1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, solely depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat stat; 537 struct iocg_stat last_stat; 538 u64 last_stat_abs_vusage; 539 u64 usage_delta_us; 540 u64 wait_since; 541 u64 indebt_since; 542 u64 indelay_since; 543 544 /* this iocg's depth in the hierarchy and ancestors including self */ 545 int level; 546 struct ioc_gq *ancestors[]; 547 }; 548 549 /* per cgroup */ 550 struct ioc_cgrp { 551 struct blkcg_policy_data cpd; 552 unsigned int dfl_weight; 553 }; 554 555 struct ioc_now { 556 u64 now_ns; 557 u64 now; 558 u64 vnow; 559 }; 560 561 struct iocg_wait { 562 struct wait_queue_entry wait; 563 struct bio *bio; 564 u64 abs_cost; 565 bool committed; 566 }; 567 568 struct iocg_wake_ctx { 569 struct ioc_gq *iocg; 570 u32 hw_inuse; 571 s64 vbudget; 572 }; 573 574 static const struct ioc_params autop[] = { 575 [AUTOP_HDD] = { 576 .qos = { 577 [QOS_RLAT] = 250000, /* 250ms */ 578 [QOS_WLAT] = 250000, 579 [QOS_MIN] = VRATE_MIN_PPM, 580 [QOS_MAX] = VRATE_MAX_PPM, 581 }, 582 .i_lcoefs = { 583 [I_LCOEF_RBPS] = 174019176, 584 [I_LCOEF_RSEQIOPS] = 41708, 585 [I_LCOEF_RRANDIOPS] = 370, 586 [I_LCOEF_WBPS] = 178075866, 587 [I_LCOEF_WSEQIOPS] = 42705, 588 [I_LCOEF_WRANDIOPS] = 378, 589 }, 590 }, 591 [AUTOP_SSD_QD1] = { 592 .qos = { 593 [QOS_RLAT] = 25000, /* 25ms */ 594 [QOS_WLAT] = 25000, 595 [QOS_MIN] = VRATE_MIN_PPM, 596 [QOS_MAX] = VRATE_MAX_PPM, 597 }, 598 .i_lcoefs = { 599 [I_LCOEF_RBPS] = 245855193, 600 [I_LCOEF_RSEQIOPS] = 61575, 601 [I_LCOEF_RRANDIOPS] = 6946, 602 [I_LCOEF_WBPS] = 141365009, 603 [I_LCOEF_WSEQIOPS] = 33716, 604 [I_LCOEF_WRANDIOPS] = 26796, 605 }, 606 }, 607 [AUTOP_SSD_DFL] = { 608 .qos = { 609 [QOS_RLAT] = 25000, /* 25ms */ 610 [QOS_WLAT] = 25000, 611 [QOS_MIN] = VRATE_MIN_PPM, 612 [QOS_MAX] = VRATE_MAX_PPM, 613 }, 614 .i_lcoefs = { 615 [I_LCOEF_RBPS] = 488636629, 616 [I_LCOEF_RSEQIOPS] = 8932, 617 [I_LCOEF_RRANDIOPS] = 8518, 618 [I_LCOEF_WBPS] = 427891549, 619 [I_LCOEF_WSEQIOPS] = 28755, 620 [I_LCOEF_WRANDIOPS] = 21940, 621 }, 622 .too_fast_vrate_pct = 500, 623 }, 624 [AUTOP_SSD_FAST] = { 625 .qos = { 626 [QOS_RLAT] = 5000, /* 5ms */ 627 [QOS_WLAT] = 5000, 628 [QOS_MIN] = VRATE_MIN_PPM, 629 [QOS_MAX] = VRATE_MAX_PPM, 630 }, 631 .i_lcoefs = { 632 [I_LCOEF_RBPS] = 3102524156LLU, 633 [I_LCOEF_RSEQIOPS] = 724816, 634 [I_LCOEF_RRANDIOPS] = 778122, 635 [I_LCOEF_WBPS] = 1742780862LLU, 636 [I_LCOEF_WSEQIOPS] = 425702, 637 [I_LCOEF_WRANDIOPS] = 443193, 638 }, 639 .too_slow_vrate_pct = 10, 640 }, 641 }; 642 643 /* 644 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 645 * vtime credit shortage and down on device saturation. 646 */ 647 static u32 vrate_adj_pct[] = 648 { 0, 0, 0, 0, 649 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 650 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 651 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 652 653 static struct blkcg_policy blkcg_policy_iocost; 654 655 /* accessors and helpers */ 656 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 657 { 658 return container_of(rqos, struct ioc, rqos); 659 } 660 661 static struct ioc *q_to_ioc(struct request_queue *q) 662 { 663 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 664 } 665 666 static const char __maybe_unused *ioc_name(struct ioc *ioc) 667 { 668 struct gendisk *disk = ioc->rqos.q->disk; 669 670 if (!disk) 671 return "<unknown>"; 672 return disk->disk_name; 673 } 674 675 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 676 { 677 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 678 } 679 680 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 681 { 682 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 683 } 684 685 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 686 { 687 return pd_to_blkg(&iocg->pd); 688 } 689 690 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 691 { 692 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 693 struct ioc_cgrp, cpd); 694 } 695 696 /* 697 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 698 * weight, the more expensive each IO. Must round up. 699 */ 700 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 701 { 702 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 703 } 704 705 /* 706 * The inverse of abs_cost_to_cost(). Must round up. 707 */ 708 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 709 { 710 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 711 } 712 713 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 714 u64 abs_cost, u64 cost) 715 { 716 struct iocg_pcpu_stat *gcs; 717 718 bio->bi_iocost_cost = cost; 719 atomic64_add(cost, &iocg->vtime); 720 721 gcs = get_cpu_ptr(iocg->pcpu_stat); 722 local64_add(abs_cost, &gcs->abs_vusage); 723 put_cpu_ptr(gcs); 724 } 725 726 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 727 { 728 if (lock_ioc) { 729 spin_lock_irqsave(&iocg->ioc->lock, *flags); 730 spin_lock(&iocg->waitq.lock); 731 } else { 732 spin_lock_irqsave(&iocg->waitq.lock, *flags); 733 } 734 } 735 736 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 737 { 738 if (unlock_ioc) { 739 spin_unlock(&iocg->waitq.lock); 740 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 741 } else { 742 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 743 } 744 } 745 746 #define CREATE_TRACE_POINTS 747 #include <trace/events/iocost.h> 748 749 static void ioc_refresh_margins(struct ioc *ioc) 750 { 751 struct ioc_margins *margins = &ioc->margins; 752 u32 period_us = ioc->period_us; 753 u64 vrate = ioc->vtime_base_rate; 754 755 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 756 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 757 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 758 } 759 760 /* latency Qos params changed, update period_us and all the dependent params */ 761 static void ioc_refresh_period_us(struct ioc *ioc) 762 { 763 u32 ppm, lat, multi, period_us; 764 765 lockdep_assert_held(&ioc->lock); 766 767 /* pick the higher latency target */ 768 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 769 ppm = ioc->params.qos[QOS_RPPM]; 770 lat = ioc->params.qos[QOS_RLAT]; 771 } else { 772 ppm = ioc->params.qos[QOS_WPPM]; 773 lat = ioc->params.qos[QOS_WLAT]; 774 } 775 776 /* 777 * We want the period to be long enough to contain a healthy number 778 * of IOs while short enough for granular control. Define it as a 779 * multiple of the latency target. Ideally, the multiplier should 780 * be scaled according to the percentile so that it would nominally 781 * contain a certain number of requests. Let's be simpler and 782 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 783 */ 784 if (ppm) 785 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 786 else 787 multi = 2; 788 period_us = multi * lat; 789 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 790 791 /* calculate dependent params */ 792 ioc->period_us = period_us; 793 ioc->timer_slack_ns = div64_u64( 794 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 795 100); 796 ioc_refresh_margins(ioc); 797 } 798 799 static int ioc_autop_idx(struct ioc *ioc) 800 { 801 int idx = ioc->autop_idx; 802 const struct ioc_params *p = &autop[idx]; 803 u32 vrate_pct; 804 u64 now_ns; 805 806 /* rotational? */ 807 if (!blk_queue_nonrot(ioc->rqos.q)) 808 return AUTOP_HDD; 809 810 /* handle SATA SSDs w/ broken NCQ */ 811 if (blk_queue_depth(ioc->rqos.q) == 1) 812 return AUTOP_SSD_QD1; 813 814 /* use one of the normal ssd sets */ 815 if (idx < AUTOP_SSD_DFL) 816 return AUTOP_SSD_DFL; 817 818 /* if user is overriding anything, maintain what was there */ 819 if (ioc->user_qos_params || ioc->user_cost_model) 820 return idx; 821 822 /* step up/down based on the vrate */ 823 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 824 now_ns = ktime_get_ns(); 825 826 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 827 if (!ioc->autop_too_fast_at) 828 ioc->autop_too_fast_at = now_ns; 829 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 830 return idx + 1; 831 } else { 832 ioc->autop_too_fast_at = 0; 833 } 834 835 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 836 if (!ioc->autop_too_slow_at) 837 ioc->autop_too_slow_at = now_ns; 838 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 839 return idx - 1; 840 } else { 841 ioc->autop_too_slow_at = 0; 842 } 843 844 return idx; 845 } 846 847 /* 848 * Take the followings as input 849 * 850 * @bps maximum sequential throughput 851 * @seqiops maximum sequential 4k iops 852 * @randiops maximum random 4k iops 853 * 854 * and calculate the linear model cost coefficients. 855 * 856 * *@page per-page cost 1s / (@bps / 4096) 857 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 858 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 859 */ 860 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 861 u64 *page, u64 *seqio, u64 *randio) 862 { 863 u64 v; 864 865 *page = *seqio = *randio = 0; 866 867 if (bps) 868 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 869 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 870 871 if (seqiops) { 872 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 873 if (v > *page) 874 *seqio = v - *page; 875 } 876 877 if (randiops) { 878 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 879 if (v > *page) 880 *randio = v - *page; 881 } 882 } 883 884 static void ioc_refresh_lcoefs(struct ioc *ioc) 885 { 886 u64 *u = ioc->params.i_lcoefs; 887 u64 *c = ioc->params.lcoefs; 888 889 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 890 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 891 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 892 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 893 } 894 895 static bool ioc_refresh_params(struct ioc *ioc, bool force) 896 { 897 const struct ioc_params *p; 898 int idx; 899 900 lockdep_assert_held(&ioc->lock); 901 902 idx = ioc_autop_idx(ioc); 903 p = &autop[idx]; 904 905 if (idx == ioc->autop_idx && !force) 906 return false; 907 908 if (idx != ioc->autop_idx) { 909 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 910 ioc->vtime_base_rate = VTIME_PER_USEC; 911 } 912 913 ioc->autop_idx = idx; 914 ioc->autop_too_fast_at = 0; 915 ioc->autop_too_slow_at = 0; 916 917 if (!ioc->user_qos_params) 918 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 919 if (!ioc->user_cost_model) 920 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 921 922 ioc_refresh_period_us(ioc); 923 ioc_refresh_lcoefs(ioc); 924 925 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 926 VTIME_PER_USEC, MILLION); 927 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 928 VTIME_PER_USEC, MILLION); 929 930 return true; 931 } 932 933 /* 934 * When an iocg accumulates too much vtime or gets deactivated, we throw away 935 * some vtime, which lowers the overall device utilization. As the exact amount 936 * which is being thrown away is known, we can compensate by accelerating the 937 * vrate accordingly so that the extra vtime generated in the current period 938 * matches what got lost. 939 */ 940 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 941 { 942 s64 pleft = ioc->period_at + ioc->period_us - now->now; 943 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 944 s64 vcomp, vcomp_min, vcomp_max; 945 946 lockdep_assert_held(&ioc->lock); 947 948 /* we need some time left in this period */ 949 if (pleft <= 0) 950 goto done; 951 952 /* 953 * Calculate how much vrate should be adjusted to offset the error. 954 * Limit the amount of adjustment and deduct the adjusted amount from 955 * the error. 956 */ 957 vcomp = -div64_s64(ioc->vtime_err, pleft); 958 vcomp_min = -(ioc->vtime_base_rate >> 1); 959 vcomp_max = ioc->vtime_base_rate; 960 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 961 962 ioc->vtime_err += vcomp * pleft; 963 964 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 965 done: 966 /* bound how much error can accumulate */ 967 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 968 } 969 970 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 971 int nr_lagging, int nr_shortages, 972 int prev_busy_level, u32 *missed_ppm) 973 { 974 u64 vrate = ioc->vtime_base_rate; 975 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 976 977 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 978 if (ioc->busy_level != prev_busy_level || nr_lagging) 979 trace_iocost_ioc_vrate_adj(ioc, vrate, 980 missed_ppm, rq_wait_pct, 981 nr_lagging, nr_shortages); 982 983 return; 984 } 985 986 /* 987 * If vrate is out of bounds, apply clamp gradually as the 988 * bounds can change abruptly. Otherwise, apply busy_level 989 * based adjustment. 990 */ 991 if (vrate < vrate_min) { 992 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 993 vrate = min(vrate, vrate_min); 994 } else if (vrate > vrate_max) { 995 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 996 vrate = max(vrate, vrate_max); 997 } else { 998 int idx = min_t(int, abs(ioc->busy_level), 999 ARRAY_SIZE(vrate_adj_pct) - 1); 1000 u32 adj_pct = vrate_adj_pct[idx]; 1001 1002 if (ioc->busy_level > 0) 1003 adj_pct = 100 - adj_pct; 1004 else 1005 adj_pct = 100 + adj_pct; 1006 1007 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1008 vrate_min, vrate_max); 1009 } 1010 1011 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1012 nr_lagging, nr_shortages); 1013 1014 ioc->vtime_base_rate = vrate; 1015 ioc_refresh_margins(ioc); 1016 } 1017 1018 /* take a snapshot of the current [v]time and vrate */ 1019 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1020 { 1021 unsigned seq; 1022 u64 vrate; 1023 1024 now->now_ns = ktime_get(); 1025 now->now = ktime_to_us(now->now_ns); 1026 vrate = atomic64_read(&ioc->vtime_rate); 1027 1028 /* 1029 * The current vtime is 1030 * 1031 * vtime at period start + (wallclock time since the start) * vrate 1032 * 1033 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1034 * needed, they're seqcount protected. 1035 */ 1036 do { 1037 seq = read_seqcount_begin(&ioc->period_seqcount); 1038 now->vnow = ioc->period_at_vtime + 1039 (now->now - ioc->period_at) * vrate; 1040 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1041 } 1042 1043 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1044 { 1045 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1046 1047 write_seqcount_begin(&ioc->period_seqcount); 1048 ioc->period_at = now->now; 1049 ioc->period_at_vtime = now->vnow; 1050 write_seqcount_end(&ioc->period_seqcount); 1051 1052 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1053 add_timer(&ioc->timer); 1054 } 1055 1056 /* 1057 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1058 * weight sums and propagate upwards accordingly. If @save, the current margin 1059 * is saved to be used as reference for later inuse in-period adjustments. 1060 */ 1061 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1062 bool save, struct ioc_now *now) 1063 { 1064 struct ioc *ioc = iocg->ioc; 1065 int lvl; 1066 1067 lockdep_assert_held(&ioc->lock); 1068 1069 /* 1070 * For an active leaf node, its inuse shouldn't be zero or exceed 1071 * @active. An active internal node's inuse is solely determined by the 1072 * inuse to active ratio of its children regardless of @inuse. 1073 */ 1074 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1075 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1076 iocg->child_active_sum); 1077 } else { 1078 inuse = clamp_t(u32, inuse, 1, active); 1079 } 1080 1081 iocg->last_inuse = iocg->inuse; 1082 if (save) 1083 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1084 1085 if (active == iocg->active && inuse == iocg->inuse) 1086 return; 1087 1088 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1089 struct ioc_gq *parent = iocg->ancestors[lvl]; 1090 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1091 u32 parent_active = 0, parent_inuse = 0; 1092 1093 /* update the level sums */ 1094 parent->child_active_sum += (s32)(active - child->active); 1095 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1096 /* apply the updates */ 1097 child->active = active; 1098 child->inuse = inuse; 1099 1100 /* 1101 * The delta between inuse and active sums indicates that 1102 * much of weight is being given away. Parent's inuse 1103 * and active should reflect the ratio. 1104 */ 1105 if (parent->child_active_sum) { 1106 parent_active = parent->weight; 1107 parent_inuse = DIV64_U64_ROUND_UP( 1108 parent_active * parent->child_inuse_sum, 1109 parent->child_active_sum); 1110 } 1111 1112 /* do we need to keep walking up? */ 1113 if (parent_active == parent->active && 1114 parent_inuse == parent->inuse) 1115 break; 1116 1117 active = parent_active; 1118 inuse = parent_inuse; 1119 } 1120 1121 ioc->weights_updated = true; 1122 } 1123 1124 static void commit_weights(struct ioc *ioc) 1125 { 1126 lockdep_assert_held(&ioc->lock); 1127 1128 if (ioc->weights_updated) { 1129 /* paired with rmb in current_hweight(), see there */ 1130 smp_wmb(); 1131 atomic_inc(&ioc->hweight_gen); 1132 ioc->weights_updated = false; 1133 } 1134 } 1135 1136 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1137 bool save, struct ioc_now *now) 1138 { 1139 __propagate_weights(iocg, active, inuse, save, now); 1140 commit_weights(iocg->ioc); 1141 } 1142 1143 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1144 { 1145 struct ioc *ioc = iocg->ioc; 1146 int lvl; 1147 u32 hwa, hwi; 1148 int ioc_gen; 1149 1150 /* hot path - if uptodate, use cached */ 1151 ioc_gen = atomic_read(&ioc->hweight_gen); 1152 if (ioc_gen == iocg->hweight_gen) 1153 goto out; 1154 1155 /* 1156 * Paired with wmb in commit_weights(). If we saw the updated 1157 * hweight_gen, all the weight updates from __propagate_weights() are 1158 * visible too. 1159 * 1160 * We can race with weight updates during calculation and get it 1161 * wrong. However, hweight_gen would have changed and a future 1162 * reader will recalculate and we're guaranteed to discard the 1163 * wrong result soon. 1164 */ 1165 smp_rmb(); 1166 1167 hwa = hwi = WEIGHT_ONE; 1168 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1169 struct ioc_gq *parent = iocg->ancestors[lvl]; 1170 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1171 u64 active_sum = READ_ONCE(parent->child_active_sum); 1172 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1173 u32 active = READ_ONCE(child->active); 1174 u32 inuse = READ_ONCE(child->inuse); 1175 1176 /* we can race with deactivations and either may read as zero */ 1177 if (!active_sum || !inuse_sum) 1178 continue; 1179 1180 active_sum = max_t(u64, active, active_sum); 1181 hwa = div64_u64((u64)hwa * active, active_sum); 1182 1183 inuse_sum = max_t(u64, inuse, inuse_sum); 1184 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1185 } 1186 1187 iocg->hweight_active = max_t(u32, hwa, 1); 1188 iocg->hweight_inuse = max_t(u32, hwi, 1); 1189 iocg->hweight_gen = ioc_gen; 1190 out: 1191 if (hw_activep) 1192 *hw_activep = iocg->hweight_active; 1193 if (hw_inusep) 1194 *hw_inusep = iocg->hweight_inuse; 1195 } 1196 1197 /* 1198 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1199 * other weights stay unchanged. 1200 */ 1201 static u32 current_hweight_max(struct ioc_gq *iocg) 1202 { 1203 u32 hwm = WEIGHT_ONE; 1204 u32 inuse = iocg->active; 1205 u64 child_inuse_sum; 1206 int lvl; 1207 1208 lockdep_assert_held(&iocg->ioc->lock); 1209 1210 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1211 struct ioc_gq *parent = iocg->ancestors[lvl]; 1212 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1213 1214 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1215 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1216 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1217 parent->child_active_sum); 1218 } 1219 1220 return max_t(u32, hwm, 1); 1221 } 1222 1223 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1224 { 1225 struct ioc *ioc = iocg->ioc; 1226 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1227 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1228 u32 weight; 1229 1230 lockdep_assert_held(&ioc->lock); 1231 1232 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1233 if (weight != iocg->weight && iocg->active) 1234 propagate_weights(iocg, weight, iocg->inuse, true, now); 1235 iocg->weight = weight; 1236 } 1237 1238 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1239 { 1240 struct ioc *ioc = iocg->ioc; 1241 u64 last_period, cur_period; 1242 u64 vtime, vtarget; 1243 int i; 1244 1245 /* 1246 * If seem to be already active, just update the stamp to tell the 1247 * timer that we're still active. We don't mind occassional races. 1248 */ 1249 if (!list_empty(&iocg->active_list)) { 1250 ioc_now(ioc, now); 1251 cur_period = atomic64_read(&ioc->cur_period); 1252 if (atomic64_read(&iocg->active_period) != cur_period) 1253 atomic64_set(&iocg->active_period, cur_period); 1254 return true; 1255 } 1256 1257 /* racy check on internal node IOs, treat as root level IOs */ 1258 if (iocg->child_active_sum) 1259 return false; 1260 1261 spin_lock_irq(&ioc->lock); 1262 1263 ioc_now(ioc, now); 1264 1265 /* update period */ 1266 cur_period = atomic64_read(&ioc->cur_period); 1267 last_period = atomic64_read(&iocg->active_period); 1268 atomic64_set(&iocg->active_period, cur_period); 1269 1270 /* already activated or breaking leaf-only constraint? */ 1271 if (!list_empty(&iocg->active_list)) 1272 goto succeed_unlock; 1273 for (i = iocg->level - 1; i > 0; i--) 1274 if (!list_empty(&iocg->ancestors[i]->active_list)) 1275 goto fail_unlock; 1276 1277 if (iocg->child_active_sum) 1278 goto fail_unlock; 1279 1280 /* 1281 * Always start with the target budget. On deactivation, we throw away 1282 * anything above it. 1283 */ 1284 vtarget = now->vnow - ioc->margins.target; 1285 vtime = atomic64_read(&iocg->vtime); 1286 1287 atomic64_add(vtarget - vtime, &iocg->vtime); 1288 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1289 vtime = vtarget; 1290 1291 /* 1292 * Activate, propagate weight and start period timer if not 1293 * running. Reset hweight_gen to avoid accidental match from 1294 * wrapping. 1295 */ 1296 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1297 list_add(&iocg->active_list, &ioc->active_iocgs); 1298 1299 propagate_weights(iocg, iocg->weight, 1300 iocg->last_inuse ?: iocg->weight, true, now); 1301 1302 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1303 last_period, cur_period, vtime); 1304 1305 iocg->activated_at = now->now; 1306 1307 if (ioc->running == IOC_IDLE) { 1308 ioc->running = IOC_RUNNING; 1309 ioc->dfgv_period_at = now->now; 1310 ioc->dfgv_period_rem = 0; 1311 ioc_start_period(ioc, now); 1312 } 1313 1314 succeed_unlock: 1315 spin_unlock_irq(&ioc->lock); 1316 return true; 1317 1318 fail_unlock: 1319 spin_unlock_irq(&ioc->lock); 1320 return false; 1321 } 1322 1323 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1324 { 1325 struct ioc *ioc = iocg->ioc; 1326 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1327 u64 tdelta, delay, new_delay; 1328 s64 vover, vover_pct; 1329 u32 hwa; 1330 1331 lockdep_assert_held(&iocg->waitq.lock); 1332 1333 /* calculate the current delay in effect - 1/2 every second */ 1334 tdelta = now->now - iocg->delay_at; 1335 if (iocg->delay) 1336 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1337 else 1338 delay = 0; 1339 1340 /* calculate the new delay from the debt amount */ 1341 current_hweight(iocg, &hwa, NULL); 1342 vover = atomic64_read(&iocg->vtime) + 1343 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1344 vover_pct = div64_s64(100 * vover, 1345 ioc->period_us * ioc->vtime_base_rate); 1346 1347 if (vover_pct <= MIN_DELAY_THR_PCT) 1348 new_delay = 0; 1349 else if (vover_pct >= MAX_DELAY_THR_PCT) 1350 new_delay = MAX_DELAY; 1351 else 1352 new_delay = MIN_DELAY + 1353 div_u64((MAX_DELAY - MIN_DELAY) * 1354 (vover_pct - MIN_DELAY_THR_PCT), 1355 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1356 1357 /* pick the higher one and apply */ 1358 if (new_delay > delay) { 1359 iocg->delay = new_delay; 1360 iocg->delay_at = now->now; 1361 delay = new_delay; 1362 } 1363 1364 if (delay >= MIN_DELAY) { 1365 if (!iocg->indelay_since) 1366 iocg->indelay_since = now->now; 1367 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1368 return true; 1369 } else { 1370 if (iocg->indelay_since) { 1371 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1372 iocg->indelay_since = 0; 1373 } 1374 iocg->delay = 0; 1375 blkcg_clear_delay(blkg); 1376 return false; 1377 } 1378 } 1379 1380 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1381 struct ioc_now *now) 1382 { 1383 struct iocg_pcpu_stat *gcs; 1384 1385 lockdep_assert_held(&iocg->ioc->lock); 1386 lockdep_assert_held(&iocg->waitq.lock); 1387 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1388 1389 /* 1390 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1391 * inuse donating all of it share to others until its debt is paid off. 1392 */ 1393 if (!iocg->abs_vdebt && abs_cost) { 1394 iocg->indebt_since = now->now; 1395 propagate_weights(iocg, iocg->active, 0, false, now); 1396 } 1397 1398 iocg->abs_vdebt += abs_cost; 1399 1400 gcs = get_cpu_ptr(iocg->pcpu_stat); 1401 local64_add(abs_cost, &gcs->abs_vusage); 1402 put_cpu_ptr(gcs); 1403 } 1404 1405 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1406 struct ioc_now *now) 1407 { 1408 lockdep_assert_held(&iocg->ioc->lock); 1409 lockdep_assert_held(&iocg->waitq.lock); 1410 1411 /* make sure that nobody messed with @iocg */ 1412 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1413 WARN_ON_ONCE(iocg->inuse > 1); 1414 1415 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1416 1417 /* if debt is paid in full, restore inuse */ 1418 if (!iocg->abs_vdebt) { 1419 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1420 iocg->indebt_since = 0; 1421 1422 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1423 false, now); 1424 } 1425 } 1426 1427 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1428 int flags, void *key) 1429 { 1430 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1431 struct iocg_wake_ctx *ctx = key; 1432 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1433 1434 ctx->vbudget -= cost; 1435 1436 if (ctx->vbudget < 0) 1437 return -1; 1438 1439 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1440 wait->committed = true; 1441 1442 /* 1443 * autoremove_wake_function() removes the wait entry only when it 1444 * actually changed the task state. We want the wait always removed. 1445 * Remove explicitly and use default_wake_function(). Note that the 1446 * order of operations is important as finish_wait() tests whether 1447 * @wq_entry is removed without grabbing the lock. 1448 */ 1449 default_wake_function(wq_entry, mode, flags, key); 1450 list_del_init_careful(&wq_entry->entry); 1451 return 0; 1452 } 1453 1454 /* 1455 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1456 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1457 * addition to iocg->waitq.lock. 1458 */ 1459 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1460 struct ioc_now *now) 1461 { 1462 struct ioc *ioc = iocg->ioc; 1463 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1464 u64 vshortage, expires, oexpires; 1465 s64 vbudget; 1466 u32 hwa; 1467 1468 lockdep_assert_held(&iocg->waitq.lock); 1469 1470 current_hweight(iocg, &hwa, NULL); 1471 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1472 1473 /* pay off debt */ 1474 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1475 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1476 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1477 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1478 1479 lockdep_assert_held(&ioc->lock); 1480 1481 atomic64_add(vpay, &iocg->vtime); 1482 atomic64_add(vpay, &iocg->done_vtime); 1483 iocg_pay_debt(iocg, abs_vpay, now); 1484 vbudget -= vpay; 1485 } 1486 1487 if (iocg->abs_vdebt || iocg->delay) 1488 iocg_kick_delay(iocg, now); 1489 1490 /* 1491 * Debt can still be outstanding if we haven't paid all yet or the 1492 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1493 * under debt. Make sure @vbudget reflects the outstanding amount and is 1494 * not positive. 1495 */ 1496 if (iocg->abs_vdebt) { 1497 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1498 vbudget = min_t(s64, 0, vbudget - vdebt); 1499 } 1500 1501 /* 1502 * Wake up the ones which are due and see how much vtime we'll need for 1503 * the next one. As paying off debt restores hw_inuse, it must be read 1504 * after the above debt payment. 1505 */ 1506 ctx.vbudget = vbudget; 1507 current_hweight(iocg, NULL, &ctx.hw_inuse); 1508 1509 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1510 1511 if (!waitqueue_active(&iocg->waitq)) { 1512 if (iocg->wait_since) { 1513 iocg->stat.wait_us += now->now - iocg->wait_since; 1514 iocg->wait_since = 0; 1515 } 1516 return; 1517 } 1518 1519 if (!iocg->wait_since) 1520 iocg->wait_since = now->now; 1521 1522 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1523 return; 1524 1525 /* determine next wakeup, add a timer margin to guarantee chunking */ 1526 vshortage = -ctx.vbudget; 1527 expires = now->now_ns + 1528 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1529 NSEC_PER_USEC; 1530 expires += ioc->timer_slack_ns; 1531 1532 /* if already active and close enough, don't bother */ 1533 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1534 if (hrtimer_is_queued(&iocg->waitq_timer) && 1535 abs(oexpires - expires) <= ioc->timer_slack_ns) 1536 return; 1537 1538 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1539 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1540 } 1541 1542 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1543 { 1544 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1545 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1546 struct ioc_now now; 1547 unsigned long flags; 1548 1549 ioc_now(iocg->ioc, &now); 1550 1551 iocg_lock(iocg, pay_debt, &flags); 1552 iocg_kick_waitq(iocg, pay_debt, &now); 1553 iocg_unlock(iocg, pay_debt, &flags); 1554 1555 return HRTIMER_NORESTART; 1556 } 1557 1558 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1559 { 1560 u32 nr_met[2] = { }; 1561 u32 nr_missed[2] = { }; 1562 u64 rq_wait_ns = 0; 1563 int cpu, rw; 1564 1565 for_each_online_cpu(cpu) { 1566 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1567 u64 this_rq_wait_ns; 1568 1569 for (rw = READ; rw <= WRITE; rw++) { 1570 u32 this_met = local_read(&stat->missed[rw].nr_met); 1571 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1572 1573 nr_met[rw] += this_met - stat->missed[rw].last_met; 1574 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1575 stat->missed[rw].last_met = this_met; 1576 stat->missed[rw].last_missed = this_missed; 1577 } 1578 1579 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1580 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1581 stat->last_rq_wait_ns = this_rq_wait_ns; 1582 } 1583 1584 for (rw = READ; rw <= WRITE; rw++) { 1585 if (nr_met[rw] + nr_missed[rw]) 1586 missed_ppm_ar[rw] = 1587 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1588 nr_met[rw] + nr_missed[rw]); 1589 else 1590 missed_ppm_ar[rw] = 0; 1591 } 1592 1593 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1594 ioc->period_us * NSEC_PER_USEC); 1595 } 1596 1597 /* was iocg idle this period? */ 1598 static bool iocg_is_idle(struct ioc_gq *iocg) 1599 { 1600 struct ioc *ioc = iocg->ioc; 1601 1602 /* did something get issued this period? */ 1603 if (atomic64_read(&iocg->active_period) == 1604 atomic64_read(&ioc->cur_period)) 1605 return false; 1606 1607 /* is something in flight? */ 1608 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1609 return false; 1610 1611 return true; 1612 } 1613 1614 /* 1615 * Call this function on the target leaf @iocg's to build pre-order traversal 1616 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1617 * ->walk_list and the caller is responsible for dissolving the list after use. 1618 */ 1619 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1620 struct list_head *inner_walk) 1621 { 1622 int lvl; 1623 1624 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1625 1626 /* find the first ancestor which hasn't been visited yet */ 1627 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1628 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1629 break; 1630 } 1631 1632 /* walk down and visit the inner nodes to get pre-order traversal */ 1633 while (++lvl <= iocg->level - 1) { 1634 struct ioc_gq *inner = iocg->ancestors[lvl]; 1635 1636 /* record traversal order */ 1637 list_add_tail(&inner->walk_list, inner_walk); 1638 } 1639 } 1640 1641 /* propagate the deltas to the parent */ 1642 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1643 { 1644 if (iocg->level > 0) { 1645 struct iocg_stat *parent_stat = 1646 &iocg->ancestors[iocg->level - 1]->stat; 1647 1648 parent_stat->usage_us += 1649 iocg->stat.usage_us - iocg->last_stat.usage_us; 1650 parent_stat->wait_us += 1651 iocg->stat.wait_us - iocg->last_stat.wait_us; 1652 parent_stat->indebt_us += 1653 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1654 parent_stat->indelay_us += 1655 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1656 } 1657 1658 iocg->last_stat = iocg->stat; 1659 } 1660 1661 /* collect per-cpu counters and propagate the deltas to the parent */ 1662 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1663 { 1664 struct ioc *ioc = iocg->ioc; 1665 u64 abs_vusage = 0; 1666 u64 vusage_delta; 1667 int cpu; 1668 1669 lockdep_assert_held(&iocg->ioc->lock); 1670 1671 /* collect per-cpu counters */ 1672 for_each_possible_cpu(cpu) { 1673 abs_vusage += local64_read( 1674 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1675 } 1676 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1677 iocg->last_stat_abs_vusage = abs_vusage; 1678 1679 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1680 iocg->stat.usage_us += iocg->usage_delta_us; 1681 1682 iocg_flush_stat_upward(iocg); 1683 } 1684 1685 /* get stat counters ready for reading on all active iocgs */ 1686 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1687 { 1688 LIST_HEAD(inner_walk); 1689 struct ioc_gq *iocg, *tiocg; 1690 1691 /* flush leaves and build inner node walk list */ 1692 list_for_each_entry(iocg, target_iocgs, active_list) { 1693 iocg_flush_stat_leaf(iocg, now); 1694 iocg_build_inner_walk(iocg, &inner_walk); 1695 } 1696 1697 /* keep flushing upwards by walking the inner list backwards */ 1698 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1699 iocg_flush_stat_upward(iocg); 1700 list_del_init(&iocg->walk_list); 1701 } 1702 } 1703 1704 /* 1705 * Determine what @iocg's hweight_inuse should be after donating unused 1706 * capacity. @hwm is the upper bound and used to signal no donation. This 1707 * function also throws away @iocg's excess budget. 1708 */ 1709 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1710 u32 usage, struct ioc_now *now) 1711 { 1712 struct ioc *ioc = iocg->ioc; 1713 u64 vtime = atomic64_read(&iocg->vtime); 1714 s64 excess, delta, target, new_hwi; 1715 1716 /* debt handling owns inuse for debtors */ 1717 if (iocg->abs_vdebt) 1718 return 1; 1719 1720 /* see whether minimum margin requirement is met */ 1721 if (waitqueue_active(&iocg->waitq) || 1722 time_after64(vtime, now->vnow - ioc->margins.min)) 1723 return hwm; 1724 1725 /* throw away excess above target */ 1726 excess = now->vnow - vtime - ioc->margins.target; 1727 if (excess > 0) { 1728 atomic64_add(excess, &iocg->vtime); 1729 atomic64_add(excess, &iocg->done_vtime); 1730 vtime += excess; 1731 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1732 } 1733 1734 /* 1735 * Let's say the distance between iocg's and device's vtimes as a 1736 * fraction of period duration is delta. Assuming that the iocg will 1737 * consume the usage determined above, we want to determine new_hwi so 1738 * that delta equals MARGIN_TARGET at the end of the next period. 1739 * 1740 * We need to execute usage worth of IOs while spending the sum of the 1741 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1742 * (delta): 1743 * 1744 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1745 * 1746 * Therefore, the new_hwi is: 1747 * 1748 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1749 */ 1750 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1751 now->vnow - ioc->period_at_vtime); 1752 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1753 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1754 1755 return clamp_t(s64, new_hwi, 1, hwm); 1756 } 1757 1758 /* 1759 * For work-conservation, an iocg which isn't using all of its share should 1760 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1761 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1762 * 1763 * #1 is mathematically simpler but has the drawback of requiring synchronous 1764 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1765 * change due to donation snapbacks as it has the possibility of grossly 1766 * overshooting what's allowed by the model and vrate. 1767 * 1768 * #2 is inherently safe with local operations. The donating iocg can easily 1769 * snap back to higher weights when needed without worrying about impacts on 1770 * other nodes as the impacts will be inherently correct. This also makes idle 1771 * iocg activations safe. The only effect activations have is decreasing 1772 * hweight_inuse of others, the right solution to which is for those iocgs to 1773 * snap back to higher weights. 1774 * 1775 * So, we go with #2. The challenge is calculating how each donating iocg's 1776 * inuse should be adjusted to achieve the target donation amounts. This is done 1777 * using Andy's method described in the following pdf. 1778 * 1779 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1780 * 1781 * Given the weights and target after-donation hweight_inuse values, Andy's 1782 * method determines how the proportional distribution should look like at each 1783 * sibling level to maintain the relative relationship between all non-donating 1784 * pairs. To roughly summarize, it divides the tree into donating and 1785 * non-donating parts, calculates global donation rate which is used to 1786 * determine the target hweight_inuse for each node, and then derives per-level 1787 * proportions. 1788 * 1789 * The following pdf shows that global distribution calculated this way can be 1790 * achieved by scaling inuse weights of donating leaves and propagating the 1791 * adjustments upwards proportionally. 1792 * 1793 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1794 * 1795 * Combining the above two, we can determine how each leaf iocg's inuse should 1796 * be adjusted to achieve the target donation. 1797 * 1798 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1799 * 1800 * The inline comments use symbols from the last pdf. 1801 * 1802 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1803 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1804 * t is the sum of the absolute budgets of donating nodes in the subtree. 1805 * w is the weight of the node. w = w_f + w_t 1806 * w_f is the non-donating portion of w. w_f = w * f / b 1807 * w_b is the donating portion of w. w_t = w * t / b 1808 * s is the sum of all sibling weights. s = Sum(w) for siblings 1809 * s_f and s_t are the non-donating and donating portions of s. 1810 * 1811 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1812 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1813 * after adjustments. Subscript r denotes the root node's values. 1814 */ 1815 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1816 { 1817 LIST_HEAD(over_hwa); 1818 LIST_HEAD(inner_walk); 1819 struct ioc_gq *iocg, *tiocg, *root_iocg; 1820 u32 after_sum, over_sum, over_target, gamma; 1821 1822 /* 1823 * It's pretty unlikely but possible for the total sum of 1824 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1825 * confuse the following calculations. If such condition is detected, 1826 * scale down everyone over its full share equally to keep the sum below 1827 * WEIGHT_ONE. 1828 */ 1829 after_sum = 0; 1830 over_sum = 0; 1831 list_for_each_entry(iocg, surpluses, surplus_list) { 1832 u32 hwa; 1833 1834 current_hweight(iocg, &hwa, NULL); 1835 after_sum += iocg->hweight_after_donation; 1836 1837 if (iocg->hweight_after_donation > hwa) { 1838 over_sum += iocg->hweight_after_donation; 1839 list_add(&iocg->walk_list, &over_hwa); 1840 } 1841 } 1842 1843 if (after_sum >= WEIGHT_ONE) { 1844 /* 1845 * The delta should be deducted from the over_sum, calculate 1846 * target over_sum value. 1847 */ 1848 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1849 WARN_ON_ONCE(over_sum <= over_delta); 1850 over_target = over_sum - over_delta; 1851 } else { 1852 over_target = 0; 1853 } 1854 1855 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1856 if (over_target) 1857 iocg->hweight_after_donation = 1858 div_u64((u64)iocg->hweight_after_donation * 1859 over_target, over_sum); 1860 list_del_init(&iocg->walk_list); 1861 } 1862 1863 /* 1864 * Build pre-order inner node walk list and prepare for donation 1865 * adjustment calculations. 1866 */ 1867 list_for_each_entry(iocg, surpluses, surplus_list) { 1868 iocg_build_inner_walk(iocg, &inner_walk); 1869 } 1870 1871 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1872 WARN_ON_ONCE(root_iocg->level > 0); 1873 1874 list_for_each_entry(iocg, &inner_walk, walk_list) { 1875 iocg->child_adjusted_sum = 0; 1876 iocg->hweight_donating = 0; 1877 iocg->hweight_after_donation = 0; 1878 } 1879 1880 /* 1881 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1882 * up the hierarchy. 1883 */ 1884 list_for_each_entry(iocg, surpluses, surplus_list) { 1885 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1886 1887 parent->hweight_donating += iocg->hweight_donating; 1888 parent->hweight_after_donation += iocg->hweight_after_donation; 1889 } 1890 1891 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1892 if (iocg->level > 0) { 1893 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1894 1895 parent->hweight_donating += iocg->hweight_donating; 1896 parent->hweight_after_donation += iocg->hweight_after_donation; 1897 } 1898 } 1899 1900 /* 1901 * Calculate inner hwa's (b) and make sure the donation values are 1902 * within the accepted ranges as we're doing low res calculations with 1903 * roundups. 1904 */ 1905 list_for_each_entry(iocg, &inner_walk, walk_list) { 1906 if (iocg->level) { 1907 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1908 1909 iocg->hweight_active = DIV64_U64_ROUND_UP( 1910 (u64)parent->hweight_active * iocg->active, 1911 parent->child_active_sum); 1912 1913 } 1914 1915 iocg->hweight_donating = min(iocg->hweight_donating, 1916 iocg->hweight_active); 1917 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1918 iocg->hweight_donating - 1); 1919 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1920 iocg->hweight_donating <= 1 || 1921 iocg->hweight_after_donation == 0)) { 1922 pr_warn("iocg: invalid donation weights in "); 1923 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1924 pr_cont(": active=%u donating=%u after=%u\n", 1925 iocg->hweight_active, iocg->hweight_donating, 1926 iocg->hweight_after_donation); 1927 } 1928 } 1929 1930 /* 1931 * Calculate the global donation rate (gamma) - the rate to adjust 1932 * non-donating budgets by. 1933 * 1934 * No need to use 64bit multiplication here as the first operand is 1935 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1936 * 1937 * We know that there are beneficiary nodes and the sum of the donating 1938 * hweights can't be whole; however, due to the round-ups during hweight 1939 * calculations, root_iocg->hweight_donating might still end up equal to 1940 * or greater than whole. Limit the range when calculating the divider. 1941 * 1942 * gamma = (1 - t_r') / (1 - t_r) 1943 */ 1944 gamma = DIV_ROUND_UP( 1945 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1946 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1947 1948 /* 1949 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1950 * nodes. 1951 */ 1952 list_for_each_entry(iocg, &inner_walk, walk_list) { 1953 struct ioc_gq *parent; 1954 u32 inuse, wpt, wptp; 1955 u64 st, sf; 1956 1957 if (iocg->level == 0) { 1958 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1959 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1960 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1961 WEIGHT_ONE - iocg->hweight_after_donation); 1962 continue; 1963 } 1964 1965 parent = iocg->ancestors[iocg->level - 1]; 1966 1967 /* b' = gamma * b_f + b_t' */ 1968 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1969 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1970 WEIGHT_ONE) + iocg->hweight_after_donation; 1971 1972 /* w' = s' * b' / b'_p */ 1973 inuse = DIV64_U64_ROUND_UP( 1974 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1975 parent->hweight_inuse); 1976 1977 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1978 st = DIV64_U64_ROUND_UP( 1979 iocg->child_active_sum * iocg->hweight_donating, 1980 iocg->hweight_active); 1981 sf = iocg->child_active_sum - st; 1982 wpt = DIV64_U64_ROUND_UP( 1983 (u64)iocg->active * iocg->hweight_donating, 1984 iocg->hweight_active); 1985 wptp = DIV64_U64_ROUND_UP( 1986 (u64)inuse * iocg->hweight_after_donation, 1987 iocg->hweight_inuse); 1988 1989 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1990 } 1991 1992 /* 1993 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1994 * we can finally determine leaf adjustments. 1995 */ 1996 list_for_each_entry(iocg, surpluses, surplus_list) { 1997 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1998 u32 inuse; 1999 2000 /* 2001 * In-debt iocgs participated in the donation calculation with 2002 * the minimum target hweight_inuse. Configuring inuse 2003 * accordingly would work fine but debt handling expects 2004 * @iocg->inuse stay at the minimum and we don't wanna 2005 * interfere. 2006 */ 2007 if (iocg->abs_vdebt) { 2008 WARN_ON_ONCE(iocg->inuse > 1); 2009 continue; 2010 } 2011 2012 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2013 inuse = DIV64_U64_ROUND_UP( 2014 parent->child_adjusted_sum * iocg->hweight_after_donation, 2015 parent->hweight_inuse); 2016 2017 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2018 iocg->inuse, inuse, 2019 iocg->hweight_inuse, 2020 iocg->hweight_after_donation); 2021 2022 __propagate_weights(iocg, iocg->active, inuse, true, now); 2023 } 2024 2025 /* walk list should be dissolved after use */ 2026 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2027 list_del_init(&iocg->walk_list); 2028 } 2029 2030 /* 2031 * A low weight iocg can amass a large amount of debt, for example, when 2032 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2033 * memory paired with a slow IO device, the debt can span multiple seconds or 2034 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2035 * up blocked paying its debt while the IO device is idle. 2036 * 2037 * The following protects against such cases. If the device has been 2038 * sufficiently idle for a while, the debts are halved and delays are 2039 * recalculated. 2040 */ 2041 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2042 struct ioc_now *now) 2043 { 2044 struct ioc_gq *iocg; 2045 u64 dur, usage_pct, nr_cycles; 2046 2047 /* if no debtor, reset the cycle */ 2048 if (!nr_debtors) { 2049 ioc->dfgv_period_at = now->now; 2050 ioc->dfgv_period_rem = 0; 2051 ioc->dfgv_usage_us_sum = 0; 2052 return; 2053 } 2054 2055 /* 2056 * Debtors can pass through a lot of writes choking the device and we 2057 * don't want to be forgiving debts while the device is struggling from 2058 * write bursts. If we're missing latency targets, consider the device 2059 * fully utilized. 2060 */ 2061 if (ioc->busy_level > 0) 2062 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2063 2064 ioc->dfgv_usage_us_sum += usage_us_sum; 2065 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2066 return; 2067 2068 /* 2069 * At least DFGV_PERIOD has passed since the last period. Calculate the 2070 * average usage and reset the period counters. 2071 */ 2072 dur = now->now - ioc->dfgv_period_at; 2073 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2074 2075 ioc->dfgv_period_at = now->now; 2076 ioc->dfgv_usage_us_sum = 0; 2077 2078 /* if was too busy, reset everything */ 2079 if (usage_pct > DFGV_USAGE_PCT) { 2080 ioc->dfgv_period_rem = 0; 2081 return; 2082 } 2083 2084 /* 2085 * Usage is lower than threshold. Let's forgive some debts. Debt 2086 * forgiveness runs off of the usual ioc timer but its period usually 2087 * doesn't match ioc's. Compensate the difference by performing the 2088 * reduction as many times as would fit in the duration since the last 2089 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2090 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2091 * reductions is doubled. 2092 */ 2093 nr_cycles = dur + ioc->dfgv_period_rem; 2094 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2095 2096 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2097 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2098 2099 if (!iocg->abs_vdebt && !iocg->delay) 2100 continue; 2101 2102 spin_lock(&iocg->waitq.lock); 2103 2104 old_debt = iocg->abs_vdebt; 2105 old_delay = iocg->delay; 2106 2107 if (iocg->abs_vdebt) 2108 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2109 if (iocg->delay) 2110 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2111 2112 iocg_kick_waitq(iocg, true, now); 2113 2114 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2115 old_debt, iocg->abs_vdebt, 2116 old_delay, iocg->delay); 2117 2118 spin_unlock(&iocg->waitq.lock); 2119 } 2120 } 2121 2122 /* 2123 * Check the active iocgs' state to avoid oversleeping and deactive 2124 * idle iocgs. 2125 * 2126 * Since waiters determine the sleep durations based on the vrate 2127 * they saw at the time of sleep, if vrate has increased, some 2128 * waiters could be sleeping for too long. Wake up tardy waiters 2129 * which should have woken up in the last period and expire idle 2130 * iocgs. 2131 */ 2132 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2133 { 2134 int nr_debtors = 0; 2135 struct ioc_gq *iocg, *tiocg; 2136 2137 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2138 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2139 !iocg->delay && !iocg_is_idle(iocg)) 2140 continue; 2141 2142 spin_lock(&iocg->waitq.lock); 2143 2144 /* flush wait and indebt stat deltas */ 2145 if (iocg->wait_since) { 2146 iocg->stat.wait_us += now->now - iocg->wait_since; 2147 iocg->wait_since = now->now; 2148 } 2149 if (iocg->indebt_since) { 2150 iocg->stat.indebt_us += 2151 now->now - iocg->indebt_since; 2152 iocg->indebt_since = now->now; 2153 } 2154 if (iocg->indelay_since) { 2155 iocg->stat.indelay_us += 2156 now->now - iocg->indelay_since; 2157 iocg->indelay_since = now->now; 2158 } 2159 2160 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2161 iocg->delay) { 2162 /* might be oversleeping vtime / hweight changes, kick */ 2163 iocg_kick_waitq(iocg, true, now); 2164 if (iocg->abs_vdebt || iocg->delay) 2165 nr_debtors++; 2166 } else if (iocg_is_idle(iocg)) { 2167 /* no waiter and idle, deactivate */ 2168 u64 vtime = atomic64_read(&iocg->vtime); 2169 s64 excess; 2170 2171 /* 2172 * @iocg has been inactive for a full duration and will 2173 * have a high budget. Account anything above target as 2174 * error and throw away. On reactivation, it'll start 2175 * with the target budget. 2176 */ 2177 excess = now->vnow - vtime - ioc->margins.target; 2178 if (excess > 0) { 2179 u32 old_hwi; 2180 2181 current_hweight(iocg, NULL, &old_hwi); 2182 ioc->vtime_err -= div64_u64(excess * old_hwi, 2183 WEIGHT_ONE); 2184 } 2185 2186 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2187 atomic64_read(&iocg->active_period), 2188 atomic64_read(&ioc->cur_period), vtime); 2189 __propagate_weights(iocg, 0, 0, false, now); 2190 list_del_init(&iocg->active_list); 2191 } 2192 2193 spin_unlock(&iocg->waitq.lock); 2194 } 2195 2196 commit_weights(ioc); 2197 return nr_debtors; 2198 } 2199 2200 static void ioc_timer_fn(struct timer_list *timer) 2201 { 2202 struct ioc *ioc = container_of(timer, struct ioc, timer); 2203 struct ioc_gq *iocg, *tiocg; 2204 struct ioc_now now; 2205 LIST_HEAD(surpluses); 2206 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2207 u64 usage_us_sum = 0; 2208 u32 ppm_rthr; 2209 u32 ppm_wthr; 2210 u32 missed_ppm[2], rq_wait_pct; 2211 u64 period_vtime; 2212 int prev_busy_level; 2213 2214 /* how were the latencies during the period? */ 2215 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2216 2217 /* take care of active iocgs */ 2218 spin_lock_irq(&ioc->lock); 2219 2220 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2221 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2222 ioc_now(ioc, &now); 2223 2224 period_vtime = now.vnow - ioc->period_at_vtime; 2225 if (WARN_ON_ONCE(!period_vtime)) { 2226 spin_unlock_irq(&ioc->lock); 2227 return; 2228 } 2229 2230 nr_debtors = ioc_check_iocgs(ioc, &now); 2231 2232 /* 2233 * Wait and indebt stat are flushed above and the donation calculation 2234 * below needs updated usage stat. Let's bring stat up-to-date. 2235 */ 2236 iocg_flush_stat(&ioc->active_iocgs, &now); 2237 2238 /* calc usage and see whether some weights need to be moved around */ 2239 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2240 u64 vdone, vtime, usage_us; 2241 u32 hw_active, hw_inuse; 2242 2243 /* 2244 * Collect unused and wind vtime closer to vnow to prevent 2245 * iocgs from accumulating a large amount of budget. 2246 */ 2247 vdone = atomic64_read(&iocg->done_vtime); 2248 vtime = atomic64_read(&iocg->vtime); 2249 current_hweight(iocg, &hw_active, &hw_inuse); 2250 2251 /* 2252 * Latency QoS detection doesn't account for IOs which are 2253 * in-flight for longer than a period. Detect them by 2254 * comparing vdone against period start. If lagging behind 2255 * IOs from past periods, don't increase vrate. 2256 */ 2257 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2258 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2259 time_after64(vtime, vdone) && 2260 time_after64(vtime, now.vnow - 2261 MAX_LAGGING_PERIODS * period_vtime) && 2262 time_before64(vdone, now.vnow - period_vtime)) 2263 nr_lagging++; 2264 2265 /* 2266 * Determine absolute usage factoring in in-flight IOs to avoid 2267 * high-latency completions appearing as idle. 2268 */ 2269 usage_us = iocg->usage_delta_us; 2270 usage_us_sum += usage_us; 2271 2272 /* see whether there's surplus vtime */ 2273 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2274 if (hw_inuse < hw_active || 2275 (!waitqueue_active(&iocg->waitq) && 2276 time_before64(vtime, now.vnow - ioc->margins.low))) { 2277 u32 hwa, old_hwi, hwm, new_hwi, usage; 2278 u64 usage_dur; 2279 2280 if (vdone != vtime) { 2281 u64 inflight_us = DIV64_U64_ROUND_UP( 2282 cost_to_abs_cost(vtime - vdone, hw_inuse), 2283 ioc->vtime_base_rate); 2284 2285 usage_us = max(usage_us, inflight_us); 2286 } 2287 2288 /* convert to hweight based usage ratio */ 2289 if (time_after64(iocg->activated_at, ioc->period_at)) 2290 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2291 else 2292 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2293 2294 usage = clamp_t(u32, 2295 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2296 usage_dur), 2297 1, WEIGHT_ONE); 2298 2299 /* 2300 * Already donating or accumulated enough to start. 2301 * Determine the donation amount. 2302 */ 2303 current_hweight(iocg, &hwa, &old_hwi); 2304 hwm = current_hweight_max(iocg); 2305 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2306 usage, &now); 2307 /* 2308 * Donation calculation assumes hweight_after_donation 2309 * to be positive, a condition that a donor w/ hwa < 2 2310 * can't meet. Don't bother with donation if hwa is 2311 * below 2. It's not gonna make a meaningful difference 2312 * anyway. 2313 */ 2314 if (new_hwi < hwm && hwa >= 2) { 2315 iocg->hweight_donating = hwa; 2316 iocg->hweight_after_donation = new_hwi; 2317 list_add(&iocg->surplus_list, &surpluses); 2318 } else if (!iocg->abs_vdebt) { 2319 /* 2320 * @iocg doesn't have enough to donate. Reset 2321 * its inuse to active. 2322 * 2323 * Don't reset debtors as their inuse's are 2324 * owned by debt handling. This shouldn't affect 2325 * donation calculuation in any meaningful way 2326 * as @iocg doesn't have a meaningful amount of 2327 * share anyway. 2328 */ 2329 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2330 iocg->inuse, iocg->active, 2331 iocg->hweight_inuse, new_hwi); 2332 2333 __propagate_weights(iocg, iocg->active, 2334 iocg->active, true, &now); 2335 nr_shortages++; 2336 } 2337 } else { 2338 /* genuinely short on vtime */ 2339 nr_shortages++; 2340 } 2341 } 2342 2343 if (!list_empty(&surpluses) && nr_shortages) 2344 transfer_surpluses(&surpluses, &now); 2345 2346 commit_weights(ioc); 2347 2348 /* surplus list should be dissolved after use */ 2349 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2350 list_del_init(&iocg->surplus_list); 2351 2352 /* 2353 * If q is getting clogged or we're missing too much, we're issuing 2354 * too much IO and should lower vtime rate. If we're not missing 2355 * and experiencing shortages but not surpluses, we're too stingy 2356 * and should increase vtime rate. 2357 */ 2358 prev_busy_level = ioc->busy_level; 2359 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2360 missed_ppm[READ] > ppm_rthr || 2361 missed_ppm[WRITE] > ppm_wthr) { 2362 /* clearly missing QoS targets, slow down vrate */ 2363 ioc->busy_level = max(ioc->busy_level, 0); 2364 ioc->busy_level++; 2365 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2366 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2367 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2368 /* QoS targets are being met with >25% margin */ 2369 if (nr_shortages) { 2370 /* 2371 * We're throttling while the device has spare 2372 * capacity. If vrate was being slowed down, stop. 2373 */ 2374 ioc->busy_level = min(ioc->busy_level, 0); 2375 2376 /* 2377 * If there are IOs spanning multiple periods, wait 2378 * them out before pushing the device harder. 2379 */ 2380 if (!nr_lagging) 2381 ioc->busy_level--; 2382 } else { 2383 /* 2384 * Nobody is being throttled and the users aren't 2385 * issuing enough IOs to saturate the device. We 2386 * simply don't know how close the device is to 2387 * saturation. Coast. 2388 */ 2389 ioc->busy_level = 0; 2390 } 2391 } else { 2392 /* inside the hysterisis margin, we're good */ 2393 ioc->busy_level = 0; 2394 } 2395 2396 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2397 2398 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2399 prev_busy_level, missed_ppm); 2400 2401 ioc_refresh_params(ioc, false); 2402 2403 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2404 2405 /* 2406 * This period is done. Move onto the next one. If nothing's 2407 * going on with the device, stop the timer. 2408 */ 2409 atomic64_inc(&ioc->cur_period); 2410 2411 if (ioc->running != IOC_STOP) { 2412 if (!list_empty(&ioc->active_iocgs)) { 2413 ioc_start_period(ioc, &now); 2414 } else { 2415 ioc->busy_level = 0; 2416 ioc->vtime_err = 0; 2417 ioc->running = IOC_IDLE; 2418 } 2419 2420 ioc_refresh_vrate(ioc, &now); 2421 } 2422 2423 spin_unlock_irq(&ioc->lock); 2424 } 2425 2426 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2427 u64 abs_cost, struct ioc_now *now) 2428 { 2429 struct ioc *ioc = iocg->ioc; 2430 struct ioc_margins *margins = &ioc->margins; 2431 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2432 u32 hwi, adj_step; 2433 s64 margin; 2434 u64 cost, new_inuse; 2435 2436 current_hweight(iocg, NULL, &hwi); 2437 old_hwi = hwi; 2438 cost = abs_cost_to_cost(abs_cost, hwi); 2439 margin = now->vnow - vtime - cost; 2440 2441 /* debt handling owns inuse for debtors */ 2442 if (iocg->abs_vdebt) 2443 return cost; 2444 2445 /* 2446 * We only increase inuse during period and do so if the margin has 2447 * deteriorated since the previous adjustment. 2448 */ 2449 if (margin >= iocg->saved_margin || margin >= margins->low || 2450 iocg->inuse == iocg->active) 2451 return cost; 2452 2453 spin_lock_irq(&ioc->lock); 2454 2455 /* we own inuse only when @iocg is in the normal active state */ 2456 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2457 spin_unlock_irq(&ioc->lock); 2458 return cost; 2459 } 2460 2461 /* 2462 * Bump up inuse till @abs_cost fits in the existing budget. 2463 * adj_step must be determined after acquiring ioc->lock - we might 2464 * have raced and lost to another thread for activation and could 2465 * be reading 0 iocg->active before ioc->lock which will lead to 2466 * infinite loop. 2467 */ 2468 new_inuse = iocg->inuse; 2469 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2470 do { 2471 new_inuse = new_inuse + adj_step; 2472 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2473 current_hweight(iocg, NULL, &hwi); 2474 cost = abs_cost_to_cost(abs_cost, hwi); 2475 } while (time_after64(vtime + cost, now->vnow) && 2476 iocg->inuse != iocg->active); 2477 2478 spin_unlock_irq(&ioc->lock); 2479 2480 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2481 old_inuse, iocg->inuse, old_hwi, hwi); 2482 2483 return cost; 2484 } 2485 2486 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2487 bool is_merge, u64 *costp) 2488 { 2489 struct ioc *ioc = iocg->ioc; 2490 u64 coef_seqio, coef_randio, coef_page; 2491 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2492 u64 seek_pages = 0; 2493 u64 cost = 0; 2494 2495 switch (bio_op(bio)) { 2496 case REQ_OP_READ: 2497 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2498 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2499 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2500 break; 2501 case REQ_OP_WRITE: 2502 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2503 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2504 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2505 break; 2506 default: 2507 goto out; 2508 } 2509 2510 if (iocg->cursor) { 2511 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2512 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2513 } 2514 2515 if (!is_merge) { 2516 if (seek_pages > LCOEF_RANDIO_PAGES) { 2517 cost += coef_randio; 2518 } else { 2519 cost += coef_seqio; 2520 } 2521 } 2522 cost += pages * coef_page; 2523 out: 2524 *costp = cost; 2525 } 2526 2527 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2528 { 2529 u64 cost; 2530 2531 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2532 return cost; 2533 } 2534 2535 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2536 u64 *costp) 2537 { 2538 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2539 2540 switch (req_op(rq)) { 2541 case REQ_OP_READ: 2542 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2543 break; 2544 case REQ_OP_WRITE: 2545 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2546 break; 2547 default: 2548 *costp = 0; 2549 } 2550 } 2551 2552 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2553 { 2554 u64 cost; 2555 2556 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2557 return cost; 2558 } 2559 2560 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2561 { 2562 struct blkcg_gq *blkg = bio->bi_blkg; 2563 struct ioc *ioc = rqos_to_ioc(rqos); 2564 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2565 struct ioc_now now; 2566 struct iocg_wait wait; 2567 u64 abs_cost, cost, vtime; 2568 bool use_debt, ioc_locked; 2569 unsigned long flags; 2570 2571 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2572 if (!ioc->enabled || !iocg || !iocg->level) 2573 return; 2574 2575 /* calculate the absolute vtime cost */ 2576 abs_cost = calc_vtime_cost(bio, iocg, false); 2577 if (!abs_cost) 2578 return; 2579 2580 if (!iocg_activate(iocg, &now)) 2581 return; 2582 2583 iocg->cursor = bio_end_sector(bio); 2584 vtime = atomic64_read(&iocg->vtime); 2585 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2586 2587 /* 2588 * If no one's waiting and within budget, issue right away. The 2589 * tests are racy but the races aren't systemic - we only miss once 2590 * in a while which is fine. 2591 */ 2592 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2593 time_before_eq64(vtime + cost, now.vnow)) { 2594 iocg_commit_bio(iocg, bio, abs_cost, cost); 2595 return; 2596 } 2597 2598 /* 2599 * We're over budget. This can be handled in two ways. IOs which may 2600 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2601 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2602 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2603 * whether debt handling is needed and acquire locks accordingly. 2604 */ 2605 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2606 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2607 retry_lock: 2608 iocg_lock(iocg, ioc_locked, &flags); 2609 2610 /* 2611 * @iocg must stay activated for debt and waitq handling. Deactivation 2612 * is synchronized against both ioc->lock and waitq.lock and we won't 2613 * get deactivated as long as we're waiting or has debt, so we're good 2614 * if we're activated here. In the unlikely cases that we aren't, just 2615 * issue the IO. 2616 */ 2617 if (unlikely(list_empty(&iocg->active_list))) { 2618 iocg_unlock(iocg, ioc_locked, &flags); 2619 iocg_commit_bio(iocg, bio, abs_cost, cost); 2620 return; 2621 } 2622 2623 /* 2624 * We're over budget. If @bio has to be issued regardless, remember 2625 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2626 * off the debt before waking more IOs. 2627 * 2628 * This way, the debt is continuously paid off each period with the 2629 * actual budget available to the cgroup. If we just wound vtime, we 2630 * would incorrectly use the current hw_inuse for the entire amount 2631 * which, for example, can lead to the cgroup staying blocked for a 2632 * long time even with substantially raised hw_inuse. 2633 * 2634 * An iocg with vdebt should stay online so that the timer can keep 2635 * deducting its vdebt and [de]activate use_delay mechanism 2636 * accordingly. We don't want to race against the timer trying to 2637 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2638 * penalizing the cgroup and its descendants. 2639 */ 2640 if (use_debt) { 2641 iocg_incur_debt(iocg, abs_cost, &now); 2642 if (iocg_kick_delay(iocg, &now)) 2643 blkcg_schedule_throttle(rqos->q->disk, 2644 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2645 iocg_unlock(iocg, ioc_locked, &flags); 2646 return; 2647 } 2648 2649 /* guarantee that iocgs w/ waiters have maximum inuse */ 2650 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2651 if (!ioc_locked) { 2652 iocg_unlock(iocg, false, &flags); 2653 ioc_locked = true; 2654 goto retry_lock; 2655 } 2656 propagate_weights(iocg, iocg->active, iocg->active, true, 2657 &now); 2658 } 2659 2660 /* 2661 * Append self to the waitq and schedule the wakeup timer if we're 2662 * the first waiter. The timer duration is calculated based on the 2663 * current vrate. vtime and hweight changes can make it too short 2664 * or too long. Each wait entry records the absolute cost it's 2665 * waiting for to allow re-evaluation using a custom wait entry. 2666 * 2667 * If too short, the timer simply reschedules itself. If too long, 2668 * the period timer will notice and trigger wakeups. 2669 * 2670 * All waiters are on iocg->waitq and the wait states are 2671 * synchronized using waitq.lock. 2672 */ 2673 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2674 wait.wait.private = current; 2675 wait.bio = bio; 2676 wait.abs_cost = abs_cost; 2677 wait.committed = false; /* will be set true by waker */ 2678 2679 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2680 iocg_kick_waitq(iocg, ioc_locked, &now); 2681 2682 iocg_unlock(iocg, ioc_locked, &flags); 2683 2684 while (true) { 2685 set_current_state(TASK_UNINTERRUPTIBLE); 2686 if (wait.committed) 2687 break; 2688 io_schedule(); 2689 } 2690 2691 /* waker already committed us, proceed */ 2692 finish_wait(&iocg->waitq, &wait.wait); 2693 } 2694 2695 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2696 struct bio *bio) 2697 { 2698 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2699 struct ioc *ioc = rqos_to_ioc(rqos); 2700 sector_t bio_end = bio_end_sector(bio); 2701 struct ioc_now now; 2702 u64 vtime, abs_cost, cost; 2703 unsigned long flags; 2704 2705 /* bypass if disabled, still initializing, or for root cgroup */ 2706 if (!ioc->enabled || !iocg || !iocg->level) 2707 return; 2708 2709 abs_cost = calc_vtime_cost(bio, iocg, true); 2710 if (!abs_cost) 2711 return; 2712 2713 ioc_now(ioc, &now); 2714 2715 vtime = atomic64_read(&iocg->vtime); 2716 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2717 2718 /* update cursor if backmerging into the request at the cursor */ 2719 if (blk_rq_pos(rq) < bio_end && 2720 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2721 iocg->cursor = bio_end; 2722 2723 /* 2724 * Charge if there's enough vtime budget and the existing request has 2725 * cost assigned. 2726 */ 2727 if (rq->bio && rq->bio->bi_iocost_cost && 2728 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2729 iocg_commit_bio(iocg, bio, abs_cost, cost); 2730 return; 2731 } 2732 2733 /* 2734 * Otherwise, account it as debt if @iocg is online, which it should 2735 * be for the vast majority of cases. See debt handling in 2736 * ioc_rqos_throttle() for details. 2737 */ 2738 spin_lock_irqsave(&ioc->lock, flags); 2739 spin_lock(&iocg->waitq.lock); 2740 2741 if (likely(!list_empty(&iocg->active_list))) { 2742 iocg_incur_debt(iocg, abs_cost, &now); 2743 if (iocg_kick_delay(iocg, &now)) 2744 blkcg_schedule_throttle(rqos->q->disk, 2745 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2746 } else { 2747 iocg_commit_bio(iocg, bio, abs_cost, cost); 2748 } 2749 2750 spin_unlock(&iocg->waitq.lock); 2751 spin_unlock_irqrestore(&ioc->lock, flags); 2752 } 2753 2754 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2755 { 2756 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2757 2758 if (iocg && bio->bi_iocost_cost) 2759 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2760 } 2761 2762 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2763 { 2764 struct ioc *ioc = rqos_to_ioc(rqos); 2765 struct ioc_pcpu_stat *ccs; 2766 u64 on_q_ns, rq_wait_ns, size_nsec; 2767 int pidx, rw; 2768 2769 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2770 return; 2771 2772 switch (req_op(rq)) { 2773 case REQ_OP_READ: 2774 pidx = QOS_RLAT; 2775 rw = READ; 2776 break; 2777 case REQ_OP_WRITE: 2778 pidx = QOS_WLAT; 2779 rw = WRITE; 2780 break; 2781 default: 2782 return; 2783 } 2784 2785 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2786 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2787 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2788 2789 ccs = get_cpu_ptr(ioc->pcpu_stat); 2790 2791 if (on_q_ns <= size_nsec || 2792 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2793 local_inc(&ccs->missed[rw].nr_met); 2794 else 2795 local_inc(&ccs->missed[rw].nr_missed); 2796 2797 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2798 2799 put_cpu_ptr(ccs); 2800 } 2801 2802 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2803 { 2804 struct ioc *ioc = rqos_to_ioc(rqos); 2805 2806 spin_lock_irq(&ioc->lock); 2807 ioc_refresh_params(ioc, false); 2808 spin_unlock_irq(&ioc->lock); 2809 } 2810 2811 static void ioc_rqos_exit(struct rq_qos *rqos) 2812 { 2813 struct ioc *ioc = rqos_to_ioc(rqos); 2814 2815 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2816 2817 spin_lock_irq(&ioc->lock); 2818 ioc->running = IOC_STOP; 2819 spin_unlock_irq(&ioc->lock); 2820 2821 del_timer_sync(&ioc->timer); 2822 free_percpu(ioc->pcpu_stat); 2823 kfree(ioc); 2824 } 2825 2826 static struct rq_qos_ops ioc_rqos_ops = { 2827 .throttle = ioc_rqos_throttle, 2828 .merge = ioc_rqos_merge, 2829 .done_bio = ioc_rqos_done_bio, 2830 .done = ioc_rqos_done, 2831 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2832 .exit = ioc_rqos_exit, 2833 }; 2834 2835 static int blk_iocost_init(struct gendisk *disk) 2836 { 2837 struct request_queue *q = disk->queue; 2838 struct ioc *ioc; 2839 struct rq_qos *rqos; 2840 int i, cpu, ret; 2841 2842 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2843 if (!ioc) 2844 return -ENOMEM; 2845 2846 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2847 if (!ioc->pcpu_stat) { 2848 kfree(ioc); 2849 return -ENOMEM; 2850 } 2851 2852 for_each_possible_cpu(cpu) { 2853 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2854 2855 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2856 local_set(&ccs->missed[i].nr_met, 0); 2857 local_set(&ccs->missed[i].nr_missed, 0); 2858 } 2859 local64_set(&ccs->rq_wait_ns, 0); 2860 } 2861 2862 rqos = &ioc->rqos; 2863 rqos->id = RQ_QOS_COST; 2864 rqos->ops = &ioc_rqos_ops; 2865 rqos->q = q; 2866 2867 spin_lock_init(&ioc->lock); 2868 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2869 INIT_LIST_HEAD(&ioc->active_iocgs); 2870 2871 ioc->running = IOC_IDLE; 2872 ioc->vtime_base_rate = VTIME_PER_USEC; 2873 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2874 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2875 ioc->period_at = ktime_to_us(ktime_get()); 2876 atomic64_set(&ioc->cur_period, 0); 2877 atomic_set(&ioc->hweight_gen, 0); 2878 2879 spin_lock_irq(&ioc->lock); 2880 ioc->autop_idx = AUTOP_INVALID; 2881 ioc_refresh_params(ioc, true); 2882 spin_unlock_irq(&ioc->lock); 2883 2884 /* 2885 * rqos must be added before activation to allow ioc_pd_init() to 2886 * lookup the ioc from q. This means that the rqos methods may get 2887 * called before policy activation completion, can't assume that the 2888 * target bio has an iocg associated and need to test for NULL iocg. 2889 */ 2890 ret = rq_qos_add(q, rqos); 2891 if (ret) 2892 goto err_free_ioc; 2893 2894 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2895 if (ret) 2896 goto err_del_qos; 2897 return 0; 2898 2899 err_del_qos: 2900 rq_qos_del(q, rqos); 2901 err_free_ioc: 2902 free_percpu(ioc->pcpu_stat); 2903 kfree(ioc); 2904 return ret; 2905 } 2906 2907 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2908 { 2909 struct ioc_cgrp *iocc; 2910 2911 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2912 if (!iocc) 2913 return NULL; 2914 2915 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2916 return &iocc->cpd; 2917 } 2918 2919 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2920 { 2921 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2922 } 2923 2924 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2925 struct blkcg *blkcg) 2926 { 2927 int levels = blkcg->css.cgroup->level + 1; 2928 struct ioc_gq *iocg; 2929 2930 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2931 if (!iocg) 2932 return NULL; 2933 2934 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2935 if (!iocg->pcpu_stat) { 2936 kfree(iocg); 2937 return NULL; 2938 } 2939 2940 return &iocg->pd; 2941 } 2942 2943 static void ioc_pd_init(struct blkg_policy_data *pd) 2944 { 2945 struct ioc_gq *iocg = pd_to_iocg(pd); 2946 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2947 struct ioc *ioc = q_to_ioc(blkg->q); 2948 struct ioc_now now; 2949 struct blkcg_gq *tblkg; 2950 unsigned long flags; 2951 2952 ioc_now(ioc, &now); 2953 2954 iocg->ioc = ioc; 2955 atomic64_set(&iocg->vtime, now.vnow); 2956 atomic64_set(&iocg->done_vtime, now.vnow); 2957 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2958 INIT_LIST_HEAD(&iocg->active_list); 2959 INIT_LIST_HEAD(&iocg->walk_list); 2960 INIT_LIST_HEAD(&iocg->surplus_list); 2961 iocg->hweight_active = WEIGHT_ONE; 2962 iocg->hweight_inuse = WEIGHT_ONE; 2963 2964 init_waitqueue_head(&iocg->waitq); 2965 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2966 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2967 2968 iocg->level = blkg->blkcg->css.cgroup->level; 2969 2970 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2971 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2972 iocg->ancestors[tiocg->level] = tiocg; 2973 } 2974 2975 spin_lock_irqsave(&ioc->lock, flags); 2976 weight_updated(iocg, &now); 2977 spin_unlock_irqrestore(&ioc->lock, flags); 2978 } 2979 2980 static void ioc_pd_free(struct blkg_policy_data *pd) 2981 { 2982 struct ioc_gq *iocg = pd_to_iocg(pd); 2983 struct ioc *ioc = iocg->ioc; 2984 unsigned long flags; 2985 2986 if (ioc) { 2987 spin_lock_irqsave(&ioc->lock, flags); 2988 2989 if (!list_empty(&iocg->active_list)) { 2990 struct ioc_now now; 2991 2992 ioc_now(ioc, &now); 2993 propagate_weights(iocg, 0, 0, false, &now); 2994 list_del_init(&iocg->active_list); 2995 } 2996 2997 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2998 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2999 3000 spin_unlock_irqrestore(&ioc->lock, flags); 3001 3002 hrtimer_cancel(&iocg->waitq_timer); 3003 } 3004 free_percpu(iocg->pcpu_stat); 3005 kfree(iocg); 3006 } 3007 3008 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3009 { 3010 struct ioc_gq *iocg = pd_to_iocg(pd); 3011 struct ioc *ioc = iocg->ioc; 3012 3013 if (!ioc->enabled) 3014 return; 3015 3016 if (iocg->level == 0) { 3017 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3018 ioc->vtime_base_rate * 10000, 3019 VTIME_PER_USEC); 3020 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3021 } 3022 3023 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3024 3025 if (blkcg_debug_stats) 3026 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3027 iocg->last_stat.wait_us, 3028 iocg->last_stat.indebt_us, 3029 iocg->last_stat.indelay_us); 3030 } 3031 3032 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3033 int off) 3034 { 3035 const char *dname = blkg_dev_name(pd->blkg); 3036 struct ioc_gq *iocg = pd_to_iocg(pd); 3037 3038 if (dname && iocg->cfg_weight) 3039 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3040 return 0; 3041 } 3042 3043 3044 static int ioc_weight_show(struct seq_file *sf, void *v) 3045 { 3046 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3047 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3048 3049 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3050 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3051 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3052 return 0; 3053 } 3054 3055 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3056 size_t nbytes, loff_t off) 3057 { 3058 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3059 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3060 struct blkg_conf_ctx ctx; 3061 struct ioc_now now; 3062 struct ioc_gq *iocg; 3063 u32 v; 3064 int ret; 3065 3066 if (!strchr(buf, ':')) { 3067 struct blkcg_gq *blkg; 3068 3069 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3070 return -EINVAL; 3071 3072 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3073 return -EINVAL; 3074 3075 spin_lock_irq(&blkcg->lock); 3076 iocc->dfl_weight = v * WEIGHT_ONE; 3077 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3078 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3079 3080 if (iocg) { 3081 spin_lock(&iocg->ioc->lock); 3082 ioc_now(iocg->ioc, &now); 3083 weight_updated(iocg, &now); 3084 spin_unlock(&iocg->ioc->lock); 3085 } 3086 } 3087 spin_unlock_irq(&blkcg->lock); 3088 3089 return nbytes; 3090 } 3091 3092 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3093 if (ret) 3094 return ret; 3095 3096 iocg = blkg_to_iocg(ctx.blkg); 3097 3098 if (!strncmp(ctx.body, "default", 7)) { 3099 v = 0; 3100 } else { 3101 if (!sscanf(ctx.body, "%u", &v)) 3102 goto einval; 3103 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3104 goto einval; 3105 } 3106 3107 spin_lock(&iocg->ioc->lock); 3108 iocg->cfg_weight = v * WEIGHT_ONE; 3109 ioc_now(iocg->ioc, &now); 3110 weight_updated(iocg, &now); 3111 spin_unlock(&iocg->ioc->lock); 3112 3113 blkg_conf_finish(&ctx); 3114 return nbytes; 3115 3116 einval: 3117 blkg_conf_finish(&ctx); 3118 return -EINVAL; 3119 } 3120 3121 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3122 int off) 3123 { 3124 const char *dname = blkg_dev_name(pd->blkg); 3125 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3126 3127 if (!dname) 3128 return 0; 3129 3130 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3131 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3132 ioc->params.qos[QOS_RPPM] / 10000, 3133 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3134 ioc->params.qos[QOS_RLAT], 3135 ioc->params.qos[QOS_WPPM] / 10000, 3136 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3137 ioc->params.qos[QOS_WLAT], 3138 ioc->params.qos[QOS_MIN] / 10000, 3139 ioc->params.qos[QOS_MIN] % 10000 / 100, 3140 ioc->params.qos[QOS_MAX] / 10000, 3141 ioc->params.qos[QOS_MAX] % 10000 / 100); 3142 return 0; 3143 } 3144 3145 static int ioc_qos_show(struct seq_file *sf, void *v) 3146 { 3147 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3148 3149 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3150 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3151 return 0; 3152 } 3153 3154 static const match_table_t qos_ctrl_tokens = { 3155 { QOS_ENABLE, "enable=%u" }, 3156 { QOS_CTRL, "ctrl=%s" }, 3157 { NR_QOS_CTRL_PARAMS, NULL }, 3158 }; 3159 3160 static const match_table_t qos_tokens = { 3161 { QOS_RPPM, "rpct=%s" }, 3162 { QOS_RLAT, "rlat=%u" }, 3163 { QOS_WPPM, "wpct=%s" }, 3164 { QOS_WLAT, "wlat=%u" }, 3165 { QOS_MIN, "min=%s" }, 3166 { QOS_MAX, "max=%s" }, 3167 { NR_QOS_PARAMS, NULL }, 3168 }; 3169 3170 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3171 size_t nbytes, loff_t off) 3172 { 3173 struct block_device *bdev; 3174 struct gendisk *disk; 3175 struct ioc *ioc; 3176 u32 qos[NR_QOS_PARAMS]; 3177 bool enable, user; 3178 char *p; 3179 int ret; 3180 3181 bdev = blkcg_conf_open_bdev(&input); 3182 if (IS_ERR(bdev)) 3183 return PTR_ERR(bdev); 3184 3185 disk = bdev->bd_disk; 3186 ioc = q_to_ioc(disk->queue); 3187 if (!ioc) { 3188 ret = blk_iocost_init(disk); 3189 if (ret) 3190 goto err; 3191 ioc = q_to_ioc(disk->queue); 3192 } 3193 3194 blk_mq_freeze_queue(disk->queue); 3195 blk_mq_quiesce_queue(disk->queue); 3196 3197 spin_lock_irq(&ioc->lock); 3198 memcpy(qos, ioc->params.qos, sizeof(qos)); 3199 enable = ioc->enabled; 3200 user = ioc->user_qos_params; 3201 3202 while ((p = strsep(&input, " \t\n"))) { 3203 substring_t args[MAX_OPT_ARGS]; 3204 char buf[32]; 3205 int tok; 3206 s64 v; 3207 3208 if (!*p) 3209 continue; 3210 3211 switch (match_token(p, qos_ctrl_tokens, args)) { 3212 case QOS_ENABLE: 3213 match_u64(&args[0], &v); 3214 enable = v; 3215 continue; 3216 case QOS_CTRL: 3217 match_strlcpy(buf, &args[0], sizeof(buf)); 3218 if (!strcmp(buf, "auto")) 3219 user = false; 3220 else if (!strcmp(buf, "user")) 3221 user = true; 3222 else 3223 goto einval; 3224 continue; 3225 } 3226 3227 tok = match_token(p, qos_tokens, args); 3228 switch (tok) { 3229 case QOS_RPPM: 3230 case QOS_WPPM: 3231 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3232 sizeof(buf)) 3233 goto einval; 3234 if (cgroup_parse_float(buf, 2, &v)) 3235 goto einval; 3236 if (v < 0 || v > 10000) 3237 goto einval; 3238 qos[tok] = v * 100; 3239 break; 3240 case QOS_RLAT: 3241 case QOS_WLAT: 3242 if (match_u64(&args[0], &v)) 3243 goto einval; 3244 qos[tok] = v; 3245 break; 3246 case QOS_MIN: 3247 case QOS_MAX: 3248 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3249 sizeof(buf)) 3250 goto einval; 3251 if (cgroup_parse_float(buf, 2, &v)) 3252 goto einval; 3253 if (v < 0) 3254 goto einval; 3255 qos[tok] = clamp_t(s64, v * 100, 3256 VRATE_MIN_PPM, VRATE_MAX_PPM); 3257 break; 3258 default: 3259 goto einval; 3260 } 3261 user = true; 3262 } 3263 3264 if (qos[QOS_MIN] > qos[QOS_MAX]) 3265 goto einval; 3266 3267 if (enable) { 3268 blk_stat_enable_accounting(disk->queue); 3269 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3270 ioc->enabled = true; 3271 wbt_disable_default(disk->queue); 3272 } else { 3273 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3274 ioc->enabled = false; 3275 wbt_enable_default(disk->queue); 3276 } 3277 3278 if (user) { 3279 memcpy(ioc->params.qos, qos, sizeof(qos)); 3280 ioc->user_qos_params = true; 3281 } else { 3282 ioc->user_qos_params = false; 3283 } 3284 3285 ioc_refresh_params(ioc, true); 3286 spin_unlock_irq(&ioc->lock); 3287 3288 blk_mq_unquiesce_queue(disk->queue); 3289 blk_mq_unfreeze_queue(disk->queue); 3290 3291 blkdev_put_no_open(bdev); 3292 return nbytes; 3293 einval: 3294 spin_unlock_irq(&ioc->lock); 3295 3296 blk_mq_unquiesce_queue(disk->queue); 3297 blk_mq_unfreeze_queue(disk->queue); 3298 3299 ret = -EINVAL; 3300 err: 3301 blkdev_put_no_open(bdev); 3302 return ret; 3303 } 3304 3305 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3306 struct blkg_policy_data *pd, int off) 3307 { 3308 const char *dname = blkg_dev_name(pd->blkg); 3309 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3310 u64 *u = ioc->params.i_lcoefs; 3311 3312 if (!dname) 3313 return 0; 3314 3315 seq_printf(sf, "%s ctrl=%s model=linear " 3316 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3317 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3318 dname, ioc->user_cost_model ? "user" : "auto", 3319 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3320 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3321 return 0; 3322 } 3323 3324 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3325 { 3326 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3327 3328 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3329 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3330 return 0; 3331 } 3332 3333 static const match_table_t cost_ctrl_tokens = { 3334 { COST_CTRL, "ctrl=%s" }, 3335 { COST_MODEL, "model=%s" }, 3336 { NR_COST_CTRL_PARAMS, NULL }, 3337 }; 3338 3339 static const match_table_t i_lcoef_tokens = { 3340 { I_LCOEF_RBPS, "rbps=%u" }, 3341 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3342 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3343 { I_LCOEF_WBPS, "wbps=%u" }, 3344 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3345 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3346 { NR_I_LCOEFS, NULL }, 3347 }; 3348 3349 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3350 size_t nbytes, loff_t off) 3351 { 3352 struct block_device *bdev; 3353 struct request_queue *q; 3354 struct ioc *ioc; 3355 u64 u[NR_I_LCOEFS]; 3356 bool user; 3357 char *p; 3358 int ret; 3359 3360 bdev = blkcg_conf_open_bdev(&input); 3361 if (IS_ERR(bdev)) 3362 return PTR_ERR(bdev); 3363 3364 q = bdev_get_queue(bdev); 3365 ioc = q_to_ioc(q); 3366 if (!ioc) { 3367 ret = blk_iocost_init(bdev->bd_disk); 3368 if (ret) 3369 goto err; 3370 ioc = q_to_ioc(q); 3371 } 3372 3373 blk_mq_freeze_queue(q); 3374 blk_mq_quiesce_queue(q); 3375 3376 spin_lock_irq(&ioc->lock); 3377 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3378 user = ioc->user_cost_model; 3379 3380 while ((p = strsep(&input, " \t\n"))) { 3381 substring_t args[MAX_OPT_ARGS]; 3382 char buf[32]; 3383 int tok; 3384 u64 v; 3385 3386 if (!*p) 3387 continue; 3388 3389 switch (match_token(p, cost_ctrl_tokens, args)) { 3390 case COST_CTRL: 3391 match_strlcpy(buf, &args[0], sizeof(buf)); 3392 if (!strcmp(buf, "auto")) 3393 user = false; 3394 else if (!strcmp(buf, "user")) 3395 user = true; 3396 else 3397 goto einval; 3398 continue; 3399 case COST_MODEL: 3400 match_strlcpy(buf, &args[0], sizeof(buf)); 3401 if (strcmp(buf, "linear")) 3402 goto einval; 3403 continue; 3404 } 3405 3406 tok = match_token(p, i_lcoef_tokens, args); 3407 if (tok == NR_I_LCOEFS) 3408 goto einval; 3409 if (match_u64(&args[0], &v)) 3410 goto einval; 3411 u[tok] = v; 3412 user = true; 3413 } 3414 3415 if (user) { 3416 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3417 ioc->user_cost_model = true; 3418 } else { 3419 ioc->user_cost_model = false; 3420 } 3421 ioc_refresh_params(ioc, true); 3422 spin_unlock_irq(&ioc->lock); 3423 3424 blk_mq_unquiesce_queue(q); 3425 blk_mq_unfreeze_queue(q); 3426 3427 blkdev_put_no_open(bdev); 3428 return nbytes; 3429 3430 einval: 3431 spin_unlock_irq(&ioc->lock); 3432 3433 blk_mq_unquiesce_queue(q); 3434 blk_mq_unfreeze_queue(q); 3435 3436 ret = -EINVAL; 3437 err: 3438 blkdev_put_no_open(bdev); 3439 return ret; 3440 } 3441 3442 static struct cftype ioc_files[] = { 3443 { 3444 .name = "weight", 3445 .flags = CFTYPE_NOT_ON_ROOT, 3446 .seq_show = ioc_weight_show, 3447 .write = ioc_weight_write, 3448 }, 3449 { 3450 .name = "cost.qos", 3451 .flags = CFTYPE_ONLY_ON_ROOT, 3452 .seq_show = ioc_qos_show, 3453 .write = ioc_qos_write, 3454 }, 3455 { 3456 .name = "cost.model", 3457 .flags = CFTYPE_ONLY_ON_ROOT, 3458 .seq_show = ioc_cost_model_show, 3459 .write = ioc_cost_model_write, 3460 }, 3461 {} 3462 }; 3463 3464 static struct blkcg_policy blkcg_policy_iocost = { 3465 .dfl_cftypes = ioc_files, 3466 .cpd_alloc_fn = ioc_cpd_alloc, 3467 .cpd_free_fn = ioc_cpd_free, 3468 .pd_alloc_fn = ioc_pd_alloc, 3469 .pd_init_fn = ioc_pd_init, 3470 .pd_free_fn = ioc_pd_free, 3471 .pd_stat_fn = ioc_pd_stat, 3472 }; 3473 3474 static int __init ioc_init(void) 3475 { 3476 return blkcg_policy_register(&blkcg_policy_iocost); 3477 } 3478 3479 static void __exit ioc_exit(void) 3480 { 3481 blkcg_policy_unregister(&blkcg_policy_iocost); 3482 } 3483 3484 module_init(ioc_init); 3485 module_exit(ioc_exit); 3486