1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <linux/blk-cgroup.h> 182 #include <asm/local.h> 183 #include <asm/local64.h> 184 #include "blk-rq-qos.h" 185 #include "blk-stat.h" 186 #include "blk-wbt.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat local_stat; 537 struct iocg_stat desc_stat; 538 struct iocg_stat last_stat; 539 u64 last_stat_abs_vusage; 540 u64 usage_delta_us; 541 u64 wait_since; 542 u64 indebt_since; 543 u64 indelay_since; 544 545 /* this iocg's depth in the hierarchy and ancestors including self */ 546 int level; 547 struct ioc_gq *ancestors[]; 548 }; 549 550 /* per cgroup */ 551 struct ioc_cgrp { 552 struct blkcg_policy_data cpd; 553 unsigned int dfl_weight; 554 }; 555 556 struct ioc_now { 557 u64 now_ns; 558 u64 now; 559 u64 vnow; 560 u64 vrate; 561 }; 562 563 struct iocg_wait { 564 struct wait_queue_entry wait; 565 struct bio *bio; 566 u64 abs_cost; 567 bool committed; 568 }; 569 570 struct iocg_wake_ctx { 571 struct ioc_gq *iocg; 572 u32 hw_inuse; 573 s64 vbudget; 574 }; 575 576 static const struct ioc_params autop[] = { 577 [AUTOP_HDD] = { 578 .qos = { 579 [QOS_RLAT] = 250000, /* 250ms */ 580 [QOS_WLAT] = 250000, 581 [QOS_MIN] = VRATE_MIN_PPM, 582 [QOS_MAX] = VRATE_MAX_PPM, 583 }, 584 .i_lcoefs = { 585 [I_LCOEF_RBPS] = 174019176, 586 [I_LCOEF_RSEQIOPS] = 41708, 587 [I_LCOEF_RRANDIOPS] = 370, 588 [I_LCOEF_WBPS] = 178075866, 589 [I_LCOEF_WSEQIOPS] = 42705, 590 [I_LCOEF_WRANDIOPS] = 378, 591 }, 592 }, 593 [AUTOP_SSD_QD1] = { 594 .qos = { 595 [QOS_RLAT] = 25000, /* 25ms */ 596 [QOS_WLAT] = 25000, 597 [QOS_MIN] = VRATE_MIN_PPM, 598 [QOS_MAX] = VRATE_MAX_PPM, 599 }, 600 .i_lcoefs = { 601 [I_LCOEF_RBPS] = 245855193, 602 [I_LCOEF_RSEQIOPS] = 61575, 603 [I_LCOEF_RRANDIOPS] = 6946, 604 [I_LCOEF_WBPS] = 141365009, 605 [I_LCOEF_WSEQIOPS] = 33716, 606 [I_LCOEF_WRANDIOPS] = 26796, 607 }, 608 }, 609 [AUTOP_SSD_DFL] = { 610 .qos = { 611 [QOS_RLAT] = 25000, /* 25ms */ 612 [QOS_WLAT] = 25000, 613 [QOS_MIN] = VRATE_MIN_PPM, 614 [QOS_MAX] = VRATE_MAX_PPM, 615 }, 616 .i_lcoefs = { 617 [I_LCOEF_RBPS] = 488636629, 618 [I_LCOEF_RSEQIOPS] = 8932, 619 [I_LCOEF_RRANDIOPS] = 8518, 620 [I_LCOEF_WBPS] = 427891549, 621 [I_LCOEF_WSEQIOPS] = 28755, 622 [I_LCOEF_WRANDIOPS] = 21940, 623 }, 624 .too_fast_vrate_pct = 500, 625 }, 626 [AUTOP_SSD_FAST] = { 627 .qos = { 628 [QOS_RLAT] = 5000, /* 5ms */ 629 [QOS_WLAT] = 5000, 630 [QOS_MIN] = VRATE_MIN_PPM, 631 [QOS_MAX] = VRATE_MAX_PPM, 632 }, 633 .i_lcoefs = { 634 [I_LCOEF_RBPS] = 3102524156LLU, 635 [I_LCOEF_RSEQIOPS] = 724816, 636 [I_LCOEF_RRANDIOPS] = 778122, 637 [I_LCOEF_WBPS] = 1742780862LLU, 638 [I_LCOEF_WSEQIOPS] = 425702, 639 [I_LCOEF_WRANDIOPS] = 443193, 640 }, 641 .too_slow_vrate_pct = 10, 642 }, 643 }; 644 645 /* 646 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 647 * vtime credit shortage and down on device saturation. 648 */ 649 static u32 vrate_adj_pct[] = 650 { 0, 0, 0, 0, 651 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 652 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 653 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 654 655 static struct blkcg_policy blkcg_policy_iocost; 656 657 /* accessors and helpers */ 658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 659 { 660 return container_of(rqos, struct ioc, rqos); 661 } 662 663 static struct ioc *q_to_ioc(struct request_queue *q) 664 { 665 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 666 } 667 668 static const char *q_name(struct request_queue *q) 669 { 670 if (blk_queue_registered(q)) 671 return kobject_name(q->kobj.parent); 672 else 673 return "<unknown>"; 674 } 675 676 static const char __maybe_unused *ioc_name(struct ioc *ioc) 677 { 678 return q_name(ioc->rqos.q); 679 } 680 681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 682 { 683 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 684 } 685 686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 687 { 688 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 689 } 690 691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 692 { 693 return pd_to_blkg(&iocg->pd); 694 } 695 696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 697 { 698 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 699 struct ioc_cgrp, cpd); 700 } 701 702 /* 703 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 704 * weight, the more expensive each IO. Must round up. 705 */ 706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 707 { 708 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 709 } 710 711 /* 712 * The inverse of abs_cost_to_cost(). Must round up. 713 */ 714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 715 { 716 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 717 } 718 719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 720 u64 abs_cost, u64 cost) 721 { 722 struct iocg_pcpu_stat *gcs; 723 724 bio->bi_iocost_cost = cost; 725 atomic64_add(cost, &iocg->vtime); 726 727 gcs = get_cpu_ptr(iocg->pcpu_stat); 728 local64_add(abs_cost, &gcs->abs_vusage); 729 put_cpu_ptr(gcs); 730 } 731 732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 733 { 734 if (lock_ioc) { 735 spin_lock_irqsave(&iocg->ioc->lock, *flags); 736 spin_lock(&iocg->waitq.lock); 737 } else { 738 spin_lock_irqsave(&iocg->waitq.lock, *flags); 739 } 740 } 741 742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 743 { 744 if (unlock_ioc) { 745 spin_unlock(&iocg->waitq.lock); 746 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 747 } else { 748 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 749 } 750 } 751 752 #define CREATE_TRACE_POINTS 753 #include <trace/events/iocost.h> 754 755 static void ioc_refresh_margins(struct ioc *ioc) 756 { 757 struct ioc_margins *margins = &ioc->margins; 758 u32 period_us = ioc->period_us; 759 u64 vrate = ioc->vtime_base_rate; 760 761 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 762 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 763 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 764 } 765 766 /* latency Qos params changed, update period_us and all the dependent params */ 767 static void ioc_refresh_period_us(struct ioc *ioc) 768 { 769 u32 ppm, lat, multi, period_us; 770 771 lockdep_assert_held(&ioc->lock); 772 773 /* pick the higher latency target */ 774 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 775 ppm = ioc->params.qos[QOS_RPPM]; 776 lat = ioc->params.qos[QOS_RLAT]; 777 } else { 778 ppm = ioc->params.qos[QOS_WPPM]; 779 lat = ioc->params.qos[QOS_WLAT]; 780 } 781 782 /* 783 * We want the period to be long enough to contain a healthy number 784 * of IOs while short enough for granular control. Define it as a 785 * multiple of the latency target. Ideally, the multiplier should 786 * be scaled according to the percentile so that it would nominally 787 * contain a certain number of requests. Let's be simpler and 788 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 789 */ 790 if (ppm) 791 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 792 else 793 multi = 2; 794 period_us = multi * lat; 795 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 796 797 /* calculate dependent params */ 798 ioc->period_us = period_us; 799 ioc->timer_slack_ns = div64_u64( 800 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 801 100); 802 ioc_refresh_margins(ioc); 803 } 804 805 static int ioc_autop_idx(struct ioc *ioc) 806 { 807 int idx = ioc->autop_idx; 808 const struct ioc_params *p = &autop[idx]; 809 u32 vrate_pct; 810 u64 now_ns; 811 812 /* rotational? */ 813 if (!blk_queue_nonrot(ioc->rqos.q)) 814 return AUTOP_HDD; 815 816 /* handle SATA SSDs w/ broken NCQ */ 817 if (blk_queue_depth(ioc->rqos.q) == 1) 818 return AUTOP_SSD_QD1; 819 820 /* use one of the normal ssd sets */ 821 if (idx < AUTOP_SSD_DFL) 822 return AUTOP_SSD_DFL; 823 824 /* if user is overriding anything, maintain what was there */ 825 if (ioc->user_qos_params || ioc->user_cost_model) 826 return idx; 827 828 /* step up/down based on the vrate */ 829 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 830 now_ns = ktime_get_ns(); 831 832 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 833 if (!ioc->autop_too_fast_at) 834 ioc->autop_too_fast_at = now_ns; 835 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 836 return idx + 1; 837 } else { 838 ioc->autop_too_fast_at = 0; 839 } 840 841 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 842 if (!ioc->autop_too_slow_at) 843 ioc->autop_too_slow_at = now_ns; 844 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 845 return idx - 1; 846 } else { 847 ioc->autop_too_slow_at = 0; 848 } 849 850 return idx; 851 } 852 853 /* 854 * Take the followings as input 855 * 856 * @bps maximum sequential throughput 857 * @seqiops maximum sequential 4k iops 858 * @randiops maximum random 4k iops 859 * 860 * and calculate the linear model cost coefficients. 861 * 862 * *@page per-page cost 1s / (@bps / 4096) 863 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 864 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 865 */ 866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 867 u64 *page, u64 *seqio, u64 *randio) 868 { 869 u64 v; 870 871 *page = *seqio = *randio = 0; 872 873 if (bps) 874 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 875 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 876 877 if (seqiops) { 878 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 879 if (v > *page) 880 *seqio = v - *page; 881 } 882 883 if (randiops) { 884 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 885 if (v > *page) 886 *randio = v - *page; 887 } 888 } 889 890 static void ioc_refresh_lcoefs(struct ioc *ioc) 891 { 892 u64 *u = ioc->params.i_lcoefs; 893 u64 *c = ioc->params.lcoefs; 894 895 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 896 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 897 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 898 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 899 } 900 901 static bool ioc_refresh_params(struct ioc *ioc, bool force) 902 { 903 const struct ioc_params *p; 904 int idx; 905 906 lockdep_assert_held(&ioc->lock); 907 908 idx = ioc_autop_idx(ioc); 909 p = &autop[idx]; 910 911 if (idx == ioc->autop_idx && !force) 912 return false; 913 914 if (idx != ioc->autop_idx) 915 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 916 917 ioc->autop_idx = idx; 918 ioc->autop_too_fast_at = 0; 919 ioc->autop_too_slow_at = 0; 920 921 if (!ioc->user_qos_params) 922 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 923 if (!ioc->user_cost_model) 924 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 925 926 ioc_refresh_period_us(ioc); 927 ioc_refresh_lcoefs(ioc); 928 929 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 930 VTIME_PER_USEC, MILLION); 931 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 932 VTIME_PER_USEC, MILLION); 933 934 return true; 935 } 936 937 /* 938 * When an iocg accumulates too much vtime or gets deactivated, we throw away 939 * some vtime, which lowers the overall device utilization. As the exact amount 940 * which is being thrown away is known, we can compensate by accelerating the 941 * vrate accordingly so that the extra vtime generated in the current period 942 * matches what got lost. 943 */ 944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 945 { 946 s64 pleft = ioc->period_at + ioc->period_us - now->now; 947 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 948 s64 vcomp, vcomp_min, vcomp_max; 949 950 lockdep_assert_held(&ioc->lock); 951 952 /* we need some time left in this period */ 953 if (pleft <= 0) 954 goto done; 955 956 /* 957 * Calculate how much vrate should be adjusted to offset the error. 958 * Limit the amount of adjustment and deduct the adjusted amount from 959 * the error. 960 */ 961 vcomp = -div64_s64(ioc->vtime_err, pleft); 962 vcomp_min = -(ioc->vtime_base_rate >> 1); 963 vcomp_max = ioc->vtime_base_rate; 964 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 965 966 ioc->vtime_err += vcomp * pleft; 967 968 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 969 done: 970 /* bound how much error can accumulate */ 971 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 972 } 973 974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 975 int nr_lagging, int nr_shortages, 976 int prev_busy_level, u32 *missed_ppm) 977 { 978 u64 vrate = ioc->vtime_base_rate; 979 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 980 981 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 982 if (ioc->busy_level != prev_busy_level || nr_lagging) 983 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 984 missed_ppm, rq_wait_pct, 985 nr_lagging, nr_shortages); 986 987 return; 988 } 989 990 /* rq_wait signal is always reliable, ignore user vrate_min */ 991 if (rq_wait_pct > RQ_WAIT_BUSY_PCT) 992 vrate_min = VRATE_MIN; 993 994 /* 995 * If vrate is out of bounds, apply clamp gradually as the 996 * bounds can change abruptly. Otherwise, apply busy_level 997 * based adjustment. 998 */ 999 if (vrate < vrate_min) { 1000 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 1001 vrate = min(vrate, vrate_min); 1002 } else if (vrate > vrate_max) { 1003 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1004 vrate = max(vrate, vrate_max); 1005 } else { 1006 int idx = min_t(int, abs(ioc->busy_level), 1007 ARRAY_SIZE(vrate_adj_pct) - 1); 1008 u32 adj_pct = vrate_adj_pct[idx]; 1009 1010 if (ioc->busy_level > 0) 1011 adj_pct = 100 - adj_pct; 1012 else 1013 adj_pct = 100 + adj_pct; 1014 1015 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1016 vrate_min, vrate_max); 1017 } 1018 1019 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1020 nr_lagging, nr_shortages); 1021 1022 ioc->vtime_base_rate = vrate; 1023 ioc_refresh_margins(ioc); 1024 } 1025 1026 /* take a snapshot of the current [v]time and vrate */ 1027 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1028 { 1029 unsigned seq; 1030 1031 now->now_ns = ktime_get(); 1032 now->now = ktime_to_us(now->now_ns); 1033 now->vrate = atomic64_read(&ioc->vtime_rate); 1034 1035 /* 1036 * The current vtime is 1037 * 1038 * vtime at period start + (wallclock time since the start) * vrate 1039 * 1040 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1041 * needed, they're seqcount protected. 1042 */ 1043 do { 1044 seq = read_seqcount_begin(&ioc->period_seqcount); 1045 now->vnow = ioc->period_at_vtime + 1046 (now->now - ioc->period_at) * now->vrate; 1047 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1048 } 1049 1050 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1051 { 1052 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1053 1054 write_seqcount_begin(&ioc->period_seqcount); 1055 ioc->period_at = now->now; 1056 ioc->period_at_vtime = now->vnow; 1057 write_seqcount_end(&ioc->period_seqcount); 1058 1059 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1060 add_timer(&ioc->timer); 1061 } 1062 1063 /* 1064 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1065 * weight sums and propagate upwards accordingly. If @save, the current margin 1066 * is saved to be used as reference for later inuse in-period adjustments. 1067 */ 1068 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1069 bool save, struct ioc_now *now) 1070 { 1071 struct ioc *ioc = iocg->ioc; 1072 int lvl; 1073 1074 lockdep_assert_held(&ioc->lock); 1075 1076 inuse = clamp_t(u32, inuse, 1, active); 1077 1078 iocg->last_inuse = iocg->inuse; 1079 if (save) 1080 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1081 1082 if (active == iocg->active && inuse == iocg->inuse) 1083 return; 1084 1085 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1086 struct ioc_gq *parent = iocg->ancestors[lvl]; 1087 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1088 u32 parent_active = 0, parent_inuse = 0; 1089 1090 /* update the level sums */ 1091 parent->child_active_sum += (s32)(active - child->active); 1092 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1093 /* apply the udpates */ 1094 child->active = active; 1095 child->inuse = inuse; 1096 1097 /* 1098 * The delta between inuse and active sums indicates that 1099 * much of weight is being given away. Parent's inuse 1100 * and active should reflect the ratio. 1101 */ 1102 if (parent->child_active_sum) { 1103 parent_active = parent->weight; 1104 parent_inuse = DIV64_U64_ROUND_UP( 1105 parent_active * parent->child_inuse_sum, 1106 parent->child_active_sum); 1107 } 1108 1109 /* do we need to keep walking up? */ 1110 if (parent_active == parent->active && 1111 parent_inuse == parent->inuse) 1112 break; 1113 1114 active = parent_active; 1115 inuse = parent_inuse; 1116 } 1117 1118 ioc->weights_updated = true; 1119 } 1120 1121 static void commit_weights(struct ioc *ioc) 1122 { 1123 lockdep_assert_held(&ioc->lock); 1124 1125 if (ioc->weights_updated) { 1126 /* paired with rmb in current_hweight(), see there */ 1127 smp_wmb(); 1128 atomic_inc(&ioc->hweight_gen); 1129 ioc->weights_updated = false; 1130 } 1131 } 1132 1133 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1134 bool save, struct ioc_now *now) 1135 { 1136 __propagate_weights(iocg, active, inuse, save, now); 1137 commit_weights(iocg->ioc); 1138 } 1139 1140 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1141 { 1142 struct ioc *ioc = iocg->ioc; 1143 int lvl; 1144 u32 hwa, hwi; 1145 int ioc_gen; 1146 1147 /* hot path - if uptodate, use cached */ 1148 ioc_gen = atomic_read(&ioc->hweight_gen); 1149 if (ioc_gen == iocg->hweight_gen) 1150 goto out; 1151 1152 /* 1153 * Paired with wmb in commit_weights(). If we saw the updated 1154 * hweight_gen, all the weight updates from __propagate_weights() are 1155 * visible too. 1156 * 1157 * We can race with weight updates during calculation and get it 1158 * wrong. However, hweight_gen would have changed and a future 1159 * reader will recalculate and we're guaranteed to discard the 1160 * wrong result soon. 1161 */ 1162 smp_rmb(); 1163 1164 hwa = hwi = WEIGHT_ONE; 1165 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1166 struct ioc_gq *parent = iocg->ancestors[lvl]; 1167 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1168 u64 active_sum = READ_ONCE(parent->child_active_sum); 1169 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1170 u32 active = READ_ONCE(child->active); 1171 u32 inuse = READ_ONCE(child->inuse); 1172 1173 /* we can race with deactivations and either may read as zero */ 1174 if (!active_sum || !inuse_sum) 1175 continue; 1176 1177 active_sum = max_t(u64, active, active_sum); 1178 hwa = div64_u64((u64)hwa * active, active_sum); 1179 1180 inuse_sum = max_t(u64, inuse, inuse_sum); 1181 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1182 } 1183 1184 iocg->hweight_active = max_t(u32, hwa, 1); 1185 iocg->hweight_inuse = max_t(u32, hwi, 1); 1186 iocg->hweight_gen = ioc_gen; 1187 out: 1188 if (hw_activep) 1189 *hw_activep = iocg->hweight_active; 1190 if (hw_inusep) 1191 *hw_inusep = iocg->hweight_inuse; 1192 } 1193 1194 /* 1195 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1196 * other weights stay unchanged. 1197 */ 1198 static u32 current_hweight_max(struct ioc_gq *iocg) 1199 { 1200 u32 hwm = WEIGHT_ONE; 1201 u32 inuse = iocg->active; 1202 u64 child_inuse_sum; 1203 int lvl; 1204 1205 lockdep_assert_held(&iocg->ioc->lock); 1206 1207 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1208 struct ioc_gq *parent = iocg->ancestors[lvl]; 1209 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1210 1211 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1212 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1213 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1214 parent->child_active_sum); 1215 } 1216 1217 return max_t(u32, hwm, 1); 1218 } 1219 1220 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1221 { 1222 struct ioc *ioc = iocg->ioc; 1223 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1224 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1225 u32 weight; 1226 1227 lockdep_assert_held(&ioc->lock); 1228 1229 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1230 if (weight != iocg->weight && iocg->active) 1231 propagate_weights(iocg, weight, iocg->inuse, true, now); 1232 iocg->weight = weight; 1233 } 1234 1235 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1236 { 1237 struct ioc *ioc = iocg->ioc; 1238 u64 last_period, cur_period; 1239 u64 vtime, vtarget; 1240 int i; 1241 1242 /* 1243 * If seem to be already active, just update the stamp to tell the 1244 * timer that we're still active. We don't mind occassional races. 1245 */ 1246 if (!list_empty(&iocg->active_list)) { 1247 ioc_now(ioc, now); 1248 cur_period = atomic64_read(&ioc->cur_period); 1249 if (atomic64_read(&iocg->active_period) != cur_period) 1250 atomic64_set(&iocg->active_period, cur_period); 1251 return true; 1252 } 1253 1254 /* racy check on internal node IOs, treat as root level IOs */ 1255 if (iocg->child_active_sum) 1256 return false; 1257 1258 spin_lock_irq(&ioc->lock); 1259 1260 ioc_now(ioc, now); 1261 1262 /* update period */ 1263 cur_period = atomic64_read(&ioc->cur_period); 1264 last_period = atomic64_read(&iocg->active_period); 1265 atomic64_set(&iocg->active_period, cur_period); 1266 1267 /* already activated or breaking leaf-only constraint? */ 1268 if (!list_empty(&iocg->active_list)) 1269 goto succeed_unlock; 1270 for (i = iocg->level - 1; i > 0; i--) 1271 if (!list_empty(&iocg->ancestors[i]->active_list)) 1272 goto fail_unlock; 1273 1274 if (iocg->child_active_sum) 1275 goto fail_unlock; 1276 1277 /* 1278 * Always start with the target budget. On deactivation, we throw away 1279 * anything above it. 1280 */ 1281 vtarget = now->vnow - ioc->margins.target; 1282 vtime = atomic64_read(&iocg->vtime); 1283 1284 atomic64_add(vtarget - vtime, &iocg->vtime); 1285 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1286 vtime = vtarget; 1287 1288 /* 1289 * Activate, propagate weight and start period timer if not 1290 * running. Reset hweight_gen to avoid accidental match from 1291 * wrapping. 1292 */ 1293 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1294 list_add(&iocg->active_list, &ioc->active_iocgs); 1295 1296 propagate_weights(iocg, iocg->weight, 1297 iocg->last_inuse ?: iocg->weight, true, now); 1298 1299 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1300 last_period, cur_period, vtime); 1301 1302 iocg->activated_at = now->now; 1303 1304 if (ioc->running == IOC_IDLE) { 1305 ioc->running = IOC_RUNNING; 1306 ioc->dfgv_period_at = now->now; 1307 ioc->dfgv_period_rem = 0; 1308 ioc_start_period(ioc, now); 1309 } 1310 1311 succeed_unlock: 1312 spin_unlock_irq(&ioc->lock); 1313 return true; 1314 1315 fail_unlock: 1316 spin_unlock_irq(&ioc->lock); 1317 return false; 1318 } 1319 1320 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1321 { 1322 struct ioc *ioc = iocg->ioc; 1323 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1324 u64 tdelta, delay, new_delay; 1325 s64 vover, vover_pct; 1326 u32 hwa; 1327 1328 lockdep_assert_held(&iocg->waitq.lock); 1329 1330 /* calculate the current delay in effect - 1/2 every second */ 1331 tdelta = now->now - iocg->delay_at; 1332 if (iocg->delay) 1333 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1334 else 1335 delay = 0; 1336 1337 /* calculate the new delay from the debt amount */ 1338 current_hweight(iocg, &hwa, NULL); 1339 vover = atomic64_read(&iocg->vtime) + 1340 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1341 vover_pct = div64_s64(100 * vover, 1342 ioc->period_us * ioc->vtime_base_rate); 1343 1344 if (vover_pct <= MIN_DELAY_THR_PCT) 1345 new_delay = 0; 1346 else if (vover_pct >= MAX_DELAY_THR_PCT) 1347 new_delay = MAX_DELAY; 1348 else 1349 new_delay = MIN_DELAY + 1350 div_u64((MAX_DELAY - MIN_DELAY) * 1351 (vover_pct - MIN_DELAY_THR_PCT), 1352 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1353 1354 /* pick the higher one and apply */ 1355 if (new_delay > delay) { 1356 iocg->delay = new_delay; 1357 iocg->delay_at = now->now; 1358 delay = new_delay; 1359 } 1360 1361 if (delay >= MIN_DELAY) { 1362 if (!iocg->indelay_since) 1363 iocg->indelay_since = now->now; 1364 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1365 return true; 1366 } else { 1367 if (iocg->indelay_since) { 1368 iocg->local_stat.indelay_us += now->now - iocg->indelay_since; 1369 iocg->indelay_since = 0; 1370 } 1371 iocg->delay = 0; 1372 blkcg_clear_delay(blkg); 1373 return false; 1374 } 1375 } 1376 1377 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1378 struct ioc_now *now) 1379 { 1380 struct iocg_pcpu_stat *gcs; 1381 1382 lockdep_assert_held(&iocg->ioc->lock); 1383 lockdep_assert_held(&iocg->waitq.lock); 1384 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1385 1386 /* 1387 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1388 * inuse donating all of it share to others until its debt is paid off. 1389 */ 1390 if (!iocg->abs_vdebt && abs_cost) { 1391 iocg->indebt_since = now->now; 1392 propagate_weights(iocg, iocg->active, 0, false, now); 1393 } 1394 1395 iocg->abs_vdebt += abs_cost; 1396 1397 gcs = get_cpu_ptr(iocg->pcpu_stat); 1398 local64_add(abs_cost, &gcs->abs_vusage); 1399 put_cpu_ptr(gcs); 1400 } 1401 1402 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1403 struct ioc_now *now) 1404 { 1405 lockdep_assert_held(&iocg->ioc->lock); 1406 lockdep_assert_held(&iocg->waitq.lock); 1407 1408 /* make sure that nobody messed with @iocg */ 1409 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1410 WARN_ON_ONCE(iocg->inuse > 1); 1411 1412 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1413 1414 /* if debt is paid in full, restore inuse */ 1415 if (!iocg->abs_vdebt) { 1416 iocg->local_stat.indebt_us += now->now - iocg->indebt_since; 1417 iocg->indebt_since = 0; 1418 1419 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1420 false, now); 1421 } 1422 } 1423 1424 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1425 int flags, void *key) 1426 { 1427 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1428 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1429 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1430 1431 ctx->vbudget -= cost; 1432 1433 if (ctx->vbudget < 0) 1434 return -1; 1435 1436 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1437 1438 /* 1439 * autoremove_wake_function() removes the wait entry only when it 1440 * actually changed the task state. We want the wait always 1441 * removed. Remove explicitly and use default_wake_function(). 1442 */ 1443 list_del_init(&wq_entry->entry); 1444 wait->committed = true; 1445 1446 default_wake_function(wq_entry, mode, flags, key); 1447 return 0; 1448 } 1449 1450 /* 1451 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1452 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1453 * addition to iocg->waitq.lock. 1454 */ 1455 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1456 struct ioc_now *now) 1457 { 1458 struct ioc *ioc = iocg->ioc; 1459 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1460 u64 vshortage, expires, oexpires; 1461 s64 vbudget; 1462 u32 hwa; 1463 1464 lockdep_assert_held(&iocg->waitq.lock); 1465 1466 current_hweight(iocg, &hwa, NULL); 1467 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1468 1469 /* pay off debt */ 1470 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1471 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1472 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1473 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1474 1475 lockdep_assert_held(&ioc->lock); 1476 1477 atomic64_add(vpay, &iocg->vtime); 1478 atomic64_add(vpay, &iocg->done_vtime); 1479 iocg_pay_debt(iocg, abs_vpay, now); 1480 vbudget -= vpay; 1481 } 1482 1483 if (iocg->abs_vdebt || iocg->delay) 1484 iocg_kick_delay(iocg, now); 1485 1486 /* 1487 * Debt can still be outstanding if we haven't paid all yet or the 1488 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1489 * under debt. Make sure @vbudget reflects the outstanding amount and is 1490 * not positive. 1491 */ 1492 if (iocg->abs_vdebt) { 1493 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1494 vbudget = min_t(s64, 0, vbudget - vdebt); 1495 } 1496 1497 /* 1498 * Wake up the ones which are due and see how much vtime we'll need for 1499 * the next one. As paying off debt restores hw_inuse, it must be read 1500 * after the above debt payment. 1501 */ 1502 ctx.vbudget = vbudget; 1503 current_hweight(iocg, NULL, &ctx.hw_inuse); 1504 1505 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1506 1507 if (!waitqueue_active(&iocg->waitq)) { 1508 if (iocg->wait_since) { 1509 iocg->local_stat.wait_us += now->now - iocg->wait_since; 1510 iocg->wait_since = 0; 1511 } 1512 return; 1513 } 1514 1515 if (!iocg->wait_since) 1516 iocg->wait_since = now->now; 1517 1518 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1519 return; 1520 1521 /* determine next wakeup, add a timer margin to guarantee chunking */ 1522 vshortage = -ctx.vbudget; 1523 expires = now->now_ns + 1524 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1525 NSEC_PER_USEC; 1526 expires += ioc->timer_slack_ns; 1527 1528 /* if already active and close enough, don't bother */ 1529 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1530 if (hrtimer_is_queued(&iocg->waitq_timer) && 1531 abs(oexpires - expires) <= ioc->timer_slack_ns) 1532 return; 1533 1534 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1535 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1536 } 1537 1538 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1539 { 1540 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1541 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1542 struct ioc_now now; 1543 unsigned long flags; 1544 1545 ioc_now(iocg->ioc, &now); 1546 1547 iocg_lock(iocg, pay_debt, &flags); 1548 iocg_kick_waitq(iocg, pay_debt, &now); 1549 iocg_unlock(iocg, pay_debt, &flags); 1550 1551 return HRTIMER_NORESTART; 1552 } 1553 1554 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1555 { 1556 u32 nr_met[2] = { }; 1557 u32 nr_missed[2] = { }; 1558 u64 rq_wait_ns = 0; 1559 int cpu, rw; 1560 1561 for_each_online_cpu(cpu) { 1562 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1563 u64 this_rq_wait_ns; 1564 1565 for (rw = READ; rw <= WRITE; rw++) { 1566 u32 this_met = local_read(&stat->missed[rw].nr_met); 1567 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1568 1569 nr_met[rw] += this_met - stat->missed[rw].last_met; 1570 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1571 stat->missed[rw].last_met = this_met; 1572 stat->missed[rw].last_missed = this_missed; 1573 } 1574 1575 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1576 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1577 stat->last_rq_wait_ns = this_rq_wait_ns; 1578 } 1579 1580 for (rw = READ; rw <= WRITE; rw++) { 1581 if (nr_met[rw] + nr_missed[rw]) 1582 missed_ppm_ar[rw] = 1583 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1584 nr_met[rw] + nr_missed[rw]); 1585 else 1586 missed_ppm_ar[rw] = 0; 1587 } 1588 1589 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1590 ioc->period_us * NSEC_PER_USEC); 1591 } 1592 1593 /* was iocg idle this period? */ 1594 static bool iocg_is_idle(struct ioc_gq *iocg) 1595 { 1596 struct ioc *ioc = iocg->ioc; 1597 1598 /* did something get issued this period? */ 1599 if (atomic64_read(&iocg->active_period) == 1600 atomic64_read(&ioc->cur_period)) 1601 return false; 1602 1603 /* is something in flight? */ 1604 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1605 return false; 1606 1607 return true; 1608 } 1609 1610 /* 1611 * Call this function on the target leaf @iocg's to build pre-order traversal 1612 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1613 * ->walk_list and the caller is responsible for dissolving the list after use. 1614 */ 1615 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1616 struct list_head *inner_walk) 1617 { 1618 int lvl; 1619 1620 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1621 1622 /* find the first ancestor which hasn't been visited yet */ 1623 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1624 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1625 break; 1626 } 1627 1628 /* walk down and visit the inner nodes to get pre-order traversal */ 1629 while (++lvl <= iocg->level - 1) { 1630 struct ioc_gq *inner = iocg->ancestors[lvl]; 1631 1632 /* record traversal order */ 1633 list_add_tail(&inner->walk_list, inner_walk); 1634 } 1635 } 1636 1637 /* collect per-cpu counters and propagate the deltas to the parent */ 1638 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) 1639 { 1640 struct ioc *ioc = iocg->ioc; 1641 struct iocg_stat new_stat; 1642 u64 abs_vusage = 0; 1643 u64 vusage_delta; 1644 int cpu; 1645 1646 lockdep_assert_held(&iocg->ioc->lock); 1647 1648 /* collect per-cpu counters */ 1649 for_each_possible_cpu(cpu) { 1650 abs_vusage += local64_read( 1651 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1652 } 1653 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1654 iocg->last_stat_abs_vusage = abs_vusage; 1655 1656 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1657 iocg->local_stat.usage_us += iocg->usage_delta_us; 1658 1659 /* propagate upwards */ 1660 new_stat.usage_us = 1661 iocg->local_stat.usage_us + iocg->desc_stat.usage_us; 1662 new_stat.wait_us = 1663 iocg->local_stat.wait_us + iocg->desc_stat.wait_us; 1664 new_stat.indebt_us = 1665 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; 1666 new_stat.indelay_us = 1667 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; 1668 1669 /* propagate the deltas to the parent */ 1670 if (iocg->level > 0) { 1671 struct iocg_stat *parent_stat = 1672 &iocg->ancestors[iocg->level - 1]->desc_stat; 1673 1674 parent_stat->usage_us += 1675 new_stat.usage_us - iocg->last_stat.usage_us; 1676 parent_stat->wait_us += 1677 new_stat.wait_us - iocg->last_stat.wait_us; 1678 parent_stat->indebt_us += 1679 new_stat.indebt_us - iocg->last_stat.indebt_us; 1680 parent_stat->indelay_us += 1681 new_stat.indelay_us - iocg->last_stat.indelay_us; 1682 } 1683 1684 iocg->last_stat = new_stat; 1685 } 1686 1687 /* get stat counters ready for reading on all active iocgs */ 1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1689 { 1690 LIST_HEAD(inner_walk); 1691 struct ioc_gq *iocg, *tiocg; 1692 1693 /* flush leaves and build inner node walk list */ 1694 list_for_each_entry(iocg, target_iocgs, active_list) { 1695 iocg_flush_stat_one(iocg, now); 1696 iocg_build_inner_walk(iocg, &inner_walk); 1697 } 1698 1699 /* keep flushing upwards by walking the inner list backwards */ 1700 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1701 iocg_flush_stat_one(iocg, now); 1702 list_del_init(&iocg->walk_list); 1703 } 1704 } 1705 1706 /* 1707 * Determine what @iocg's hweight_inuse should be after donating unused 1708 * capacity. @hwm is the upper bound and used to signal no donation. This 1709 * function also throws away @iocg's excess budget. 1710 */ 1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1712 u32 usage, struct ioc_now *now) 1713 { 1714 struct ioc *ioc = iocg->ioc; 1715 u64 vtime = atomic64_read(&iocg->vtime); 1716 s64 excess, delta, target, new_hwi; 1717 1718 /* debt handling owns inuse for debtors */ 1719 if (iocg->abs_vdebt) 1720 return 1; 1721 1722 /* see whether minimum margin requirement is met */ 1723 if (waitqueue_active(&iocg->waitq) || 1724 time_after64(vtime, now->vnow - ioc->margins.min)) 1725 return hwm; 1726 1727 /* throw away excess above target */ 1728 excess = now->vnow - vtime - ioc->margins.target; 1729 if (excess > 0) { 1730 atomic64_add(excess, &iocg->vtime); 1731 atomic64_add(excess, &iocg->done_vtime); 1732 vtime += excess; 1733 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1734 } 1735 1736 /* 1737 * Let's say the distance between iocg's and device's vtimes as a 1738 * fraction of period duration is delta. Assuming that the iocg will 1739 * consume the usage determined above, we want to determine new_hwi so 1740 * that delta equals MARGIN_TARGET at the end of the next period. 1741 * 1742 * We need to execute usage worth of IOs while spending the sum of the 1743 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1744 * (delta): 1745 * 1746 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1747 * 1748 * Therefore, the new_hwi is: 1749 * 1750 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1751 */ 1752 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1753 now->vnow - ioc->period_at_vtime); 1754 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1755 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1756 1757 return clamp_t(s64, new_hwi, 1, hwm); 1758 } 1759 1760 /* 1761 * For work-conservation, an iocg which isn't using all of its share should 1762 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1763 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1764 * 1765 * #1 is mathematically simpler but has the drawback of requiring synchronous 1766 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1767 * change due to donation snapbacks as it has the possibility of grossly 1768 * overshooting what's allowed by the model and vrate. 1769 * 1770 * #2 is inherently safe with local operations. The donating iocg can easily 1771 * snap back to higher weights when needed without worrying about impacts on 1772 * other nodes as the impacts will be inherently correct. This also makes idle 1773 * iocg activations safe. The only effect activations have is decreasing 1774 * hweight_inuse of others, the right solution to which is for those iocgs to 1775 * snap back to higher weights. 1776 * 1777 * So, we go with #2. The challenge is calculating how each donating iocg's 1778 * inuse should be adjusted to achieve the target donation amounts. This is done 1779 * using Andy's method described in the following pdf. 1780 * 1781 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1782 * 1783 * Given the weights and target after-donation hweight_inuse values, Andy's 1784 * method determines how the proportional distribution should look like at each 1785 * sibling level to maintain the relative relationship between all non-donating 1786 * pairs. To roughly summarize, it divides the tree into donating and 1787 * non-donating parts, calculates global donation rate which is used to 1788 * determine the target hweight_inuse for each node, and then derives per-level 1789 * proportions. 1790 * 1791 * The following pdf shows that global distribution calculated this way can be 1792 * achieved by scaling inuse weights of donating leaves and propagating the 1793 * adjustments upwards proportionally. 1794 * 1795 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1796 * 1797 * Combining the above two, we can determine how each leaf iocg's inuse should 1798 * be adjusted to achieve the target donation. 1799 * 1800 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1801 * 1802 * The inline comments use symbols from the last pdf. 1803 * 1804 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1805 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1806 * t is the sum of the absolute budgets of donating nodes in the subtree. 1807 * w is the weight of the node. w = w_f + w_t 1808 * w_f is the non-donating portion of w. w_f = w * f / b 1809 * w_b is the donating portion of w. w_t = w * t / b 1810 * s is the sum of all sibling weights. s = Sum(w) for siblings 1811 * s_f and s_t are the non-donating and donating portions of s. 1812 * 1813 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1814 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1815 * after adjustments. Subscript r denotes the root node's values. 1816 */ 1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1818 { 1819 LIST_HEAD(over_hwa); 1820 LIST_HEAD(inner_walk); 1821 struct ioc_gq *iocg, *tiocg, *root_iocg; 1822 u32 after_sum, over_sum, over_target, gamma; 1823 1824 /* 1825 * It's pretty unlikely but possible for the total sum of 1826 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1827 * confuse the following calculations. If such condition is detected, 1828 * scale down everyone over its full share equally to keep the sum below 1829 * WEIGHT_ONE. 1830 */ 1831 after_sum = 0; 1832 over_sum = 0; 1833 list_for_each_entry(iocg, surpluses, surplus_list) { 1834 u32 hwa; 1835 1836 current_hweight(iocg, &hwa, NULL); 1837 after_sum += iocg->hweight_after_donation; 1838 1839 if (iocg->hweight_after_donation > hwa) { 1840 over_sum += iocg->hweight_after_donation; 1841 list_add(&iocg->walk_list, &over_hwa); 1842 } 1843 } 1844 1845 if (after_sum >= WEIGHT_ONE) { 1846 /* 1847 * The delta should be deducted from the over_sum, calculate 1848 * target over_sum value. 1849 */ 1850 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1851 WARN_ON_ONCE(over_sum <= over_delta); 1852 over_target = over_sum - over_delta; 1853 } else { 1854 over_target = 0; 1855 } 1856 1857 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1858 if (over_target) 1859 iocg->hweight_after_donation = 1860 div_u64((u64)iocg->hweight_after_donation * 1861 over_target, over_sum); 1862 list_del_init(&iocg->walk_list); 1863 } 1864 1865 /* 1866 * Build pre-order inner node walk list and prepare for donation 1867 * adjustment calculations. 1868 */ 1869 list_for_each_entry(iocg, surpluses, surplus_list) { 1870 iocg_build_inner_walk(iocg, &inner_walk); 1871 } 1872 1873 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1874 WARN_ON_ONCE(root_iocg->level > 0); 1875 1876 list_for_each_entry(iocg, &inner_walk, walk_list) { 1877 iocg->child_adjusted_sum = 0; 1878 iocg->hweight_donating = 0; 1879 iocg->hweight_after_donation = 0; 1880 } 1881 1882 /* 1883 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1884 * up the hierarchy. 1885 */ 1886 list_for_each_entry(iocg, surpluses, surplus_list) { 1887 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1888 1889 parent->hweight_donating += iocg->hweight_donating; 1890 parent->hweight_after_donation += iocg->hweight_after_donation; 1891 } 1892 1893 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1894 if (iocg->level > 0) { 1895 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1896 1897 parent->hweight_donating += iocg->hweight_donating; 1898 parent->hweight_after_donation += iocg->hweight_after_donation; 1899 } 1900 } 1901 1902 /* 1903 * Calculate inner hwa's (b) and make sure the donation values are 1904 * within the accepted ranges as we're doing low res calculations with 1905 * roundups. 1906 */ 1907 list_for_each_entry(iocg, &inner_walk, walk_list) { 1908 if (iocg->level) { 1909 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1910 1911 iocg->hweight_active = DIV64_U64_ROUND_UP( 1912 (u64)parent->hweight_active * iocg->active, 1913 parent->child_active_sum); 1914 1915 } 1916 1917 iocg->hweight_donating = min(iocg->hweight_donating, 1918 iocg->hweight_active); 1919 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1920 iocg->hweight_donating - 1); 1921 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1922 iocg->hweight_donating <= 1 || 1923 iocg->hweight_after_donation == 0)) { 1924 pr_warn("iocg: invalid donation weights in "); 1925 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1926 pr_cont(": active=%u donating=%u after=%u\n", 1927 iocg->hweight_active, iocg->hweight_donating, 1928 iocg->hweight_after_donation); 1929 } 1930 } 1931 1932 /* 1933 * Calculate the global donation rate (gamma) - the rate to adjust 1934 * non-donating budgets by. 1935 * 1936 * No need to use 64bit multiplication here as the first operand is 1937 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1938 * 1939 * We know that there are beneficiary nodes and the sum of the donating 1940 * hweights can't be whole; however, due to the round-ups during hweight 1941 * calculations, root_iocg->hweight_donating might still end up equal to 1942 * or greater than whole. Limit the range when calculating the divider. 1943 * 1944 * gamma = (1 - t_r') / (1 - t_r) 1945 */ 1946 gamma = DIV_ROUND_UP( 1947 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1948 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1949 1950 /* 1951 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1952 * nodes. 1953 */ 1954 list_for_each_entry(iocg, &inner_walk, walk_list) { 1955 struct ioc_gq *parent; 1956 u32 inuse, wpt, wptp; 1957 u64 st, sf; 1958 1959 if (iocg->level == 0) { 1960 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1961 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1962 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1963 WEIGHT_ONE - iocg->hweight_after_donation); 1964 continue; 1965 } 1966 1967 parent = iocg->ancestors[iocg->level - 1]; 1968 1969 /* b' = gamma * b_f + b_t' */ 1970 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1971 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1972 WEIGHT_ONE) + iocg->hweight_after_donation; 1973 1974 /* w' = s' * b' / b'_p */ 1975 inuse = DIV64_U64_ROUND_UP( 1976 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1977 parent->hweight_inuse); 1978 1979 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1980 st = DIV64_U64_ROUND_UP( 1981 iocg->child_active_sum * iocg->hweight_donating, 1982 iocg->hweight_active); 1983 sf = iocg->child_active_sum - st; 1984 wpt = DIV64_U64_ROUND_UP( 1985 (u64)iocg->active * iocg->hweight_donating, 1986 iocg->hweight_active); 1987 wptp = DIV64_U64_ROUND_UP( 1988 (u64)inuse * iocg->hweight_after_donation, 1989 iocg->hweight_inuse); 1990 1991 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1992 } 1993 1994 /* 1995 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1996 * we can finally determine leaf adjustments. 1997 */ 1998 list_for_each_entry(iocg, surpluses, surplus_list) { 1999 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2000 u32 inuse; 2001 2002 /* 2003 * In-debt iocgs participated in the donation calculation with 2004 * the minimum target hweight_inuse. Configuring inuse 2005 * accordingly would work fine but debt handling expects 2006 * @iocg->inuse stay at the minimum and we don't wanna 2007 * interfere. 2008 */ 2009 if (iocg->abs_vdebt) { 2010 WARN_ON_ONCE(iocg->inuse > 1); 2011 continue; 2012 } 2013 2014 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2015 inuse = DIV64_U64_ROUND_UP( 2016 parent->child_adjusted_sum * iocg->hweight_after_donation, 2017 parent->hweight_inuse); 2018 2019 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2020 iocg->inuse, inuse, 2021 iocg->hweight_inuse, 2022 iocg->hweight_after_donation); 2023 2024 __propagate_weights(iocg, iocg->active, inuse, true, now); 2025 } 2026 2027 /* walk list should be dissolved after use */ 2028 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2029 list_del_init(&iocg->walk_list); 2030 } 2031 2032 /* 2033 * A low weight iocg can amass a large amount of debt, for example, when 2034 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2035 * memory paired with a slow IO device, the debt can span multiple seconds or 2036 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2037 * up blocked paying its debt while the IO device is idle. 2038 * 2039 * The following protects against such cases. If the device has been 2040 * sufficiently idle for a while, the debts are halved and delays are 2041 * recalculated. 2042 */ 2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2044 struct ioc_now *now) 2045 { 2046 struct ioc_gq *iocg; 2047 u64 dur, usage_pct, nr_cycles; 2048 2049 /* if no debtor, reset the cycle */ 2050 if (!nr_debtors) { 2051 ioc->dfgv_period_at = now->now; 2052 ioc->dfgv_period_rem = 0; 2053 ioc->dfgv_usage_us_sum = 0; 2054 return; 2055 } 2056 2057 /* 2058 * Debtors can pass through a lot of writes choking the device and we 2059 * don't want to be forgiving debts while the device is struggling from 2060 * write bursts. If we're missing latency targets, consider the device 2061 * fully utilized. 2062 */ 2063 if (ioc->busy_level > 0) 2064 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2065 2066 ioc->dfgv_usage_us_sum += usage_us_sum; 2067 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2068 return; 2069 2070 /* 2071 * At least DFGV_PERIOD has passed since the last period. Calculate the 2072 * average usage and reset the period counters. 2073 */ 2074 dur = now->now - ioc->dfgv_period_at; 2075 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2076 2077 ioc->dfgv_period_at = now->now; 2078 ioc->dfgv_usage_us_sum = 0; 2079 2080 /* if was too busy, reset everything */ 2081 if (usage_pct > DFGV_USAGE_PCT) { 2082 ioc->dfgv_period_rem = 0; 2083 return; 2084 } 2085 2086 /* 2087 * Usage is lower than threshold. Let's forgive some debts. Debt 2088 * forgiveness runs off of the usual ioc timer but its period usually 2089 * doesn't match ioc's. Compensate the difference by performing the 2090 * reduction as many times as would fit in the duration since the last 2091 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2092 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2093 * reductions is doubled. 2094 */ 2095 nr_cycles = dur + ioc->dfgv_period_rem; 2096 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2097 2098 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2099 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2100 2101 if (!iocg->abs_vdebt && !iocg->delay) 2102 continue; 2103 2104 spin_lock(&iocg->waitq.lock); 2105 2106 old_debt = iocg->abs_vdebt; 2107 old_delay = iocg->delay; 2108 2109 if (iocg->abs_vdebt) 2110 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2111 if (iocg->delay) 2112 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2113 2114 iocg_kick_waitq(iocg, true, now); 2115 2116 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2117 old_debt, iocg->abs_vdebt, 2118 old_delay, iocg->delay); 2119 2120 spin_unlock(&iocg->waitq.lock); 2121 } 2122 } 2123 2124 /* 2125 * Check the active iocgs' state to avoid oversleeping and deactive 2126 * idle iocgs. 2127 * 2128 * Since waiters determine the sleep durations based on the vrate 2129 * they saw at the time of sleep, if vrate has increased, some 2130 * waiters could be sleeping for too long. Wake up tardy waiters 2131 * which should have woken up in the last period and expire idle 2132 * iocgs. 2133 */ 2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2135 { 2136 int nr_debtors = 0; 2137 struct ioc_gq *iocg, *tiocg; 2138 2139 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2140 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2141 !iocg->delay && !iocg_is_idle(iocg)) 2142 continue; 2143 2144 spin_lock(&iocg->waitq.lock); 2145 2146 /* flush wait and indebt stat deltas */ 2147 if (iocg->wait_since) { 2148 iocg->local_stat.wait_us += now->now - iocg->wait_since; 2149 iocg->wait_since = now->now; 2150 } 2151 if (iocg->indebt_since) { 2152 iocg->local_stat.indebt_us += 2153 now->now - iocg->indebt_since; 2154 iocg->indebt_since = now->now; 2155 } 2156 if (iocg->indelay_since) { 2157 iocg->local_stat.indelay_us += 2158 now->now - iocg->indelay_since; 2159 iocg->indelay_since = now->now; 2160 } 2161 2162 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2163 iocg->delay) { 2164 /* might be oversleeping vtime / hweight changes, kick */ 2165 iocg_kick_waitq(iocg, true, now); 2166 if (iocg->abs_vdebt || iocg->delay) 2167 nr_debtors++; 2168 } else if (iocg_is_idle(iocg)) { 2169 /* no waiter and idle, deactivate */ 2170 u64 vtime = atomic64_read(&iocg->vtime); 2171 s64 excess; 2172 2173 /* 2174 * @iocg has been inactive for a full duration and will 2175 * have a high budget. Account anything above target as 2176 * error and throw away. On reactivation, it'll start 2177 * with the target budget. 2178 */ 2179 excess = now->vnow - vtime - ioc->margins.target; 2180 if (excess > 0) { 2181 u32 old_hwi; 2182 2183 current_hweight(iocg, NULL, &old_hwi); 2184 ioc->vtime_err -= div64_u64(excess * old_hwi, 2185 WEIGHT_ONE); 2186 } 2187 2188 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2189 atomic64_read(&iocg->active_period), 2190 atomic64_read(&ioc->cur_period), vtime); 2191 __propagate_weights(iocg, 0, 0, false, now); 2192 list_del_init(&iocg->active_list); 2193 } 2194 2195 spin_unlock(&iocg->waitq.lock); 2196 } 2197 2198 commit_weights(ioc); 2199 return nr_debtors; 2200 } 2201 2202 static void ioc_timer_fn(struct timer_list *timer) 2203 { 2204 struct ioc *ioc = container_of(timer, struct ioc, timer); 2205 struct ioc_gq *iocg, *tiocg; 2206 struct ioc_now now; 2207 LIST_HEAD(surpluses); 2208 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2209 u64 usage_us_sum = 0; 2210 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2211 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2212 u32 missed_ppm[2], rq_wait_pct; 2213 u64 period_vtime; 2214 int prev_busy_level; 2215 2216 /* how were the latencies during the period? */ 2217 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2218 2219 /* take care of active iocgs */ 2220 spin_lock_irq(&ioc->lock); 2221 2222 ioc_now(ioc, &now); 2223 2224 period_vtime = now.vnow - ioc->period_at_vtime; 2225 if (WARN_ON_ONCE(!period_vtime)) { 2226 spin_unlock_irq(&ioc->lock); 2227 return; 2228 } 2229 2230 nr_debtors = ioc_check_iocgs(ioc, &now); 2231 2232 /* 2233 * Wait and indebt stat are flushed above and the donation calculation 2234 * below needs updated usage stat. Let's bring stat up-to-date. 2235 */ 2236 iocg_flush_stat(&ioc->active_iocgs, &now); 2237 2238 /* calc usage and see whether some weights need to be moved around */ 2239 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2240 u64 vdone, vtime, usage_us; 2241 u32 hw_active, hw_inuse; 2242 2243 /* 2244 * Collect unused and wind vtime closer to vnow to prevent 2245 * iocgs from accumulating a large amount of budget. 2246 */ 2247 vdone = atomic64_read(&iocg->done_vtime); 2248 vtime = atomic64_read(&iocg->vtime); 2249 current_hweight(iocg, &hw_active, &hw_inuse); 2250 2251 /* 2252 * Latency QoS detection doesn't account for IOs which are 2253 * in-flight for longer than a period. Detect them by 2254 * comparing vdone against period start. If lagging behind 2255 * IOs from past periods, don't increase vrate. 2256 */ 2257 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2258 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2259 time_after64(vtime, vdone) && 2260 time_after64(vtime, now.vnow - 2261 MAX_LAGGING_PERIODS * period_vtime) && 2262 time_before64(vdone, now.vnow - period_vtime)) 2263 nr_lagging++; 2264 2265 /* 2266 * Determine absolute usage factoring in in-flight IOs to avoid 2267 * high-latency completions appearing as idle. 2268 */ 2269 usage_us = iocg->usage_delta_us; 2270 usage_us_sum += usage_us; 2271 2272 /* see whether there's surplus vtime */ 2273 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2274 if (hw_inuse < hw_active || 2275 (!waitqueue_active(&iocg->waitq) && 2276 time_before64(vtime, now.vnow - ioc->margins.low))) { 2277 u32 hwa, old_hwi, hwm, new_hwi, usage; 2278 u64 usage_dur; 2279 2280 if (vdone != vtime) { 2281 u64 inflight_us = DIV64_U64_ROUND_UP( 2282 cost_to_abs_cost(vtime - vdone, hw_inuse), 2283 ioc->vtime_base_rate); 2284 2285 usage_us = max(usage_us, inflight_us); 2286 } 2287 2288 /* convert to hweight based usage ratio */ 2289 if (time_after64(iocg->activated_at, ioc->period_at)) 2290 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2291 else 2292 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2293 2294 usage = clamp_t(u32, 2295 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2296 usage_dur), 2297 1, WEIGHT_ONE); 2298 2299 /* 2300 * Already donating or accumulated enough to start. 2301 * Determine the donation amount. 2302 */ 2303 current_hweight(iocg, &hwa, &old_hwi); 2304 hwm = current_hweight_max(iocg); 2305 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2306 usage, &now); 2307 if (new_hwi < hwm) { 2308 iocg->hweight_donating = hwa; 2309 iocg->hweight_after_donation = new_hwi; 2310 list_add(&iocg->surplus_list, &surpluses); 2311 } else { 2312 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2313 iocg->inuse, iocg->active, 2314 iocg->hweight_inuse, new_hwi); 2315 2316 __propagate_weights(iocg, iocg->active, 2317 iocg->active, true, &now); 2318 nr_shortages++; 2319 } 2320 } else { 2321 /* genuinely short on vtime */ 2322 nr_shortages++; 2323 } 2324 } 2325 2326 if (!list_empty(&surpluses) && nr_shortages) 2327 transfer_surpluses(&surpluses, &now); 2328 2329 commit_weights(ioc); 2330 2331 /* surplus list should be dissolved after use */ 2332 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2333 list_del_init(&iocg->surplus_list); 2334 2335 /* 2336 * If q is getting clogged or we're missing too much, we're issuing 2337 * too much IO and should lower vtime rate. If we're not missing 2338 * and experiencing shortages but not surpluses, we're too stingy 2339 * and should increase vtime rate. 2340 */ 2341 prev_busy_level = ioc->busy_level; 2342 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2343 missed_ppm[READ] > ppm_rthr || 2344 missed_ppm[WRITE] > ppm_wthr) { 2345 /* clearly missing QoS targets, slow down vrate */ 2346 ioc->busy_level = max(ioc->busy_level, 0); 2347 ioc->busy_level++; 2348 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2349 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2350 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2351 /* QoS targets are being met with >25% margin */ 2352 if (nr_shortages) { 2353 /* 2354 * We're throttling while the device has spare 2355 * capacity. If vrate was being slowed down, stop. 2356 */ 2357 ioc->busy_level = min(ioc->busy_level, 0); 2358 2359 /* 2360 * If there are IOs spanning multiple periods, wait 2361 * them out before pushing the device harder. 2362 */ 2363 if (!nr_lagging) 2364 ioc->busy_level--; 2365 } else { 2366 /* 2367 * Nobody is being throttled and the users aren't 2368 * issuing enough IOs to saturate the device. We 2369 * simply don't know how close the device is to 2370 * saturation. Coast. 2371 */ 2372 ioc->busy_level = 0; 2373 } 2374 } else { 2375 /* inside the hysterisis margin, we're good */ 2376 ioc->busy_level = 0; 2377 } 2378 2379 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2380 2381 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2382 prev_busy_level, missed_ppm); 2383 2384 ioc_refresh_params(ioc, false); 2385 2386 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2387 2388 /* 2389 * This period is done. Move onto the next one. If nothing's 2390 * going on with the device, stop the timer. 2391 */ 2392 atomic64_inc(&ioc->cur_period); 2393 2394 if (ioc->running != IOC_STOP) { 2395 if (!list_empty(&ioc->active_iocgs)) { 2396 ioc_start_period(ioc, &now); 2397 } else { 2398 ioc->busy_level = 0; 2399 ioc->vtime_err = 0; 2400 ioc->running = IOC_IDLE; 2401 } 2402 2403 ioc_refresh_vrate(ioc, &now); 2404 } 2405 2406 spin_unlock_irq(&ioc->lock); 2407 } 2408 2409 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2410 u64 abs_cost, struct ioc_now *now) 2411 { 2412 struct ioc *ioc = iocg->ioc; 2413 struct ioc_margins *margins = &ioc->margins; 2414 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2415 u32 hwi, adj_step; 2416 s64 margin; 2417 u64 cost, new_inuse; 2418 2419 current_hweight(iocg, NULL, &hwi); 2420 old_hwi = hwi; 2421 cost = abs_cost_to_cost(abs_cost, hwi); 2422 margin = now->vnow - vtime - cost; 2423 2424 /* debt handling owns inuse for debtors */ 2425 if (iocg->abs_vdebt) 2426 return cost; 2427 2428 /* 2429 * We only increase inuse during period and do so if the margin has 2430 * deteriorated since the previous adjustment. 2431 */ 2432 if (margin >= iocg->saved_margin || margin >= margins->low || 2433 iocg->inuse == iocg->active) 2434 return cost; 2435 2436 spin_lock_irq(&ioc->lock); 2437 2438 /* we own inuse only when @iocg is in the normal active state */ 2439 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2440 spin_unlock_irq(&ioc->lock); 2441 return cost; 2442 } 2443 2444 /* 2445 * Bump up inuse till @abs_cost fits in the existing budget. 2446 * adj_step must be determined after acquiring ioc->lock - we might 2447 * have raced and lost to another thread for activation and could 2448 * be reading 0 iocg->active before ioc->lock which will lead to 2449 * infinite loop. 2450 */ 2451 new_inuse = iocg->inuse; 2452 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2453 do { 2454 new_inuse = new_inuse + adj_step; 2455 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2456 current_hweight(iocg, NULL, &hwi); 2457 cost = abs_cost_to_cost(abs_cost, hwi); 2458 } while (time_after64(vtime + cost, now->vnow) && 2459 iocg->inuse != iocg->active); 2460 2461 spin_unlock_irq(&ioc->lock); 2462 2463 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2464 old_inuse, iocg->inuse, old_hwi, hwi); 2465 2466 return cost; 2467 } 2468 2469 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2470 bool is_merge, u64 *costp) 2471 { 2472 struct ioc *ioc = iocg->ioc; 2473 u64 coef_seqio, coef_randio, coef_page; 2474 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2475 u64 seek_pages = 0; 2476 u64 cost = 0; 2477 2478 switch (bio_op(bio)) { 2479 case REQ_OP_READ: 2480 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2481 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2482 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2483 break; 2484 case REQ_OP_WRITE: 2485 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2486 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2487 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2488 break; 2489 default: 2490 goto out; 2491 } 2492 2493 if (iocg->cursor) { 2494 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2495 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2496 } 2497 2498 if (!is_merge) { 2499 if (seek_pages > LCOEF_RANDIO_PAGES) { 2500 cost += coef_randio; 2501 } else { 2502 cost += coef_seqio; 2503 } 2504 } 2505 cost += pages * coef_page; 2506 out: 2507 *costp = cost; 2508 } 2509 2510 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2511 { 2512 u64 cost; 2513 2514 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2515 return cost; 2516 } 2517 2518 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2519 u64 *costp) 2520 { 2521 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2522 2523 switch (req_op(rq)) { 2524 case REQ_OP_READ: 2525 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2526 break; 2527 case REQ_OP_WRITE: 2528 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2529 break; 2530 default: 2531 *costp = 0; 2532 } 2533 } 2534 2535 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2536 { 2537 u64 cost; 2538 2539 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2540 return cost; 2541 } 2542 2543 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2544 { 2545 struct blkcg_gq *blkg = bio->bi_blkg; 2546 struct ioc *ioc = rqos_to_ioc(rqos); 2547 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2548 struct ioc_now now; 2549 struct iocg_wait wait; 2550 u64 abs_cost, cost, vtime; 2551 bool use_debt, ioc_locked; 2552 unsigned long flags; 2553 2554 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2555 if (!ioc->enabled || !iocg || !iocg->level) 2556 return; 2557 2558 /* calculate the absolute vtime cost */ 2559 abs_cost = calc_vtime_cost(bio, iocg, false); 2560 if (!abs_cost) 2561 return; 2562 2563 if (!iocg_activate(iocg, &now)) 2564 return; 2565 2566 iocg->cursor = bio_end_sector(bio); 2567 vtime = atomic64_read(&iocg->vtime); 2568 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2569 2570 /* 2571 * If no one's waiting and within budget, issue right away. The 2572 * tests are racy but the races aren't systemic - we only miss once 2573 * in a while which is fine. 2574 */ 2575 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2576 time_before_eq64(vtime + cost, now.vnow)) { 2577 iocg_commit_bio(iocg, bio, abs_cost, cost); 2578 return; 2579 } 2580 2581 /* 2582 * We're over budget. This can be handled in two ways. IOs which may 2583 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2584 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2585 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2586 * whether debt handling is needed and acquire locks accordingly. 2587 */ 2588 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2589 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2590 retry_lock: 2591 iocg_lock(iocg, ioc_locked, &flags); 2592 2593 /* 2594 * @iocg must stay activated for debt and waitq handling. Deactivation 2595 * is synchronized against both ioc->lock and waitq.lock and we won't 2596 * get deactivated as long as we're waiting or has debt, so we're good 2597 * if we're activated here. In the unlikely cases that we aren't, just 2598 * issue the IO. 2599 */ 2600 if (unlikely(list_empty(&iocg->active_list))) { 2601 iocg_unlock(iocg, ioc_locked, &flags); 2602 iocg_commit_bio(iocg, bio, abs_cost, cost); 2603 return; 2604 } 2605 2606 /* 2607 * We're over budget. If @bio has to be issued regardless, remember 2608 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2609 * off the debt before waking more IOs. 2610 * 2611 * This way, the debt is continuously paid off each period with the 2612 * actual budget available to the cgroup. If we just wound vtime, we 2613 * would incorrectly use the current hw_inuse for the entire amount 2614 * which, for example, can lead to the cgroup staying blocked for a 2615 * long time even with substantially raised hw_inuse. 2616 * 2617 * An iocg with vdebt should stay online so that the timer can keep 2618 * deducting its vdebt and [de]activate use_delay mechanism 2619 * accordingly. We don't want to race against the timer trying to 2620 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2621 * penalizing the cgroup and its descendants. 2622 */ 2623 if (use_debt) { 2624 iocg_incur_debt(iocg, abs_cost, &now); 2625 if (iocg_kick_delay(iocg, &now)) 2626 blkcg_schedule_throttle(rqos->q, 2627 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2628 iocg_unlock(iocg, ioc_locked, &flags); 2629 return; 2630 } 2631 2632 /* guarantee that iocgs w/ waiters have maximum inuse */ 2633 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2634 if (!ioc_locked) { 2635 iocg_unlock(iocg, false, &flags); 2636 ioc_locked = true; 2637 goto retry_lock; 2638 } 2639 propagate_weights(iocg, iocg->active, iocg->active, true, 2640 &now); 2641 } 2642 2643 /* 2644 * Append self to the waitq and schedule the wakeup timer if we're 2645 * the first waiter. The timer duration is calculated based on the 2646 * current vrate. vtime and hweight changes can make it too short 2647 * or too long. Each wait entry records the absolute cost it's 2648 * waiting for to allow re-evaluation using a custom wait entry. 2649 * 2650 * If too short, the timer simply reschedules itself. If too long, 2651 * the period timer will notice and trigger wakeups. 2652 * 2653 * All waiters are on iocg->waitq and the wait states are 2654 * synchronized using waitq.lock. 2655 */ 2656 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2657 wait.wait.private = current; 2658 wait.bio = bio; 2659 wait.abs_cost = abs_cost; 2660 wait.committed = false; /* will be set true by waker */ 2661 2662 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2663 iocg_kick_waitq(iocg, ioc_locked, &now); 2664 2665 iocg_unlock(iocg, ioc_locked, &flags); 2666 2667 while (true) { 2668 set_current_state(TASK_UNINTERRUPTIBLE); 2669 if (wait.committed) 2670 break; 2671 io_schedule(); 2672 } 2673 2674 /* waker already committed us, proceed */ 2675 finish_wait(&iocg->waitq, &wait.wait); 2676 } 2677 2678 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2679 struct bio *bio) 2680 { 2681 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2682 struct ioc *ioc = rqos_to_ioc(rqos); 2683 sector_t bio_end = bio_end_sector(bio); 2684 struct ioc_now now; 2685 u64 vtime, abs_cost, cost; 2686 unsigned long flags; 2687 2688 /* bypass if disabled, still initializing, or for root cgroup */ 2689 if (!ioc->enabled || !iocg || !iocg->level) 2690 return; 2691 2692 abs_cost = calc_vtime_cost(bio, iocg, true); 2693 if (!abs_cost) 2694 return; 2695 2696 ioc_now(ioc, &now); 2697 2698 vtime = atomic64_read(&iocg->vtime); 2699 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2700 2701 /* update cursor if backmerging into the request at the cursor */ 2702 if (blk_rq_pos(rq) < bio_end && 2703 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2704 iocg->cursor = bio_end; 2705 2706 /* 2707 * Charge if there's enough vtime budget and the existing request has 2708 * cost assigned. 2709 */ 2710 if (rq->bio && rq->bio->bi_iocost_cost && 2711 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2712 iocg_commit_bio(iocg, bio, abs_cost, cost); 2713 return; 2714 } 2715 2716 /* 2717 * Otherwise, account it as debt if @iocg is online, which it should 2718 * be for the vast majority of cases. See debt handling in 2719 * ioc_rqos_throttle() for details. 2720 */ 2721 spin_lock_irqsave(&ioc->lock, flags); 2722 spin_lock(&iocg->waitq.lock); 2723 2724 if (likely(!list_empty(&iocg->active_list))) { 2725 iocg_incur_debt(iocg, abs_cost, &now); 2726 if (iocg_kick_delay(iocg, &now)) 2727 blkcg_schedule_throttle(rqos->q, 2728 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2729 } else { 2730 iocg_commit_bio(iocg, bio, abs_cost, cost); 2731 } 2732 2733 spin_unlock(&iocg->waitq.lock); 2734 spin_unlock_irqrestore(&ioc->lock, flags); 2735 } 2736 2737 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2738 { 2739 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2740 2741 if (iocg && bio->bi_iocost_cost) 2742 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2743 } 2744 2745 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2746 { 2747 struct ioc *ioc = rqos_to_ioc(rqos); 2748 struct ioc_pcpu_stat *ccs; 2749 u64 on_q_ns, rq_wait_ns, size_nsec; 2750 int pidx, rw; 2751 2752 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2753 return; 2754 2755 switch (req_op(rq) & REQ_OP_MASK) { 2756 case REQ_OP_READ: 2757 pidx = QOS_RLAT; 2758 rw = READ; 2759 break; 2760 case REQ_OP_WRITE: 2761 pidx = QOS_WLAT; 2762 rw = WRITE; 2763 break; 2764 default: 2765 return; 2766 } 2767 2768 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2769 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2770 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2771 2772 ccs = get_cpu_ptr(ioc->pcpu_stat); 2773 2774 if (on_q_ns <= size_nsec || 2775 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2776 local_inc(&ccs->missed[rw].nr_met); 2777 else 2778 local_inc(&ccs->missed[rw].nr_missed); 2779 2780 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2781 2782 put_cpu_ptr(ccs); 2783 } 2784 2785 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2786 { 2787 struct ioc *ioc = rqos_to_ioc(rqos); 2788 2789 spin_lock_irq(&ioc->lock); 2790 ioc_refresh_params(ioc, false); 2791 spin_unlock_irq(&ioc->lock); 2792 } 2793 2794 static void ioc_rqos_exit(struct rq_qos *rqos) 2795 { 2796 struct ioc *ioc = rqos_to_ioc(rqos); 2797 2798 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2799 2800 spin_lock_irq(&ioc->lock); 2801 ioc->running = IOC_STOP; 2802 spin_unlock_irq(&ioc->lock); 2803 2804 del_timer_sync(&ioc->timer); 2805 free_percpu(ioc->pcpu_stat); 2806 kfree(ioc); 2807 } 2808 2809 static struct rq_qos_ops ioc_rqos_ops = { 2810 .throttle = ioc_rqos_throttle, 2811 .merge = ioc_rqos_merge, 2812 .done_bio = ioc_rqos_done_bio, 2813 .done = ioc_rqos_done, 2814 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2815 .exit = ioc_rqos_exit, 2816 }; 2817 2818 static int blk_iocost_init(struct request_queue *q) 2819 { 2820 struct ioc *ioc; 2821 struct rq_qos *rqos; 2822 int i, cpu, ret; 2823 2824 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2825 if (!ioc) 2826 return -ENOMEM; 2827 2828 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2829 if (!ioc->pcpu_stat) { 2830 kfree(ioc); 2831 return -ENOMEM; 2832 } 2833 2834 for_each_possible_cpu(cpu) { 2835 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2836 2837 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2838 local_set(&ccs->missed[i].nr_met, 0); 2839 local_set(&ccs->missed[i].nr_missed, 0); 2840 } 2841 local64_set(&ccs->rq_wait_ns, 0); 2842 } 2843 2844 rqos = &ioc->rqos; 2845 rqos->id = RQ_QOS_COST; 2846 rqos->ops = &ioc_rqos_ops; 2847 rqos->q = q; 2848 2849 spin_lock_init(&ioc->lock); 2850 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2851 INIT_LIST_HEAD(&ioc->active_iocgs); 2852 2853 ioc->running = IOC_IDLE; 2854 ioc->vtime_base_rate = VTIME_PER_USEC; 2855 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2856 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2857 ioc->period_at = ktime_to_us(ktime_get()); 2858 atomic64_set(&ioc->cur_period, 0); 2859 atomic_set(&ioc->hweight_gen, 0); 2860 2861 spin_lock_irq(&ioc->lock); 2862 ioc->autop_idx = AUTOP_INVALID; 2863 ioc_refresh_params(ioc, true); 2864 spin_unlock_irq(&ioc->lock); 2865 2866 /* 2867 * rqos must be added before activation to allow iocg_pd_init() to 2868 * lookup the ioc from q. This means that the rqos methods may get 2869 * called before policy activation completion, can't assume that the 2870 * target bio has an iocg associated and need to test for NULL iocg. 2871 */ 2872 rq_qos_add(q, rqos); 2873 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2874 if (ret) { 2875 rq_qos_del(q, rqos); 2876 free_percpu(ioc->pcpu_stat); 2877 kfree(ioc); 2878 return ret; 2879 } 2880 return 0; 2881 } 2882 2883 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2884 { 2885 struct ioc_cgrp *iocc; 2886 2887 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2888 if (!iocc) 2889 return NULL; 2890 2891 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2892 return &iocc->cpd; 2893 } 2894 2895 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2896 { 2897 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2898 } 2899 2900 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2901 struct blkcg *blkcg) 2902 { 2903 int levels = blkcg->css.cgroup->level + 1; 2904 struct ioc_gq *iocg; 2905 2906 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2907 if (!iocg) 2908 return NULL; 2909 2910 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2911 if (!iocg->pcpu_stat) { 2912 kfree(iocg); 2913 return NULL; 2914 } 2915 2916 return &iocg->pd; 2917 } 2918 2919 static void ioc_pd_init(struct blkg_policy_data *pd) 2920 { 2921 struct ioc_gq *iocg = pd_to_iocg(pd); 2922 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2923 struct ioc *ioc = q_to_ioc(blkg->q); 2924 struct ioc_now now; 2925 struct blkcg_gq *tblkg; 2926 unsigned long flags; 2927 2928 ioc_now(ioc, &now); 2929 2930 iocg->ioc = ioc; 2931 atomic64_set(&iocg->vtime, now.vnow); 2932 atomic64_set(&iocg->done_vtime, now.vnow); 2933 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2934 INIT_LIST_HEAD(&iocg->active_list); 2935 INIT_LIST_HEAD(&iocg->walk_list); 2936 INIT_LIST_HEAD(&iocg->surplus_list); 2937 iocg->hweight_active = WEIGHT_ONE; 2938 iocg->hweight_inuse = WEIGHT_ONE; 2939 2940 init_waitqueue_head(&iocg->waitq); 2941 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2942 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2943 2944 iocg->level = blkg->blkcg->css.cgroup->level; 2945 2946 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2947 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2948 iocg->ancestors[tiocg->level] = tiocg; 2949 } 2950 2951 spin_lock_irqsave(&ioc->lock, flags); 2952 weight_updated(iocg, &now); 2953 spin_unlock_irqrestore(&ioc->lock, flags); 2954 } 2955 2956 static void ioc_pd_free(struct blkg_policy_data *pd) 2957 { 2958 struct ioc_gq *iocg = pd_to_iocg(pd); 2959 struct ioc *ioc = iocg->ioc; 2960 unsigned long flags; 2961 2962 if (ioc) { 2963 spin_lock_irqsave(&ioc->lock, flags); 2964 2965 if (!list_empty(&iocg->active_list)) { 2966 struct ioc_now now; 2967 2968 ioc_now(ioc, &now); 2969 propagate_weights(iocg, 0, 0, false, &now); 2970 list_del_init(&iocg->active_list); 2971 } 2972 2973 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2974 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2975 2976 spin_unlock_irqrestore(&ioc->lock, flags); 2977 2978 hrtimer_cancel(&iocg->waitq_timer); 2979 } 2980 free_percpu(iocg->pcpu_stat); 2981 kfree(iocg); 2982 } 2983 2984 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) 2985 { 2986 struct ioc_gq *iocg = pd_to_iocg(pd); 2987 struct ioc *ioc = iocg->ioc; 2988 size_t pos = 0; 2989 2990 if (!ioc->enabled) 2991 return 0; 2992 2993 if (iocg->level == 0) { 2994 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 2995 ioc->vtime_base_rate * 10000, 2996 VTIME_PER_USEC); 2997 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", 2998 vp10k / 100, vp10k % 100); 2999 } 3000 3001 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", 3002 iocg->last_stat.usage_us); 3003 3004 if (blkcg_debug_stats) 3005 pos += scnprintf(buf + pos, size - pos, 3006 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3007 iocg->last_stat.wait_us, 3008 iocg->last_stat.indebt_us, 3009 iocg->last_stat.indelay_us); 3010 3011 return pos; 3012 } 3013 3014 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3015 int off) 3016 { 3017 const char *dname = blkg_dev_name(pd->blkg); 3018 struct ioc_gq *iocg = pd_to_iocg(pd); 3019 3020 if (dname && iocg->cfg_weight) 3021 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3022 return 0; 3023 } 3024 3025 3026 static int ioc_weight_show(struct seq_file *sf, void *v) 3027 { 3028 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3029 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3030 3031 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3032 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3033 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3034 return 0; 3035 } 3036 3037 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3038 size_t nbytes, loff_t off) 3039 { 3040 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3041 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3042 struct blkg_conf_ctx ctx; 3043 struct ioc_now now; 3044 struct ioc_gq *iocg; 3045 u32 v; 3046 int ret; 3047 3048 if (!strchr(buf, ':')) { 3049 struct blkcg_gq *blkg; 3050 3051 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3052 return -EINVAL; 3053 3054 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3055 return -EINVAL; 3056 3057 spin_lock(&blkcg->lock); 3058 iocc->dfl_weight = v * WEIGHT_ONE; 3059 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3060 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3061 3062 if (iocg) { 3063 spin_lock_irq(&iocg->ioc->lock); 3064 ioc_now(iocg->ioc, &now); 3065 weight_updated(iocg, &now); 3066 spin_unlock_irq(&iocg->ioc->lock); 3067 } 3068 } 3069 spin_unlock(&blkcg->lock); 3070 3071 return nbytes; 3072 } 3073 3074 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3075 if (ret) 3076 return ret; 3077 3078 iocg = blkg_to_iocg(ctx.blkg); 3079 3080 if (!strncmp(ctx.body, "default", 7)) { 3081 v = 0; 3082 } else { 3083 if (!sscanf(ctx.body, "%u", &v)) 3084 goto einval; 3085 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3086 goto einval; 3087 } 3088 3089 spin_lock(&iocg->ioc->lock); 3090 iocg->cfg_weight = v * WEIGHT_ONE; 3091 ioc_now(iocg->ioc, &now); 3092 weight_updated(iocg, &now); 3093 spin_unlock(&iocg->ioc->lock); 3094 3095 blkg_conf_finish(&ctx); 3096 return nbytes; 3097 3098 einval: 3099 blkg_conf_finish(&ctx); 3100 return -EINVAL; 3101 } 3102 3103 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3104 int off) 3105 { 3106 const char *dname = blkg_dev_name(pd->blkg); 3107 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3108 3109 if (!dname) 3110 return 0; 3111 3112 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3113 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3114 ioc->params.qos[QOS_RPPM] / 10000, 3115 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3116 ioc->params.qos[QOS_RLAT], 3117 ioc->params.qos[QOS_WPPM] / 10000, 3118 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3119 ioc->params.qos[QOS_WLAT], 3120 ioc->params.qos[QOS_MIN] / 10000, 3121 ioc->params.qos[QOS_MIN] % 10000 / 100, 3122 ioc->params.qos[QOS_MAX] / 10000, 3123 ioc->params.qos[QOS_MAX] % 10000 / 100); 3124 return 0; 3125 } 3126 3127 static int ioc_qos_show(struct seq_file *sf, void *v) 3128 { 3129 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3130 3131 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3132 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3133 return 0; 3134 } 3135 3136 static const match_table_t qos_ctrl_tokens = { 3137 { QOS_ENABLE, "enable=%u" }, 3138 { QOS_CTRL, "ctrl=%s" }, 3139 { NR_QOS_CTRL_PARAMS, NULL }, 3140 }; 3141 3142 static const match_table_t qos_tokens = { 3143 { QOS_RPPM, "rpct=%s" }, 3144 { QOS_RLAT, "rlat=%u" }, 3145 { QOS_WPPM, "wpct=%s" }, 3146 { QOS_WLAT, "wlat=%u" }, 3147 { QOS_MIN, "min=%s" }, 3148 { QOS_MAX, "max=%s" }, 3149 { NR_QOS_PARAMS, NULL }, 3150 }; 3151 3152 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3153 size_t nbytes, loff_t off) 3154 { 3155 struct block_device *bdev; 3156 struct ioc *ioc; 3157 u32 qos[NR_QOS_PARAMS]; 3158 bool enable, user; 3159 char *p; 3160 int ret; 3161 3162 bdev = blkcg_conf_open_bdev(&input); 3163 if (IS_ERR(bdev)) 3164 return PTR_ERR(bdev); 3165 3166 ioc = q_to_ioc(bdev->bd_disk->queue); 3167 if (!ioc) { 3168 ret = blk_iocost_init(bdev->bd_disk->queue); 3169 if (ret) 3170 goto err; 3171 ioc = q_to_ioc(bdev->bd_disk->queue); 3172 } 3173 3174 spin_lock_irq(&ioc->lock); 3175 memcpy(qos, ioc->params.qos, sizeof(qos)); 3176 enable = ioc->enabled; 3177 user = ioc->user_qos_params; 3178 spin_unlock_irq(&ioc->lock); 3179 3180 while ((p = strsep(&input, " \t\n"))) { 3181 substring_t args[MAX_OPT_ARGS]; 3182 char buf[32]; 3183 int tok; 3184 s64 v; 3185 3186 if (!*p) 3187 continue; 3188 3189 switch (match_token(p, qos_ctrl_tokens, args)) { 3190 case QOS_ENABLE: 3191 match_u64(&args[0], &v); 3192 enable = v; 3193 continue; 3194 case QOS_CTRL: 3195 match_strlcpy(buf, &args[0], sizeof(buf)); 3196 if (!strcmp(buf, "auto")) 3197 user = false; 3198 else if (!strcmp(buf, "user")) 3199 user = true; 3200 else 3201 goto einval; 3202 continue; 3203 } 3204 3205 tok = match_token(p, qos_tokens, args); 3206 switch (tok) { 3207 case QOS_RPPM: 3208 case QOS_WPPM: 3209 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3210 sizeof(buf)) 3211 goto einval; 3212 if (cgroup_parse_float(buf, 2, &v)) 3213 goto einval; 3214 if (v < 0 || v > 10000) 3215 goto einval; 3216 qos[tok] = v * 100; 3217 break; 3218 case QOS_RLAT: 3219 case QOS_WLAT: 3220 if (match_u64(&args[0], &v)) 3221 goto einval; 3222 qos[tok] = v; 3223 break; 3224 case QOS_MIN: 3225 case QOS_MAX: 3226 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3227 sizeof(buf)) 3228 goto einval; 3229 if (cgroup_parse_float(buf, 2, &v)) 3230 goto einval; 3231 if (v < 0) 3232 goto einval; 3233 qos[tok] = clamp_t(s64, v * 100, 3234 VRATE_MIN_PPM, VRATE_MAX_PPM); 3235 break; 3236 default: 3237 goto einval; 3238 } 3239 user = true; 3240 } 3241 3242 if (qos[QOS_MIN] > qos[QOS_MAX]) 3243 goto einval; 3244 3245 spin_lock_irq(&ioc->lock); 3246 3247 if (enable) { 3248 blk_stat_enable_accounting(ioc->rqos.q); 3249 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3250 ioc->enabled = true; 3251 } else { 3252 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3253 ioc->enabled = false; 3254 } 3255 3256 if (user) { 3257 memcpy(ioc->params.qos, qos, sizeof(qos)); 3258 ioc->user_qos_params = true; 3259 } else { 3260 ioc->user_qos_params = false; 3261 } 3262 3263 ioc_refresh_params(ioc, true); 3264 spin_unlock_irq(&ioc->lock); 3265 3266 blkdev_put_no_open(bdev); 3267 return nbytes; 3268 einval: 3269 ret = -EINVAL; 3270 err: 3271 blkdev_put_no_open(bdev); 3272 return ret; 3273 } 3274 3275 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3276 struct blkg_policy_data *pd, int off) 3277 { 3278 const char *dname = blkg_dev_name(pd->blkg); 3279 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3280 u64 *u = ioc->params.i_lcoefs; 3281 3282 if (!dname) 3283 return 0; 3284 3285 seq_printf(sf, "%s ctrl=%s model=linear " 3286 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3287 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3288 dname, ioc->user_cost_model ? "user" : "auto", 3289 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3290 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3291 return 0; 3292 } 3293 3294 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3295 { 3296 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3297 3298 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3299 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3300 return 0; 3301 } 3302 3303 static const match_table_t cost_ctrl_tokens = { 3304 { COST_CTRL, "ctrl=%s" }, 3305 { COST_MODEL, "model=%s" }, 3306 { NR_COST_CTRL_PARAMS, NULL }, 3307 }; 3308 3309 static const match_table_t i_lcoef_tokens = { 3310 { I_LCOEF_RBPS, "rbps=%u" }, 3311 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3312 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3313 { I_LCOEF_WBPS, "wbps=%u" }, 3314 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3315 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3316 { NR_I_LCOEFS, NULL }, 3317 }; 3318 3319 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3320 size_t nbytes, loff_t off) 3321 { 3322 struct block_device *bdev; 3323 struct ioc *ioc; 3324 u64 u[NR_I_LCOEFS]; 3325 bool user; 3326 char *p; 3327 int ret; 3328 3329 bdev = blkcg_conf_open_bdev(&input); 3330 if (IS_ERR(bdev)) 3331 return PTR_ERR(bdev); 3332 3333 ioc = q_to_ioc(bdev->bd_disk->queue); 3334 if (!ioc) { 3335 ret = blk_iocost_init(bdev->bd_disk->queue); 3336 if (ret) 3337 goto err; 3338 ioc = q_to_ioc(bdev->bd_disk->queue); 3339 } 3340 3341 spin_lock_irq(&ioc->lock); 3342 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3343 user = ioc->user_cost_model; 3344 spin_unlock_irq(&ioc->lock); 3345 3346 while ((p = strsep(&input, " \t\n"))) { 3347 substring_t args[MAX_OPT_ARGS]; 3348 char buf[32]; 3349 int tok; 3350 u64 v; 3351 3352 if (!*p) 3353 continue; 3354 3355 switch (match_token(p, cost_ctrl_tokens, args)) { 3356 case COST_CTRL: 3357 match_strlcpy(buf, &args[0], sizeof(buf)); 3358 if (!strcmp(buf, "auto")) 3359 user = false; 3360 else if (!strcmp(buf, "user")) 3361 user = true; 3362 else 3363 goto einval; 3364 continue; 3365 case COST_MODEL: 3366 match_strlcpy(buf, &args[0], sizeof(buf)); 3367 if (strcmp(buf, "linear")) 3368 goto einval; 3369 continue; 3370 } 3371 3372 tok = match_token(p, i_lcoef_tokens, args); 3373 if (tok == NR_I_LCOEFS) 3374 goto einval; 3375 if (match_u64(&args[0], &v)) 3376 goto einval; 3377 u[tok] = v; 3378 user = true; 3379 } 3380 3381 spin_lock_irq(&ioc->lock); 3382 if (user) { 3383 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3384 ioc->user_cost_model = true; 3385 } else { 3386 ioc->user_cost_model = false; 3387 } 3388 ioc_refresh_params(ioc, true); 3389 spin_unlock_irq(&ioc->lock); 3390 3391 blkdev_put_no_open(bdev); 3392 return nbytes; 3393 3394 einval: 3395 ret = -EINVAL; 3396 err: 3397 blkdev_put_no_open(bdev); 3398 return ret; 3399 } 3400 3401 static struct cftype ioc_files[] = { 3402 { 3403 .name = "weight", 3404 .flags = CFTYPE_NOT_ON_ROOT, 3405 .seq_show = ioc_weight_show, 3406 .write = ioc_weight_write, 3407 }, 3408 { 3409 .name = "cost.qos", 3410 .flags = CFTYPE_ONLY_ON_ROOT, 3411 .seq_show = ioc_qos_show, 3412 .write = ioc_qos_write, 3413 }, 3414 { 3415 .name = "cost.model", 3416 .flags = CFTYPE_ONLY_ON_ROOT, 3417 .seq_show = ioc_cost_model_show, 3418 .write = ioc_cost_model_write, 3419 }, 3420 {} 3421 }; 3422 3423 static struct blkcg_policy blkcg_policy_iocost = { 3424 .dfl_cftypes = ioc_files, 3425 .cpd_alloc_fn = ioc_cpd_alloc, 3426 .cpd_free_fn = ioc_cpd_free, 3427 .pd_alloc_fn = ioc_pd_alloc, 3428 .pd_init_fn = ioc_pd_init, 3429 .pd_free_fn = ioc_pd_free, 3430 .pd_stat_fn = ioc_pd_stat, 3431 }; 3432 3433 static int __init ioc_init(void) 3434 { 3435 return blkcg_policy_register(&blkcg_policy_iocost); 3436 } 3437 3438 static void __exit ioc_exit(void) 3439 { 3440 blkcg_policy_unregister(&blkcg_policy_iocost); 3441 } 3442 3443 module_init(ioc_init); 3444 module_exit(ioc_exit); 3445