DFL] = {
610 		.qos				= {
611 			[QOS_RLAT]		=         25000, /* 25ms */
612 			[QOS_WLAT]		=         25000,
613 			[QOS_MIN]		= VRATE_MIN_PPM,
614 			[QOS_MAX]		= VRATE_MAX_PPM,
615 		},
616 		.i_lcoefs			= {
617 			[I_LCOEF_RBPS]		=     488636629,
618 			[I_LCOEF_RSEQIOPS]	=          8932,
619 			[I_LCOEF_RRANDIOPS]	=          8518,
620 			[I_LCOEF_WBPS]		=     427891549,
621 			[I_LCOEF_WSEQIOPS]	=         28755,
622 			[I_LCOEF_WRANDIOPS]	=         21940,
623 		},
624 		.too_fast_vrate_pct		=           500,
625 	},
626 	[AUTOP_SSD_FAST] = {
627 		.qos				= {
628 			[QOS_RLAT]		=          5000, /* 5ms */
629 			[QOS_WLAT]		=          5000,
630 			[QOS_MIN]		= VRATE_MIN_PPM,
631 			[QOS_MAX]		= VRATE_MAX_PPM,
632 		},
633 		.i_lcoefs			= {
634 			[I_LCOEF_RBPS]		=    3102524156LLU,
635 			[I_LCOEF_RSEQIOPS]	=        724816,
636 			[I_LCOEF_RRANDIOPS]	=        778122,
637 			[I_LCOEF_WBPS]		=    1742780862LLU,
638 			[I_LCOEF_WSEQIOPS]	=        425702,
639 			[I_LCOEF_WRANDIOPS]	=	 443193,
640 		},
641 		.too_slow_vrate_pct		=            10,
642 	},
643 };
644 
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650 	{ 0, 0, 0, 0,
651 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654 
655 static struct blkcg_policy blkcg_policy_iocost;
656 
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660 	return container_of(rqos, struct ioc, rqos);
661 }
662 
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667 
668 static const char *q_name(struct request_queue *q)
669 {
670 	if (blk_queue_registered(q))
671 		return kobject_name(q->kobj.parent);
672 	else
673 		return "<unknown>";
674 }
675 
676 static const char __maybe_unused *ioc_name(struct ioc *ioc)
677 {
678 	return q_name(ioc->rqos.q);
679 }
680 
681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
682 {
683 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 }
685 
686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
687 {
688 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 }
690 
691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
692 {
693 	return pd_to_blkg(&iocg->pd);
694 }
695 
696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
697 {
698 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
699 			    struct ioc_cgrp, cpd);
700 }
701 
702 /*
703  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
704  * weight, the more expensive each IO.  Must round up.
705  */
706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
707 {
708 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
709 }
710 
711 /*
712  * The inverse of abs_cost_to_cost().  Must round up.
713  */
714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
715 {
716 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 }
718 
719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
720 			    u64 abs_cost, u64 cost)
721 {
722 	struct iocg_pcpu_stat *gcs;
723 
724 	bio->bi_iocost_cost = cost;
725 	atomic64_add(cost, &iocg->vtime);
726 
727 	gcs = get_cpu_ptr(iocg->pcpu_stat);
728 	local64_add(abs_cost, &gcs->abs_vusage);
729 	put_cpu_ptr(gcs);
730 }
731 
732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 {
734 	if (lock_ioc) {
735 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
736 		spin_lock(&iocg->waitq.lock);
737 	} else {
738 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
739 	}
740 }
741 
742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 {
744 	if (unlock_ioc) {
745 		spin_unlock(&iocg->waitq.lock);
746 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
747 	} else {
748 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
749 	}
750 }
751 
752 #define CREATE_TRACE_POINTS
753 #include <trace/events/iocost.h>
754 
755 static void ioc_refresh_margins(struct ioc *ioc)
756 {
757 	struct ioc_margins *margins = &ioc->margins;
758 	u32 period_us = ioc->period_us;
759 	u64 vrate = ioc->vtime_base_rate;
760 
761 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
762 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
763 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 }
765 
766 /* latency Qos params changed, update period_us and all the dependent params */
767 static void ioc_refresh_period_us(struct ioc *ioc)
768 {
769 	u32 ppm, lat, multi, period_us;
770 
771 	lockdep_assert_held(&ioc->lock);
772 
773 	/* pick the higher latency target */
774 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
775 		ppm = ioc->params.qos[QOS_RPPM];
776 		lat = ioc->params.qos[QOS_RLAT];
777 	} else {
778 		ppm = ioc->params.qos[QOS_WPPM];
779 		lat = ioc->params.qos[QOS_WLAT];
780 	}
781 
782 	/*
783 	 * We want the period to be long enough to contain a healthy number
784 	 * of IOs while short enough for granular control.  Define it as a
785 	 * multiple of the latency target.  Ideally, the multiplier should
786 	 * be scaled according to the percentile so that it would nominally
787 	 * contain a certain number of requests.  Let's be simpler and
788 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789 	 */
790 	if (ppm)
791 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792 	else
793 		multi = 2;
794 	period_us = multi * lat;
795 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
796 
797 	/* calculate dependent params */
798 	ioc->period_us = period_us;
799 	ioc->timer_slack_ns = div64_u64(
800 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
801 		100);
802 	ioc_refresh_margins(ioc);
803 }
804 
805 static int ioc_autop_idx(struct ioc *ioc)
806 {
807 	int idx = ioc->autop_idx;
808 	const struct ioc_params *p = &autop[idx];
809 	u32 vrate_pct;
810 	u64 now_ns;
811 
812 	/* rotational? */
813 	if (!blk_queue_nonrot(ioc->rqos.q))
814 		return AUTOP_HDD;
815 
816 	/* handle SATA SSDs w/ broken NCQ */
817 	if (blk_queue_depth(ioc->rqos.q) == 1)
818 		return AUTOP_SSD_QD1;
819 
820 	/* use one of the normal ssd sets */
821 	if (idx < AUTOP_SSD_DFL)
822 		return AUTOP_SSD_DFL;
823 
824 	/* if user is overriding anything, maintain what was there */
825 	if (ioc->user_qos_params || ioc->user_cost_model)
826 		return idx;
827 
828 	/* step up/down based on the vrate */
829 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
830 	now_ns = ktime_get_ns();
831 
832 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
833 		if (!ioc->autop_too_fast_at)
834 			ioc->autop_too_fast_at = now_ns;
835 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
836 			return idx + 1;
837 	} else {
838 		ioc->autop_too_fast_at = 0;
839 	}
840 
841 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
842 		if (!ioc->autop_too_slow_at)
843 			ioc->autop_too_slow_at = now_ns;
844 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
845 			return idx - 1;
846 	} else {
847 		ioc->autop_too_slow_at = 0;
848 	}
849 
850 	return idx;
851 }
852 
853 /*
854  * Take the followings as input
855  *
856  *  @bps	maximum sequential throughput
857  *  @seqiops	maximum sequential 4k iops
858  *  @randiops	maximum random 4k iops
859  *
860  * and calculate the linear model cost coefficients.
861  *
862  *  *@page	per-page cost		1s / (@bps / 4096)
863  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
864  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
865  */
866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
867 			u64 *page, u64 *seqio, u64 *randio)
868 {
869 	u64 v;
870 
871 	*page = *seqio = *randio = 0;
872 
873 	if (bps)
874 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
875 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
876 
877 	if (seqiops) {
878 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
879 		if (v > *page)
880 			*seqio = v - *page;
881 	}
882 
883 	if (randiops) {
884 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
885 		if (v > *page)
886 			*randio = v - *page;
887 	}
888 }
889 
890 static void ioc_refresh_lcoefs(struct ioc *ioc)
891 {
892 	u64 *u = ioc->params.i_lcoefs;
893 	u64 *c = ioc->params.lcoefs;
894 
895 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
896 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
897 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
898 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
899 }
900 
901 static bool ioc_refresh_params(struct ioc *ioc, bool force)
902 {
903 	const struct ioc_params *p;
904 	int idx;
905 
906 	lockdep_assert_held(&ioc->lock);
907 
908 	idx = ioc_autop_idx(ioc);
909 	p = &autop[idx];
910 
911 	if (idx == ioc->autop_idx && !force)
912 		return false;
913 
914 	if (idx != ioc->autop_idx)
915 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
916 
917 	ioc->autop_idx = idx;
918 	ioc->autop_too_fast_at = 0;
919 	ioc->autop_too_slow_at = 0;
920 
921 	if (!ioc->user_qos_params)
922 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
923 	if (!ioc->user_cost_model)
924 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
925 
926 	ioc_refresh_period_us(ioc);
927 	ioc_refresh_lcoefs(ioc);
928 
929 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
930 					    VTIME_PER_USEC, MILLION);
931 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
932 				   VTIME_PER_USEC, MILLION);
933 
934 	return true;
935 }
936 
937 /*
938  * When an iocg accumulates too much vtime or gets deactivated, we throw away
939  * some vtime, which lowers the overall device utilization. As the exact amount
940  * which is being thrown away is known, we can compensate by accelerating the
941  * vrate accordingly so that the extra vtime generated in the current period
942  * matches what got lost.
943  */
944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
945 {
946 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
947 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
948 	s64 vcomp, vcomp_min, vcomp_max;
949 
950 	lockdep_assert_held(&ioc->lock);
951 
952 	/* we need some time left in this period */
953 	if (pleft <= 0)
954 		goto done;
955 
956 	/*
957 	 * Calculate how much vrate should be adjusted to offset the error.
958 	 * Limit the amount of adjustment and deduct the adjusted amount from
959 	 * the error.
960 	 */
961 	vcomp = -div64_s64(ioc->vtime_err, pleft);
962 	vcomp_min = -(ioc->vtime_base_rate >> 1);
963 	vcomp_max = ioc->vtime_base_rate;
964 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
965 
966 	ioc->vtime_err += vcomp * pleft;
967 
968 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
969 done:
970 	/* bound how much error can accumulate */
971 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
972 }
973 
974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
975 				  int nr_lagging, int nr_shortages,
976 				  int prev_busy_level, u32 *missed_ppm)
977 {
978 	u64 vrate = ioc->vtime_base_rate;
979 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
980 
981 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
982 		if (ioc->busy_level != prev_busy_level || nr_lagging)
983 			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
984 						   missed_ppm, rq_wait_pct,
985 						   nr_lagging, nr_shortages);
986 
987 		return;
988 	}
989 
990 	/* rq_wait signal is always reliable, ignore user vrate_min */
991 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
992 		vrate_min = VRATE_MIN;
993 
994 	/*
995 	 * If vrate is out of bounds, apply clamp gradually as the
996 	 * bounds can change abruptly.  Otherwise, apply busy_level
997 	 * based adjustment.
998 	 */
999 	if (vrate < vrate_min) {
1000 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1001 		vrate = min(vrate, vrate_min);
1002 	} else if (vrate > vrate_max) {
1003 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1004 		vrate = max(vrate, vrate_max);
1005 	} else {
1006 		int idx = min_t(int, abs(ioc->busy_level),
1007 				ARRAY_SIZE(vrate_adj_pct) - 1);
1008 		u32 adj_pct = vrate_adj_pct[idx];
1009 
1010 		if (ioc->busy_level > 0)
1011 			adj_pct = 100 - adj_pct;
1012 		else
1013 			adj_pct = 100 + adj_pct;
1014 
1015 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1016 			      vrate_min, vrate_max);
1017 	}
1018 
1019 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1020 				   nr_lagging, nr_shortages);
1021 
1022 	ioc->vtime_base_rate = vrate;
1023 	ioc_refresh_margins(ioc);
1024 }
1025 
1026 /* take a snapshot of the current [v]time and vrate */
1027 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1028 {
1029 	unsigned seq;
1030 
1031 	now->now_ns = ktime_get();
1032 	now->now = ktime_to_us(now->now_ns);
1033 	now->vrate = atomic64_read(&ioc->vtime_rate);
1034 
1035 	/*
1036 	 * The current vtime is
1037 	 *
1038 	 *   vtime at period start + (wallclock time since the start) * vrate
1039 	 *
1040 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1041 	 * needed, they're seqcount protected.
1042 	 */
1043 	do {
1044 		seq = read_seqcount_begin(&ioc->period_seqcount);
1045 		now->vnow = ioc->period_at_vtime +
1046 			(now->now - ioc->period_at) * now->vrate;
1047 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1048 }
1049 
1050 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1051 {
1052 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1053 
1054 	write_seqcount_begin(&ioc->period_seqcount);
1055 	ioc->period_at = now->now;
1056 	ioc->period_at_vtime = now->vnow;
1057 	write_seqcount_end(&ioc->period_seqcount);
1058 
1059 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1060 	add_timer(&ioc->timer);
1061 }
1062 
1063 /*
1064  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1065  * weight sums and propagate upwards accordingly. If @save, the current margin
1066  * is saved to be used as reference for later inuse in-period adjustments.
1067  */
1068 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1069 				bool save, struct ioc_now *now)
1070 {
1071 	struct ioc *ioc = iocg->ioc;
1072 	int lvl;
1073 
1074 	lockdep_assert_held(&ioc->lock);
1075 
1076 	inuse = clamp_t(u32, inuse, 1, active);
1077 
1078 	iocg->last_inuse = iocg->inuse;
1079 	if (save)
1080 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1081 
1082 	if (active == iocg->active && inuse == iocg->inuse)
1083 		return;
1084 
1085 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1086 		struct ioc_gq *parent = iocg->ancestors[lvl];
1087 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1088 		u32 parent_active = 0, parent_inuse = 0;
1089 
1090 		/* update the level sums */
1091 		parent->child_active_sum += (s32)(active - child->active);
1092 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1093 		/* apply the udpates */
1094 		child->active = active;
1095 		child->inuse = inuse;
1096 
1097 		/*
1098 		 * The delta between inuse and active sums indicates that
1099 		 * much of weight is being given away.  Parent's inuse
1100 		 * and active should reflect the ratio.
1101 		 */
1102 		if (parent->child_active_sum) {
1103 			parent_active = parent->weight;
1104 			parent_inuse = DIV64_U64_ROUND_UP(
1105 				parent_active * parent->child_inuse_sum,
1106 				parent->child_active_sum);
1107 		}
1108 
1109 		/* do we need to keep walking up? */
1110 		if (parent_active == parent->active &&
1111 		    parent_inuse == parent->inuse)
1112 			break;
1113 
1114 		active = parent_active;
1115 		inuse = parent_inuse;
1116 	}
1117 
1118 	ioc->weights_updated = true;
1119 }
1120 
1121 static void commit_weights(struct ioc *ioc)
1122 {
1123 	lockdep_assert_held(&ioc->lock);
1124 
1125 	if (ioc->weights_updated) {
1126 		/* paired with rmb in current_hweight(), see there */
1127 		smp_wmb();
1128 		atomic_inc(&ioc->hweight_gen);
1129 		ioc->weights_updated = false;
1130 	}
1131 }
1132 
1133 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1134 			      bool save, struct ioc_now *now)
1135 {
1136 	__propagate_weights(iocg, active, inuse, save, now);
1137 	commit_weights(iocg->ioc);
1138 }
1139 
1140 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1141 {
1142 	struct ioc *ioc = iocg->ioc;
1143 	int lvl;
1144 	u32 hwa, hwi;
1145 	int ioc_gen;
1146 
1147 	/* hot path - if uptodate, use cached */
1148 	ioc_gen = atomic_read(&ioc->hweight_gen);
1149 	if (ioc_gen == iocg->hweight_gen)
1150 		goto out;
1151 
1152 	/*
1153 	 * Paired with wmb in commit_weights(). If we saw the updated
1154 	 * hweight_gen, all the weight updates from __propagate_weights() are
1155 	 * visible too.
1156 	 *
1157 	 * We can race with weight updates during calculation and get it
1158 	 * wrong.  However, hweight_gen would have changed and a future
1159 	 * reader will recalculate and we're guaranteed to discard the
1160 	 * wrong result soon.
1161 	 */
1162 	smp_rmb();
1163 
1164 	hwa = hwi = WEIGHT_ONE;
1165 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1166 		struct ioc_gq *parent = iocg->ancestors[lvl];
1167 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1168 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1169 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1170 		u32 active = READ_ONCE(child->active);
1171 		u32 inuse = READ_ONCE(child->inuse);
1172 
1173 		/* we can race with deactivations and either may read as zero */
1174 		if (!active_sum || !inuse_sum)
1175 			continue;
1176 
1177 		active_sum = max_t(u64, active, active_sum);
1178 		hwa = div64_u64((u64)hwa * active, active_sum);
1179 
1180 		inuse_sum = max_t(u64, inuse, inuse_sum);
1181 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1182 	}
1183 
1184 	iocg->hweight_active = max_t(u32, hwa, 1);
1185 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1186 	iocg->hweight_gen = ioc_gen;
1187 out:
1188 	if (hw_activep)
1189 		*hw_activep = iocg->hweight_active;
1190 	if (hw_inusep)
1191 		*hw_inusep = iocg->hweight_inuse;
1192 }
1193 
1194 /*
1195  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1196  * other weights stay unchanged.
1197  */
1198 static u32 current_hweight_max(struct ioc_gq *iocg)
1199 {
1200 	u32 hwm = WEIGHT_ONE;
1201 	u32 inuse = iocg->active;
1202 	u64 child_inuse_sum;
1203 	int lvl;
1204 
1205 	lockdep_assert_held(&iocg->ioc->lock);
1206 
1207 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1208 		struct ioc_gq *parent = iocg->ancestors[lvl];
1209 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1210 
1211 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1212 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1213 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1214 					   parent->child_active_sum);
1215 	}
1216 
1217 	return max_t(u32, hwm, 1);
1218 }
1219 
1220 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1221 {
1222 	struct ioc *ioc = iocg->ioc;
1223 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1224 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1225 	u32 weight;
1226 
1227 	lockdep_assert_held(&ioc->lock);
1228 
1229 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1230 	if (weight != iocg->weight && iocg->active)
1231 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1232 	iocg->weight = weight;
1233 }
1234 
1235 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1236 {
1237 	struct ioc *ioc = iocg->ioc;
1238 	u64 last_period, cur_period;
1239 	u64 vtime, vtarget;
1240 	int i;
1241 
1242 	/*
1243 	 * If seem to be already active, just update the stamp to tell the
1244 	 * timer that we're still active.  We don't mind occassional races.
1245 	 */
1246 	if (!list_empty(&iocg->active_list)) {
1247 		ioc_now(ioc, now);
1248 		cur_period = atomic64_read(&ioc->cur_period);
1249 		if (atomic64_read(&iocg->active_period) != cur_period)
1250 			atomic64_set(&iocg->active_period, cur_period);
1251 		return true;
1252 	}
1253 
1254 	/* racy check on internal node IOs, treat as root level IOs */
1255 	if (iocg->child_active_sum)
1256 		return false;
1257 
1258 	spin_lock_irq(&ioc->lock);
1259 
1260 	ioc_now(ioc, now);
1261 
1262 	/* update period */
1263 	cur_period = atomic64_read(&ioc->cur_period);
1264 	last_period = atomic64_read(&iocg->active_period);
1265 	atomic64_set(&iocg->active_period, cur_period);
1266 
1267 	/* already activated or breaking leaf-only constraint? */
1268 	if (!list_empty(&iocg->active_list))
1269 		goto succeed_unlock;
1270 	for (i = iocg->level - 1; i > 0; i--)
1271 		if (!list_empty(&iocg->ancestors[i]->active_list))
1272 			goto fail_unlock;
1273 
1274 	if (iocg->child_active_sum)
1275 		goto fail_unlock;
1276 
1277 	/*
1278 	 * Always start with the target budget. On deactivation, we throw away
1279 	 * anything above it.
1280 	 */
1281 	vtarget = now->vnow - ioc->margins.target;
1282 	vtime = atomic64_read(&iocg->vtime);
1283 
1284 	atomic64_add(vtarget - vtime, &iocg->vtime);
1285 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1286 	vtime = vtarget;
1287 
1288 	/*
1289 	 * Activate, propagate weight and start period timer if not
1290 	 * running.  Reset hweight_gen to avoid accidental match from
1291 	 * wrapping.
1292 	 */
1293 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1294 	list_add(&iocg->active_list, &ioc->active_iocgs);
1295 
1296 	propagate_weights(iocg, iocg->weight,
1297 			  iocg->last_inuse ?: iocg->weight, true, now);
1298 
1299 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1300 			last_period, cur_period, vtime);
1301 
1302 	iocg->activated_at = now->now;
1303 
1304 	if (ioc->running == IOC_IDLE) {
1305 		ioc->running = IOC_RUNNING;
1306 		ioc->dfgv_period_at = now->now;
1307 		ioc->dfgv_period_rem = 0;
1308 		ioc_start_period(ioc, now);
1309 	}
1310 
1311 succeed_unlock:
1312 	spin_unlock_irq(&ioc->lock);
1313 	return true;
1314 
1315 fail_unlock:
1316 	spin_unlock_irq(&ioc->lock);
1317 	return false;
1318 }
1319 
1320 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1321 {
1322 	struct ioc *ioc = iocg->ioc;
1323 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1324 	u64 tdelta, delay, new_delay;
1325 	s64 vover, vover_pct;
1326 	u32 hwa;
1327 
1328 	lockdep_assert_held(&iocg->waitq.lock);
1329 
1330 	/* calculate the current delay in effect - 1/2 every second */
1331 	tdelta = now->now - iocg->delay_at;
1332 	if (iocg->delay)
1333 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1334 	else
1335 		delay = 0;
1336 
1337 	/* calculate the new delay from the debt amount */
1338 	current_hweight(iocg, &hwa, NULL);
1339 	vover = atomic64_read(&iocg->vtime) +
1340 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1341 	vover_pct = div64_s64(100 * vover,
1342 			      ioc->period_us * ioc->vtime_base_rate);
1343 
1344 	if (vover_pct <= MIN_DELAY_THR_PCT)
1345 		new_delay = 0;
1346 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1347 		new_delay = MAX_DELAY;
1348 	else
1349 		new_delay = MIN_DELAY +
1350 			div_u64((MAX_DELAY - MIN_DELAY) *
1351 				(vover_pct - MIN_DELAY_THR_PCT),
1352 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1353 
1354 	/* pick the higher one and apply */
1355 	if (new_delay > delay) {
1356 		iocg->delay = new_delay;
1357 		iocg->delay_at = now->now;
1358 		delay = new_delay;
1359 	}
1360 
1361 	if (delay >= MIN_DELAY) {
1362 		if (!iocg->indelay_since)
1363 			iocg->indelay_since = now->now;
1364 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1365 		return true;
1366 	} else {
1367 		if (iocg->indelay_since) {
1368 			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1369 			iocg->indelay_since = 0;
1370 		}
1371 		iocg->delay = 0;
1372 		blkcg_clear_delay(blkg);
1373 		return false;
1374 	}
1375 }
1376 
1377 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1378 			    struct ioc_now *now)
1379 {
1380 	struct iocg_pcpu_stat *gcs;
1381 
1382 	lockdep_assert_held(&iocg->ioc->lock);
1383 	lockdep_assert_held(&iocg->waitq.lock);
1384 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1385 
1386 	/*
1387 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1388 	 * inuse donating all of it share to others until its debt is paid off.
1389 	 */
1390 	if (!iocg->abs_vdebt && abs_cost) {
1391 		iocg->indebt_since = now->now;
1392 		propagate_weights(iocg, iocg->active, 0, false, now);
1393 	}
1394 
1395 	iocg->abs_vdebt += abs_cost;
1396 
1397 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1398 	local64_add(abs_cost, &gcs->abs_vusage);
1399 	put_cpu_ptr(gcs);
1400 }
1401 
1402 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1403 			  struct ioc_now *now)
1404 {
1405 	lockdep_assert_held(&iocg->ioc->lock);
1406 	lockdep_assert_held(&iocg->waitq.lock);
1407 
1408 	/* make sure that nobody messed with @iocg */
1409 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1410 	WARN_ON_ONCE(iocg->inuse > 1);
1411 
1412 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1413 
1414 	/* if debt is paid in full, restore inuse */
1415 	if (!iocg->abs_vdebt) {
1416 		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1417 		iocg->indebt_since = 0;
1418 
1419 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1420 				  false, now);
1421 	}
1422 }
1423 
1424 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1425 			int flags, void *key)
1426 {
1427 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1428 	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1429 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1430 
1431 	ctx->vbudget -= cost;
1432 
1433 	if (ctx->vbudget < 0)
1434 		return -1;
1435 
1436 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1437 
1438 	/*
1439 	 * autoremove_wake_function() removes the wait entry only when it
1440 	 * actually changed the task state.  We want the wait always
1441 	 * removed.  Remove explicitly and use default_wake_function().
1442 	 */
1443 	list_del_init(&wq_entry->entry);
1444 	wait->committed = true;
1445 
1446 	default_wake_function(wq_entry, mode, flags, key);
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1452  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1453  * addition to iocg->waitq.lock.
1454  */
1455 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1456 			    struct ioc_now *now)
1457 {
1458 	struct ioc *ioc = iocg->ioc;
1459 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1460 	u64 vshortage, expires, oexpires;
1461 	s64 vbudget;
1462 	u32 hwa;
1463 
1464 	lockdep_assert_held(&iocg->waitq.lock);
1465 
1466 	current_hweight(iocg, &hwa, NULL);
1467 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1468 
1469 	/* pay off debt */
1470 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1471 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1472 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1473 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1474 
1475 		lockdep_assert_held(&ioc->lock);
1476 
1477 		atomic64_add(vpay, &iocg->vtime);
1478 		atomic64_add(vpay, &iocg->done_vtime);
1479 		iocg_pay_debt(iocg, abs_vpay, now);
1480 		vbudget -= vpay;
1481 	}
1482 
1483 	if (iocg->abs_vdebt || iocg->delay)
1484 		iocg_kick_delay(iocg, now);
1485 
1486 	/*
1487 	 * Debt can still be outstanding if we haven't paid all yet or the
1488 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1489 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1490 	 * not positive.
1491 	 */
1492 	if (iocg->abs_vdebt) {
1493 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1494 		vbudget = min_t(s64, 0, vbudget - vdebt);
1495 	}
1496 
1497 	/*
1498 	 * Wake up the ones which are due and see how much vtime we'll need for
1499 	 * the next one. As paying off debt restores hw_inuse, it must be read
1500 	 * after the above debt payment.
1501 	 */
1502 	ctx.vbudget = vbudget;
1503 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1504 
1505 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1506 
1507 	if (!waitqueue_active(&iocg->waitq)) {
1508 		if (iocg->wait_since) {
1509 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
1510 			iocg->wait_since = 0;
1511 		}
1512 		return;
1513 	}
1514 
1515 	if (!iocg->wait_since)
1516 		iocg->wait_since = now->now;
1517 
1518 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1519 		return;
1520 
1521 	/* determine next wakeup, add a timer margin to guarantee chunking */
1522 	vshortage = -ctx.vbudget;
1523 	expires = now->now_ns +
1524 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1525 		NSEC_PER_USEC;
1526 	expires += ioc->timer_slack_ns;
1527 
1528 	/* if already active and close enough, don't bother */
1529 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1530 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1531 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1532 		return;
1533 
1534 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1535 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1536 }
1537 
1538 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1539 {
1540 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1541 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1542 	struct ioc_now now;
1543 	unsigned long flags;
1544 
1545 	ioc_now(iocg->ioc, &now);
1546 
1547 	iocg_lock(iocg, pay_debt, &flags);
1548 	iocg_kick_waitq(iocg, pay_debt, &now);
1549 	iocg_unlock(iocg, pay_debt, &flags);
1550 
1551 	return HRTIMER_NORESTART;
1552 }
1553 
1554 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1555 {
1556 	u32 nr_met[2] = { };
1557 	u32 nr_missed[2] = { };
1558 	u64 rq_wait_ns = 0;
1559 	int cpu, rw;
1560 
1561 	for_each_online_cpu(cpu) {
1562 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1563 		u64 this_rq_wait_ns;
1564 
1565 		for (rw = READ; rw <= WRITE; rw++) {
1566 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1567 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1568 
1569 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1570 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1571 			stat->missed[rw].last_met = this_met;
1572 			stat->missed[rw].last_missed = this_missed;
1573 		}
1574 
1575 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1576 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1577 		stat->last_rq_wait_ns = this_rq_wait_ns;
1578 	}
1579 
1580 	for (rw = READ; rw <= WRITE; rw++) {
1581 		if (nr_met[rw] + nr_missed[rw])
1582 			missed_ppm_ar[rw] =
1583 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1584 						   nr_met[rw] + nr_missed[rw]);
1585 		else
1586 			missed_ppm_ar[rw] = 0;
1587 	}
1588 
1589 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1590 				   ioc->period_us * NSEC_PER_USEC);
1591 }
1592 
1593 /* was iocg idle this period? */
1594 static bool iocg_is_idle(struct ioc_gq *iocg)
1595 {
1596 	struct ioc *ioc = iocg->ioc;
1597 
1598 	/* did something get issued this period? */
1599 	if (atomic64_read(&iocg->active_period) ==
1600 	    atomic64_read(&ioc->cur_period))
1601 		return false;
1602 
1603 	/* is something in flight? */
1604 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1605 		return false;
1606 
1607 	return true;
1608 }
1609 
1610 /*
1611  * Call this function on the target leaf @iocg's to build pre-order traversal
1612  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1613  * ->walk_list and the caller is responsible for dissolving the list after use.
1614  */
1615 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1616 				  struct list_head *inner_walk)
1617 {
1618 	int lvl;
1619 
1620 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1621 
1622 	/* find the first ancestor which hasn't been visited yet */
1623 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1624 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1625 			break;
1626 	}
1627 
1628 	/* walk down and visit the inner nodes to get pre-order traversal */
1629 	while (++lvl <= iocg->level - 1) {
1630 		struct ioc_gq *inner = iocg->ancestors[lvl];
1631 
1632 		/* record traversal order */
1633 		list_add_tail(&inner->walk_list, inner_walk);
1634 	}
1635 }
1636 
1637 /* collect per-cpu counters and propagate the deltas to the parent */
1638 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1639 {
1640 	struct ioc *ioc = iocg->ioc;
1641 	struct iocg_stat new_stat;
1642 	u64 abs_vusage = 0;
1643 	u64 vusage_delta;
1644 	int cpu;
1645 
1646 	lockdep_assert_held(&iocg->ioc->lock);
1647 
1648 	/* collect per-cpu counters */
1649 	for_each_possible_cpu(cpu) {
1650 		abs_vusage += local64_read(
1651 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1652 	}
1653 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1654 	iocg->last_stat_abs_vusage = abs_vusage;
1655 
1656 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1657 	iocg->local_stat.usage_us += iocg->usage_delta_us;
1658 
1659 	/* propagate upwards */
1660 	new_stat.usage_us =
1661 		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1662 	new_stat.wait_us =
1663 		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1664 	new_stat.indebt_us =
1665 		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1666 	new_stat.indelay_us =
1667 		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1668 
1669 	/* propagate the deltas to the parent */
1670 	if (iocg->level > 0) {
1671 		struct iocg_stat *parent_stat =
1672 			&iocg->ancestors[iocg->level - 1]->desc_stat;
1673 
1674 		parent_stat->usage_us +=
1675 			new_stat.usage_us - iocg->last_stat.usage_us;
1676 		parent_stat->wait_us +=
1677 			new_stat.wait_us - iocg->last_stat.wait_us;
1678 		parent_stat->indebt_us +=
1679 			new_stat.indebt_us - iocg->last_stat.indebt_us;
1680 		parent_stat->indelay_us +=
1681 			new_stat.indelay_us - iocg->last_stat.indelay_us;
1682 	}
1683 
1684 	iocg->last_stat = new_stat;
1685 }
1686 
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1689 {
1690 	LIST_HEAD(inner_walk);
1691 	struct ioc_gq *iocg, *tiocg;
1692 
1693 	/* flush leaves and build inner node walk list */
1694 	list_for_each_entry(iocg, target_iocgs, active_list) {
1695 		iocg_flush_stat_one(iocg, now);
1696 		iocg_build_inner_walk(iocg, &inner_walk);
1697 	}
1698 
1699 	/* keep flushing upwards by walking the inner list backwards */
1700 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1701 		iocg_flush_stat_one(iocg, now);
1702 		list_del_init(&iocg->walk_list);
1703 	}
1704 }
1705 
1706 /*
1707  * Determine what @iocg's hweight_inuse should be after donating unused
1708  * capacity. @hwm is the upper bound and used to signal no donation. This
1709  * function also throws away @iocg's excess budget.
1710  */
1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1712 				  u32 usage, struct ioc_now *now)
1713 {
1714 	struct ioc *ioc = iocg->ioc;
1715 	u64 vtime = atomic64_read(&iocg->vtime);
1716 	s64 excess, delta, target, new_hwi;
1717 
1718 	/* debt handling owns inuse for debtors */
1719 	if (iocg->abs_vdebt)
1720 		return 1;
1721 
1722 	/* see whether minimum margin requirement is met */
1723 	if (waitqueue_active(&iocg->waitq) ||
1724 	    time_after64(vtime, now->vnow - ioc->margins.min))
1725 		return hwm;
1726 
1727 	/* throw away excess above target */
1728 	excess = now->vnow - vtime - ioc->margins.target;
1729 	if (excess > 0) {
1730 		atomic64_add(excess, &iocg->vtime);
1731 		atomic64_add(excess, &iocg->done_vtime);
1732 		vtime += excess;
1733 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1734 	}
1735 
1736 	/*
1737 	 * Let's say the distance between iocg's and device's vtimes as a
1738 	 * fraction of period duration is delta. Assuming that the iocg will
1739 	 * consume the usage determined above, we want to determine new_hwi so
1740 	 * that delta equals MARGIN_TARGET at the end of the next period.
1741 	 *
1742 	 * We need to execute usage worth of IOs while spending the sum of the
1743 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1744 	 * (delta):
1745 	 *
1746 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1747 	 *
1748 	 * Therefore, the new_hwi is:
1749 	 *
1750 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1751 	 */
1752 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1753 			  now->vnow - ioc->period_at_vtime);
1754 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1755 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1756 
1757 	return clamp_t(s64, new_hwi, 1, hwm);
1758 }
1759 
1760 /*
1761  * For work-conservation, an iocg which isn't using all of its share should
1762  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1764  *
1765  * #1 is mathematically simpler but has the drawback of requiring synchronous
1766  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767  * change due to donation snapbacks as it has the possibility of grossly
1768  * overshooting what's allowed by the model and vrate.
1769  *
1770  * #2 is inherently safe with local operations. The donating iocg can easily
1771  * snap back to higher weights when needed without worrying about impacts on
1772  * other nodes as the impacts will be inherently correct. This also makes idle
1773  * iocg activations safe. The only effect activations have is decreasing
1774  * hweight_inuse of others, the right solution to which is for those iocgs to
1775  * snap back to higher weights.
1776  *
1777  * So, we go with #2. The challenge is calculating how each donating iocg's
1778  * inuse should be adjusted to achieve the target donation amounts. This is done
1779  * using Andy's method described in the following pdf.
1780  *
1781  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1782  *
1783  * Given the weights and target after-donation hweight_inuse values, Andy's
1784  * method determines how the proportional distribution should look like at each
1785  * sibling level to maintain the relative relationship between all non-donating
1786  * pairs. To roughly summarize, it divides the tree into donating and
1787  * non-donating parts, calculates global donation rate which is used to
1788  * determine the target hweight_inuse for each node, and then derives per-level
1789  * proportions.
1790  *
1791  * The following pdf shows that global distribution calculated this way can be
1792  * achieved by scaling inuse weights of donating leaves and propagating the
1793  * adjustments upwards proportionally.
1794  *
1795  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1796  *
1797  * Combining the above two, we can determine how each leaf iocg's inuse should
1798  * be adjusted to achieve the target donation.
1799  *
1800  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1801  *
1802  * The inline comments use symbols from the last pdf.
1803  *
1804  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1807  *   w is the weight of the node. w = w_f + w_t
1808  *   w_f is the non-donating portion of w. w_f = w * f / b
1809  *   w_b is the donating portion of w. w_t = w * t / b
1810  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1811  *   s_f and s_t are the non-donating and donating portions of s.
1812  *
1813  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815  * after adjustments. Subscript r denotes the root node's values.
1816  */
1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1818 {
1819 	LIST_HEAD(over_hwa);
1820 	LIST_HEAD(inner_walk);
1821 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1822 	u32 after_sum, over_sum, over_target, gamma;
1823 
1824 	/*
1825 	 * It's pretty unlikely but possible for the total sum of
1826 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827 	 * confuse the following calculations. If such condition is detected,
1828 	 * scale down everyone over its full share equally to keep the sum below
1829 	 * WEIGHT_ONE.
1830 	 */
1831 	after_sum = 0;
1832 	over_sum = 0;
1833 	list_for_each_entry(iocg, surpluses, surplus_list) {
1834 		u32 hwa;
1835 
1836 		current_hweight(iocg, &hwa, NULL);
1837 		after_sum += iocg->hweight_after_donation;
1838 
1839 		if (iocg->hweight_after_donation > hwa) {
1840 			over_sum += iocg->hweight_after_donation;
1841 			list_add(&iocg->walk_list, &over_hwa);
1842 		}
1843 	}
1844 
1845 	if (after_sum >= WEIGHT_ONE) {
1846 		/*
1847 		 * The delta should be deducted from the over_sum, calculate
1848 		 * target over_sum value.
1849 		 */
1850 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1851 		WARN_ON_ONCE(over_sum <= over_delta);
1852 		over_target = over_sum - over_delta;
1853 	} else {
1854 		over_target = 0;
1855 	}
1856 
1857 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1858 		if (over_target)
1859 			iocg->hweight_after_donation =
1860 				div_u64((u64)iocg->hweight_after_donation *
1861 					over_target, over_sum);
1862 		list_del_init(&iocg->walk_list);
1863 	}
1864 
1865 	/*
1866 	 * Build pre-order inner node walk list and prepare for donation
1867 	 * adjustment calculations.
1868 	 */
1869 	list_for_each_entry(iocg, surpluses, surplus_list) {
1870 		iocg_build_inner_walk(iocg, &inner_walk);
1871 	}
1872 
1873 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1874 	WARN_ON_ONCE(root_iocg->level > 0);
1875 
1876 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1877 		iocg->child_adjusted_sum = 0;
1878 		iocg->hweight_donating = 0;
1879 		iocg->hweight_after_donation = 0;
1880 	}
1881 
1882 	/*
1883 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1884 	 * up the hierarchy.
1885 	 */
1886 	list_for_each_entry(iocg, surpluses, surplus_list) {
1887 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888 
1889 		parent->hweight_donating += iocg->hweight_donating;
1890 		parent->hweight_after_donation += iocg->hweight_after_donation;
1891 	}
1892 
1893 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1894 		if (iocg->level > 0) {
1895 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1896 
1897 			parent->hweight_donating += iocg->hweight_donating;
1898 			parent->hweight_after_donation += iocg->hweight_after_donation;
1899 		}
1900 	}
1901 
1902 	/*
1903 	 * Calculate inner hwa's (b) and make sure the donation values are
1904 	 * within the accepted ranges as we're doing low res calculations with
1905 	 * roundups.
1906 	 */
1907 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1908 		if (iocg->level) {
1909 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910 
1911 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1912 				(u64)parent->hweight_active * iocg->active,
1913 				parent->child_active_sum);
1914 
1915 		}
1916 
1917 		iocg->hweight_donating = min(iocg->hweight_donating,
1918 					     iocg->hweight_active);
1919 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1920 						   iocg->hweight_donating - 1);
1921 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1922 				 iocg->hweight_donating <= 1 ||
1923 				 iocg->hweight_after_donation == 0)) {
1924 			pr_warn("iocg: invalid donation weights in ");
1925 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1926 			pr_cont(": active=%u donating=%u after=%u\n",
1927 				iocg->hweight_active, iocg->hweight_donating,
1928 				iocg->hweight_after_donation);
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * Calculate the global donation rate (gamma) - the rate to adjust
1934 	 * non-donating budgets by.
1935 	 *
1936 	 * No need to use 64bit multiplication here as the first operand is
1937 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1938 	 *
1939 	 * We know that there are beneficiary nodes and the sum of the donating
1940 	 * hweights can't be whole; however, due to the round-ups during hweight
1941 	 * calculations, root_iocg->hweight_donating might still end up equal to
1942 	 * or greater than whole. Limit the range when calculating the divider.
1943 	 *
1944 	 * gamma = (1 - t_r') / (1 - t_r)
1945 	 */
1946 	gamma = DIV_ROUND_UP(
1947 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1948 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1949 
1950 	/*
1951 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1952 	 * nodes.
1953 	 */
1954 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1955 		struct ioc_gq *parent;
1956 		u32 inuse, wpt, wptp;
1957 		u64 st, sf;
1958 
1959 		if (iocg->level == 0) {
1960 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1962 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1963 				WEIGHT_ONE - iocg->hweight_after_donation);
1964 			continue;
1965 		}
1966 
1967 		parent = iocg->ancestors[iocg->level - 1];
1968 
1969 		/* b' = gamma * b_f + b_t' */
1970 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1971 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1972 			WEIGHT_ONE) + iocg->hweight_after_donation;
1973 
1974 		/* w' = s' * b' / b'_p */
1975 		inuse = DIV64_U64_ROUND_UP(
1976 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1977 			parent->hweight_inuse);
1978 
1979 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980 		st = DIV64_U64_ROUND_UP(
1981 			iocg->child_active_sum * iocg->hweight_donating,
1982 			iocg->hweight_active);
1983 		sf = iocg->child_active_sum - st;
1984 		wpt = DIV64_U64_ROUND_UP(
1985 			(u64)iocg->active * iocg->hweight_donating,
1986 			iocg->hweight_active);
1987 		wptp = DIV64_U64_ROUND_UP(
1988 			(u64)inuse * iocg->hweight_after_donation,
1989 			iocg->hweight_inuse);
1990 
1991 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1992 	}
1993 
1994 	/*
1995 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996 	 * we can finally determine leaf adjustments.
1997 	 */
1998 	list_for_each_entry(iocg, surpluses, surplus_list) {
1999 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2000 		u32 inuse;
2001 
2002 		/*
2003 		 * In-debt iocgs participated in the donation calculation with
2004 		 * the minimum target hweight_inuse. Configuring inuse
2005 		 * accordingly would work fine but debt handling expects
2006 		 * @iocg->inuse stay at the minimum and we don't wanna
2007 		 * interfere.
2008 		 */
2009 		if (iocg->abs_vdebt) {
2010 			WARN_ON_ONCE(iocg->inuse > 1);
2011 			continue;
2012 		}
2013 
2014 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015 		inuse = DIV64_U64_ROUND_UP(
2016 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2017 			parent->hweight_inuse);
2018 
2019 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2020 				iocg->inuse, inuse,
2021 				iocg->hweight_inuse,
2022 				iocg->hweight_after_donation);
2023 
2024 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2025 	}
2026 
2027 	/* walk list should be dissolved after use */
2028 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2029 		list_del_init(&iocg->walk_list);
2030 }
2031 
2032 /*
2033  * A low weight iocg can amass a large amount of debt, for example, when
2034  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035  * memory paired with a slow IO device, the debt can span multiple seconds or
2036  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037  * up blocked paying its debt while the IO device is idle.
2038  *
2039  * The following protects against such cases. If the device has been
2040  * sufficiently idle for a while, the debts are halved and delays are
2041  * recalculated.
2042  */
2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2044 			      struct ioc_now *now)
2045 {
2046 	struct ioc_gq *iocg;
2047 	u64 dur, usage_pct, nr_cycles;
2048 
2049 	/* if no debtor, reset the cycle */
2050 	if (!nr_debtors) {
2051 		ioc->dfgv_period_at = now->now;
2052 		ioc->dfgv_period_rem = 0;
2053 		ioc->dfgv_usage_us_sum = 0;
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * Debtors can pass through a lot of writes choking the device and we
2059 	 * don't want to be forgiving debts while the device is struggling from
2060 	 * write bursts. If we're missing latency targets, consider the device
2061 	 * fully utilized.
2062 	 */
2063 	if (ioc->busy_level > 0)
2064 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2065 
2066 	ioc->dfgv_usage_us_sum += usage_us_sum;
2067 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2068 		return;
2069 
2070 	/*
2071 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2072 	 * average usage and reset the period counters.
2073 	 */
2074 	dur = now->now - ioc->dfgv_period_at;
2075 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2076 
2077 	ioc->dfgv_period_at = now->now;
2078 	ioc->dfgv_usage_us_sum = 0;
2079 
2080 	/* if was too busy, reset everything */
2081 	if (usage_pct > DFGV_USAGE_PCT) {
2082 		ioc->dfgv_period_rem = 0;
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2088 	 * forgiveness runs off of the usual ioc timer but its period usually
2089 	 * doesn't match ioc's. Compensate the difference by performing the
2090 	 * reduction as many times as would fit in the duration since the last
2091 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093 	 * reductions is doubled.
2094 	 */
2095 	nr_cycles = dur + ioc->dfgv_period_rem;
2096 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2097 
2098 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2099 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2100 
2101 		if (!iocg->abs_vdebt && !iocg->delay)
2102 			continue;
2103 
2104 		spin_lock(&iocg->waitq.lock);
2105 
2106 		old_debt = iocg->abs_vdebt;
2107 		old_delay = iocg->delay;
2108 
2109 		if (iocg->abs_vdebt)
2110 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2111 		if (iocg->delay)
2112 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2113 
2114 		iocg_kick_waitq(iocg, true, now);
2115 
2116 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2117 				old_debt, iocg->abs_vdebt,
2118 				old_delay, iocg->delay);
2119 
2120 		spin_unlock(&iocg->waitq.lock);
2121 	}
2122 }
2123 
2124 /*
2125  * Check the active iocgs' state to avoid oversleeping and deactive
2126  * idle iocgs.
2127  *
2128  * Since waiters determine the sleep durations based on the vrate
2129  * they saw at the time of sleep, if vrate has increased, some
2130  * waiters could be sleeping for too long. Wake up tardy waiters
2131  * which should have woken up in the last period and expire idle
2132  * iocgs.
2133  */
2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2135 {
2136 	int nr_debtors = 0;
2137 	struct ioc_gq *iocg, *tiocg;
2138 
2139 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2140 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2141 		    !iocg->delay && !iocg_is_idle(iocg))
2142 			continue;
2143 
2144 		spin_lock(&iocg->waitq.lock);
2145 
2146 		/* flush wait and indebt stat deltas */
2147 		if (iocg->wait_since) {
2148 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
2149 			iocg->wait_since = now->now;
2150 		}
2151 		if (iocg->indebt_since) {
2152 			iocg->local_stat.indebt_us +=
2153 				now->now - iocg->indebt_since;
2154 			iocg->indebt_since = now->now;
2155 		}
2156 		if (iocg->indelay_since) {
2157 			iocg->local_stat.indelay_us +=
2158 				now->now - iocg->indelay_since;
2159 			iocg->indelay_since = now->now;
2160 		}
2161 
2162 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2163 		    iocg->delay) {
2164 			/* might be oversleeping vtime / hweight changes, kick */
2165 			iocg_kick_waitq(iocg, true, now);
2166 			if (iocg->abs_vdebt || iocg->delay)
2167 				nr_debtors++;
2168 		} else if (iocg_is_idle(iocg)) {
2169 			/* no waiter and idle, deactivate */
2170 			u64 vtime = atomic64_read(&iocg->vtime);
2171 			s64 excess;
2172 
2173 			/*
2174 			 * @iocg has been inactive for a full duration and will
2175 			 * have a high budget. Account anything above target as
2176 			 * error and throw away. On reactivation, it'll start
2177 			 * with the target budget.
2178 			 */
2179 			excess = now->vnow - vtime - ioc->margins.target;
2180 			if (excess > 0) {
2181 				u32 old_hwi;
2182 
2183 				current_hweight(iocg, NULL, &old_hwi);
2184 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2185 							    WEIGHT_ONE);
2186 			}
2187 
2188 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2189 					atomic64_read(&iocg->active_period),
2190 					atomic64_read(&ioc->cur_period), vtime);
2191 			__propagate_weights(iocg, 0, 0, false, now);
2192 			list_del_init(&iocg->active_list);
2193 		}
2194 
2195 		spin_unlock(&iocg->waitq.lock);
2196 	}
2197 
2198 	commit_weights(ioc);
2199 	return nr_debtors;
2200 }
2201 
2202 static void ioc_timer_fn(struct timer_list *timer)
2203 {
2204 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2205 	struct ioc_gq *iocg, *tiocg;
2206 	struct ioc_now now;
2207 	LIST_HEAD(surpluses);
2208 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2209 	u64 usage_us_sum = 0;
2210 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2211 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2212 	u32 missed_ppm[2], rq_wait_pct;
2213 	u64 period_vtime;
2214 	int prev_busy_level;
2215 
2216 	/* how were the latencies during the period? */
2217 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2218 
2219 	/* take care of active iocgs */
2220 	spin_lock_irq(&ioc->lock);
2221 
2222 	ioc_now(ioc, &now);
2223 
2224 	period_vtime = now.vnow - ioc->period_at_vtime;
2225 	if (WARN_ON_ONCE(!period_vtime)) {
2226 		spin_unlock_irq(&ioc->lock);
2227 		return;
2228 	}
2229 
2230 	nr_debtors = ioc_check_iocgs(ioc, &now);
2231 
2232 	/*
2233 	 * Wait and indebt stat are flushed above and the donation calculation
2234 	 * below needs updated usage stat. Let's bring stat up-to-date.
2235 	 */
2236 	iocg_flush_stat(&ioc->active_iocgs, &now);
2237 
2238 	/* calc usage and see whether some weights need to be moved around */
2239 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2240 		u64 vdone, vtime, usage_us;
2241 		u32 hw_active, hw_inuse;
2242 
2243 		/*
2244 		 * Collect unused and wind vtime closer to vnow to prevent
2245 		 * iocgs from accumulating a large amount of budget.
2246 		 */
2247 		vdone = atomic64_read(&iocg->done_vtime);
2248 		vtime = atomic64_read(&iocg->vtime);
2249 		current_hweight(iocg, &hw_active, &hw_inuse);
2250 
2251 		/*
2252 		 * Latency QoS detection doesn't account for IOs which are
2253 		 * in-flight for longer than a period.  Detect them by
2254 		 * comparing vdone against period start.  If lagging behind
2255 		 * IOs from past periods, don't increase vrate.
2256 		 */
2257 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2258 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2259 		    time_after64(vtime, vdone) &&
2260 		    time_after64(vtime, now.vnow -
2261 				 MAX_LAGGING_PERIODS * period_vtime) &&
2262 		    time_before64(vdone, now.vnow - period_vtime))
2263 			nr_lagging++;
2264 
2265 		/*
2266 		 * Determine absolute usage factoring in in-flight IOs to avoid
2267 		 * high-latency completions appearing as idle.
2268 		 */
2269 		usage_us = iocg->usage_delta_us;
2270 		usage_us_sum += usage_us;
2271 
2272 		/* see whether there's surplus vtime */
2273 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2274 		if (hw_inuse < hw_active ||
2275 		    (!waitqueue_active(&iocg->waitq) &&
2276 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2277 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2278 			u64 usage_dur;
2279 
2280 			if (vdone != vtime) {
2281 				u64 inflight_us = DIV64_U64_ROUND_UP(
2282 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2283 					ioc->vtime_base_rate);
2284 
2285 				usage_us = max(usage_us, inflight_us);
2286 			}
2287 
2288 			/* convert to hweight based usage ratio */
2289 			if (time_after64(iocg->activated_at, ioc->period_at))
2290 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2291 			else
2292 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2293 
2294 			usage = clamp_t(u32,
2295 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2296 						   usage_dur),
2297 				1, WEIGHT_ONE);
2298 
2299 			/*
2300 			 * Already donating or accumulated enough to start.
2301 			 * Determine the donation amount.
2302 			 */
2303 			current_hweight(iocg, &hwa, &old_hwi);
2304 			hwm = current_hweight_max(iocg);
2305 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2306 							 usage, &now);
2307 			if (new_hwi < hwm) {
2308 				iocg->hweight_donating = hwa;
2309 				iocg->hweight_after_donation = new_hwi;
2310 				list_add(&iocg->surplus_list, &surpluses);
2311 			} else {
2312 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2313 						iocg->inuse, iocg->active,
2314 						iocg->hweight_inuse, new_hwi);
2315 
2316 				__propagate_weights(iocg, iocg->active,
2317 						    iocg->active, true, &now);
2318 				nr_shortages++;
2319 			}
2320 		} else {
2321 			/* genuinely short on vtime */
2322 			nr_shortages++;
2323 		}
2324 	}
2325 
2326 	if (!list_empty(&surpluses) && nr_shortages)
2327 		transfer_surpluses(&surpluses, &now);
2328 
2329 	commit_weights(ioc);
2330 
2331 	/* surplus list should be dissolved after use */
2332 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2333 		list_del_init(&iocg->surplus_list);
2334 
2335 	/*
2336 	 * If q is getting clogged or we're missing too much, we're issuing
2337 	 * too much IO and should lower vtime rate.  If we're not missing
2338 	 * and experiencing shortages but not surpluses, we're too stingy
2339 	 * and should increase vtime rate.
2340 	 */
2341 	prev_busy_level = ioc->busy_level;
2342 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2343 	    missed_ppm[READ] > ppm_rthr ||
2344 	    missed_ppm[WRITE] > ppm_wthr) {
2345 		/* clearly missing QoS targets, slow down vrate */
2346 		ioc->busy_level = max(ioc->busy_level, 0);
2347 		ioc->busy_level++;
2348 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2349 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2350 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2351 		/* QoS targets are being met with >25% margin */
2352 		if (nr_shortages) {
2353 			/*
2354 			 * We're throttling while the device has spare
2355 			 * capacity.  If vrate was being slowed down, stop.
2356 			 */
2357 			ioc->busy_level = min(ioc->busy_level, 0);
2358 
2359 			/*
2360 			 * If there are IOs spanning multiple periods, wait
2361 			 * them out before pushing the device harder.
2362 			 */
2363 			if (!nr_lagging)
2364 				ioc->busy_level--;
2365 		} else {
2366 			/*
2367 			 * Nobody is being throttled and the users aren't
2368 			 * issuing enough IOs to saturate the device.  We
2369 			 * simply don't know how close the device is to
2370 			 * saturation.  Coast.
2371 			 */
2372 			ioc->busy_level = 0;
2373 		}
2374 	} else {
2375 		/* inside the hysterisis margin, we're good */
2376 		ioc->busy_level = 0;
2377 	}
2378 
2379 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2380 
2381 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2382 			      prev_busy_level, missed_ppm);
2383 
2384 	ioc_refresh_params(ioc, false);
2385 
2386 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2387 
2388 	/*
2389 	 * This period is done.  Move onto the next one.  If nothing's
2390 	 * going on with the device, stop the timer.
2391 	 */
2392 	atomic64_inc(&ioc->cur_period);
2393 
2394 	if (ioc->running != IOC_STOP) {
2395 		if (!list_empty(&ioc->active_iocgs)) {
2396 			ioc_start_period(ioc, &now);
2397 		} else {
2398 			ioc->busy_level = 0;
2399 			ioc->vtime_err = 0;
2400 			ioc->running = IOC_IDLE;
2401 		}
2402 
2403 		ioc_refresh_vrate(ioc, &now);
2404 	}
2405 
2406 	spin_unlock_irq(&ioc->lock);
2407 }
2408 
2409 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2410 				      u64 abs_cost, struct ioc_now *now)
2411 {
2412 	struct ioc *ioc = iocg->ioc;
2413 	struct ioc_margins *margins = &ioc->margins;
2414 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2415 	u32 hwi, adj_step;
2416 	s64 margin;
2417 	u64 cost, new_inuse;
2418 
2419 	current_hweight(iocg, NULL, &hwi);
2420 	old_hwi = hwi;
2421 	cost = abs_cost_to_cost(abs_cost, hwi);
2422 	margin = now->vnow - vtime - cost;
2423 
2424 	/* debt handling owns inuse for debtors */
2425 	if (iocg->abs_vdebt)
2426 		return cost;
2427 
2428 	/*
2429 	 * We only increase inuse during period and do so if the margin has
2430 	 * deteriorated since the previous adjustment.
2431 	 */
2432 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2433 	    iocg->inuse == iocg->active)
2434 		return cost;
2435 
2436 	spin_lock_irq(&ioc->lock);
2437 
2438 	/* we own inuse only when @iocg is in the normal active state */
2439 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2440 		spin_unlock_irq(&ioc->lock);
2441 		return cost;
2442 	}
2443 
2444 	/*
2445 	 * Bump up inuse till @abs_cost fits in the existing budget.
2446 	 * adj_step must be determined after acquiring ioc->lock - we might
2447 	 * have raced and lost to another thread for activation and could
2448 	 * be reading 0 iocg->active before ioc->lock which will lead to
2449 	 * infinite loop.
2450 	 */
2451 	new_inuse = iocg->inuse;
2452 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2453 	do {
2454 		new_inuse = new_inuse + adj_step;
2455 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2456 		current_hweight(iocg, NULL, &hwi);
2457 		cost = abs_cost_to_cost(abs_cost, hwi);
2458 	} while (time_after64(vtime + cost, now->vnow) &&
2459 		 iocg->inuse != iocg->active);
2460 
2461 	spin_unlock_irq(&ioc->lock);
2462 
2463 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2464 			old_inuse, iocg->inuse, old_hwi, hwi);
2465 
2466 	return cost;
2467 }
2468 
2469 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2470 				    bool is_merge, u64 *costp)
2471 {
2472 	struct ioc *ioc = iocg->ioc;
2473 	u64 coef_seqio, coef_randio, coef_page;
2474 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2475 	u64 seek_pages = 0;
2476 	u64 cost = 0;
2477 
2478 	switch (bio_op(bio)) {
2479 	case REQ_OP_READ:
2480 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2481 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2482 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2483 		break;
2484 	case REQ_OP_WRITE:
2485 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2486 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2487 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2488 		break;
2489 	default:
2490 		goto out;
2491 	}
2492 
2493 	if (iocg->cursor) {
2494 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2495 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2496 	}
2497 
2498 	if (!is_merge) {
2499 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2500 			cost += coef_randio;
2501 		} else {
2502 			cost += coef_seqio;
2503 		}
2504 	}
2505 	cost += pages * coef_page;
2506 out:
2507 	*costp = cost;
2508 }
2509 
2510 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2511 {
2512 	u64 cost;
2513 
2514 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2515 	return cost;
2516 }
2517 
2518 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2519 					 u64 *costp)
2520 {
2521 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2522 
2523 	switch (req_op(rq)) {
2524 	case REQ_OP_READ:
2525 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2526 		break;
2527 	case REQ_OP_WRITE:
2528 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2529 		break;
2530 	default:
2531 		*costp = 0;
2532 	}
2533 }
2534 
2535 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2536 {
2537 	u64 cost;
2538 
2539 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2540 	return cost;
2541 }
2542 
2543 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2544 {
2545 	struct blkcg_gq *blkg = bio->bi_blkg;
2546 	struct ioc *ioc = rqos_to_ioc(rqos);
2547 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2548 	struct ioc_now now;
2549 	struct iocg_wait wait;
2550 	u64 abs_cost, cost, vtime;
2551 	bool use_debt, ioc_locked;
2552 	unsigned long flags;
2553 
2554 	/* bypass IOs if disabled or for root cgroup */
2555 	if (!ioc->enabled || !iocg->level)
2556 		return;
2557 
2558 	/* calculate the absolute vtime cost */
2559 	abs_cost = calc_vtime_cost(bio, iocg, false);
2560 	if (!abs_cost)
2561 		return;
2562 
2563 	if (!iocg_activate(iocg, &now))
2564 		return;
2565 
2566 	iocg->cursor = bio_end_sector(bio);
2567 	vtime = atomic64_read(&iocg->vtime);
2568 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2569 
2570 	/*
2571 	 * If no one's waiting and within budget, issue right away.  The
2572 	 * tests are racy but the races aren't systemic - we only miss once
2573 	 * in a while which is fine.
2574 	 */
2575 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2576 	    time_before_eq64(vtime + cost, now.vnow)) {
2577 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2578 		return;
2579 	}
2580 
2581 	/*
2582 	 * We're over budget. This can be handled in two ways. IOs which may
2583 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2584 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2585 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2586 	 * whether debt handling is needed and acquire locks accordingly.
2587 	 */
2588 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2589 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2590 retry_lock:
2591 	iocg_lock(iocg, ioc_locked, &flags);
2592 
2593 	/*
2594 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2595 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2596 	 * get deactivated as long as we're waiting or has debt, so we're good
2597 	 * if we're activated here. In the unlikely cases that we aren't, just
2598 	 * issue the IO.
2599 	 */
2600 	if (unlikely(list_empty(&iocg->active_list))) {
2601 		iocg_unlock(iocg, ioc_locked, &flags);
2602 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2603 		return;
2604 	}
2605 
2606 	/*
2607 	 * We're over budget. If @bio has to be issued regardless, remember
2608 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2609 	 * off the debt before waking more IOs.
2610 	 *
2611 	 * This way, the debt is continuously paid off each period with the
2612 	 * actual budget available to the cgroup. If we just wound vtime, we
2613 	 * would incorrectly use the current hw_inuse for the entire amount
2614 	 * which, for example, can lead to the cgroup staying blocked for a
2615 	 * long time even with substantially raised hw_inuse.
2616 	 *
2617 	 * An iocg with vdebt should stay online so that the timer can keep
2618 	 * deducting its vdebt and [de]activate use_delay mechanism
2619 	 * accordingly. We don't want to race against the timer trying to
2620 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2621 	 * penalizing the cgroup and its descendants.
2622 	 */
2623 	if (use_debt) {
2624 		iocg_incur_debt(iocg, abs_cost, &now);
2625 		if (iocg_kick_delay(iocg, &now))
2626 			blkcg_schedule_throttle(rqos->q,
2627 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2628 		iocg_unlock(iocg, ioc_locked, &flags);
2629 		return;
2630 	}
2631 
2632 	/* guarantee that iocgs w/ waiters have maximum inuse */
2633 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2634 		if (!ioc_locked) {
2635 			iocg_unlock(iocg, false, &flags);
2636 			ioc_locked = true;
2637 			goto retry_lock;
2638 		}
2639 		propagate_weights(iocg, iocg->active, iocg->active, true,
2640 				  &now);
2641 	}
2642 
2643 	/*
2644 	 * Append self to the waitq and schedule the wakeup timer if we're
2645 	 * the first waiter.  The timer duration is calculated based on the
2646 	 * current vrate.  vtime and hweight changes can make it too short
2647 	 * or too long.  Each wait entry records the absolute cost it's
2648 	 * waiting for to allow re-evaluation using a custom wait entry.
2649 	 *
2650 	 * If too short, the timer simply reschedules itself.  If too long,
2651 	 * the period timer will notice and trigger wakeups.
2652 	 *
2653 	 * All waiters are on iocg->waitq and the wait states are
2654 	 * synchronized using waitq.lock.
2655 	 */
2656 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2657 	wait.wait.private = current;
2658 	wait.bio = bio;
2659 	wait.abs_cost = abs_cost;
2660 	wait.committed = false;	/* will be set true by waker */
2661 
2662 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2663 	iocg_kick_waitq(iocg, ioc_locked, &now);
2664 
2665 	iocg_unlock(iocg, ioc_locked, &flags);
2666 
2667 	while (true) {
2668 		set_current_state(TASK_UNINTERRUPTIBLE);
2669 		if (wait.committed)
2670 			break;
2671 		io_schedule();
2672 	}
2673 
2674 	/* waker already committed us, proceed */
2675 	finish_wait(&iocg->waitq, &wait.wait);
2676 }
2677 
2678 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2679 			   struct bio *bio)
2680 {
2681 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2682 	struct ioc *ioc = iocg->ioc;
2683 	sector_t bio_end = bio_end_sector(bio);
2684 	struct ioc_now now;
2685 	u64 vtime, abs_cost, cost;
2686 	unsigned long flags;
2687 
2688 	/* bypass if disabled or for root cgroup */
2689 	if (!ioc->enabled || !iocg->level)
2690 		return;
2691 
2692 	abs_cost = calc_vtime_cost(bio, iocg, true);
2693 	if (!abs_cost)
2694 		return;
2695 
2696 	ioc_now(ioc, &now);
2697 
2698 	vtime = atomic64_read(&iocg->vtime);
2699 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2700 
2701 	/* update cursor if backmerging into the request at the cursor */
2702 	if (blk_rq_pos(rq) < bio_end &&
2703 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2704 		iocg->cursor = bio_end;
2705 
2706 	/*
2707 	 * Charge if there's enough vtime budget and the existing request has
2708 	 * cost assigned.
2709 	 */
2710 	if (rq->bio && rq->bio->bi_iocost_cost &&
2711 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2712 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2713 		return;
2714 	}
2715 
2716 	/*
2717 	 * Otherwise, account it as debt if @iocg is online, which it should
2718 	 * be for the vast majority of cases. See debt handling in
2719 	 * ioc_rqos_throttle() for details.
2720 	 */
2721 	spin_lock_irqsave(&ioc->lock, flags);
2722 	spin_lock(&iocg->waitq.lock);
2723 
2724 	if (likely(!list_empty(&iocg->active_list))) {
2725 		iocg_incur_debt(iocg, abs_cost, &now);
2726 		if (iocg_kick_delay(iocg, &now))
2727 			blkcg_schedule_throttle(rqos->q,
2728 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2729 	} else {
2730 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2731 	}
2732 
2733 	spin_unlock(&iocg->waitq.lock);
2734 	spin_unlock_irqrestore(&ioc->lock, flags);
2735 }
2736 
2737 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2738 {
2739 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2740 
2741 	if (iocg && bio->bi_iocost_cost)
2742 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2743 }
2744 
2745 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2746 {
2747 	struct ioc *ioc = rqos_to_ioc(rqos);
2748 	struct ioc_pcpu_stat *ccs;
2749 	u64 on_q_ns, rq_wait_ns, size_nsec;
2750 	int pidx, rw;
2751 
2752 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2753 		return;
2754 
2755 	switch (req_op(rq) & REQ_OP_MASK) {
2756 	case REQ_OP_READ:
2757 		pidx = QOS_RLAT;
2758 		rw = READ;
2759 		break;
2760 	case REQ_OP_WRITE:
2761 		pidx = QOS_WLAT;
2762 		rw = WRITE;
2763 		break;
2764 	default:
2765 		return;
2766 	}
2767 
2768 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2769 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2770 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2771 
2772 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2773 
2774 	if (on_q_ns <= size_nsec ||
2775 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2776 		local_inc(&ccs->missed[rw].nr_met);
2777 	else
2778 		local_inc(&ccs->missed[rw].nr_missed);
2779 
2780 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2781 
2782 	put_cpu_ptr(ccs);
2783 }
2784 
2785 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2786 {
2787 	struct ioc *ioc = rqos_to_ioc(rqos);
2788 
2789 	spin_lock_irq(&ioc->lock);
2790 	ioc_refresh_params(ioc, false);
2791 	spin_unlock_irq(&ioc->lock);
2792 }
2793 
2794 static void ioc_rqos_exit(struct rq_qos *rqos)
2795 {
2796 	struct ioc *ioc = rqos_to_ioc(rqos);
2797 
2798 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2799 
2800 	spin_lock_irq(&ioc->lock);
2801 	ioc->running = IOC_STOP;
2802 	spin_unlock_irq(&ioc->lock);
2803 
2804 	del_timer_sync(&ioc->timer);
2805 	free_percpu(ioc->pcpu_stat);
2806 	kfree(ioc);
2807 }
2808 
2809 static struct rq_qos_ops ioc_rqos_ops = {
2810 	.throttle = ioc_rqos_throttle,
2811 	.merge = ioc_rqos_merge,
2812 	.done_bio = ioc_rqos_done_bio,
2813 	.done = ioc_rqos_done,
2814 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2815 	.exit = ioc_rqos_exit,
2816 };
2817 
2818 static int blk_iocost_init(struct request_queue *q)
2819 {
2820 	struct ioc *ioc;
2821 	struct rq_qos *rqos;
2822 	int i, cpu, ret;
2823 
2824 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2825 	if (!ioc)
2826 		return -ENOMEM;
2827 
2828 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2829 	if (!ioc->pcpu_stat) {
2830 		kfree(ioc);
2831 		return -ENOMEM;
2832 	}
2833 
2834 	for_each_possible_cpu(cpu) {
2835 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2836 
2837 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2838 			local_set(&ccs->missed[i].nr_met, 0);
2839 			local_set(&ccs->missed[i].nr_missed, 0);
2840 		}
2841 		local64_set(&ccs->rq_wait_ns, 0);
2842 	}
2843 
2844 	rqos = &ioc->rqos;
2845 	rqos->id = RQ_QOS_COST;
2846 	rqos->ops = &ioc_rqos_ops;
2847 	rqos->q = q;
2848 
2849 	spin_lock_init(&ioc->lock);
2850 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2851 	INIT_LIST_HEAD(&ioc->active_iocgs);
2852 
2853 	ioc->running = IOC_IDLE;
2854 	ioc->vtime_base_rate = VTIME_PER_USEC;
2855 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2856 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2857 	ioc->period_at = ktime_to_us(ktime_get());
2858 	atomic64_set(&ioc->cur_period, 0);
2859 	atomic_set(&ioc->hweight_gen, 0);
2860 
2861 	spin_lock_irq(&ioc->lock);
2862 	ioc->autop_idx = AUTOP_INVALID;
2863 	ioc_refresh_params(ioc, true);
2864 	spin_unlock_irq(&ioc->lock);
2865 
2866 	rq_qos_add(q, rqos);
2867 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2868 	if (ret) {
2869 		rq_qos_del(q, rqos);
2870 		free_percpu(ioc->pcpu_stat);
2871 		kfree(ioc);
2872 		return ret;
2873 	}
2874 	return 0;
2875 }
2876 
2877 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2878 {
2879 	struct ioc_cgrp *iocc;
2880 
2881 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2882 	if (!iocc)
2883 		return NULL;
2884 
2885 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2886 	return &iocc->cpd;
2887 }
2888 
2889 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2890 {
2891 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2892 }
2893 
2894 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2895 					     struct blkcg *blkcg)
2896 {
2897 	int levels = blkcg->css.cgroup->level + 1;
2898 	struct ioc_gq *iocg;
2899 
2900 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2901 	if (!iocg)
2902 		return NULL;
2903 
2904 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2905 	if (!iocg->pcpu_stat) {
2906 		kfree(iocg);
2907 		return NULL;
2908 	}
2909 
2910 	return &iocg->pd;
2911 }
2912 
2913 static void ioc_pd_init(struct blkg_policy_data *pd)
2914 {
2915 	struct ioc_gq *iocg = pd_to_iocg(pd);
2916 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2917 	struct ioc *ioc = q_to_ioc(blkg->q);
2918 	struct ioc_now now;
2919 	struct blkcg_gq *tblkg;
2920 	unsigned long flags;
2921 
2922 	ioc_now(ioc, &now);
2923 
2924 	iocg->ioc = ioc;
2925 	atomic64_set(&iocg->vtime, now.vnow);
2926 	atomic64_set(&iocg->done_vtime, now.vnow);
2927 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2928 	INIT_LIST_HEAD(&iocg->active_list);
2929 	INIT_LIST_HEAD(&iocg->walk_list);
2930 	INIT_LIST_HEAD(&iocg->surplus_list);
2931 	iocg->hweight_active = WEIGHT_ONE;
2932 	iocg->hweight_inuse = WEIGHT_ONE;
2933 
2934 	init_waitqueue_head(&iocg->waitq);
2935 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2936 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2937 
2938 	iocg->level = blkg->blkcg->css.cgroup->level;
2939 
2940 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2941 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2942 		iocg->ancestors[tiocg->level] = tiocg;
2943 	}
2944 
2945 	spin_lock_irqsave(&ioc->lock, flags);
2946 	weight_updated(iocg, &now);
2947 	spin_unlock_irqrestore(&ioc->lock, flags);
2948 }
2949 
2950 static void ioc_pd_free(struct blkg_policy_data *pd)
2951 {
2952 	struct ioc_gq *iocg = pd_to_iocg(pd);
2953 	struct ioc *ioc = iocg->ioc;
2954 	unsigned long flags;
2955 
2956 	if (ioc) {
2957 		spin_lock_irqsave(&ioc->lock, flags);
2958 
2959 		if (!list_empty(&iocg->active_list)) {
2960 			struct ioc_now now;
2961 
2962 			ioc_now(ioc, &now);
2963 			propagate_weights(iocg, 0, 0, false, &now);
2964 			list_del_init(&iocg->active_list);
2965 		}
2966 
2967 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2968 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2969 
2970 		spin_unlock_irqrestore(&ioc->lock, flags);
2971 
2972 		hrtimer_cancel(&iocg->waitq_timer);
2973 	}
2974 	free_percpu(iocg->pcpu_stat);
2975 	kfree(iocg);
2976 }
2977 
2978 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2979 {
2980 	struct ioc_gq *iocg = pd_to_iocg(pd);
2981 	struct ioc *ioc = iocg->ioc;
2982 	size_t pos = 0;
2983 
2984 	if (!ioc->enabled)
2985 		return 0;
2986 
2987 	if (iocg->level == 0) {
2988 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2989 			ioc->vtime_base_rate * 10000,
2990 			VTIME_PER_USEC);
2991 		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2992 				  vp10k / 100, vp10k % 100);
2993 	}
2994 
2995 	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2996 			 iocg->last_stat.usage_us);
2997 
2998 	if (blkcg_debug_stats)
2999 		pos += scnprintf(buf + pos, size - pos,
3000 				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3001 				 iocg->last_stat.wait_us,
3002 				 iocg->last_stat.indebt_us,
3003 				 iocg->last_stat.indelay_us);
3004 
3005 	return pos;
3006 }
3007 
3008 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3009 			     int off)
3010 {
3011 	const char *dname = blkg_dev_name(pd->blkg);
3012 	struct ioc_gq *iocg = pd_to_iocg(pd);
3013 
3014 	if (dname && iocg->cfg_weight)
3015 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3016 	return 0;
3017 }
3018 
3019 
3020 static int ioc_weight_show(struct seq_file *sf, void *v)
3021 {
3022 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3023 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3024 
3025 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3026 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3027 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3028 	return 0;
3029 }
3030 
3031 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3032 				size_t nbytes, loff_t off)
3033 {
3034 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3035 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3036 	struct blkg_conf_ctx ctx;
3037 	struct ioc_now now;
3038 	struct ioc_gq *iocg;
3039 	u32 v;
3040 	int ret;
3041 
3042 	if (!strchr(buf, ':')) {
3043 		struct blkcg_gq *blkg;
3044 
3045 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3046 			return -EINVAL;
3047 
3048 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3049 			return -EINVAL;
3050 
3051 		spin_lock(&blkcg->lock);
3052 		iocc->dfl_weight = v * WEIGHT_ONE;
3053 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3054 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3055 
3056 			if (iocg) {
3057 				spin_lock_irq(&iocg->ioc->lock);
3058 				ioc_now(iocg->ioc, &now);
3059 				weight_updated(iocg, &now);
3060 				spin_unlock_irq(&iocg->ioc->lock);
3061 			}
3062 		}
3063 		spin_unlock(&blkcg->lock);
3064 
3065 		return nbytes;
3066 	}
3067 
3068 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3069 	if (ret)
3070 		return ret;
3071 
3072 	iocg = blkg_to_iocg(ctx.blkg);
3073 
3074 	if (!strncmp(ctx.body, "default", 7)) {
3075 		v = 0;
3076 	} else {
3077 		if (!sscanf(ctx.body, "%u", &v))
3078 			goto einval;
3079 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3080 			goto einval;
3081 	}
3082 
3083 	spin_lock(&iocg->ioc->lock);
3084 	iocg->cfg_weight = v * WEIGHT_ONE;
3085 	ioc_now(iocg->ioc, &now);
3086 	weight_updated(iocg, &now);
3087 	spin_unlock(&iocg->ioc->lock);
3088 
3089 	blkg_conf_finish(&ctx);
3090 	return nbytes;
3091 
3092 einval:
3093 	blkg_conf_finish(&ctx);
3094 	return -EINVAL;
3095 }
3096 
3097 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3098 			  int off)
3099 {
3100 	const char *dname = blkg_dev_name(pd->blkg);
3101 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3102 
3103 	if (!dname)
3104 		return 0;
3105 
3106 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3107 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3108 		   ioc->params.qos[QOS_RPPM] / 10000,
3109 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3110 		   ioc->params.qos[QOS_RLAT],
3111 		   ioc->params.qos[QOS_WPPM] / 10000,
3112 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3113 		   ioc->params.qos[QOS_WLAT],
3114 		   ioc->params.qos[QOS_MIN] / 10000,
3115 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3116 		   ioc->params.qos[QOS_MAX] / 10000,
3117 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3118 	return 0;
3119 }
3120 
3121 static int ioc_qos_show(struct seq_file *sf, void *v)
3122 {
3123 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3124 
3125 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3126 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3127 	return 0;
3128 }
3129 
3130 static const match_table_t qos_ctrl_tokens = {
3131 	{ QOS_ENABLE,		"enable=%u"	},
3132 	{ QOS_CTRL,		"ctrl=%s"	},
3133 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3134 };
3135 
3136 static const match_table_t qos_tokens = {
3137 	{ QOS_RPPM,		"rpct=%s"	},
3138 	{ QOS_RLAT,		"rlat=%u"	},
3139 	{ QOS_WPPM,		"wpct=%s"	},
3140 	{ QOS_WLAT,		"wlat=%u"	},
3141 	{ QOS_MIN,		"min=%s"	},
3142 	{ QOS_MAX,		"max=%s"	},
3143 	{ NR_QOS_PARAMS,	NULL		},
3144 };
3145 
3146 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3147 			     size_t nbytes, loff_t off)
3148 {
3149 	struct block_device *bdev;
3150 	struct ioc *ioc;
3151 	u32 qos[NR_QOS_PARAMS];
3152 	bool enable, user;
3153 	char *p;
3154 	int ret;
3155 
3156 	bdev = blkcg_conf_open_bdev(&input);
3157 	if (IS_ERR(bdev))
3158 		return PTR_ERR(bdev);
3159 
3160 	ioc = q_to_ioc(bdev->bd_disk->queue);
3161 	if (!ioc) {
3162 		ret = blk_iocost_init(bdev->bd_disk->queue);
3163 		if (ret)
3164 			goto err;
3165 		ioc = q_to_ioc(bdev->bd_disk->queue);
3166 	}
3167 
3168 	spin_lock_irq(&ioc->lock);
3169 	memcpy(qos, ioc->params.qos, sizeof(qos));
3170 	enable = ioc->enabled;
3171 	user = ioc->user_qos_params;
3172 	spin_unlock_irq(&ioc->lock);
3173 
3174 	while ((p = strsep(&input, " \t\n"))) {
3175 		substring_t args[MAX_OPT_ARGS];
3176 		char buf[32];
3177 		int tok;
3178 		s64 v;
3179 
3180 		if (!*p)
3181 			continue;
3182 
3183 		switch (match_token(p, qos_ctrl_tokens, args)) {
3184 		case QOS_ENABLE:
3185 			match_u64(&args[0], &v);
3186 			enable = v;
3187 			continue;
3188 		case QOS_CTRL:
3189 			match_strlcpy(buf, &args[0], sizeof(buf));
3190 			if (!strcmp(buf, "auto"))
3191 				user = false;
3192 			else if (!strcmp(buf, "user"))
3193 				user = true;
3194 			else
3195 				goto einval;
3196 			continue;
3197 		}
3198 
3199 		tok = match_token(p, qos_tokens, args);
3200 		switch (tok) {
3201 		case QOS_RPPM:
3202 		case QOS_WPPM:
3203 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3204 			    sizeof(buf))
3205 				goto einval;
3206 			if (cgroup_parse_float(buf, 2, &v))
3207 				goto einval;
3208 			if (v < 0 || v > 10000)
3209 				goto einval;
3210 			qos[tok] = v * 100;
3211 			break;
3212 		case QOS_RLAT:
3213 		case QOS_WLAT:
3214 			if (match_u64(&args[0], &v))
3215 				goto einval;
3216 			qos[tok] = v;
3217 			break;
3218 		case QOS_MIN:
3219 		case QOS_MAX:
3220 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3221 			    sizeof(buf))
3222 				goto einval;
3223 			if (cgroup_parse_float(buf, 2, &v))
3224 				goto einval;
3225 			if (v < 0)
3226 				goto einval;
3227 			qos[tok] = clamp_t(s64, v * 100,
3228 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3229 			break;
3230 		default:
3231 			goto einval;
3232 		}
3233 		user = true;
3234 	}
3235 
3236 	if (qos[QOS_MIN] > qos[QOS_MAX])
3237 		goto einval;
3238 
3239 	spin_lock_irq(&ioc->lock);
3240 
3241 	if (enable) {
3242 		blk_stat_enable_accounting(ioc->rqos.q);
3243 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3244 		ioc->enabled = true;
3245 	} else {
3246 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3247 		ioc->enabled = false;
3248 	}
3249 
3250 	if (user) {
3251 		memcpy(ioc->params.qos, qos, sizeof(qos));
3252 		ioc->user_qos_params = true;
3253 	} else {
3254 		ioc->user_qos_params = false;
3255 	}
3256 
3257 	ioc_refresh_params(ioc, true);
3258 	spin_unlock_irq(&ioc->lock);
3259 
3260 	blkdev_put_no_open(bdev);
3261 	return nbytes;
3262 einval:
3263 	ret = -EINVAL;
3264 err:
3265 	blkdev_put_no_open(bdev);
3266 	return ret;
3267 }
3268 
3269 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3270 				 struct blkg_policy_data *pd, int off)
3271 {
3272 	const char *dname = blkg_dev_name(pd->blkg);
3273 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3274 	u64 *u = ioc->params.i_lcoefs;
3275 
3276 	if (!dname)
3277 		return 0;
3278 
3279 	seq_printf(sf, "%s ctrl=%s model=linear "
3280 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3281 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3282 		   dname, ioc->user_cost_model ? "user" : "auto",
3283 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3284 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3285 	return 0;
3286 }
3287 
3288 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3289 {
3290 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3291 
3292 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3293 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3294 	return 0;
3295 }
3296 
3297 static const match_table_t cost_ctrl_tokens = {
3298 	{ COST_CTRL,		"ctrl=%s"	},
3299 	{ COST_MODEL,		"model=%s"	},
3300 	{ NR_COST_CTRL_PARAMS,	NULL		},
3301 };
3302 
3303 static const match_table_t i_lcoef_tokens = {
3304 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3305 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3306 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3307 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3308 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3309 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3310 	{ NR_I_LCOEFS,		NULL		},
3311 };
3312 
3313 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3314 				    size_t nbytes, loff_t off)
3315 {
3316 	struct block_device *bdev;
3317 	struct ioc *ioc;
3318 	u64 u[NR_I_LCOEFS];
3319 	bool user;
3320 	char *p;
3321 	int ret;
3322 
3323 	bdev = blkcg_conf_open_bdev(&input);
3324 	if (IS_ERR(bdev))
3325 		return PTR_ERR(bdev);
3326 
3327 	ioc = q_to_ioc(bdev->bd_disk->queue);
3328 	if (!ioc) {
3329 		ret = blk_iocost_init(bdev->bd_disk->queue);
3330 		if (ret)
3331 			goto err;
3332 		ioc = q_to_ioc(bdev->bd_disk->queue);
3333 	}
3334 
3335 	spin_lock_irq(&ioc->lock);
3336 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3337 	user = ioc->user_cost_model;
3338 	spin_unlock_irq(&ioc->lock);
3339 
3340 	while ((p = strsep(&input, " \t\n"))) {
3341 		substring_t args[MAX_OPT_ARGS];
3342 		char buf[32];
3343 		int tok;
3344 		u64 v;
3345 
3346 		if (!*p)
3347 			continue;
3348 
3349 		switch (match_token(p, cost_ctrl_tokens, args)) {
3350 		case COST_CTRL:
3351 			match_strlcpy(buf, &args[0], sizeof(buf));
3352 			if (!strcmp(buf, "auto"))
3353 				user = false;
3354 			else if (!strcmp(buf, "user"))
3355 				user = true;
3356 			else
3357 				goto einval;
3358 			continue;
3359 		case COST_MODEL:
3360 			match_strlcpy(buf, &args[0], sizeof(buf));
3361 			if (strcmp(buf, "linear"))
3362 				goto einval;
3363 			continue;
3364 		}
3365 
3366 		tok = match_token(p, i_lcoef_tokens, args);
3367 		if (tok == NR_I_LCOEFS)
3368 			goto einval;
3369 		if (match_u64(&args[0], &v))
3370 			goto einval;
3371 		u[tok] = v;
3372 		user = true;
3373 	}
3374 
3375 	spin_lock_irq(&ioc->lock);
3376 	if (user) {
3377 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3378 		ioc->user_cost_model = true;
3379 	} else {
3380 		ioc->user_cost_model = false;
3381 	}
3382 	ioc_refresh_params(ioc, true);
3383 	spin_unlock_irq(&ioc->lock);
3384 
3385 	blkdev_put_no_open(bdev);
3386 	return nbytes;
3387 
3388 einval:
3389 	ret = -EINVAL;
3390 err:
3391 	blkdev_put_no_open(bdev);
3392 	return ret;
3393 }
3394 
3395 static struct cftype ioc_files[] = {
3396 	{
3397 		.name = "weight",
3398 		.flags = CFTYPE_NOT_ON_ROOT,
3399 		.seq_show = ioc_weight_show,
3400 		.write = ioc_weight_write,
3401 	},
3402 	{
3403 		.name = "cost.qos",
3404 		.flags = CFTYPE_ONLY_ON_ROOT,
3405 		.seq_show = ioc_qos_show,
3406 		.write = ioc_qos_write,
3407 	},
3408 	{
3409 		.name = "cost.model",
3410 		.flags = CFTYPE_ONLY_ON_ROOT,
3411 		.seq_show = ioc_cost_model_show,
3412 		.write = ioc_cost_model_write,
3413 	},
3414 	{}
3415 };
3416 
3417 static struct blkcg_policy blkcg_policy_iocost = {
3418 	.dfl_cftypes	= ioc_files,
3419 	.cpd_alloc_fn	= ioc_cpd_alloc,
3420 	.cpd_free_fn	= ioc_cpd_free,
3421 	.pd_alloc_fn	= ioc_pd_alloc,
3422 	.pd_init_fn	= ioc_pd_init,
3423 	.pd_free_fn	= ioc_pd_free,
3424 	.pd_stat_fn	= ioc_pd_stat,
3425 };
3426 
3427 static int __init ioc_init(void)
3428 {
3429 	return blkcg_policy_register(&blkcg_policy_iocost);
3430 }
3431 
3432 static void __exit ioc_exit(void)
3433 {
3434 	blkcg_policy_unregister(&blkcg_policy_iocost);
3435 }
3436 
3437 module_init(ioc_init);
3438 module_exit(ioc_exit);
3439