1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat stat; 537 struct iocg_stat last_stat; 538 u64 last_stat_abs_vusage; 539 u64 usage_delta_us; 540 u64 wait_since; 541 u64 indebt_since; 542 u64 indelay_since; 543 544 /* this iocg's depth in the hierarchy and ancestors including self */ 545 int level; 546 struct ioc_gq *ancestors[]; 547 }; 548 549 /* per cgroup */ 550 struct ioc_cgrp { 551 struct blkcg_policy_data cpd; 552 unsigned int dfl_weight; 553 }; 554 555 struct ioc_now { 556 u64 now_ns; 557 u64 now; 558 u64 vnow; 559 u64 vrate; 560 }; 561 562 struct iocg_wait { 563 struct wait_queue_entry wait; 564 struct bio *bio; 565 u64 abs_cost; 566 bool committed; 567 }; 568 569 struct iocg_wake_ctx { 570 struct ioc_gq *iocg; 571 u32 hw_inuse; 572 s64 vbudget; 573 }; 574 575 static const struct ioc_params autop[] = { 576 [AUTOP_HDD] = { 577 .qos = { 578 [QOS_RLAT] = 250000, /* 250ms */ 579 [QOS_WLAT] = 250000, 580 [QOS_MIN] = VRATE_MIN_PPM, 581 [QOS_MAX] = VRATE_MAX_PPM, 582 }, 583 .i_lcoefs = { 584 [I_LCOEF_RBPS] = 174019176, 585 [I_LCOEF_RSEQIOPS] = 41708, 586 [I_LCOEF_RRANDIOPS] = 370, 587 [I_LCOEF_WBPS] = 178075866, 588 [I_LCOEF_WSEQIOPS] = 42705, 589 [I_LCOEF_WRANDIOPS] = 378, 590 }, 591 }, 592 [AUTOP_SSD_QD1] = { 593 .qos = { 594 [QOS_RLAT] = 25000, /* 25ms */ 595 [QOS_WLAT] = 25000, 596 [QOS_MIN] = VRATE_MIN_PPM, 597 [QOS_MAX] = VRATE_MAX_PPM, 598 }, 599 .i_lcoefs = { 600 [I_LCOEF_RBPS] = 245855193, 601 [I_LCOEF_RSEQIOPS] = 61575, 602 [I_LCOEF_RRANDIOPS] = 6946, 603 [I_LCOEF_WBPS] = 141365009, 604 [I_LCOEF_WSEQIOPS] = 33716, 605 [I_LCOEF_WRANDIOPS] = 26796, 606 }, 607 }, 608 [AUTOP_SSD_DFL] = { 609 .qos = { 610 [QOS_RLAT] = 25000, /* 25ms */ 611 [QOS_WLAT] = 25000, 612 [QOS_MIN] = VRATE_MIN_PPM, 613 [QOS_MAX] = VRATE_MAX_PPM, 614 }, 615 .i_lcoefs = { 616 [I_LCOEF_RBPS] = 488636629, 617 [I_LCOEF_RSEQIOPS] = 8932, 618 [I_LCOEF_RRANDIOPS] = 8518, 619 [I_LCOEF_WBPS] = 427891549, 620 [I_LCOEF_WSEQIOPS] = 28755, 621 [I_LCOEF_WRANDIOPS] = 21940, 622 }, 623 .too_fast_vrate_pct = 500, 624 }, 625 [AUTOP_SSD_FAST] = { 626 .qos = { 627 [QOS_RLAT] = 5000, /* 5ms */ 628 [QOS_WLAT] = 5000, 629 [QOS_MIN] = VRATE_MIN_PPM, 630 [QOS_MAX] = VRATE_MAX_PPM, 631 }, 632 .i_lcoefs = { 633 [I_LCOEF_RBPS] = 3102524156LLU, 634 [I_LCOEF_RSEQIOPS] = 724816, 635 [I_LCOEF_RRANDIOPS] = 778122, 636 [I_LCOEF_WBPS] = 1742780862LLU, 637 [I_LCOEF_WSEQIOPS] = 425702, 638 [I_LCOEF_WRANDIOPS] = 443193, 639 }, 640 .too_slow_vrate_pct = 10, 641 }, 642 }; 643 644 /* 645 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 646 * vtime credit shortage and down on device saturation. 647 */ 648 static u32 vrate_adj_pct[] = 649 { 0, 0, 0, 0, 650 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 651 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 652 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 653 654 static struct blkcg_policy blkcg_policy_iocost; 655 656 /* accessors and helpers */ 657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 658 { 659 return container_of(rqos, struct ioc, rqos); 660 } 661 662 static struct ioc *q_to_ioc(struct request_queue *q) 663 { 664 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 665 } 666 667 static const char *q_name(struct request_queue *q) 668 { 669 if (blk_queue_registered(q)) 670 return kobject_name(q->kobj.parent); 671 else 672 return "<unknown>"; 673 } 674 675 static const char __maybe_unused *ioc_name(struct ioc *ioc) 676 { 677 return q_name(ioc->rqos.q); 678 } 679 680 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 681 { 682 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 683 } 684 685 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 686 { 687 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 688 } 689 690 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 691 { 692 return pd_to_blkg(&iocg->pd); 693 } 694 695 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 696 { 697 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 698 struct ioc_cgrp, cpd); 699 } 700 701 /* 702 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 703 * weight, the more expensive each IO. Must round up. 704 */ 705 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 706 { 707 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 708 } 709 710 /* 711 * The inverse of abs_cost_to_cost(). Must round up. 712 */ 713 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 714 { 715 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 716 } 717 718 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 719 u64 abs_cost, u64 cost) 720 { 721 struct iocg_pcpu_stat *gcs; 722 723 bio->bi_iocost_cost = cost; 724 atomic64_add(cost, &iocg->vtime); 725 726 gcs = get_cpu_ptr(iocg->pcpu_stat); 727 local64_add(abs_cost, &gcs->abs_vusage); 728 put_cpu_ptr(gcs); 729 } 730 731 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 732 { 733 if (lock_ioc) { 734 spin_lock_irqsave(&iocg->ioc->lock, *flags); 735 spin_lock(&iocg->waitq.lock); 736 } else { 737 spin_lock_irqsave(&iocg->waitq.lock, *flags); 738 } 739 } 740 741 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 742 { 743 if (unlock_ioc) { 744 spin_unlock(&iocg->waitq.lock); 745 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 746 } else { 747 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 748 } 749 } 750 751 #define CREATE_TRACE_POINTS 752 #include <trace/events/iocost.h> 753 754 static void ioc_refresh_margins(struct ioc *ioc) 755 { 756 struct ioc_margins *margins = &ioc->margins; 757 u32 period_us = ioc->period_us; 758 u64 vrate = ioc->vtime_base_rate; 759 760 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 761 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 762 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 763 } 764 765 /* latency Qos params changed, update period_us and all the dependent params */ 766 static void ioc_refresh_period_us(struct ioc *ioc) 767 { 768 u32 ppm, lat, multi, period_us; 769 770 lockdep_assert_held(&ioc->lock); 771 772 /* pick the higher latency target */ 773 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 774 ppm = ioc->params.qos[QOS_RPPM]; 775 lat = ioc->params.qos[QOS_RLAT]; 776 } else { 777 ppm = ioc->params.qos[QOS_WPPM]; 778 lat = ioc->params.qos[QOS_WLAT]; 779 } 780 781 /* 782 * We want the period to be long enough to contain a healthy number 783 * of IOs while short enough for granular control. Define it as a 784 * multiple of the latency target. Ideally, the multiplier should 785 * be scaled according to the percentile so that it would nominally 786 * contain a certain number of requests. Let's be simpler and 787 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 788 */ 789 if (ppm) 790 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 791 else 792 multi = 2; 793 period_us = multi * lat; 794 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 795 796 /* calculate dependent params */ 797 ioc->period_us = period_us; 798 ioc->timer_slack_ns = div64_u64( 799 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 800 100); 801 ioc_refresh_margins(ioc); 802 } 803 804 static int ioc_autop_idx(struct ioc *ioc) 805 { 806 int idx = ioc->autop_idx; 807 const struct ioc_params *p = &autop[idx]; 808 u32 vrate_pct; 809 u64 now_ns; 810 811 /* rotational? */ 812 if (!blk_queue_nonrot(ioc->rqos.q)) 813 return AUTOP_HDD; 814 815 /* handle SATA SSDs w/ broken NCQ */ 816 if (blk_queue_depth(ioc->rqos.q) == 1) 817 return AUTOP_SSD_QD1; 818 819 /* use one of the normal ssd sets */ 820 if (idx < AUTOP_SSD_DFL) 821 return AUTOP_SSD_DFL; 822 823 /* if user is overriding anything, maintain what was there */ 824 if (ioc->user_qos_params || ioc->user_cost_model) 825 return idx; 826 827 /* step up/down based on the vrate */ 828 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 829 now_ns = ktime_get_ns(); 830 831 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 832 if (!ioc->autop_too_fast_at) 833 ioc->autop_too_fast_at = now_ns; 834 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 835 return idx + 1; 836 } else { 837 ioc->autop_too_fast_at = 0; 838 } 839 840 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 841 if (!ioc->autop_too_slow_at) 842 ioc->autop_too_slow_at = now_ns; 843 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 844 return idx - 1; 845 } else { 846 ioc->autop_too_slow_at = 0; 847 } 848 849 return idx; 850 } 851 852 /* 853 * Take the followings as input 854 * 855 * @bps maximum sequential throughput 856 * @seqiops maximum sequential 4k iops 857 * @randiops maximum random 4k iops 858 * 859 * and calculate the linear model cost coefficients. 860 * 861 * *@page per-page cost 1s / (@bps / 4096) 862 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 863 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 864 */ 865 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 866 u64 *page, u64 *seqio, u64 *randio) 867 { 868 u64 v; 869 870 *page = *seqio = *randio = 0; 871 872 if (bps) 873 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 874 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 875 876 if (seqiops) { 877 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 878 if (v > *page) 879 *seqio = v - *page; 880 } 881 882 if (randiops) { 883 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 884 if (v > *page) 885 *randio = v - *page; 886 } 887 } 888 889 static void ioc_refresh_lcoefs(struct ioc *ioc) 890 { 891 u64 *u = ioc->params.i_lcoefs; 892 u64 *c = ioc->params.lcoefs; 893 894 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 895 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 896 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 897 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 898 } 899 900 static bool ioc_refresh_params(struct ioc *ioc, bool force) 901 { 902 const struct ioc_params *p; 903 int idx; 904 905 lockdep_assert_held(&ioc->lock); 906 907 idx = ioc_autop_idx(ioc); 908 p = &autop[idx]; 909 910 if (idx == ioc->autop_idx && !force) 911 return false; 912 913 if (idx != ioc->autop_idx) 914 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 915 916 ioc->autop_idx = idx; 917 ioc->autop_too_fast_at = 0; 918 ioc->autop_too_slow_at = 0; 919 920 if (!ioc->user_qos_params) 921 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 922 if (!ioc->user_cost_model) 923 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 924 925 ioc_refresh_period_us(ioc); 926 ioc_refresh_lcoefs(ioc); 927 928 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 929 VTIME_PER_USEC, MILLION); 930 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 931 VTIME_PER_USEC, MILLION); 932 933 return true; 934 } 935 936 /* 937 * When an iocg accumulates too much vtime or gets deactivated, we throw away 938 * some vtime, which lowers the overall device utilization. As the exact amount 939 * which is being thrown away is known, we can compensate by accelerating the 940 * vrate accordingly so that the extra vtime generated in the current period 941 * matches what got lost. 942 */ 943 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 944 { 945 s64 pleft = ioc->period_at + ioc->period_us - now->now; 946 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 947 s64 vcomp, vcomp_min, vcomp_max; 948 949 lockdep_assert_held(&ioc->lock); 950 951 /* we need some time left in this period */ 952 if (pleft <= 0) 953 goto done; 954 955 /* 956 * Calculate how much vrate should be adjusted to offset the error. 957 * Limit the amount of adjustment and deduct the adjusted amount from 958 * the error. 959 */ 960 vcomp = -div64_s64(ioc->vtime_err, pleft); 961 vcomp_min = -(ioc->vtime_base_rate >> 1); 962 vcomp_max = ioc->vtime_base_rate; 963 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 964 965 ioc->vtime_err += vcomp * pleft; 966 967 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 968 done: 969 /* bound how much error can accumulate */ 970 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 971 } 972 973 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 974 int nr_lagging, int nr_shortages, 975 int prev_busy_level, u32 *missed_ppm) 976 { 977 u64 vrate = ioc->vtime_base_rate; 978 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 979 980 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 981 if (ioc->busy_level != prev_busy_level || nr_lagging) 982 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 983 missed_ppm, rq_wait_pct, 984 nr_lagging, nr_shortages); 985 986 return; 987 } 988 989 /* 990 * If vrate is out of bounds, apply clamp gradually as the 991 * bounds can change abruptly. Otherwise, apply busy_level 992 * based adjustment. 993 */ 994 if (vrate < vrate_min) { 995 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 996 vrate = min(vrate, vrate_min); 997 } else if (vrate > vrate_max) { 998 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 999 vrate = max(vrate, vrate_max); 1000 } else { 1001 int idx = min_t(int, abs(ioc->busy_level), 1002 ARRAY_SIZE(vrate_adj_pct) - 1); 1003 u32 adj_pct = vrate_adj_pct[idx]; 1004 1005 if (ioc->busy_level > 0) 1006 adj_pct = 100 - adj_pct; 1007 else 1008 adj_pct = 100 + adj_pct; 1009 1010 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1011 vrate_min, vrate_max); 1012 } 1013 1014 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1015 nr_lagging, nr_shortages); 1016 1017 ioc->vtime_base_rate = vrate; 1018 ioc_refresh_margins(ioc); 1019 } 1020 1021 /* take a snapshot of the current [v]time and vrate */ 1022 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1023 { 1024 unsigned seq; 1025 1026 now->now_ns = ktime_get(); 1027 now->now = ktime_to_us(now->now_ns); 1028 now->vrate = atomic64_read(&ioc->vtime_rate); 1029 1030 /* 1031 * The current vtime is 1032 * 1033 * vtime at period start + (wallclock time since the start) * vrate 1034 * 1035 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1036 * needed, they're seqcount protected. 1037 */ 1038 do { 1039 seq = read_seqcount_begin(&ioc->period_seqcount); 1040 now->vnow = ioc->period_at_vtime + 1041 (now->now - ioc->period_at) * now->vrate; 1042 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1043 } 1044 1045 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1046 { 1047 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1048 1049 write_seqcount_begin(&ioc->period_seqcount); 1050 ioc->period_at = now->now; 1051 ioc->period_at_vtime = now->vnow; 1052 write_seqcount_end(&ioc->period_seqcount); 1053 1054 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1055 add_timer(&ioc->timer); 1056 } 1057 1058 /* 1059 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1060 * weight sums and propagate upwards accordingly. If @save, the current margin 1061 * is saved to be used as reference for later inuse in-period adjustments. 1062 */ 1063 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1064 bool save, struct ioc_now *now) 1065 { 1066 struct ioc *ioc = iocg->ioc; 1067 int lvl; 1068 1069 lockdep_assert_held(&ioc->lock); 1070 1071 /* 1072 * For an active leaf node, its inuse shouldn't be zero or exceed 1073 * @active. An active internal node's inuse is solely determined by the 1074 * inuse to active ratio of its children regardless of @inuse. 1075 */ 1076 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1077 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1078 iocg->child_active_sum); 1079 } else { 1080 inuse = clamp_t(u32, inuse, 1, active); 1081 } 1082 1083 iocg->last_inuse = iocg->inuse; 1084 if (save) 1085 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1086 1087 if (active == iocg->active && inuse == iocg->inuse) 1088 return; 1089 1090 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1091 struct ioc_gq *parent = iocg->ancestors[lvl]; 1092 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1093 u32 parent_active = 0, parent_inuse = 0; 1094 1095 /* update the level sums */ 1096 parent->child_active_sum += (s32)(active - child->active); 1097 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1098 /* apply the updates */ 1099 child->active = active; 1100 child->inuse = inuse; 1101 1102 /* 1103 * The delta between inuse and active sums indicates that 1104 * much of weight is being given away. Parent's inuse 1105 * and active should reflect the ratio. 1106 */ 1107 if (parent->child_active_sum) { 1108 parent_active = parent->weight; 1109 parent_inuse = DIV64_U64_ROUND_UP( 1110 parent_active * parent->child_inuse_sum, 1111 parent->child_active_sum); 1112 } 1113 1114 /* do we need to keep walking up? */ 1115 if (parent_active == parent->active && 1116 parent_inuse == parent->inuse) 1117 break; 1118 1119 active = parent_active; 1120 inuse = parent_inuse; 1121 } 1122 1123 ioc->weights_updated = true; 1124 } 1125 1126 static void commit_weights(struct ioc *ioc) 1127 { 1128 lockdep_assert_held(&ioc->lock); 1129 1130 if (ioc->weights_updated) { 1131 /* paired with rmb in current_hweight(), see there */ 1132 smp_wmb(); 1133 atomic_inc(&ioc->hweight_gen); 1134 ioc->weights_updated = false; 1135 } 1136 } 1137 1138 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1139 bool save, struct ioc_now *now) 1140 { 1141 __propagate_weights(iocg, active, inuse, save, now); 1142 commit_weights(iocg->ioc); 1143 } 1144 1145 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1146 { 1147 struct ioc *ioc = iocg->ioc; 1148 int lvl; 1149 u32 hwa, hwi; 1150 int ioc_gen; 1151 1152 /* hot path - if uptodate, use cached */ 1153 ioc_gen = atomic_read(&ioc->hweight_gen); 1154 if (ioc_gen == iocg->hweight_gen) 1155 goto out; 1156 1157 /* 1158 * Paired with wmb in commit_weights(). If we saw the updated 1159 * hweight_gen, all the weight updates from __propagate_weights() are 1160 * visible too. 1161 * 1162 * We can race with weight updates during calculation and get it 1163 * wrong. However, hweight_gen would have changed and a future 1164 * reader will recalculate and we're guaranteed to discard the 1165 * wrong result soon. 1166 */ 1167 smp_rmb(); 1168 1169 hwa = hwi = WEIGHT_ONE; 1170 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1171 struct ioc_gq *parent = iocg->ancestors[lvl]; 1172 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1173 u64 active_sum = READ_ONCE(parent->child_active_sum); 1174 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1175 u32 active = READ_ONCE(child->active); 1176 u32 inuse = READ_ONCE(child->inuse); 1177 1178 /* we can race with deactivations and either may read as zero */ 1179 if (!active_sum || !inuse_sum) 1180 continue; 1181 1182 active_sum = max_t(u64, active, active_sum); 1183 hwa = div64_u64((u64)hwa * active, active_sum); 1184 1185 inuse_sum = max_t(u64, inuse, inuse_sum); 1186 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1187 } 1188 1189 iocg->hweight_active = max_t(u32, hwa, 1); 1190 iocg->hweight_inuse = max_t(u32, hwi, 1); 1191 iocg->hweight_gen = ioc_gen; 1192 out: 1193 if (hw_activep) 1194 *hw_activep = iocg->hweight_active; 1195 if (hw_inusep) 1196 *hw_inusep = iocg->hweight_inuse; 1197 } 1198 1199 /* 1200 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1201 * other weights stay unchanged. 1202 */ 1203 static u32 current_hweight_max(struct ioc_gq *iocg) 1204 { 1205 u32 hwm = WEIGHT_ONE; 1206 u32 inuse = iocg->active; 1207 u64 child_inuse_sum; 1208 int lvl; 1209 1210 lockdep_assert_held(&iocg->ioc->lock); 1211 1212 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1213 struct ioc_gq *parent = iocg->ancestors[lvl]; 1214 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1215 1216 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1217 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1218 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1219 parent->child_active_sum); 1220 } 1221 1222 return max_t(u32, hwm, 1); 1223 } 1224 1225 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1226 { 1227 struct ioc *ioc = iocg->ioc; 1228 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1229 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1230 u32 weight; 1231 1232 lockdep_assert_held(&ioc->lock); 1233 1234 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1235 if (weight != iocg->weight && iocg->active) 1236 propagate_weights(iocg, weight, iocg->inuse, true, now); 1237 iocg->weight = weight; 1238 } 1239 1240 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1241 { 1242 struct ioc *ioc = iocg->ioc; 1243 u64 last_period, cur_period; 1244 u64 vtime, vtarget; 1245 int i; 1246 1247 /* 1248 * If seem to be already active, just update the stamp to tell the 1249 * timer that we're still active. We don't mind occassional races. 1250 */ 1251 if (!list_empty(&iocg->active_list)) { 1252 ioc_now(ioc, now); 1253 cur_period = atomic64_read(&ioc->cur_period); 1254 if (atomic64_read(&iocg->active_period) != cur_period) 1255 atomic64_set(&iocg->active_period, cur_period); 1256 return true; 1257 } 1258 1259 /* racy check on internal node IOs, treat as root level IOs */ 1260 if (iocg->child_active_sum) 1261 return false; 1262 1263 spin_lock_irq(&ioc->lock); 1264 1265 ioc_now(ioc, now); 1266 1267 /* update period */ 1268 cur_period = atomic64_read(&ioc->cur_period); 1269 last_period = atomic64_read(&iocg->active_period); 1270 atomic64_set(&iocg->active_period, cur_period); 1271 1272 /* already activated or breaking leaf-only constraint? */ 1273 if (!list_empty(&iocg->active_list)) 1274 goto succeed_unlock; 1275 for (i = iocg->level - 1; i > 0; i--) 1276 if (!list_empty(&iocg->ancestors[i]->active_list)) 1277 goto fail_unlock; 1278 1279 if (iocg->child_active_sum) 1280 goto fail_unlock; 1281 1282 /* 1283 * Always start with the target budget. On deactivation, we throw away 1284 * anything above it. 1285 */ 1286 vtarget = now->vnow - ioc->margins.target; 1287 vtime = atomic64_read(&iocg->vtime); 1288 1289 atomic64_add(vtarget - vtime, &iocg->vtime); 1290 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1291 vtime = vtarget; 1292 1293 /* 1294 * Activate, propagate weight and start period timer if not 1295 * running. Reset hweight_gen to avoid accidental match from 1296 * wrapping. 1297 */ 1298 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1299 list_add(&iocg->active_list, &ioc->active_iocgs); 1300 1301 propagate_weights(iocg, iocg->weight, 1302 iocg->last_inuse ?: iocg->weight, true, now); 1303 1304 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1305 last_period, cur_period, vtime); 1306 1307 iocg->activated_at = now->now; 1308 1309 if (ioc->running == IOC_IDLE) { 1310 ioc->running = IOC_RUNNING; 1311 ioc->dfgv_period_at = now->now; 1312 ioc->dfgv_period_rem = 0; 1313 ioc_start_period(ioc, now); 1314 } 1315 1316 succeed_unlock: 1317 spin_unlock_irq(&ioc->lock); 1318 return true; 1319 1320 fail_unlock: 1321 spin_unlock_irq(&ioc->lock); 1322 return false; 1323 } 1324 1325 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1326 { 1327 struct ioc *ioc = iocg->ioc; 1328 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1329 u64 tdelta, delay, new_delay; 1330 s64 vover, vover_pct; 1331 u32 hwa; 1332 1333 lockdep_assert_held(&iocg->waitq.lock); 1334 1335 /* calculate the current delay in effect - 1/2 every second */ 1336 tdelta = now->now - iocg->delay_at; 1337 if (iocg->delay) 1338 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1339 else 1340 delay = 0; 1341 1342 /* calculate the new delay from the debt amount */ 1343 current_hweight(iocg, &hwa, NULL); 1344 vover = atomic64_read(&iocg->vtime) + 1345 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1346 vover_pct = div64_s64(100 * vover, 1347 ioc->period_us * ioc->vtime_base_rate); 1348 1349 if (vover_pct <= MIN_DELAY_THR_PCT) 1350 new_delay = 0; 1351 else if (vover_pct >= MAX_DELAY_THR_PCT) 1352 new_delay = MAX_DELAY; 1353 else 1354 new_delay = MIN_DELAY + 1355 div_u64((MAX_DELAY - MIN_DELAY) * 1356 (vover_pct - MIN_DELAY_THR_PCT), 1357 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1358 1359 /* pick the higher one and apply */ 1360 if (new_delay > delay) { 1361 iocg->delay = new_delay; 1362 iocg->delay_at = now->now; 1363 delay = new_delay; 1364 } 1365 1366 if (delay >= MIN_DELAY) { 1367 if (!iocg->indelay_since) 1368 iocg->indelay_since = now->now; 1369 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1370 return true; 1371 } else { 1372 if (iocg->indelay_since) { 1373 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1374 iocg->indelay_since = 0; 1375 } 1376 iocg->delay = 0; 1377 blkcg_clear_delay(blkg); 1378 return false; 1379 } 1380 } 1381 1382 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1383 struct ioc_now *now) 1384 { 1385 struct iocg_pcpu_stat *gcs; 1386 1387 lockdep_assert_held(&iocg->ioc->lock); 1388 lockdep_assert_held(&iocg->waitq.lock); 1389 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1390 1391 /* 1392 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1393 * inuse donating all of it share to others until its debt is paid off. 1394 */ 1395 if (!iocg->abs_vdebt && abs_cost) { 1396 iocg->indebt_since = now->now; 1397 propagate_weights(iocg, iocg->active, 0, false, now); 1398 } 1399 1400 iocg->abs_vdebt += abs_cost; 1401 1402 gcs = get_cpu_ptr(iocg->pcpu_stat); 1403 local64_add(abs_cost, &gcs->abs_vusage); 1404 put_cpu_ptr(gcs); 1405 } 1406 1407 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1408 struct ioc_now *now) 1409 { 1410 lockdep_assert_held(&iocg->ioc->lock); 1411 lockdep_assert_held(&iocg->waitq.lock); 1412 1413 /* make sure that nobody messed with @iocg */ 1414 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1415 WARN_ON_ONCE(iocg->inuse > 1); 1416 1417 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1418 1419 /* if debt is paid in full, restore inuse */ 1420 if (!iocg->abs_vdebt) { 1421 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1422 iocg->indebt_since = 0; 1423 1424 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1425 false, now); 1426 } 1427 } 1428 1429 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1430 int flags, void *key) 1431 { 1432 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1433 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1434 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1435 1436 ctx->vbudget -= cost; 1437 1438 if (ctx->vbudget < 0) 1439 return -1; 1440 1441 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1442 wait->committed = true; 1443 1444 /* 1445 * autoremove_wake_function() removes the wait entry only when it 1446 * actually changed the task state. We want the wait always removed. 1447 * Remove explicitly and use default_wake_function(). Note that the 1448 * order of operations is important as finish_wait() tests whether 1449 * @wq_entry is removed without grabbing the lock. 1450 */ 1451 default_wake_function(wq_entry, mode, flags, key); 1452 list_del_init_careful(&wq_entry->entry); 1453 return 0; 1454 } 1455 1456 /* 1457 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1458 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1459 * addition to iocg->waitq.lock. 1460 */ 1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1462 struct ioc_now *now) 1463 { 1464 struct ioc *ioc = iocg->ioc; 1465 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1466 u64 vshortage, expires, oexpires; 1467 s64 vbudget; 1468 u32 hwa; 1469 1470 lockdep_assert_held(&iocg->waitq.lock); 1471 1472 current_hweight(iocg, &hwa, NULL); 1473 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1474 1475 /* pay off debt */ 1476 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1477 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1478 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1479 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1480 1481 lockdep_assert_held(&ioc->lock); 1482 1483 atomic64_add(vpay, &iocg->vtime); 1484 atomic64_add(vpay, &iocg->done_vtime); 1485 iocg_pay_debt(iocg, abs_vpay, now); 1486 vbudget -= vpay; 1487 } 1488 1489 if (iocg->abs_vdebt || iocg->delay) 1490 iocg_kick_delay(iocg, now); 1491 1492 /* 1493 * Debt can still be outstanding if we haven't paid all yet or the 1494 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1495 * under debt. Make sure @vbudget reflects the outstanding amount and is 1496 * not positive. 1497 */ 1498 if (iocg->abs_vdebt) { 1499 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1500 vbudget = min_t(s64, 0, vbudget - vdebt); 1501 } 1502 1503 /* 1504 * Wake up the ones which are due and see how much vtime we'll need for 1505 * the next one. As paying off debt restores hw_inuse, it must be read 1506 * after the above debt payment. 1507 */ 1508 ctx.vbudget = vbudget; 1509 current_hweight(iocg, NULL, &ctx.hw_inuse); 1510 1511 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1512 1513 if (!waitqueue_active(&iocg->waitq)) { 1514 if (iocg->wait_since) { 1515 iocg->stat.wait_us += now->now - iocg->wait_since; 1516 iocg->wait_since = 0; 1517 } 1518 return; 1519 } 1520 1521 if (!iocg->wait_since) 1522 iocg->wait_since = now->now; 1523 1524 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1525 return; 1526 1527 /* determine next wakeup, add a timer margin to guarantee chunking */ 1528 vshortage = -ctx.vbudget; 1529 expires = now->now_ns + 1530 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1531 NSEC_PER_USEC; 1532 expires += ioc->timer_slack_ns; 1533 1534 /* if already active and close enough, don't bother */ 1535 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1536 if (hrtimer_is_queued(&iocg->waitq_timer) && 1537 abs(oexpires - expires) <= ioc->timer_slack_ns) 1538 return; 1539 1540 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1541 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1542 } 1543 1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1545 { 1546 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1547 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1548 struct ioc_now now; 1549 unsigned long flags; 1550 1551 ioc_now(iocg->ioc, &now); 1552 1553 iocg_lock(iocg, pay_debt, &flags); 1554 iocg_kick_waitq(iocg, pay_debt, &now); 1555 iocg_unlock(iocg, pay_debt, &flags); 1556 1557 return HRTIMER_NORESTART; 1558 } 1559 1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1561 { 1562 u32 nr_met[2] = { }; 1563 u32 nr_missed[2] = { }; 1564 u64 rq_wait_ns = 0; 1565 int cpu, rw; 1566 1567 for_each_online_cpu(cpu) { 1568 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1569 u64 this_rq_wait_ns; 1570 1571 for (rw = READ; rw <= WRITE; rw++) { 1572 u32 this_met = local_read(&stat->missed[rw].nr_met); 1573 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1574 1575 nr_met[rw] += this_met - stat->missed[rw].last_met; 1576 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1577 stat->missed[rw].last_met = this_met; 1578 stat->missed[rw].last_missed = this_missed; 1579 } 1580 1581 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1582 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1583 stat->last_rq_wait_ns = this_rq_wait_ns; 1584 } 1585 1586 for (rw = READ; rw <= WRITE; rw++) { 1587 if (nr_met[rw] + nr_missed[rw]) 1588 missed_ppm_ar[rw] = 1589 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1590 nr_met[rw] + nr_missed[rw]); 1591 else 1592 missed_ppm_ar[rw] = 0; 1593 } 1594 1595 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1596 ioc->period_us * NSEC_PER_USEC); 1597 } 1598 1599 /* was iocg idle this period? */ 1600 static bool iocg_is_idle(struct ioc_gq *iocg) 1601 { 1602 struct ioc *ioc = iocg->ioc; 1603 1604 /* did something get issued this period? */ 1605 if (atomic64_read(&iocg->active_period) == 1606 atomic64_read(&ioc->cur_period)) 1607 return false; 1608 1609 /* is something in flight? */ 1610 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1611 return false; 1612 1613 return true; 1614 } 1615 1616 /* 1617 * Call this function on the target leaf @iocg's to build pre-order traversal 1618 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1619 * ->walk_list and the caller is responsible for dissolving the list after use. 1620 */ 1621 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1622 struct list_head *inner_walk) 1623 { 1624 int lvl; 1625 1626 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1627 1628 /* find the first ancestor which hasn't been visited yet */ 1629 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1630 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1631 break; 1632 } 1633 1634 /* walk down and visit the inner nodes to get pre-order traversal */ 1635 while (++lvl <= iocg->level - 1) { 1636 struct ioc_gq *inner = iocg->ancestors[lvl]; 1637 1638 /* record traversal order */ 1639 list_add_tail(&inner->walk_list, inner_walk); 1640 } 1641 } 1642 1643 /* propagate the deltas to the parent */ 1644 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1645 { 1646 if (iocg->level > 0) { 1647 struct iocg_stat *parent_stat = 1648 &iocg->ancestors[iocg->level - 1]->stat; 1649 1650 parent_stat->usage_us += 1651 iocg->stat.usage_us - iocg->last_stat.usage_us; 1652 parent_stat->wait_us += 1653 iocg->stat.wait_us - iocg->last_stat.wait_us; 1654 parent_stat->indebt_us += 1655 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1656 parent_stat->indelay_us += 1657 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1658 } 1659 1660 iocg->last_stat = iocg->stat; 1661 } 1662 1663 /* collect per-cpu counters and propagate the deltas to the parent */ 1664 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1665 { 1666 struct ioc *ioc = iocg->ioc; 1667 u64 abs_vusage = 0; 1668 u64 vusage_delta; 1669 int cpu; 1670 1671 lockdep_assert_held(&iocg->ioc->lock); 1672 1673 /* collect per-cpu counters */ 1674 for_each_possible_cpu(cpu) { 1675 abs_vusage += local64_read( 1676 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1677 } 1678 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1679 iocg->last_stat_abs_vusage = abs_vusage; 1680 1681 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1682 iocg->stat.usage_us += iocg->usage_delta_us; 1683 1684 iocg_flush_stat_upward(iocg); 1685 } 1686 1687 /* get stat counters ready for reading on all active iocgs */ 1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1689 { 1690 LIST_HEAD(inner_walk); 1691 struct ioc_gq *iocg, *tiocg; 1692 1693 /* flush leaves and build inner node walk list */ 1694 list_for_each_entry(iocg, target_iocgs, active_list) { 1695 iocg_flush_stat_leaf(iocg, now); 1696 iocg_build_inner_walk(iocg, &inner_walk); 1697 } 1698 1699 /* keep flushing upwards by walking the inner list backwards */ 1700 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1701 iocg_flush_stat_upward(iocg); 1702 list_del_init(&iocg->walk_list); 1703 } 1704 } 1705 1706 /* 1707 * Determine what @iocg's hweight_inuse should be after donating unused 1708 * capacity. @hwm is the upper bound and used to signal no donation. This 1709 * function also throws away @iocg's excess budget. 1710 */ 1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1712 u32 usage, struct ioc_now *now) 1713 { 1714 struct ioc *ioc = iocg->ioc; 1715 u64 vtime = atomic64_read(&iocg->vtime); 1716 s64 excess, delta, target, new_hwi; 1717 1718 /* debt handling owns inuse for debtors */ 1719 if (iocg->abs_vdebt) 1720 return 1; 1721 1722 /* see whether minimum margin requirement is met */ 1723 if (waitqueue_active(&iocg->waitq) || 1724 time_after64(vtime, now->vnow - ioc->margins.min)) 1725 return hwm; 1726 1727 /* throw away excess above target */ 1728 excess = now->vnow - vtime - ioc->margins.target; 1729 if (excess > 0) { 1730 atomic64_add(excess, &iocg->vtime); 1731 atomic64_add(excess, &iocg->done_vtime); 1732 vtime += excess; 1733 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1734 } 1735 1736 /* 1737 * Let's say the distance between iocg's and device's vtimes as a 1738 * fraction of period duration is delta. Assuming that the iocg will 1739 * consume the usage determined above, we want to determine new_hwi so 1740 * that delta equals MARGIN_TARGET at the end of the next period. 1741 * 1742 * We need to execute usage worth of IOs while spending the sum of the 1743 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1744 * (delta): 1745 * 1746 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1747 * 1748 * Therefore, the new_hwi is: 1749 * 1750 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1751 */ 1752 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1753 now->vnow - ioc->period_at_vtime); 1754 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1755 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1756 1757 return clamp_t(s64, new_hwi, 1, hwm); 1758 } 1759 1760 /* 1761 * For work-conservation, an iocg which isn't using all of its share should 1762 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1763 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1764 * 1765 * #1 is mathematically simpler but has the drawback of requiring synchronous 1766 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1767 * change due to donation snapbacks as it has the possibility of grossly 1768 * overshooting what's allowed by the model and vrate. 1769 * 1770 * #2 is inherently safe with local operations. The donating iocg can easily 1771 * snap back to higher weights when needed without worrying about impacts on 1772 * other nodes as the impacts will be inherently correct. This also makes idle 1773 * iocg activations safe. The only effect activations have is decreasing 1774 * hweight_inuse of others, the right solution to which is for those iocgs to 1775 * snap back to higher weights. 1776 * 1777 * So, we go with #2. The challenge is calculating how each donating iocg's 1778 * inuse should be adjusted to achieve the target donation amounts. This is done 1779 * using Andy's method described in the following pdf. 1780 * 1781 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1782 * 1783 * Given the weights and target after-donation hweight_inuse values, Andy's 1784 * method determines how the proportional distribution should look like at each 1785 * sibling level to maintain the relative relationship between all non-donating 1786 * pairs. To roughly summarize, it divides the tree into donating and 1787 * non-donating parts, calculates global donation rate which is used to 1788 * determine the target hweight_inuse for each node, and then derives per-level 1789 * proportions. 1790 * 1791 * The following pdf shows that global distribution calculated this way can be 1792 * achieved by scaling inuse weights of donating leaves and propagating the 1793 * adjustments upwards proportionally. 1794 * 1795 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1796 * 1797 * Combining the above two, we can determine how each leaf iocg's inuse should 1798 * be adjusted to achieve the target donation. 1799 * 1800 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1801 * 1802 * The inline comments use symbols from the last pdf. 1803 * 1804 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1805 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1806 * t is the sum of the absolute budgets of donating nodes in the subtree. 1807 * w is the weight of the node. w = w_f + w_t 1808 * w_f is the non-donating portion of w. w_f = w * f / b 1809 * w_b is the donating portion of w. w_t = w * t / b 1810 * s is the sum of all sibling weights. s = Sum(w) for siblings 1811 * s_f and s_t are the non-donating and donating portions of s. 1812 * 1813 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1814 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1815 * after adjustments. Subscript r denotes the root node's values. 1816 */ 1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1818 { 1819 LIST_HEAD(over_hwa); 1820 LIST_HEAD(inner_walk); 1821 struct ioc_gq *iocg, *tiocg, *root_iocg; 1822 u32 after_sum, over_sum, over_target, gamma; 1823 1824 /* 1825 * It's pretty unlikely but possible for the total sum of 1826 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1827 * confuse the following calculations. If such condition is detected, 1828 * scale down everyone over its full share equally to keep the sum below 1829 * WEIGHT_ONE. 1830 */ 1831 after_sum = 0; 1832 over_sum = 0; 1833 list_for_each_entry(iocg, surpluses, surplus_list) { 1834 u32 hwa; 1835 1836 current_hweight(iocg, &hwa, NULL); 1837 after_sum += iocg->hweight_after_donation; 1838 1839 if (iocg->hweight_after_donation > hwa) { 1840 over_sum += iocg->hweight_after_donation; 1841 list_add(&iocg->walk_list, &over_hwa); 1842 } 1843 } 1844 1845 if (after_sum >= WEIGHT_ONE) { 1846 /* 1847 * The delta should be deducted from the over_sum, calculate 1848 * target over_sum value. 1849 */ 1850 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1851 WARN_ON_ONCE(over_sum <= over_delta); 1852 over_target = over_sum - over_delta; 1853 } else { 1854 over_target = 0; 1855 } 1856 1857 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1858 if (over_target) 1859 iocg->hweight_after_donation = 1860 div_u64((u64)iocg->hweight_after_donation * 1861 over_target, over_sum); 1862 list_del_init(&iocg->walk_list); 1863 } 1864 1865 /* 1866 * Build pre-order inner node walk list and prepare for donation 1867 * adjustment calculations. 1868 */ 1869 list_for_each_entry(iocg, surpluses, surplus_list) { 1870 iocg_build_inner_walk(iocg, &inner_walk); 1871 } 1872 1873 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1874 WARN_ON_ONCE(root_iocg->level > 0); 1875 1876 list_for_each_entry(iocg, &inner_walk, walk_list) { 1877 iocg->child_adjusted_sum = 0; 1878 iocg->hweight_donating = 0; 1879 iocg->hweight_after_donation = 0; 1880 } 1881 1882 /* 1883 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1884 * up the hierarchy. 1885 */ 1886 list_for_each_entry(iocg, surpluses, surplus_list) { 1887 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1888 1889 parent->hweight_donating += iocg->hweight_donating; 1890 parent->hweight_after_donation += iocg->hweight_after_donation; 1891 } 1892 1893 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1894 if (iocg->level > 0) { 1895 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1896 1897 parent->hweight_donating += iocg->hweight_donating; 1898 parent->hweight_after_donation += iocg->hweight_after_donation; 1899 } 1900 } 1901 1902 /* 1903 * Calculate inner hwa's (b) and make sure the donation values are 1904 * within the accepted ranges as we're doing low res calculations with 1905 * roundups. 1906 */ 1907 list_for_each_entry(iocg, &inner_walk, walk_list) { 1908 if (iocg->level) { 1909 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1910 1911 iocg->hweight_active = DIV64_U64_ROUND_UP( 1912 (u64)parent->hweight_active * iocg->active, 1913 parent->child_active_sum); 1914 1915 } 1916 1917 iocg->hweight_donating = min(iocg->hweight_donating, 1918 iocg->hweight_active); 1919 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1920 iocg->hweight_donating - 1); 1921 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1922 iocg->hweight_donating <= 1 || 1923 iocg->hweight_after_donation == 0)) { 1924 pr_warn("iocg: invalid donation weights in "); 1925 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1926 pr_cont(": active=%u donating=%u after=%u\n", 1927 iocg->hweight_active, iocg->hweight_donating, 1928 iocg->hweight_after_donation); 1929 } 1930 } 1931 1932 /* 1933 * Calculate the global donation rate (gamma) - the rate to adjust 1934 * non-donating budgets by. 1935 * 1936 * No need to use 64bit multiplication here as the first operand is 1937 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1938 * 1939 * We know that there are beneficiary nodes and the sum of the donating 1940 * hweights can't be whole; however, due to the round-ups during hweight 1941 * calculations, root_iocg->hweight_donating might still end up equal to 1942 * or greater than whole. Limit the range when calculating the divider. 1943 * 1944 * gamma = (1 - t_r') / (1 - t_r) 1945 */ 1946 gamma = DIV_ROUND_UP( 1947 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1948 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1949 1950 /* 1951 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1952 * nodes. 1953 */ 1954 list_for_each_entry(iocg, &inner_walk, walk_list) { 1955 struct ioc_gq *parent; 1956 u32 inuse, wpt, wptp; 1957 u64 st, sf; 1958 1959 if (iocg->level == 0) { 1960 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1961 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1962 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1963 WEIGHT_ONE - iocg->hweight_after_donation); 1964 continue; 1965 } 1966 1967 parent = iocg->ancestors[iocg->level - 1]; 1968 1969 /* b' = gamma * b_f + b_t' */ 1970 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1971 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1972 WEIGHT_ONE) + iocg->hweight_after_donation; 1973 1974 /* w' = s' * b' / b'_p */ 1975 inuse = DIV64_U64_ROUND_UP( 1976 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1977 parent->hweight_inuse); 1978 1979 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1980 st = DIV64_U64_ROUND_UP( 1981 iocg->child_active_sum * iocg->hweight_donating, 1982 iocg->hweight_active); 1983 sf = iocg->child_active_sum - st; 1984 wpt = DIV64_U64_ROUND_UP( 1985 (u64)iocg->active * iocg->hweight_donating, 1986 iocg->hweight_active); 1987 wptp = DIV64_U64_ROUND_UP( 1988 (u64)inuse * iocg->hweight_after_donation, 1989 iocg->hweight_inuse); 1990 1991 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1992 } 1993 1994 /* 1995 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1996 * we can finally determine leaf adjustments. 1997 */ 1998 list_for_each_entry(iocg, surpluses, surplus_list) { 1999 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2000 u32 inuse; 2001 2002 /* 2003 * In-debt iocgs participated in the donation calculation with 2004 * the minimum target hweight_inuse. Configuring inuse 2005 * accordingly would work fine but debt handling expects 2006 * @iocg->inuse stay at the minimum and we don't wanna 2007 * interfere. 2008 */ 2009 if (iocg->abs_vdebt) { 2010 WARN_ON_ONCE(iocg->inuse > 1); 2011 continue; 2012 } 2013 2014 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2015 inuse = DIV64_U64_ROUND_UP( 2016 parent->child_adjusted_sum * iocg->hweight_after_donation, 2017 parent->hweight_inuse); 2018 2019 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2020 iocg->inuse, inuse, 2021 iocg->hweight_inuse, 2022 iocg->hweight_after_donation); 2023 2024 __propagate_weights(iocg, iocg->active, inuse, true, now); 2025 } 2026 2027 /* walk list should be dissolved after use */ 2028 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2029 list_del_init(&iocg->walk_list); 2030 } 2031 2032 /* 2033 * A low weight iocg can amass a large amount of debt, for example, when 2034 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2035 * memory paired with a slow IO device, the debt can span multiple seconds or 2036 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2037 * up blocked paying its debt while the IO device is idle. 2038 * 2039 * The following protects against such cases. If the device has been 2040 * sufficiently idle for a while, the debts are halved and delays are 2041 * recalculated. 2042 */ 2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2044 struct ioc_now *now) 2045 { 2046 struct ioc_gq *iocg; 2047 u64 dur, usage_pct, nr_cycles; 2048 2049 /* if no debtor, reset the cycle */ 2050 if (!nr_debtors) { 2051 ioc->dfgv_period_at = now->now; 2052 ioc->dfgv_period_rem = 0; 2053 ioc->dfgv_usage_us_sum = 0; 2054 return; 2055 } 2056 2057 /* 2058 * Debtors can pass through a lot of writes choking the device and we 2059 * don't want to be forgiving debts while the device is struggling from 2060 * write bursts. If we're missing latency targets, consider the device 2061 * fully utilized. 2062 */ 2063 if (ioc->busy_level > 0) 2064 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2065 2066 ioc->dfgv_usage_us_sum += usage_us_sum; 2067 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2068 return; 2069 2070 /* 2071 * At least DFGV_PERIOD has passed since the last period. Calculate the 2072 * average usage and reset the period counters. 2073 */ 2074 dur = now->now - ioc->dfgv_period_at; 2075 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2076 2077 ioc->dfgv_period_at = now->now; 2078 ioc->dfgv_usage_us_sum = 0; 2079 2080 /* if was too busy, reset everything */ 2081 if (usage_pct > DFGV_USAGE_PCT) { 2082 ioc->dfgv_period_rem = 0; 2083 return; 2084 } 2085 2086 /* 2087 * Usage is lower than threshold. Let's forgive some debts. Debt 2088 * forgiveness runs off of the usual ioc timer but its period usually 2089 * doesn't match ioc's. Compensate the difference by performing the 2090 * reduction as many times as would fit in the duration since the last 2091 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2092 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2093 * reductions is doubled. 2094 */ 2095 nr_cycles = dur + ioc->dfgv_period_rem; 2096 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2097 2098 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2099 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2100 2101 if (!iocg->abs_vdebt && !iocg->delay) 2102 continue; 2103 2104 spin_lock(&iocg->waitq.lock); 2105 2106 old_debt = iocg->abs_vdebt; 2107 old_delay = iocg->delay; 2108 2109 if (iocg->abs_vdebt) 2110 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2111 if (iocg->delay) 2112 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2113 2114 iocg_kick_waitq(iocg, true, now); 2115 2116 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2117 old_debt, iocg->abs_vdebt, 2118 old_delay, iocg->delay); 2119 2120 spin_unlock(&iocg->waitq.lock); 2121 } 2122 } 2123 2124 /* 2125 * Check the active iocgs' state to avoid oversleeping and deactive 2126 * idle iocgs. 2127 * 2128 * Since waiters determine the sleep durations based on the vrate 2129 * they saw at the time of sleep, if vrate has increased, some 2130 * waiters could be sleeping for too long. Wake up tardy waiters 2131 * which should have woken up in the last period and expire idle 2132 * iocgs. 2133 */ 2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2135 { 2136 int nr_debtors = 0; 2137 struct ioc_gq *iocg, *tiocg; 2138 2139 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2140 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2141 !iocg->delay && !iocg_is_idle(iocg)) 2142 continue; 2143 2144 spin_lock(&iocg->waitq.lock); 2145 2146 /* flush wait and indebt stat deltas */ 2147 if (iocg->wait_since) { 2148 iocg->stat.wait_us += now->now - iocg->wait_since; 2149 iocg->wait_since = now->now; 2150 } 2151 if (iocg->indebt_since) { 2152 iocg->stat.indebt_us += 2153 now->now - iocg->indebt_since; 2154 iocg->indebt_since = now->now; 2155 } 2156 if (iocg->indelay_since) { 2157 iocg->stat.indelay_us += 2158 now->now - iocg->indelay_since; 2159 iocg->indelay_since = now->now; 2160 } 2161 2162 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2163 iocg->delay) { 2164 /* might be oversleeping vtime / hweight changes, kick */ 2165 iocg_kick_waitq(iocg, true, now); 2166 if (iocg->abs_vdebt || iocg->delay) 2167 nr_debtors++; 2168 } else if (iocg_is_idle(iocg)) { 2169 /* no waiter and idle, deactivate */ 2170 u64 vtime = atomic64_read(&iocg->vtime); 2171 s64 excess; 2172 2173 /* 2174 * @iocg has been inactive for a full duration and will 2175 * have a high budget. Account anything above target as 2176 * error and throw away. On reactivation, it'll start 2177 * with the target budget. 2178 */ 2179 excess = now->vnow - vtime - ioc->margins.target; 2180 if (excess > 0) { 2181 u32 old_hwi; 2182 2183 current_hweight(iocg, NULL, &old_hwi); 2184 ioc->vtime_err -= div64_u64(excess * old_hwi, 2185 WEIGHT_ONE); 2186 } 2187 2188 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2189 atomic64_read(&iocg->active_period), 2190 atomic64_read(&ioc->cur_period), vtime); 2191 __propagate_weights(iocg, 0, 0, false, now); 2192 list_del_init(&iocg->active_list); 2193 } 2194 2195 spin_unlock(&iocg->waitq.lock); 2196 } 2197 2198 commit_weights(ioc); 2199 return nr_debtors; 2200 } 2201 2202 static void ioc_timer_fn(struct timer_list *timer) 2203 { 2204 struct ioc *ioc = container_of(timer, struct ioc, timer); 2205 struct ioc_gq *iocg, *tiocg; 2206 struct ioc_now now; 2207 LIST_HEAD(surpluses); 2208 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2209 u64 usage_us_sum = 0; 2210 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2211 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2212 u32 missed_ppm[2], rq_wait_pct; 2213 u64 period_vtime; 2214 int prev_busy_level; 2215 2216 /* how were the latencies during the period? */ 2217 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2218 2219 /* take care of active iocgs */ 2220 spin_lock_irq(&ioc->lock); 2221 2222 ioc_now(ioc, &now); 2223 2224 period_vtime = now.vnow - ioc->period_at_vtime; 2225 if (WARN_ON_ONCE(!period_vtime)) { 2226 spin_unlock_irq(&ioc->lock); 2227 return; 2228 } 2229 2230 nr_debtors = ioc_check_iocgs(ioc, &now); 2231 2232 /* 2233 * Wait and indebt stat are flushed above and the donation calculation 2234 * below needs updated usage stat. Let's bring stat up-to-date. 2235 */ 2236 iocg_flush_stat(&ioc->active_iocgs, &now); 2237 2238 /* calc usage and see whether some weights need to be moved around */ 2239 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2240 u64 vdone, vtime, usage_us; 2241 u32 hw_active, hw_inuse; 2242 2243 /* 2244 * Collect unused and wind vtime closer to vnow to prevent 2245 * iocgs from accumulating a large amount of budget. 2246 */ 2247 vdone = atomic64_read(&iocg->done_vtime); 2248 vtime = atomic64_read(&iocg->vtime); 2249 current_hweight(iocg, &hw_active, &hw_inuse); 2250 2251 /* 2252 * Latency QoS detection doesn't account for IOs which are 2253 * in-flight for longer than a period. Detect them by 2254 * comparing vdone against period start. If lagging behind 2255 * IOs from past periods, don't increase vrate. 2256 */ 2257 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2258 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2259 time_after64(vtime, vdone) && 2260 time_after64(vtime, now.vnow - 2261 MAX_LAGGING_PERIODS * period_vtime) && 2262 time_before64(vdone, now.vnow - period_vtime)) 2263 nr_lagging++; 2264 2265 /* 2266 * Determine absolute usage factoring in in-flight IOs to avoid 2267 * high-latency completions appearing as idle. 2268 */ 2269 usage_us = iocg->usage_delta_us; 2270 usage_us_sum += usage_us; 2271 2272 /* see whether there's surplus vtime */ 2273 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2274 if (hw_inuse < hw_active || 2275 (!waitqueue_active(&iocg->waitq) && 2276 time_before64(vtime, now.vnow - ioc->margins.low))) { 2277 u32 hwa, old_hwi, hwm, new_hwi, usage; 2278 u64 usage_dur; 2279 2280 if (vdone != vtime) { 2281 u64 inflight_us = DIV64_U64_ROUND_UP( 2282 cost_to_abs_cost(vtime - vdone, hw_inuse), 2283 ioc->vtime_base_rate); 2284 2285 usage_us = max(usage_us, inflight_us); 2286 } 2287 2288 /* convert to hweight based usage ratio */ 2289 if (time_after64(iocg->activated_at, ioc->period_at)) 2290 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2291 else 2292 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2293 2294 usage = clamp_t(u32, 2295 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2296 usage_dur), 2297 1, WEIGHT_ONE); 2298 2299 /* 2300 * Already donating or accumulated enough to start. 2301 * Determine the donation amount. 2302 */ 2303 current_hweight(iocg, &hwa, &old_hwi); 2304 hwm = current_hweight_max(iocg); 2305 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2306 usage, &now); 2307 /* 2308 * Donation calculation assumes hweight_after_donation 2309 * to be positive, a condition that a donor w/ hwa < 2 2310 * can't meet. Don't bother with donation if hwa is 2311 * below 2. It's not gonna make a meaningful difference 2312 * anyway. 2313 */ 2314 if (new_hwi < hwm && hwa >= 2) { 2315 iocg->hweight_donating = hwa; 2316 iocg->hweight_after_donation = new_hwi; 2317 list_add(&iocg->surplus_list, &surpluses); 2318 } else if (!iocg->abs_vdebt) { 2319 /* 2320 * @iocg doesn't have enough to donate. Reset 2321 * its inuse to active. 2322 * 2323 * Don't reset debtors as their inuse's are 2324 * owned by debt handling. This shouldn't affect 2325 * donation calculuation in any meaningful way 2326 * as @iocg doesn't have a meaningful amount of 2327 * share anyway. 2328 */ 2329 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2330 iocg->inuse, iocg->active, 2331 iocg->hweight_inuse, new_hwi); 2332 2333 __propagate_weights(iocg, iocg->active, 2334 iocg->active, true, &now); 2335 nr_shortages++; 2336 } 2337 } else { 2338 /* genuinely short on vtime */ 2339 nr_shortages++; 2340 } 2341 } 2342 2343 if (!list_empty(&surpluses) && nr_shortages) 2344 transfer_surpluses(&surpluses, &now); 2345 2346 commit_weights(ioc); 2347 2348 /* surplus list should be dissolved after use */ 2349 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2350 list_del_init(&iocg->surplus_list); 2351 2352 /* 2353 * If q is getting clogged or we're missing too much, we're issuing 2354 * too much IO and should lower vtime rate. If we're not missing 2355 * and experiencing shortages but not surpluses, we're too stingy 2356 * and should increase vtime rate. 2357 */ 2358 prev_busy_level = ioc->busy_level; 2359 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2360 missed_ppm[READ] > ppm_rthr || 2361 missed_ppm[WRITE] > ppm_wthr) { 2362 /* clearly missing QoS targets, slow down vrate */ 2363 ioc->busy_level = max(ioc->busy_level, 0); 2364 ioc->busy_level++; 2365 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2366 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2367 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2368 /* QoS targets are being met with >25% margin */ 2369 if (nr_shortages) { 2370 /* 2371 * We're throttling while the device has spare 2372 * capacity. If vrate was being slowed down, stop. 2373 */ 2374 ioc->busy_level = min(ioc->busy_level, 0); 2375 2376 /* 2377 * If there are IOs spanning multiple periods, wait 2378 * them out before pushing the device harder. 2379 */ 2380 if (!nr_lagging) 2381 ioc->busy_level--; 2382 } else { 2383 /* 2384 * Nobody is being throttled and the users aren't 2385 * issuing enough IOs to saturate the device. We 2386 * simply don't know how close the device is to 2387 * saturation. Coast. 2388 */ 2389 ioc->busy_level = 0; 2390 } 2391 } else { 2392 /* inside the hysterisis margin, we're good */ 2393 ioc->busy_level = 0; 2394 } 2395 2396 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2397 2398 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2399 prev_busy_level, missed_ppm); 2400 2401 ioc_refresh_params(ioc, false); 2402 2403 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2404 2405 /* 2406 * This period is done. Move onto the next one. If nothing's 2407 * going on with the device, stop the timer. 2408 */ 2409 atomic64_inc(&ioc->cur_period); 2410 2411 if (ioc->running != IOC_STOP) { 2412 if (!list_empty(&ioc->active_iocgs)) { 2413 ioc_start_period(ioc, &now); 2414 } else { 2415 ioc->busy_level = 0; 2416 ioc->vtime_err = 0; 2417 ioc->running = IOC_IDLE; 2418 } 2419 2420 ioc_refresh_vrate(ioc, &now); 2421 } 2422 2423 spin_unlock_irq(&ioc->lock); 2424 } 2425 2426 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2427 u64 abs_cost, struct ioc_now *now) 2428 { 2429 struct ioc *ioc = iocg->ioc; 2430 struct ioc_margins *margins = &ioc->margins; 2431 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2432 u32 hwi, adj_step; 2433 s64 margin; 2434 u64 cost, new_inuse; 2435 2436 current_hweight(iocg, NULL, &hwi); 2437 old_hwi = hwi; 2438 cost = abs_cost_to_cost(abs_cost, hwi); 2439 margin = now->vnow - vtime - cost; 2440 2441 /* debt handling owns inuse for debtors */ 2442 if (iocg->abs_vdebt) 2443 return cost; 2444 2445 /* 2446 * We only increase inuse during period and do so if the margin has 2447 * deteriorated since the previous adjustment. 2448 */ 2449 if (margin >= iocg->saved_margin || margin >= margins->low || 2450 iocg->inuse == iocg->active) 2451 return cost; 2452 2453 spin_lock_irq(&ioc->lock); 2454 2455 /* we own inuse only when @iocg is in the normal active state */ 2456 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2457 spin_unlock_irq(&ioc->lock); 2458 return cost; 2459 } 2460 2461 /* 2462 * Bump up inuse till @abs_cost fits in the existing budget. 2463 * adj_step must be determined after acquiring ioc->lock - we might 2464 * have raced and lost to another thread for activation and could 2465 * be reading 0 iocg->active before ioc->lock which will lead to 2466 * infinite loop. 2467 */ 2468 new_inuse = iocg->inuse; 2469 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2470 do { 2471 new_inuse = new_inuse + adj_step; 2472 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2473 current_hweight(iocg, NULL, &hwi); 2474 cost = abs_cost_to_cost(abs_cost, hwi); 2475 } while (time_after64(vtime + cost, now->vnow) && 2476 iocg->inuse != iocg->active); 2477 2478 spin_unlock_irq(&ioc->lock); 2479 2480 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2481 old_inuse, iocg->inuse, old_hwi, hwi); 2482 2483 return cost; 2484 } 2485 2486 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2487 bool is_merge, u64 *costp) 2488 { 2489 struct ioc *ioc = iocg->ioc; 2490 u64 coef_seqio, coef_randio, coef_page; 2491 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2492 u64 seek_pages = 0; 2493 u64 cost = 0; 2494 2495 switch (bio_op(bio)) { 2496 case REQ_OP_READ: 2497 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2498 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2499 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2500 break; 2501 case REQ_OP_WRITE: 2502 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2503 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2504 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2505 break; 2506 default: 2507 goto out; 2508 } 2509 2510 if (iocg->cursor) { 2511 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2512 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2513 } 2514 2515 if (!is_merge) { 2516 if (seek_pages > LCOEF_RANDIO_PAGES) { 2517 cost += coef_randio; 2518 } else { 2519 cost += coef_seqio; 2520 } 2521 } 2522 cost += pages * coef_page; 2523 out: 2524 *costp = cost; 2525 } 2526 2527 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2528 { 2529 u64 cost; 2530 2531 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2532 return cost; 2533 } 2534 2535 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2536 u64 *costp) 2537 { 2538 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2539 2540 switch (req_op(rq)) { 2541 case REQ_OP_READ: 2542 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2543 break; 2544 case REQ_OP_WRITE: 2545 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2546 break; 2547 default: 2548 *costp = 0; 2549 } 2550 } 2551 2552 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2553 { 2554 u64 cost; 2555 2556 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2557 return cost; 2558 } 2559 2560 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2561 { 2562 struct blkcg_gq *blkg = bio->bi_blkg; 2563 struct ioc *ioc = rqos_to_ioc(rqos); 2564 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2565 struct ioc_now now; 2566 struct iocg_wait wait; 2567 u64 abs_cost, cost, vtime; 2568 bool use_debt, ioc_locked; 2569 unsigned long flags; 2570 2571 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2572 if (!ioc->enabled || !iocg || !iocg->level) 2573 return; 2574 2575 /* calculate the absolute vtime cost */ 2576 abs_cost = calc_vtime_cost(bio, iocg, false); 2577 if (!abs_cost) 2578 return; 2579 2580 if (!iocg_activate(iocg, &now)) 2581 return; 2582 2583 iocg->cursor = bio_end_sector(bio); 2584 vtime = atomic64_read(&iocg->vtime); 2585 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2586 2587 /* 2588 * If no one's waiting and within budget, issue right away. The 2589 * tests are racy but the races aren't systemic - we only miss once 2590 * in a while which is fine. 2591 */ 2592 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2593 time_before_eq64(vtime + cost, now.vnow)) { 2594 iocg_commit_bio(iocg, bio, abs_cost, cost); 2595 return; 2596 } 2597 2598 /* 2599 * We're over budget. This can be handled in two ways. IOs which may 2600 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2601 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2602 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2603 * whether debt handling is needed and acquire locks accordingly. 2604 */ 2605 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2606 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2607 retry_lock: 2608 iocg_lock(iocg, ioc_locked, &flags); 2609 2610 /* 2611 * @iocg must stay activated for debt and waitq handling. Deactivation 2612 * is synchronized against both ioc->lock and waitq.lock and we won't 2613 * get deactivated as long as we're waiting or has debt, so we're good 2614 * if we're activated here. In the unlikely cases that we aren't, just 2615 * issue the IO. 2616 */ 2617 if (unlikely(list_empty(&iocg->active_list))) { 2618 iocg_unlock(iocg, ioc_locked, &flags); 2619 iocg_commit_bio(iocg, bio, abs_cost, cost); 2620 return; 2621 } 2622 2623 /* 2624 * We're over budget. If @bio has to be issued regardless, remember 2625 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2626 * off the debt before waking more IOs. 2627 * 2628 * This way, the debt is continuously paid off each period with the 2629 * actual budget available to the cgroup. If we just wound vtime, we 2630 * would incorrectly use the current hw_inuse for the entire amount 2631 * which, for example, can lead to the cgroup staying blocked for a 2632 * long time even with substantially raised hw_inuse. 2633 * 2634 * An iocg with vdebt should stay online so that the timer can keep 2635 * deducting its vdebt and [de]activate use_delay mechanism 2636 * accordingly. We don't want to race against the timer trying to 2637 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2638 * penalizing the cgroup and its descendants. 2639 */ 2640 if (use_debt) { 2641 iocg_incur_debt(iocg, abs_cost, &now); 2642 if (iocg_kick_delay(iocg, &now)) 2643 blkcg_schedule_throttle(rqos->q, 2644 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2645 iocg_unlock(iocg, ioc_locked, &flags); 2646 return; 2647 } 2648 2649 /* guarantee that iocgs w/ waiters have maximum inuse */ 2650 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2651 if (!ioc_locked) { 2652 iocg_unlock(iocg, false, &flags); 2653 ioc_locked = true; 2654 goto retry_lock; 2655 } 2656 propagate_weights(iocg, iocg->active, iocg->active, true, 2657 &now); 2658 } 2659 2660 /* 2661 * Append self to the waitq and schedule the wakeup timer if we're 2662 * the first waiter. The timer duration is calculated based on the 2663 * current vrate. vtime and hweight changes can make it too short 2664 * or too long. Each wait entry records the absolute cost it's 2665 * waiting for to allow re-evaluation using a custom wait entry. 2666 * 2667 * If too short, the timer simply reschedules itself. If too long, 2668 * the period timer will notice and trigger wakeups. 2669 * 2670 * All waiters are on iocg->waitq and the wait states are 2671 * synchronized using waitq.lock. 2672 */ 2673 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2674 wait.wait.private = current; 2675 wait.bio = bio; 2676 wait.abs_cost = abs_cost; 2677 wait.committed = false; /* will be set true by waker */ 2678 2679 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2680 iocg_kick_waitq(iocg, ioc_locked, &now); 2681 2682 iocg_unlock(iocg, ioc_locked, &flags); 2683 2684 while (true) { 2685 set_current_state(TASK_UNINTERRUPTIBLE); 2686 if (wait.committed) 2687 break; 2688 io_schedule(); 2689 } 2690 2691 /* waker already committed us, proceed */ 2692 finish_wait(&iocg->waitq, &wait.wait); 2693 } 2694 2695 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2696 struct bio *bio) 2697 { 2698 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2699 struct ioc *ioc = rqos_to_ioc(rqos); 2700 sector_t bio_end = bio_end_sector(bio); 2701 struct ioc_now now; 2702 u64 vtime, abs_cost, cost; 2703 unsigned long flags; 2704 2705 /* bypass if disabled, still initializing, or for root cgroup */ 2706 if (!ioc->enabled || !iocg || !iocg->level) 2707 return; 2708 2709 abs_cost = calc_vtime_cost(bio, iocg, true); 2710 if (!abs_cost) 2711 return; 2712 2713 ioc_now(ioc, &now); 2714 2715 vtime = atomic64_read(&iocg->vtime); 2716 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2717 2718 /* update cursor if backmerging into the request at the cursor */ 2719 if (blk_rq_pos(rq) < bio_end && 2720 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2721 iocg->cursor = bio_end; 2722 2723 /* 2724 * Charge if there's enough vtime budget and the existing request has 2725 * cost assigned. 2726 */ 2727 if (rq->bio && rq->bio->bi_iocost_cost && 2728 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2729 iocg_commit_bio(iocg, bio, abs_cost, cost); 2730 return; 2731 } 2732 2733 /* 2734 * Otherwise, account it as debt if @iocg is online, which it should 2735 * be for the vast majority of cases. See debt handling in 2736 * ioc_rqos_throttle() for details. 2737 */ 2738 spin_lock_irqsave(&ioc->lock, flags); 2739 spin_lock(&iocg->waitq.lock); 2740 2741 if (likely(!list_empty(&iocg->active_list))) { 2742 iocg_incur_debt(iocg, abs_cost, &now); 2743 if (iocg_kick_delay(iocg, &now)) 2744 blkcg_schedule_throttle(rqos->q, 2745 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2746 } else { 2747 iocg_commit_bio(iocg, bio, abs_cost, cost); 2748 } 2749 2750 spin_unlock(&iocg->waitq.lock); 2751 spin_unlock_irqrestore(&ioc->lock, flags); 2752 } 2753 2754 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2755 { 2756 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2757 2758 if (iocg && bio->bi_iocost_cost) 2759 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2760 } 2761 2762 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2763 { 2764 struct ioc *ioc = rqos_to_ioc(rqos); 2765 struct ioc_pcpu_stat *ccs; 2766 u64 on_q_ns, rq_wait_ns, size_nsec; 2767 int pidx, rw; 2768 2769 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2770 return; 2771 2772 switch (req_op(rq)) { 2773 case REQ_OP_READ: 2774 pidx = QOS_RLAT; 2775 rw = READ; 2776 break; 2777 case REQ_OP_WRITE: 2778 pidx = QOS_WLAT; 2779 rw = WRITE; 2780 break; 2781 default: 2782 return; 2783 } 2784 2785 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2786 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2787 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2788 2789 ccs = get_cpu_ptr(ioc->pcpu_stat); 2790 2791 if (on_q_ns <= size_nsec || 2792 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2793 local_inc(&ccs->missed[rw].nr_met); 2794 else 2795 local_inc(&ccs->missed[rw].nr_missed); 2796 2797 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2798 2799 put_cpu_ptr(ccs); 2800 } 2801 2802 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2803 { 2804 struct ioc *ioc = rqos_to_ioc(rqos); 2805 2806 spin_lock_irq(&ioc->lock); 2807 ioc_refresh_params(ioc, false); 2808 spin_unlock_irq(&ioc->lock); 2809 } 2810 2811 static void ioc_rqos_exit(struct rq_qos *rqos) 2812 { 2813 struct ioc *ioc = rqos_to_ioc(rqos); 2814 2815 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2816 2817 spin_lock_irq(&ioc->lock); 2818 ioc->running = IOC_STOP; 2819 spin_unlock_irq(&ioc->lock); 2820 2821 del_timer_sync(&ioc->timer); 2822 free_percpu(ioc->pcpu_stat); 2823 kfree(ioc); 2824 } 2825 2826 static struct rq_qos_ops ioc_rqos_ops = { 2827 .throttle = ioc_rqos_throttle, 2828 .merge = ioc_rqos_merge, 2829 .done_bio = ioc_rqos_done_bio, 2830 .done = ioc_rqos_done, 2831 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2832 .exit = ioc_rqos_exit, 2833 }; 2834 2835 static int blk_iocost_init(struct request_queue *q) 2836 { 2837 struct ioc *ioc; 2838 struct rq_qos *rqos; 2839 int i, cpu, ret; 2840 2841 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2842 if (!ioc) 2843 return -ENOMEM; 2844 2845 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2846 if (!ioc->pcpu_stat) { 2847 kfree(ioc); 2848 return -ENOMEM; 2849 } 2850 2851 for_each_possible_cpu(cpu) { 2852 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2853 2854 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2855 local_set(&ccs->missed[i].nr_met, 0); 2856 local_set(&ccs->missed[i].nr_missed, 0); 2857 } 2858 local64_set(&ccs->rq_wait_ns, 0); 2859 } 2860 2861 rqos = &ioc->rqos; 2862 rqos->id = RQ_QOS_COST; 2863 rqos->ops = &ioc_rqos_ops; 2864 rqos->q = q; 2865 2866 spin_lock_init(&ioc->lock); 2867 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2868 INIT_LIST_HEAD(&ioc->active_iocgs); 2869 2870 ioc->running = IOC_IDLE; 2871 ioc->vtime_base_rate = VTIME_PER_USEC; 2872 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2873 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2874 ioc->period_at = ktime_to_us(ktime_get()); 2875 atomic64_set(&ioc->cur_period, 0); 2876 atomic_set(&ioc->hweight_gen, 0); 2877 2878 spin_lock_irq(&ioc->lock); 2879 ioc->autop_idx = AUTOP_INVALID; 2880 ioc_refresh_params(ioc, true); 2881 spin_unlock_irq(&ioc->lock); 2882 2883 /* 2884 * rqos must be added before activation to allow iocg_pd_init() to 2885 * lookup the ioc from q. This means that the rqos methods may get 2886 * called before policy activation completion, can't assume that the 2887 * target bio has an iocg associated and need to test for NULL iocg. 2888 */ 2889 ret = rq_qos_add(q, rqos); 2890 if (ret) 2891 goto err_free_ioc; 2892 2893 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2894 if (ret) 2895 goto err_del_qos; 2896 return 0; 2897 2898 err_del_qos: 2899 rq_qos_del(q, rqos); 2900 err_free_ioc: 2901 free_percpu(ioc->pcpu_stat); 2902 kfree(ioc); 2903 return ret; 2904 } 2905 2906 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2907 { 2908 struct ioc_cgrp *iocc; 2909 2910 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2911 if (!iocc) 2912 return NULL; 2913 2914 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2915 return &iocc->cpd; 2916 } 2917 2918 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2919 { 2920 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2921 } 2922 2923 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2924 struct blkcg *blkcg) 2925 { 2926 int levels = blkcg->css.cgroup->level + 1; 2927 struct ioc_gq *iocg; 2928 2929 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2930 if (!iocg) 2931 return NULL; 2932 2933 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2934 if (!iocg->pcpu_stat) { 2935 kfree(iocg); 2936 return NULL; 2937 } 2938 2939 return &iocg->pd; 2940 } 2941 2942 static void ioc_pd_init(struct blkg_policy_data *pd) 2943 { 2944 struct ioc_gq *iocg = pd_to_iocg(pd); 2945 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2946 struct ioc *ioc = q_to_ioc(blkg->q); 2947 struct ioc_now now; 2948 struct blkcg_gq *tblkg; 2949 unsigned long flags; 2950 2951 ioc_now(ioc, &now); 2952 2953 iocg->ioc = ioc; 2954 atomic64_set(&iocg->vtime, now.vnow); 2955 atomic64_set(&iocg->done_vtime, now.vnow); 2956 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2957 INIT_LIST_HEAD(&iocg->active_list); 2958 INIT_LIST_HEAD(&iocg->walk_list); 2959 INIT_LIST_HEAD(&iocg->surplus_list); 2960 iocg->hweight_active = WEIGHT_ONE; 2961 iocg->hweight_inuse = WEIGHT_ONE; 2962 2963 init_waitqueue_head(&iocg->waitq); 2964 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2965 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2966 2967 iocg->level = blkg->blkcg->css.cgroup->level; 2968 2969 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2970 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2971 iocg->ancestors[tiocg->level] = tiocg; 2972 } 2973 2974 spin_lock_irqsave(&ioc->lock, flags); 2975 weight_updated(iocg, &now); 2976 spin_unlock_irqrestore(&ioc->lock, flags); 2977 } 2978 2979 static void ioc_pd_free(struct blkg_policy_data *pd) 2980 { 2981 struct ioc_gq *iocg = pd_to_iocg(pd); 2982 struct ioc *ioc = iocg->ioc; 2983 unsigned long flags; 2984 2985 if (ioc) { 2986 spin_lock_irqsave(&ioc->lock, flags); 2987 2988 if (!list_empty(&iocg->active_list)) { 2989 struct ioc_now now; 2990 2991 ioc_now(ioc, &now); 2992 propagate_weights(iocg, 0, 0, false, &now); 2993 list_del_init(&iocg->active_list); 2994 } 2995 2996 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2997 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2998 2999 spin_unlock_irqrestore(&ioc->lock, flags); 3000 3001 hrtimer_cancel(&iocg->waitq_timer); 3002 } 3003 free_percpu(iocg->pcpu_stat); 3004 kfree(iocg); 3005 } 3006 3007 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3008 { 3009 struct ioc_gq *iocg = pd_to_iocg(pd); 3010 struct ioc *ioc = iocg->ioc; 3011 3012 if (!ioc->enabled) 3013 return; 3014 3015 if (iocg->level == 0) { 3016 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3017 ioc->vtime_base_rate * 10000, 3018 VTIME_PER_USEC); 3019 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3020 } 3021 3022 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3023 3024 if (blkcg_debug_stats) 3025 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3026 iocg->last_stat.wait_us, 3027 iocg->last_stat.indebt_us, 3028 iocg->last_stat.indelay_us); 3029 } 3030 3031 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3032 int off) 3033 { 3034 const char *dname = blkg_dev_name(pd->blkg); 3035 struct ioc_gq *iocg = pd_to_iocg(pd); 3036 3037 if (dname && iocg->cfg_weight) 3038 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3039 return 0; 3040 } 3041 3042 3043 static int ioc_weight_show(struct seq_file *sf, void *v) 3044 { 3045 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3046 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3047 3048 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3049 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3050 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3051 return 0; 3052 } 3053 3054 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3055 size_t nbytes, loff_t off) 3056 { 3057 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3058 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3059 struct blkg_conf_ctx ctx; 3060 struct ioc_now now; 3061 struct ioc_gq *iocg; 3062 u32 v; 3063 int ret; 3064 3065 if (!strchr(buf, ':')) { 3066 struct blkcg_gq *blkg; 3067 3068 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3069 return -EINVAL; 3070 3071 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3072 return -EINVAL; 3073 3074 spin_lock_irq(&blkcg->lock); 3075 iocc->dfl_weight = v * WEIGHT_ONE; 3076 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3077 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3078 3079 if (iocg) { 3080 spin_lock(&iocg->ioc->lock); 3081 ioc_now(iocg->ioc, &now); 3082 weight_updated(iocg, &now); 3083 spin_unlock(&iocg->ioc->lock); 3084 } 3085 } 3086 spin_unlock_irq(&blkcg->lock); 3087 3088 return nbytes; 3089 } 3090 3091 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3092 if (ret) 3093 return ret; 3094 3095 iocg = blkg_to_iocg(ctx.blkg); 3096 3097 if (!strncmp(ctx.body, "default", 7)) { 3098 v = 0; 3099 } else { 3100 if (!sscanf(ctx.body, "%u", &v)) 3101 goto einval; 3102 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3103 goto einval; 3104 } 3105 3106 spin_lock(&iocg->ioc->lock); 3107 iocg->cfg_weight = v * WEIGHT_ONE; 3108 ioc_now(iocg->ioc, &now); 3109 weight_updated(iocg, &now); 3110 spin_unlock(&iocg->ioc->lock); 3111 3112 blkg_conf_finish(&ctx); 3113 return nbytes; 3114 3115 einval: 3116 blkg_conf_finish(&ctx); 3117 return -EINVAL; 3118 } 3119 3120 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3121 int off) 3122 { 3123 const char *dname = blkg_dev_name(pd->blkg); 3124 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3125 3126 if (!dname) 3127 return 0; 3128 3129 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3130 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3131 ioc->params.qos[QOS_RPPM] / 10000, 3132 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3133 ioc->params.qos[QOS_RLAT], 3134 ioc->params.qos[QOS_WPPM] / 10000, 3135 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3136 ioc->params.qos[QOS_WLAT], 3137 ioc->params.qos[QOS_MIN] / 10000, 3138 ioc->params.qos[QOS_MIN] % 10000 / 100, 3139 ioc->params.qos[QOS_MAX] / 10000, 3140 ioc->params.qos[QOS_MAX] % 10000 / 100); 3141 return 0; 3142 } 3143 3144 static int ioc_qos_show(struct seq_file *sf, void *v) 3145 { 3146 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3147 3148 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3149 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3150 return 0; 3151 } 3152 3153 static const match_table_t qos_ctrl_tokens = { 3154 { QOS_ENABLE, "enable=%u" }, 3155 { QOS_CTRL, "ctrl=%s" }, 3156 { NR_QOS_CTRL_PARAMS, NULL }, 3157 }; 3158 3159 static const match_table_t qos_tokens = { 3160 { QOS_RPPM, "rpct=%s" }, 3161 { QOS_RLAT, "rlat=%u" }, 3162 { QOS_WPPM, "wpct=%s" }, 3163 { QOS_WLAT, "wlat=%u" }, 3164 { QOS_MIN, "min=%s" }, 3165 { QOS_MAX, "max=%s" }, 3166 { NR_QOS_PARAMS, NULL }, 3167 }; 3168 3169 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3170 size_t nbytes, loff_t off) 3171 { 3172 struct block_device *bdev; 3173 struct ioc *ioc; 3174 u32 qos[NR_QOS_PARAMS]; 3175 bool enable, user; 3176 char *p; 3177 int ret; 3178 3179 bdev = blkcg_conf_open_bdev(&input); 3180 if (IS_ERR(bdev)) 3181 return PTR_ERR(bdev); 3182 3183 ioc = q_to_ioc(bdev_get_queue(bdev)); 3184 if (!ioc) { 3185 ret = blk_iocost_init(bdev_get_queue(bdev)); 3186 if (ret) 3187 goto err; 3188 ioc = q_to_ioc(bdev_get_queue(bdev)); 3189 } 3190 3191 spin_lock_irq(&ioc->lock); 3192 memcpy(qos, ioc->params.qos, sizeof(qos)); 3193 enable = ioc->enabled; 3194 user = ioc->user_qos_params; 3195 spin_unlock_irq(&ioc->lock); 3196 3197 while ((p = strsep(&input, " \t\n"))) { 3198 substring_t args[MAX_OPT_ARGS]; 3199 char buf[32]; 3200 int tok; 3201 s64 v; 3202 3203 if (!*p) 3204 continue; 3205 3206 switch (match_token(p, qos_ctrl_tokens, args)) { 3207 case QOS_ENABLE: 3208 match_u64(&args[0], &v); 3209 enable = v; 3210 continue; 3211 case QOS_CTRL: 3212 match_strlcpy(buf, &args[0], sizeof(buf)); 3213 if (!strcmp(buf, "auto")) 3214 user = false; 3215 else if (!strcmp(buf, "user")) 3216 user = true; 3217 else 3218 goto einval; 3219 continue; 3220 } 3221 3222 tok = match_token(p, qos_tokens, args); 3223 switch (tok) { 3224 case QOS_RPPM: 3225 case QOS_WPPM: 3226 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3227 sizeof(buf)) 3228 goto einval; 3229 if (cgroup_parse_float(buf, 2, &v)) 3230 goto einval; 3231 if (v < 0 || v > 10000) 3232 goto einval; 3233 qos[tok] = v * 100; 3234 break; 3235 case QOS_RLAT: 3236 case QOS_WLAT: 3237 if (match_u64(&args[0], &v)) 3238 goto einval; 3239 qos[tok] = v; 3240 break; 3241 case QOS_MIN: 3242 case QOS_MAX: 3243 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3244 sizeof(buf)) 3245 goto einval; 3246 if (cgroup_parse_float(buf, 2, &v)) 3247 goto einval; 3248 if (v < 0) 3249 goto einval; 3250 qos[tok] = clamp_t(s64, v * 100, 3251 VRATE_MIN_PPM, VRATE_MAX_PPM); 3252 break; 3253 default: 3254 goto einval; 3255 } 3256 user = true; 3257 } 3258 3259 if (qos[QOS_MIN] > qos[QOS_MAX]) 3260 goto einval; 3261 3262 spin_lock_irq(&ioc->lock); 3263 3264 if (enable) { 3265 blk_stat_enable_accounting(ioc->rqos.q); 3266 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3267 ioc->enabled = true; 3268 } else { 3269 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3270 ioc->enabled = false; 3271 } 3272 3273 if (user) { 3274 memcpy(ioc->params.qos, qos, sizeof(qos)); 3275 ioc->user_qos_params = true; 3276 } else { 3277 ioc->user_qos_params = false; 3278 } 3279 3280 ioc_refresh_params(ioc, true); 3281 spin_unlock_irq(&ioc->lock); 3282 3283 blkdev_put_no_open(bdev); 3284 return nbytes; 3285 einval: 3286 ret = -EINVAL; 3287 err: 3288 blkdev_put_no_open(bdev); 3289 return ret; 3290 } 3291 3292 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3293 struct blkg_policy_data *pd, int off) 3294 { 3295 const char *dname = blkg_dev_name(pd->blkg); 3296 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3297 u64 *u = ioc->params.i_lcoefs; 3298 3299 if (!dname) 3300 return 0; 3301 3302 seq_printf(sf, "%s ctrl=%s model=linear " 3303 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3304 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3305 dname, ioc->user_cost_model ? "user" : "auto", 3306 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3307 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3308 return 0; 3309 } 3310 3311 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3312 { 3313 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3314 3315 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3316 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3317 return 0; 3318 } 3319 3320 static const match_table_t cost_ctrl_tokens = { 3321 { COST_CTRL, "ctrl=%s" }, 3322 { COST_MODEL, "model=%s" }, 3323 { NR_COST_CTRL_PARAMS, NULL }, 3324 }; 3325 3326 static const match_table_t i_lcoef_tokens = { 3327 { I_LCOEF_RBPS, "rbps=%u" }, 3328 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3329 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3330 { I_LCOEF_WBPS, "wbps=%u" }, 3331 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3332 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3333 { NR_I_LCOEFS, NULL }, 3334 }; 3335 3336 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3337 size_t nbytes, loff_t off) 3338 { 3339 struct block_device *bdev; 3340 struct ioc *ioc; 3341 u64 u[NR_I_LCOEFS]; 3342 bool user; 3343 char *p; 3344 int ret; 3345 3346 bdev = blkcg_conf_open_bdev(&input); 3347 if (IS_ERR(bdev)) 3348 return PTR_ERR(bdev); 3349 3350 ioc = q_to_ioc(bdev_get_queue(bdev)); 3351 if (!ioc) { 3352 ret = blk_iocost_init(bdev_get_queue(bdev)); 3353 if (ret) 3354 goto err; 3355 ioc = q_to_ioc(bdev_get_queue(bdev)); 3356 } 3357 3358 spin_lock_irq(&ioc->lock); 3359 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3360 user = ioc->user_cost_model; 3361 spin_unlock_irq(&ioc->lock); 3362 3363 while ((p = strsep(&input, " \t\n"))) { 3364 substring_t args[MAX_OPT_ARGS]; 3365 char buf[32]; 3366 int tok; 3367 u64 v; 3368 3369 if (!*p) 3370 continue; 3371 3372 switch (match_token(p, cost_ctrl_tokens, args)) { 3373 case COST_CTRL: 3374 match_strlcpy(buf, &args[0], sizeof(buf)); 3375 if (!strcmp(buf, "auto")) 3376 user = false; 3377 else if (!strcmp(buf, "user")) 3378 user = true; 3379 else 3380 goto einval; 3381 continue; 3382 case COST_MODEL: 3383 match_strlcpy(buf, &args[0], sizeof(buf)); 3384 if (strcmp(buf, "linear")) 3385 goto einval; 3386 continue; 3387 } 3388 3389 tok = match_token(p, i_lcoef_tokens, args); 3390 if (tok == NR_I_LCOEFS) 3391 goto einval; 3392 if (match_u64(&args[0], &v)) 3393 goto einval; 3394 u[tok] = v; 3395 user = true; 3396 } 3397 3398 spin_lock_irq(&ioc->lock); 3399 if (user) { 3400 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3401 ioc->user_cost_model = true; 3402 } else { 3403 ioc->user_cost_model = false; 3404 } 3405 ioc_refresh_params(ioc, true); 3406 spin_unlock_irq(&ioc->lock); 3407 3408 blkdev_put_no_open(bdev); 3409 return nbytes; 3410 3411 einval: 3412 ret = -EINVAL; 3413 err: 3414 blkdev_put_no_open(bdev); 3415 return ret; 3416 } 3417 3418 static struct cftype ioc_files[] = { 3419 { 3420 .name = "weight", 3421 .flags = CFTYPE_NOT_ON_ROOT, 3422 .seq_show = ioc_weight_show, 3423 .write = ioc_weight_write, 3424 }, 3425 { 3426 .name = "cost.qos", 3427 .flags = CFTYPE_ONLY_ON_ROOT, 3428 .seq_show = ioc_qos_show, 3429 .write = ioc_qos_write, 3430 }, 3431 { 3432 .name = "cost.model", 3433 .flags = CFTYPE_ONLY_ON_ROOT, 3434 .seq_show = ioc_cost_model_show, 3435 .write = ioc_cost_model_write, 3436 }, 3437 {} 3438 }; 3439 3440 static struct blkcg_policy blkcg_policy_iocost = { 3441 .dfl_cftypes = ioc_files, 3442 .cpd_alloc_fn = ioc_cpd_alloc, 3443 .cpd_free_fn = ioc_cpd_free, 3444 .pd_alloc_fn = ioc_pd_alloc, 3445 .pd_init_fn = ioc_pd_init, 3446 .pd_free_fn = ioc_pd_free, 3447 .pd_stat_fn = ioc_pd_stat, 3448 }; 3449 3450 static int __init ioc_init(void) 3451 { 3452 return blkcg_policy_register(&blkcg_policy_iocost); 3453 } 3454 3455 static void __exit ioc_exit(void) 3456 { 3457 blkcg_policy_unregister(&blkcg_policy_iocost); 3458 } 3459 3460 module_init(ioc_init); 3461 module_exit(ioc_exit); 3462