1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * paramters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO iff doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The ouput looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <linux/blk-cgroup.h> 182 #include <asm/local.h> 183 #include <asm/local64.h> 184 #include "blk-rq-qos.h" 185 #include "blk-stat.h" 186 #include "blk-wbt.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_gq; 374 375 struct ioc_params { 376 u32 qos[NR_QOS_PARAMS]; 377 u64 i_lcoefs[NR_I_LCOEFS]; 378 u64 lcoefs[NR_LCOEFS]; 379 u32 too_fast_vrate_pct; 380 u32 too_slow_vrate_pct; 381 }; 382 383 struct ioc_margins { 384 s64 min; 385 s64 low; 386 s64 target; 387 }; 388 389 struct ioc_missed { 390 local_t nr_met; 391 local_t nr_missed; 392 u32 last_met; 393 u32 last_missed; 394 }; 395 396 struct ioc_pcpu_stat { 397 struct ioc_missed missed[2]; 398 399 local64_t rq_wait_ns; 400 u64 last_rq_wait_ns; 401 }; 402 403 /* per device */ 404 struct ioc { 405 struct rq_qos rqos; 406 407 bool enabled; 408 409 struct ioc_params params; 410 struct ioc_margins margins; 411 u32 period_us; 412 u32 timer_slack_ns; 413 u64 vrate_min; 414 u64 vrate_max; 415 416 spinlock_t lock; 417 struct timer_list timer; 418 struct list_head active_iocgs; /* active cgroups */ 419 struct ioc_pcpu_stat __percpu *pcpu_stat; 420 421 enum ioc_running running; 422 atomic64_t vtime_rate; 423 u64 vtime_base_rate; 424 s64 vtime_err; 425 426 seqcount_spinlock_t period_seqcount; 427 u64 period_at; /* wallclock starttime */ 428 u64 period_at_vtime; /* vtime starttime */ 429 430 atomic64_t cur_period; /* inc'd each period */ 431 int busy_level; /* saturation history */ 432 433 bool weights_updated; 434 atomic_t hweight_gen; /* for lazy hweights */ 435 436 /* debt forgivness */ 437 u64 dfgv_period_at; 438 u64 dfgv_period_rem; 439 u64 dfgv_usage_us_sum; 440 441 u64 autop_too_fast_at; 442 u64 autop_too_slow_at; 443 int autop_idx; 444 bool user_qos_params:1; 445 bool user_cost_model:1; 446 }; 447 448 struct iocg_pcpu_stat { 449 local64_t abs_vusage; 450 }; 451 452 struct iocg_stat { 453 u64 usage_us; 454 u64 wait_us; 455 u64 indebt_us; 456 u64 indelay_us; 457 }; 458 459 /* per device-cgroup pair */ 460 struct ioc_gq { 461 struct blkg_policy_data pd; 462 struct ioc *ioc; 463 464 /* 465 * A iocg can get its weight from two sources - an explicit 466 * per-device-cgroup configuration or the default weight of the 467 * cgroup. `cfg_weight` is the explicit per-device-cgroup 468 * configuration. `weight` is the effective considering both 469 * sources. 470 * 471 * When an idle cgroup becomes active its `active` goes from 0 to 472 * `weight`. `inuse` is the surplus adjusted active weight. 473 * `active` and `inuse` are used to calculate `hweight_active` and 474 * `hweight_inuse`. 475 * 476 * `last_inuse` remembers `inuse` while an iocg is idle to persist 477 * surplus adjustments. 478 * 479 * `inuse` may be adjusted dynamically during period. `saved_*` are used 480 * to determine and track adjustments. 481 */ 482 u32 cfg_weight; 483 u32 weight; 484 u32 active; 485 u32 inuse; 486 487 u32 last_inuse; 488 s64 saved_margin; 489 490 sector_t cursor; /* to detect randio */ 491 492 /* 493 * `vtime` is this iocg's vtime cursor which progresses as IOs are 494 * issued. If lagging behind device vtime, the delta represents 495 * the currently available IO budget. If runnning ahead, the 496 * overage. 497 * 498 * `vtime_done` is the same but progressed on completion rather 499 * than issue. The delta behind `vtime` represents the cost of 500 * currently in-flight IOs. 501 */ 502 atomic64_t vtime; 503 atomic64_t done_vtime; 504 u64 abs_vdebt; 505 506 /* current delay in effect and when it started */ 507 u64 delay; 508 u64 delay_at; 509 510 /* 511 * The period this iocg was last active in. Used for deactivation 512 * and invalidating `vtime`. 513 */ 514 atomic64_t active_period; 515 struct list_head active_list; 516 517 /* see __propagate_weights() and current_hweight() for details */ 518 u64 child_active_sum; 519 u64 child_inuse_sum; 520 u64 child_adjusted_sum; 521 int hweight_gen; 522 u32 hweight_active; 523 u32 hweight_inuse; 524 u32 hweight_donating; 525 u32 hweight_after_donation; 526 527 struct list_head walk_list; 528 struct list_head surplus_list; 529 530 struct wait_queue_head waitq; 531 struct hrtimer waitq_timer; 532 533 /* timestamp at the latest activation */ 534 u64 activated_at; 535 536 /* statistics */ 537 struct iocg_pcpu_stat __percpu *pcpu_stat; 538 struct iocg_stat local_stat; 539 struct iocg_stat desc_stat; 540 struct iocg_stat last_stat; 541 u64 last_stat_abs_vusage; 542 u64 usage_delta_us; 543 u64 wait_since; 544 u64 indebt_since; 545 u64 indelay_since; 546 547 /* this iocg's depth in the hierarchy and ancestors including self */ 548 int level; 549 struct ioc_gq *ancestors[]; 550 }; 551 552 /* per cgroup */ 553 struct ioc_cgrp { 554 struct blkcg_policy_data cpd; 555 unsigned int dfl_weight; 556 }; 557 558 struct ioc_now { 559 u64 now_ns; 560 u64 now; 561 u64 vnow; 562 u64 vrate; 563 }; 564 565 struct iocg_wait { 566 struct wait_queue_entry wait; 567 struct bio *bio; 568 u64 abs_cost; 569 bool committed; 570 }; 571 572 struct iocg_wake_ctx { 573 struct ioc_gq *iocg; 574 u32 hw_inuse; 575 s64 vbudget; 576 }; 577 578 static const struct ioc_params autop[] = { 579 [AUTOP_HDD] = { 580 .qos = { 581 [QOS_RLAT] = 250000, /* 250ms */ 582 [QOS_WLAT] = 250000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 174019176, 588 [I_LCOEF_RSEQIOPS] = 41708, 589 [I_LCOEF_RRANDIOPS] = 370, 590 [I_LCOEF_WBPS] = 178075866, 591 [I_LCOEF_WSEQIOPS] = 42705, 592 [I_LCOEF_WRANDIOPS] = 378, 593 }, 594 }, 595 [AUTOP_SSD_QD1] = { 596 .qos = { 597 [QOS_RLAT] = 25000, /* 25ms */ 598 [QOS_WLAT] = 25000, 599 [QOS_MIN] = VRATE_MIN_PPM, 600 [QOS_MAX] = VRATE_MAX_PPM, 601 }, 602 .i_lcoefs = { 603 [I_LCOEF_RBPS] = 245855193, 604 [I_LCOEF_RSEQIOPS] = 61575, 605 [I_LCOEF_RRANDIOPS] = 6946, 606 [I_LCOEF_WBPS] = 141365009, 607 [I_LCOEF_WSEQIOPS] = 33716, 608 [I_LCOEF_WRANDIOPS] = 26796, 609 }, 610 }, 611 [AUTOP_SSD_DFL] = { 612 .qos = { 613 [QOS_RLAT] = 25000, /* 25ms */ 614 [QOS_WLAT] = 25000, 615 [QOS_MIN] = VRATE_MIN_PPM, 616 [QOS_MAX] = VRATE_MAX_PPM, 617 }, 618 .i_lcoefs = { 619 [I_LCOEF_RBPS] = 488636629, 620 [I_LCOEF_RSEQIOPS] = 8932, 621 [I_LCOEF_RRANDIOPS] = 8518, 622 [I_LCOEF_WBPS] = 427891549, 623 [I_LCOEF_WSEQIOPS] = 28755, 624 [I_LCOEF_WRANDIOPS] = 21940, 625 }, 626 .too_fast_vrate_pct = 500, 627 }, 628 [AUTOP_SSD_FAST] = { 629 .qos = { 630 [QOS_RLAT] = 5000, /* 5ms */ 631 [QOS_WLAT] = 5000, 632 [QOS_MIN] = VRATE_MIN_PPM, 633 [QOS_MAX] = VRATE_MAX_PPM, 634 }, 635 .i_lcoefs = { 636 [I_LCOEF_RBPS] = 3102524156LLU, 637 [I_LCOEF_RSEQIOPS] = 724816, 638 [I_LCOEF_RRANDIOPS] = 778122, 639 [I_LCOEF_WBPS] = 1742780862LLU, 640 [I_LCOEF_WSEQIOPS] = 425702, 641 [I_LCOEF_WRANDIOPS] = 443193, 642 }, 643 .too_slow_vrate_pct = 10, 644 }, 645 }; 646 647 /* 648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 649 * vtime credit shortage and down on device saturation. 650 */ 651 static u32 vrate_adj_pct[] = 652 { 0, 0, 0, 0, 653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 656 657 static struct blkcg_policy blkcg_policy_iocost; 658 659 /* accessors and helpers */ 660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 661 { 662 return container_of(rqos, struct ioc, rqos); 663 } 664 665 static struct ioc *q_to_ioc(struct request_queue *q) 666 { 667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 668 } 669 670 static const char *q_name(struct request_queue *q) 671 { 672 if (blk_queue_registered(q)) 673 return kobject_name(q->kobj.parent); 674 else 675 return "<unknown>"; 676 } 677 678 static const char __maybe_unused *ioc_name(struct ioc *ioc) 679 { 680 return q_name(ioc->rqos.q); 681 } 682 683 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 684 { 685 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 686 } 687 688 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 689 { 690 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 691 } 692 693 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 694 { 695 return pd_to_blkg(&iocg->pd); 696 } 697 698 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 699 { 700 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 701 struct ioc_cgrp, cpd); 702 } 703 704 /* 705 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 706 * weight, the more expensive each IO. Must round up. 707 */ 708 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 709 { 710 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 711 } 712 713 /* 714 * The inverse of abs_cost_to_cost(). Must round up. 715 */ 716 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 717 { 718 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 719 } 720 721 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 722 u64 abs_cost, u64 cost) 723 { 724 struct iocg_pcpu_stat *gcs; 725 726 bio->bi_iocost_cost = cost; 727 atomic64_add(cost, &iocg->vtime); 728 729 gcs = get_cpu_ptr(iocg->pcpu_stat); 730 local64_add(abs_cost, &gcs->abs_vusage); 731 put_cpu_ptr(gcs); 732 } 733 734 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 735 { 736 if (lock_ioc) { 737 spin_lock_irqsave(&iocg->ioc->lock, *flags); 738 spin_lock(&iocg->waitq.lock); 739 } else { 740 spin_lock_irqsave(&iocg->waitq.lock, *flags); 741 } 742 } 743 744 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 745 { 746 if (unlock_ioc) { 747 spin_unlock(&iocg->waitq.lock); 748 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 749 } else { 750 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 751 } 752 } 753 754 #define CREATE_TRACE_POINTS 755 #include <trace/events/iocost.h> 756 757 static void ioc_refresh_margins(struct ioc *ioc) 758 { 759 struct ioc_margins *margins = &ioc->margins; 760 u32 period_us = ioc->period_us; 761 u64 vrate = ioc->vtime_base_rate; 762 763 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 764 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 765 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 766 } 767 768 /* latency Qos params changed, update period_us and all the dependent params */ 769 static void ioc_refresh_period_us(struct ioc *ioc) 770 { 771 u32 ppm, lat, multi, period_us; 772 773 lockdep_assert_held(&ioc->lock); 774 775 /* pick the higher latency target */ 776 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 777 ppm = ioc->params.qos[QOS_RPPM]; 778 lat = ioc->params.qos[QOS_RLAT]; 779 } else { 780 ppm = ioc->params.qos[QOS_WPPM]; 781 lat = ioc->params.qos[QOS_WLAT]; 782 } 783 784 /* 785 * We want the period to be long enough to contain a healthy number 786 * of IOs while short enough for granular control. Define it as a 787 * multiple of the latency target. Ideally, the multiplier should 788 * be scaled according to the percentile so that it would nominally 789 * contain a certain number of requests. Let's be simpler and 790 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 791 */ 792 if (ppm) 793 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 794 else 795 multi = 2; 796 period_us = multi * lat; 797 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 798 799 /* calculate dependent params */ 800 ioc->period_us = period_us; 801 ioc->timer_slack_ns = div64_u64( 802 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 803 100); 804 ioc_refresh_margins(ioc); 805 } 806 807 static int ioc_autop_idx(struct ioc *ioc) 808 { 809 int idx = ioc->autop_idx; 810 const struct ioc_params *p = &autop[idx]; 811 u32 vrate_pct; 812 u64 now_ns; 813 814 /* rotational? */ 815 if (!blk_queue_nonrot(ioc->rqos.q)) 816 return AUTOP_HDD; 817 818 /* handle SATA SSDs w/ broken NCQ */ 819 if (blk_queue_depth(ioc->rqos.q) == 1) 820 return AUTOP_SSD_QD1; 821 822 /* use one of the normal ssd sets */ 823 if (idx < AUTOP_SSD_DFL) 824 return AUTOP_SSD_DFL; 825 826 /* if user is overriding anything, maintain what was there */ 827 if (ioc->user_qos_params || ioc->user_cost_model) 828 return idx; 829 830 /* step up/down based on the vrate */ 831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 832 now_ns = ktime_get_ns(); 833 834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 835 if (!ioc->autop_too_fast_at) 836 ioc->autop_too_fast_at = now_ns; 837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 838 return idx + 1; 839 } else { 840 ioc->autop_too_fast_at = 0; 841 } 842 843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 844 if (!ioc->autop_too_slow_at) 845 ioc->autop_too_slow_at = now_ns; 846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 847 return idx - 1; 848 } else { 849 ioc->autop_too_slow_at = 0; 850 } 851 852 return idx; 853 } 854 855 /* 856 * Take the followings as input 857 * 858 * @bps maximum sequential throughput 859 * @seqiops maximum sequential 4k iops 860 * @randiops maximum random 4k iops 861 * 862 * and calculate the linear model cost coefficients. 863 * 864 * *@page per-page cost 1s / (@bps / 4096) 865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 867 */ 868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 869 u64 *page, u64 *seqio, u64 *randio) 870 { 871 u64 v; 872 873 *page = *seqio = *randio = 0; 874 875 if (bps) 876 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 877 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 878 879 if (seqiops) { 880 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 881 if (v > *page) 882 *seqio = v - *page; 883 } 884 885 if (randiops) { 886 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 887 if (v > *page) 888 *randio = v - *page; 889 } 890 } 891 892 static void ioc_refresh_lcoefs(struct ioc *ioc) 893 { 894 u64 *u = ioc->params.i_lcoefs; 895 u64 *c = ioc->params.lcoefs; 896 897 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 898 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 899 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 900 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 901 } 902 903 static bool ioc_refresh_params(struct ioc *ioc, bool force) 904 { 905 const struct ioc_params *p; 906 int idx; 907 908 lockdep_assert_held(&ioc->lock); 909 910 idx = ioc_autop_idx(ioc); 911 p = &autop[idx]; 912 913 if (idx == ioc->autop_idx && !force) 914 return false; 915 916 if (idx != ioc->autop_idx) 917 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 918 919 ioc->autop_idx = idx; 920 ioc->autop_too_fast_at = 0; 921 ioc->autop_too_slow_at = 0; 922 923 if (!ioc->user_qos_params) 924 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 925 if (!ioc->user_cost_model) 926 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 927 928 ioc_refresh_period_us(ioc); 929 ioc_refresh_lcoefs(ioc); 930 931 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 932 VTIME_PER_USEC, MILLION); 933 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 934 VTIME_PER_USEC, MILLION); 935 936 return true; 937 } 938 939 /* 940 * When an iocg accumulates too much vtime or gets deactivated, we throw away 941 * some vtime, which lowers the overall device utilization. As the exact amount 942 * which is being thrown away is known, we can compensate by accelerating the 943 * vrate accordingly so that the extra vtime generated in the current period 944 * matches what got lost. 945 */ 946 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 947 { 948 s64 pleft = ioc->period_at + ioc->period_us - now->now; 949 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 950 s64 vcomp, vcomp_min, vcomp_max; 951 952 lockdep_assert_held(&ioc->lock); 953 954 /* we need some time left in this period */ 955 if (pleft <= 0) 956 goto done; 957 958 /* 959 * Calculate how much vrate should be adjusted to offset the error. 960 * Limit the amount of adjustment and deduct the adjusted amount from 961 * the error. 962 */ 963 vcomp = -div64_s64(ioc->vtime_err, pleft); 964 vcomp_min = -(ioc->vtime_base_rate >> 1); 965 vcomp_max = ioc->vtime_base_rate; 966 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 967 968 ioc->vtime_err += vcomp * pleft; 969 970 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 971 done: 972 /* bound how much error can accumulate */ 973 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 974 } 975 976 /* take a snapshot of the current [v]time and vrate */ 977 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 978 { 979 unsigned seq; 980 981 now->now_ns = ktime_get(); 982 now->now = ktime_to_us(now->now_ns); 983 now->vrate = atomic64_read(&ioc->vtime_rate); 984 985 /* 986 * The current vtime is 987 * 988 * vtime at period start + (wallclock time since the start) * vrate 989 * 990 * As a consistent snapshot of `period_at_vtime` and `period_at` is 991 * needed, they're seqcount protected. 992 */ 993 do { 994 seq = read_seqcount_begin(&ioc->period_seqcount); 995 now->vnow = ioc->period_at_vtime + 996 (now->now - ioc->period_at) * now->vrate; 997 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 998 } 999 1000 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1001 { 1002 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1003 1004 write_seqcount_begin(&ioc->period_seqcount); 1005 ioc->period_at = now->now; 1006 ioc->period_at_vtime = now->vnow; 1007 write_seqcount_end(&ioc->period_seqcount); 1008 1009 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1010 add_timer(&ioc->timer); 1011 } 1012 1013 /* 1014 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1015 * weight sums and propagate upwards accordingly. If @save, the current margin 1016 * is saved to be used as reference for later inuse in-period adjustments. 1017 */ 1018 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1019 bool save, struct ioc_now *now) 1020 { 1021 struct ioc *ioc = iocg->ioc; 1022 int lvl; 1023 1024 lockdep_assert_held(&ioc->lock); 1025 1026 inuse = clamp_t(u32, inuse, 1, active); 1027 1028 iocg->last_inuse = iocg->inuse; 1029 if (save) 1030 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1031 1032 if (active == iocg->active && inuse == iocg->inuse) 1033 return; 1034 1035 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1036 struct ioc_gq *parent = iocg->ancestors[lvl]; 1037 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1038 u32 parent_active = 0, parent_inuse = 0; 1039 1040 /* update the level sums */ 1041 parent->child_active_sum += (s32)(active - child->active); 1042 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1043 /* apply the udpates */ 1044 child->active = active; 1045 child->inuse = inuse; 1046 1047 /* 1048 * The delta between inuse and active sums indicates that 1049 * that much of weight is being given away. Parent's inuse 1050 * and active should reflect the ratio. 1051 */ 1052 if (parent->child_active_sum) { 1053 parent_active = parent->weight; 1054 parent_inuse = DIV64_U64_ROUND_UP( 1055 parent_active * parent->child_inuse_sum, 1056 parent->child_active_sum); 1057 } 1058 1059 /* do we need to keep walking up? */ 1060 if (parent_active == parent->active && 1061 parent_inuse == parent->inuse) 1062 break; 1063 1064 active = parent_active; 1065 inuse = parent_inuse; 1066 } 1067 1068 ioc->weights_updated = true; 1069 } 1070 1071 static void commit_weights(struct ioc *ioc) 1072 { 1073 lockdep_assert_held(&ioc->lock); 1074 1075 if (ioc->weights_updated) { 1076 /* paired with rmb in current_hweight(), see there */ 1077 smp_wmb(); 1078 atomic_inc(&ioc->hweight_gen); 1079 ioc->weights_updated = false; 1080 } 1081 } 1082 1083 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1084 bool save, struct ioc_now *now) 1085 { 1086 __propagate_weights(iocg, active, inuse, save, now); 1087 commit_weights(iocg->ioc); 1088 } 1089 1090 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1091 { 1092 struct ioc *ioc = iocg->ioc; 1093 int lvl; 1094 u32 hwa, hwi; 1095 int ioc_gen; 1096 1097 /* hot path - if uptodate, use cached */ 1098 ioc_gen = atomic_read(&ioc->hweight_gen); 1099 if (ioc_gen == iocg->hweight_gen) 1100 goto out; 1101 1102 /* 1103 * Paired with wmb in commit_weights(). If we saw the updated 1104 * hweight_gen, all the weight updates from __propagate_weights() are 1105 * visible too. 1106 * 1107 * We can race with weight updates during calculation and get it 1108 * wrong. However, hweight_gen would have changed and a future 1109 * reader will recalculate and we're guaranteed to discard the 1110 * wrong result soon. 1111 */ 1112 smp_rmb(); 1113 1114 hwa = hwi = WEIGHT_ONE; 1115 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1116 struct ioc_gq *parent = iocg->ancestors[lvl]; 1117 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1118 u64 active_sum = READ_ONCE(parent->child_active_sum); 1119 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1120 u32 active = READ_ONCE(child->active); 1121 u32 inuse = READ_ONCE(child->inuse); 1122 1123 /* we can race with deactivations and either may read as zero */ 1124 if (!active_sum || !inuse_sum) 1125 continue; 1126 1127 active_sum = max_t(u64, active, active_sum); 1128 hwa = div64_u64((u64)hwa * active, active_sum); 1129 1130 inuse_sum = max_t(u64, inuse, inuse_sum); 1131 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1132 } 1133 1134 iocg->hweight_active = max_t(u32, hwa, 1); 1135 iocg->hweight_inuse = max_t(u32, hwi, 1); 1136 iocg->hweight_gen = ioc_gen; 1137 out: 1138 if (hw_activep) 1139 *hw_activep = iocg->hweight_active; 1140 if (hw_inusep) 1141 *hw_inusep = iocg->hweight_inuse; 1142 } 1143 1144 /* 1145 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1146 * other weights stay unchanged. 1147 */ 1148 static u32 current_hweight_max(struct ioc_gq *iocg) 1149 { 1150 u32 hwm = WEIGHT_ONE; 1151 u32 inuse = iocg->active; 1152 u64 child_inuse_sum; 1153 int lvl; 1154 1155 lockdep_assert_held(&iocg->ioc->lock); 1156 1157 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1158 struct ioc_gq *parent = iocg->ancestors[lvl]; 1159 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1160 1161 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1162 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1163 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1164 parent->child_active_sum); 1165 } 1166 1167 return max_t(u32, hwm, 1); 1168 } 1169 1170 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1171 { 1172 struct ioc *ioc = iocg->ioc; 1173 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1174 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1175 u32 weight; 1176 1177 lockdep_assert_held(&ioc->lock); 1178 1179 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1180 if (weight != iocg->weight && iocg->active) 1181 propagate_weights(iocg, weight, iocg->inuse, true, now); 1182 iocg->weight = weight; 1183 } 1184 1185 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1186 { 1187 struct ioc *ioc = iocg->ioc; 1188 u64 last_period, cur_period; 1189 u64 vtime, vtarget; 1190 int i; 1191 1192 /* 1193 * If seem to be already active, just update the stamp to tell the 1194 * timer that we're still active. We don't mind occassional races. 1195 */ 1196 if (!list_empty(&iocg->active_list)) { 1197 ioc_now(ioc, now); 1198 cur_period = atomic64_read(&ioc->cur_period); 1199 if (atomic64_read(&iocg->active_period) != cur_period) 1200 atomic64_set(&iocg->active_period, cur_period); 1201 return true; 1202 } 1203 1204 /* racy check on internal node IOs, treat as root level IOs */ 1205 if (iocg->child_active_sum) 1206 return false; 1207 1208 spin_lock_irq(&ioc->lock); 1209 1210 ioc_now(ioc, now); 1211 1212 /* update period */ 1213 cur_period = atomic64_read(&ioc->cur_period); 1214 last_period = atomic64_read(&iocg->active_period); 1215 atomic64_set(&iocg->active_period, cur_period); 1216 1217 /* already activated or breaking leaf-only constraint? */ 1218 if (!list_empty(&iocg->active_list)) 1219 goto succeed_unlock; 1220 for (i = iocg->level - 1; i > 0; i--) 1221 if (!list_empty(&iocg->ancestors[i]->active_list)) 1222 goto fail_unlock; 1223 1224 if (iocg->child_active_sum) 1225 goto fail_unlock; 1226 1227 /* 1228 * Always start with the target budget. On deactivation, we throw away 1229 * anything above it. 1230 */ 1231 vtarget = now->vnow - ioc->margins.target; 1232 vtime = atomic64_read(&iocg->vtime); 1233 1234 atomic64_add(vtarget - vtime, &iocg->vtime); 1235 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1236 vtime = vtarget; 1237 1238 /* 1239 * Activate, propagate weight and start period timer if not 1240 * running. Reset hweight_gen to avoid accidental match from 1241 * wrapping. 1242 */ 1243 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1244 list_add(&iocg->active_list, &ioc->active_iocgs); 1245 1246 propagate_weights(iocg, iocg->weight, 1247 iocg->last_inuse ?: iocg->weight, true, now); 1248 1249 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1250 last_period, cur_period, vtime); 1251 1252 iocg->activated_at = now->now; 1253 1254 if (ioc->running == IOC_IDLE) { 1255 ioc->running = IOC_RUNNING; 1256 ioc->dfgv_period_at = now->now; 1257 ioc->dfgv_period_rem = 0; 1258 ioc_start_period(ioc, now); 1259 } 1260 1261 succeed_unlock: 1262 spin_unlock_irq(&ioc->lock); 1263 return true; 1264 1265 fail_unlock: 1266 spin_unlock_irq(&ioc->lock); 1267 return false; 1268 } 1269 1270 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1271 { 1272 struct ioc *ioc = iocg->ioc; 1273 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1274 u64 tdelta, delay, new_delay; 1275 s64 vover, vover_pct; 1276 u32 hwa; 1277 1278 lockdep_assert_held(&iocg->waitq.lock); 1279 1280 /* calculate the current delay in effect - 1/2 every second */ 1281 tdelta = now->now - iocg->delay_at; 1282 if (iocg->delay) 1283 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1284 else 1285 delay = 0; 1286 1287 /* calculate the new delay from the debt amount */ 1288 current_hweight(iocg, &hwa, NULL); 1289 vover = atomic64_read(&iocg->vtime) + 1290 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1291 vover_pct = div64_s64(100 * vover, 1292 ioc->period_us * ioc->vtime_base_rate); 1293 1294 if (vover_pct <= MIN_DELAY_THR_PCT) 1295 new_delay = 0; 1296 else if (vover_pct >= MAX_DELAY_THR_PCT) 1297 new_delay = MAX_DELAY; 1298 else 1299 new_delay = MIN_DELAY + 1300 div_u64((MAX_DELAY - MIN_DELAY) * 1301 (vover_pct - MIN_DELAY_THR_PCT), 1302 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1303 1304 /* pick the higher one and apply */ 1305 if (new_delay > delay) { 1306 iocg->delay = new_delay; 1307 iocg->delay_at = now->now; 1308 delay = new_delay; 1309 } 1310 1311 if (delay >= MIN_DELAY) { 1312 if (!iocg->indelay_since) 1313 iocg->indelay_since = now->now; 1314 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1315 return true; 1316 } else { 1317 if (iocg->indelay_since) { 1318 iocg->local_stat.indelay_us += now->now - iocg->indelay_since; 1319 iocg->indelay_since = 0; 1320 } 1321 iocg->delay = 0; 1322 blkcg_clear_delay(blkg); 1323 return false; 1324 } 1325 } 1326 1327 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1328 struct ioc_now *now) 1329 { 1330 struct iocg_pcpu_stat *gcs; 1331 1332 lockdep_assert_held(&iocg->ioc->lock); 1333 lockdep_assert_held(&iocg->waitq.lock); 1334 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1335 1336 /* 1337 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1338 * inuse donating all of it share to others until its debt is paid off. 1339 */ 1340 if (!iocg->abs_vdebt && abs_cost) { 1341 iocg->indebt_since = now->now; 1342 propagate_weights(iocg, iocg->active, 0, false, now); 1343 } 1344 1345 iocg->abs_vdebt += abs_cost; 1346 1347 gcs = get_cpu_ptr(iocg->pcpu_stat); 1348 local64_add(abs_cost, &gcs->abs_vusage); 1349 put_cpu_ptr(gcs); 1350 } 1351 1352 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1353 struct ioc_now *now) 1354 { 1355 lockdep_assert_held(&iocg->ioc->lock); 1356 lockdep_assert_held(&iocg->waitq.lock); 1357 1358 /* make sure that nobody messed with @iocg */ 1359 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1360 WARN_ON_ONCE(iocg->inuse > 1); 1361 1362 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1363 1364 /* if debt is paid in full, restore inuse */ 1365 if (!iocg->abs_vdebt) { 1366 iocg->local_stat.indebt_us += now->now - iocg->indebt_since; 1367 iocg->indebt_since = 0; 1368 1369 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1370 false, now); 1371 } 1372 } 1373 1374 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1375 int flags, void *key) 1376 { 1377 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1378 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1379 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1380 1381 ctx->vbudget -= cost; 1382 1383 if (ctx->vbudget < 0) 1384 return -1; 1385 1386 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1387 1388 /* 1389 * autoremove_wake_function() removes the wait entry only when it 1390 * actually changed the task state. We want the wait always 1391 * removed. Remove explicitly and use default_wake_function(). 1392 */ 1393 list_del_init(&wq_entry->entry); 1394 wait->committed = true; 1395 1396 default_wake_function(wq_entry, mode, flags, key); 1397 return 0; 1398 } 1399 1400 /* 1401 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1402 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1403 * addition to iocg->waitq.lock. 1404 */ 1405 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1406 struct ioc_now *now) 1407 { 1408 struct ioc *ioc = iocg->ioc; 1409 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1410 u64 vshortage, expires, oexpires; 1411 s64 vbudget; 1412 u32 hwa; 1413 1414 lockdep_assert_held(&iocg->waitq.lock); 1415 1416 current_hweight(iocg, &hwa, NULL); 1417 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1418 1419 /* pay off debt */ 1420 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1421 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1422 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1423 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1424 1425 lockdep_assert_held(&ioc->lock); 1426 1427 atomic64_add(vpay, &iocg->vtime); 1428 atomic64_add(vpay, &iocg->done_vtime); 1429 iocg_pay_debt(iocg, abs_vpay, now); 1430 vbudget -= vpay; 1431 } 1432 1433 if (iocg->abs_vdebt || iocg->delay) 1434 iocg_kick_delay(iocg, now); 1435 1436 /* 1437 * Debt can still be outstanding if we haven't paid all yet or the 1438 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1439 * under debt. Make sure @vbudget reflects the outstanding amount and is 1440 * not positive. 1441 */ 1442 if (iocg->abs_vdebt) { 1443 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1444 vbudget = min_t(s64, 0, vbudget - vdebt); 1445 } 1446 1447 /* 1448 * Wake up the ones which are due and see how much vtime we'll need for 1449 * the next one. As paying off debt restores hw_inuse, it must be read 1450 * after the above debt payment. 1451 */ 1452 ctx.vbudget = vbudget; 1453 current_hweight(iocg, NULL, &ctx.hw_inuse); 1454 1455 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1456 1457 if (!waitqueue_active(&iocg->waitq)) { 1458 if (iocg->wait_since) { 1459 iocg->local_stat.wait_us += now->now - iocg->wait_since; 1460 iocg->wait_since = 0; 1461 } 1462 return; 1463 } 1464 1465 if (!iocg->wait_since) 1466 iocg->wait_since = now->now; 1467 1468 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1469 return; 1470 1471 /* determine next wakeup, add a timer margin to guarantee chunking */ 1472 vshortage = -ctx.vbudget; 1473 expires = now->now_ns + 1474 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1475 NSEC_PER_USEC; 1476 expires += ioc->timer_slack_ns; 1477 1478 /* if already active and close enough, don't bother */ 1479 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1480 if (hrtimer_is_queued(&iocg->waitq_timer) && 1481 abs(oexpires - expires) <= ioc->timer_slack_ns) 1482 return; 1483 1484 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1485 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1486 } 1487 1488 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1489 { 1490 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1491 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1492 struct ioc_now now; 1493 unsigned long flags; 1494 1495 ioc_now(iocg->ioc, &now); 1496 1497 iocg_lock(iocg, pay_debt, &flags); 1498 iocg_kick_waitq(iocg, pay_debt, &now); 1499 iocg_unlock(iocg, pay_debt, &flags); 1500 1501 return HRTIMER_NORESTART; 1502 } 1503 1504 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1505 { 1506 u32 nr_met[2] = { }; 1507 u32 nr_missed[2] = { }; 1508 u64 rq_wait_ns = 0; 1509 int cpu, rw; 1510 1511 for_each_online_cpu(cpu) { 1512 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1513 u64 this_rq_wait_ns; 1514 1515 for (rw = READ; rw <= WRITE; rw++) { 1516 u32 this_met = local_read(&stat->missed[rw].nr_met); 1517 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1518 1519 nr_met[rw] += this_met - stat->missed[rw].last_met; 1520 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1521 stat->missed[rw].last_met = this_met; 1522 stat->missed[rw].last_missed = this_missed; 1523 } 1524 1525 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1526 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1527 stat->last_rq_wait_ns = this_rq_wait_ns; 1528 } 1529 1530 for (rw = READ; rw <= WRITE; rw++) { 1531 if (nr_met[rw] + nr_missed[rw]) 1532 missed_ppm_ar[rw] = 1533 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1534 nr_met[rw] + nr_missed[rw]); 1535 else 1536 missed_ppm_ar[rw] = 0; 1537 } 1538 1539 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1540 ioc->period_us * NSEC_PER_USEC); 1541 } 1542 1543 /* was iocg idle this period? */ 1544 static bool iocg_is_idle(struct ioc_gq *iocg) 1545 { 1546 struct ioc *ioc = iocg->ioc; 1547 1548 /* did something get issued this period? */ 1549 if (atomic64_read(&iocg->active_period) == 1550 atomic64_read(&ioc->cur_period)) 1551 return false; 1552 1553 /* is something in flight? */ 1554 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1555 return false; 1556 1557 return true; 1558 } 1559 1560 /* 1561 * Call this function on the target leaf @iocg's to build pre-order traversal 1562 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1563 * ->walk_list and the caller is responsible for dissolving the list after use. 1564 */ 1565 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1566 struct list_head *inner_walk) 1567 { 1568 int lvl; 1569 1570 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1571 1572 /* find the first ancestor which hasn't been visited yet */ 1573 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1574 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1575 break; 1576 } 1577 1578 /* walk down and visit the inner nodes to get pre-order traversal */ 1579 while (++lvl <= iocg->level - 1) { 1580 struct ioc_gq *inner = iocg->ancestors[lvl]; 1581 1582 /* record traversal order */ 1583 list_add_tail(&inner->walk_list, inner_walk); 1584 } 1585 } 1586 1587 /* collect per-cpu counters and propagate the deltas to the parent */ 1588 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) 1589 { 1590 struct ioc *ioc = iocg->ioc; 1591 struct iocg_stat new_stat; 1592 u64 abs_vusage = 0; 1593 u64 vusage_delta; 1594 int cpu; 1595 1596 lockdep_assert_held(&iocg->ioc->lock); 1597 1598 /* collect per-cpu counters */ 1599 for_each_possible_cpu(cpu) { 1600 abs_vusage += local64_read( 1601 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1602 } 1603 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1604 iocg->last_stat_abs_vusage = abs_vusage; 1605 1606 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1607 iocg->local_stat.usage_us += iocg->usage_delta_us; 1608 1609 /* propagate upwards */ 1610 new_stat.usage_us = 1611 iocg->local_stat.usage_us + iocg->desc_stat.usage_us; 1612 new_stat.wait_us = 1613 iocg->local_stat.wait_us + iocg->desc_stat.wait_us; 1614 new_stat.indebt_us = 1615 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; 1616 new_stat.indelay_us = 1617 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; 1618 1619 /* propagate the deltas to the parent */ 1620 if (iocg->level > 0) { 1621 struct iocg_stat *parent_stat = 1622 &iocg->ancestors[iocg->level - 1]->desc_stat; 1623 1624 parent_stat->usage_us += 1625 new_stat.usage_us - iocg->last_stat.usage_us; 1626 parent_stat->wait_us += 1627 new_stat.wait_us - iocg->last_stat.wait_us; 1628 parent_stat->indebt_us += 1629 new_stat.indebt_us - iocg->last_stat.indebt_us; 1630 parent_stat->indelay_us += 1631 new_stat.indelay_us - iocg->last_stat.indelay_us; 1632 } 1633 1634 iocg->last_stat = new_stat; 1635 } 1636 1637 /* get stat counters ready for reading on all active iocgs */ 1638 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1639 { 1640 LIST_HEAD(inner_walk); 1641 struct ioc_gq *iocg, *tiocg; 1642 1643 /* flush leaves and build inner node walk list */ 1644 list_for_each_entry(iocg, target_iocgs, active_list) { 1645 iocg_flush_stat_one(iocg, now); 1646 iocg_build_inner_walk(iocg, &inner_walk); 1647 } 1648 1649 /* keep flushing upwards by walking the inner list backwards */ 1650 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1651 iocg_flush_stat_one(iocg, now); 1652 list_del_init(&iocg->walk_list); 1653 } 1654 } 1655 1656 /* 1657 * Determine what @iocg's hweight_inuse should be after donating unused 1658 * capacity. @hwm is the upper bound and used to signal no donation. This 1659 * function also throws away @iocg's excess budget. 1660 */ 1661 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1662 u32 usage, struct ioc_now *now) 1663 { 1664 struct ioc *ioc = iocg->ioc; 1665 u64 vtime = atomic64_read(&iocg->vtime); 1666 s64 excess, delta, target, new_hwi; 1667 1668 /* debt handling owns inuse for debtors */ 1669 if (iocg->abs_vdebt) 1670 return 1; 1671 1672 /* see whether minimum margin requirement is met */ 1673 if (waitqueue_active(&iocg->waitq) || 1674 time_after64(vtime, now->vnow - ioc->margins.min)) 1675 return hwm; 1676 1677 /* throw away excess above target */ 1678 excess = now->vnow - vtime - ioc->margins.target; 1679 if (excess > 0) { 1680 atomic64_add(excess, &iocg->vtime); 1681 atomic64_add(excess, &iocg->done_vtime); 1682 vtime += excess; 1683 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1684 } 1685 1686 /* 1687 * Let's say the distance between iocg's and device's vtimes as a 1688 * fraction of period duration is delta. Assuming that the iocg will 1689 * consume the usage determined above, we want to determine new_hwi so 1690 * that delta equals MARGIN_TARGET at the end of the next period. 1691 * 1692 * We need to execute usage worth of IOs while spending the sum of the 1693 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1694 * (delta): 1695 * 1696 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1697 * 1698 * Therefore, the new_hwi is: 1699 * 1700 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1701 */ 1702 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1703 now->vnow - ioc->period_at_vtime); 1704 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1705 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1706 1707 return clamp_t(s64, new_hwi, 1, hwm); 1708 } 1709 1710 /* 1711 * For work-conservation, an iocg which isn't using all of its share should 1712 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1713 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1714 * 1715 * #1 is mathematically simpler but has the drawback of requiring synchronous 1716 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1717 * change due to donation snapbacks as it has the possibility of grossly 1718 * overshooting what's allowed by the model and vrate. 1719 * 1720 * #2 is inherently safe with local operations. The donating iocg can easily 1721 * snap back to higher weights when needed without worrying about impacts on 1722 * other nodes as the impacts will be inherently correct. This also makes idle 1723 * iocg activations safe. The only effect activations have is decreasing 1724 * hweight_inuse of others, the right solution to which is for those iocgs to 1725 * snap back to higher weights. 1726 * 1727 * So, we go with #2. The challenge is calculating how each donating iocg's 1728 * inuse should be adjusted to achieve the target donation amounts. This is done 1729 * using Andy's method described in the following pdf. 1730 * 1731 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1732 * 1733 * Given the weights and target after-donation hweight_inuse values, Andy's 1734 * method determines how the proportional distribution should look like at each 1735 * sibling level to maintain the relative relationship between all non-donating 1736 * pairs. To roughly summarize, it divides the tree into donating and 1737 * non-donating parts, calculates global donation rate which is used to 1738 * determine the target hweight_inuse for each node, and then derives per-level 1739 * proportions. 1740 * 1741 * The following pdf shows that global distribution calculated this way can be 1742 * achieved by scaling inuse weights of donating leaves and propagating the 1743 * adjustments upwards proportionally. 1744 * 1745 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1746 * 1747 * Combining the above two, we can determine how each leaf iocg's inuse should 1748 * be adjusted to achieve the target donation. 1749 * 1750 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1751 * 1752 * The inline comments use symbols from the last pdf. 1753 * 1754 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1755 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1756 * t is the sum of the absolute budgets of donating nodes in the subtree. 1757 * w is the weight of the node. w = w_f + w_t 1758 * w_f is the non-donating portion of w. w_f = w * f / b 1759 * w_b is the donating portion of w. w_t = w * t / b 1760 * s is the sum of all sibling weights. s = Sum(w) for siblings 1761 * s_f and s_t are the non-donating and donating portions of s. 1762 * 1763 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1764 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1765 * after adjustments. Subscript r denotes the root node's values. 1766 */ 1767 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1768 { 1769 LIST_HEAD(over_hwa); 1770 LIST_HEAD(inner_walk); 1771 struct ioc_gq *iocg, *tiocg, *root_iocg; 1772 u32 after_sum, over_sum, over_target, gamma; 1773 1774 /* 1775 * It's pretty unlikely but possible for the total sum of 1776 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1777 * confuse the following calculations. If such condition is detected, 1778 * scale down everyone over its full share equally to keep the sum below 1779 * WEIGHT_ONE. 1780 */ 1781 after_sum = 0; 1782 over_sum = 0; 1783 list_for_each_entry(iocg, surpluses, surplus_list) { 1784 u32 hwa; 1785 1786 current_hweight(iocg, &hwa, NULL); 1787 after_sum += iocg->hweight_after_donation; 1788 1789 if (iocg->hweight_after_donation > hwa) { 1790 over_sum += iocg->hweight_after_donation; 1791 list_add(&iocg->walk_list, &over_hwa); 1792 } 1793 } 1794 1795 if (after_sum >= WEIGHT_ONE) { 1796 /* 1797 * The delta should be deducted from the over_sum, calculate 1798 * target over_sum value. 1799 */ 1800 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1801 WARN_ON_ONCE(over_sum <= over_delta); 1802 over_target = over_sum - over_delta; 1803 } else { 1804 over_target = 0; 1805 } 1806 1807 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1808 if (over_target) 1809 iocg->hweight_after_donation = 1810 div_u64((u64)iocg->hweight_after_donation * 1811 over_target, over_sum); 1812 list_del_init(&iocg->walk_list); 1813 } 1814 1815 /* 1816 * Build pre-order inner node walk list and prepare for donation 1817 * adjustment calculations. 1818 */ 1819 list_for_each_entry(iocg, surpluses, surplus_list) { 1820 iocg_build_inner_walk(iocg, &inner_walk); 1821 } 1822 1823 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1824 WARN_ON_ONCE(root_iocg->level > 0); 1825 1826 list_for_each_entry(iocg, &inner_walk, walk_list) { 1827 iocg->child_adjusted_sum = 0; 1828 iocg->hweight_donating = 0; 1829 iocg->hweight_after_donation = 0; 1830 } 1831 1832 /* 1833 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1834 * up the hierarchy. 1835 */ 1836 list_for_each_entry(iocg, surpluses, surplus_list) { 1837 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1838 1839 parent->hweight_donating += iocg->hweight_donating; 1840 parent->hweight_after_donation += iocg->hweight_after_donation; 1841 } 1842 1843 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1844 if (iocg->level > 0) { 1845 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1846 1847 parent->hweight_donating += iocg->hweight_donating; 1848 parent->hweight_after_donation += iocg->hweight_after_donation; 1849 } 1850 } 1851 1852 /* 1853 * Calculate inner hwa's (b) and make sure the donation values are 1854 * within the accepted ranges as we're doing low res calculations with 1855 * roundups. 1856 */ 1857 list_for_each_entry(iocg, &inner_walk, walk_list) { 1858 if (iocg->level) { 1859 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1860 1861 iocg->hweight_active = DIV64_U64_ROUND_UP( 1862 (u64)parent->hweight_active * iocg->active, 1863 parent->child_active_sum); 1864 1865 } 1866 1867 iocg->hweight_donating = min(iocg->hweight_donating, 1868 iocg->hweight_active); 1869 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1870 iocg->hweight_donating - 1); 1871 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1872 iocg->hweight_donating <= 1 || 1873 iocg->hweight_after_donation == 0)) { 1874 pr_warn("iocg: invalid donation weights in "); 1875 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1876 pr_cont(": active=%u donating=%u after=%u\n", 1877 iocg->hweight_active, iocg->hweight_donating, 1878 iocg->hweight_after_donation); 1879 } 1880 } 1881 1882 /* 1883 * Calculate the global donation rate (gamma) - the rate to adjust 1884 * non-donating budgets by. 1885 * 1886 * No need to use 64bit multiplication here as the first operand is 1887 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1888 * 1889 * We know that there are beneficiary nodes and the sum of the donating 1890 * hweights can't be whole; however, due to the round-ups during hweight 1891 * calculations, root_iocg->hweight_donating might still end up equal to 1892 * or greater than whole. Limit the range when calculating the divider. 1893 * 1894 * gamma = (1 - t_r') / (1 - t_r) 1895 */ 1896 gamma = DIV_ROUND_UP( 1897 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1898 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1899 1900 /* 1901 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1902 * nodes. 1903 */ 1904 list_for_each_entry(iocg, &inner_walk, walk_list) { 1905 struct ioc_gq *parent; 1906 u32 inuse, wpt, wptp; 1907 u64 st, sf; 1908 1909 if (iocg->level == 0) { 1910 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1911 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1912 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1913 WEIGHT_ONE - iocg->hweight_after_donation); 1914 continue; 1915 } 1916 1917 parent = iocg->ancestors[iocg->level - 1]; 1918 1919 /* b' = gamma * b_f + b_t' */ 1920 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1921 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1922 WEIGHT_ONE) + iocg->hweight_after_donation; 1923 1924 /* w' = s' * b' / b'_p */ 1925 inuse = DIV64_U64_ROUND_UP( 1926 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1927 parent->hweight_inuse); 1928 1929 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1930 st = DIV64_U64_ROUND_UP( 1931 iocg->child_active_sum * iocg->hweight_donating, 1932 iocg->hweight_active); 1933 sf = iocg->child_active_sum - st; 1934 wpt = DIV64_U64_ROUND_UP( 1935 (u64)iocg->active * iocg->hweight_donating, 1936 iocg->hweight_active); 1937 wptp = DIV64_U64_ROUND_UP( 1938 (u64)inuse * iocg->hweight_after_donation, 1939 iocg->hweight_inuse); 1940 1941 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1942 } 1943 1944 /* 1945 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1946 * we can finally determine leaf adjustments. 1947 */ 1948 list_for_each_entry(iocg, surpluses, surplus_list) { 1949 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1950 u32 inuse; 1951 1952 /* 1953 * In-debt iocgs participated in the donation calculation with 1954 * the minimum target hweight_inuse. Configuring inuse 1955 * accordingly would work fine but debt handling expects 1956 * @iocg->inuse stay at the minimum and we don't wanna 1957 * interfere. 1958 */ 1959 if (iocg->abs_vdebt) { 1960 WARN_ON_ONCE(iocg->inuse > 1); 1961 continue; 1962 } 1963 1964 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 1965 inuse = DIV64_U64_ROUND_UP( 1966 parent->child_adjusted_sum * iocg->hweight_after_donation, 1967 parent->hweight_inuse); 1968 1969 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 1970 iocg->inuse, inuse, 1971 iocg->hweight_inuse, 1972 iocg->hweight_after_donation); 1973 1974 __propagate_weights(iocg, iocg->active, inuse, true, now); 1975 } 1976 1977 /* walk list should be dissolved after use */ 1978 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 1979 list_del_init(&iocg->walk_list); 1980 } 1981 1982 /* 1983 * A low weight iocg can amass a large amount of debt, for example, when 1984 * anonymous memory gets reclaimed aggressively. If the system has a lot of 1985 * memory paired with a slow IO device, the debt can span multiple seconds or 1986 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 1987 * up blocked paying its debt while the IO device is idle. 1988 * 1989 * The following protects against such cases. If the device has been 1990 * sufficiently idle for a while, the debts are halved and delays are 1991 * recalculated. 1992 */ 1993 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 1994 struct ioc_now *now) 1995 { 1996 struct ioc_gq *iocg; 1997 u64 dur, usage_pct, nr_cycles; 1998 1999 /* if no debtor, reset the cycle */ 2000 if (!nr_debtors) { 2001 ioc->dfgv_period_at = now->now; 2002 ioc->dfgv_period_rem = 0; 2003 ioc->dfgv_usage_us_sum = 0; 2004 return; 2005 } 2006 2007 /* 2008 * Debtors can pass through a lot of writes choking the device and we 2009 * don't want to be forgiving debts while the device is struggling from 2010 * write bursts. If we're missing latency targets, consider the device 2011 * fully utilized. 2012 */ 2013 if (ioc->busy_level > 0) 2014 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2015 2016 ioc->dfgv_usage_us_sum += usage_us_sum; 2017 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2018 return; 2019 2020 /* 2021 * At least DFGV_PERIOD has passed since the last period. Calculate the 2022 * average usage and reset the period counters. 2023 */ 2024 dur = now->now - ioc->dfgv_period_at; 2025 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2026 2027 ioc->dfgv_period_at = now->now; 2028 ioc->dfgv_usage_us_sum = 0; 2029 2030 /* if was too busy, reset everything */ 2031 if (usage_pct > DFGV_USAGE_PCT) { 2032 ioc->dfgv_period_rem = 0; 2033 return; 2034 } 2035 2036 /* 2037 * Usage is lower than threshold. Let's forgive some debts. Debt 2038 * forgiveness runs off of the usual ioc timer but its period usually 2039 * doesn't match ioc's. Compensate the difference by performing the 2040 * reduction as many times as would fit in the duration since the last 2041 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2042 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2043 * reductions is doubled. 2044 */ 2045 nr_cycles = dur + ioc->dfgv_period_rem; 2046 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2047 2048 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2049 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2050 2051 if (!iocg->abs_vdebt && !iocg->delay) 2052 continue; 2053 2054 spin_lock(&iocg->waitq.lock); 2055 2056 old_debt = iocg->abs_vdebt; 2057 old_delay = iocg->delay; 2058 2059 if (iocg->abs_vdebt) 2060 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2061 if (iocg->delay) 2062 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2063 2064 iocg_kick_waitq(iocg, true, now); 2065 2066 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2067 old_debt, iocg->abs_vdebt, 2068 old_delay, iocg->delay); 2069 2070 spin_unlock(&iocg->waitq.lock); 2071 } 2072 } 2073 2074 static void ioc_timer_fn(struct timer_list *timer) 2075 { 2076 struct ioc *ioc = container_of(timer, struct ioc, timer); 2077 struct ioc_gq *iocg, *tiocg; 2078 struct ioc_now now; 2079 LIST_HEAD(surpluses); 2080 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0; 2081 u64 usage_us_sum = 0; 2082 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2083 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2084 u32 missed_ppm[2], rq_wait_pct; 2085 u64 period_vtime; 2086 int prev_busy_level; 2087 2088 /* how were the latencies during the period? */ 2089 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2090 2091 /* take care of active iocgs */ 2092 spin_lock_irq(&ioc->lock); 2093 2094 ioc_now(ioc, &now); 2095 2096 period_vtime = now.vnow - ioc->period_at_vtime; 2097 if (WARN_ON_ONCE(!period_vtime)) { 2098 spin_unlock_irq(&ioc->lock); 2099 return; 2100 } 2101 2102 /* 2103 * Waiters determine the sleep durations based on the vrate they 2104 * saw at the time of sleep. If vrate has increased, some waiters 2105 * could be sleeping for too long. Wake up tardy waiters which 2106 * should have woken up in the last period and expire idle iocgs. 2107 */ 2108 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2109 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2110 !iocg->delay && !iocg_is_idle(iocg)) 2111 continue; 2112 2113 spin_lock(&iocg->waitq.lock); 2114 2115 /* flush wait and indebt stat deltas */ 2116 if (iocg->wait_since) { 2117 iocg->local_stat.wait_us += now.now - iocg->wait_since; 2118 iocg->wait_since = now.now; 2119 } 2120 if (iocg->indebt_since) { 2121 iocg->local_stat.indebt_us += 2122 now.now - iocg->indebt_since; 2123 iocg->indebt_since = now.now; 2124 } 2125 if (iocg->indelay_since) { 2126 iocg->local_stat.indelay_us += 2127 now.now - iocg->indelay_since; 2128 iocg->indelay_since = now.now; 2129 } 2130 2131 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2132 iocg->delay) { 2133 /* might be oversleeping vtime / hweight changes, kick */ 2134 iocg_kick_waitq(iocg, true, &now); 2135 if (iocg->abs_vdebt || iocg->delay) 2136 nr_debtors++; 2137 } else if (iocg_is_idle(iocg)) { 2138 /* no waiter and idle, deactivate */ 2139 u64 vtime = atomic64_read(&iocg->vtime); 2140 s64 excess; 2141 2142 /* 2143 * @iocg has been inactive for a full duration and will 2144 * have a high budget. Account anything above target as 2145 * error and throw away. On reactivation, it'll start 2146 * with the target budget. 2147 */ 2148 excess = now.vnow - vtime - ioc->margins.target; 2149 if (excess > 0) { 2150 u32 old_hwi; 2151 2152 current_hweight(iocg, NULL, &old_hwi); 2153 ioc->vtime_err -= div64_u64(excess * old_hwi, 2154 WEIGHT_ONE); 2155 } 2156 2157 __propagate_weights(iocg, 0, 0, false, &now); 2158 list_del_init(&iocg->active_list); 2159 } 2160 2161 spin_unlock(&iocg->waitq.lock); 2162 } 2163 commit_weights(ioc); 2164 2165 /* 2166 * Wait and indebt stat are flushed above and the donation calculation 2167 * below needs updated usage stat. Let's bring stat up-to-date. 2168 */ 2169 iocg_flush_stat(&ioc->active_iocgs, &now); 2170 2171 /* calc usage and see whether some weights need to be moved around */ 2172 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2173 u64 vdone, vtime, usage_us, usage_dur; 2174 u32 usage, hw_active, hw_inuse; 2175 2176 /* 2177 * Collect unused and wind vtime closer to vnow to prevent 2178 * iocgs from accumulating a large amount of budget. 2179 */ 2180 vdone = atomic64_read(&iocg->done_vtime); 2181 vtime = atomic64_read(&iocg->vtime); 2182 current_hweight(iocg, &hw_active, &hw_inuse); 2183 2184 /* 2185 * Latency QoS detection doesn't account for IOs which are 2186 * in-flight for longer than a period. Detect them by 2187 * comparing vdone against period start. If lagging behind 2188 * IOs from past periods, don't increase vrate. 2189 */ 2190 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2191 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2192 time_after64(vtime, vdone) && 2193 time_after64(vtime, now.vnow - 2194 MAX_LAGGING_PERIODS * period_vtime) && 2195 time_before64(vdone, now.vnow - period_vtime)) 2196 nr_lagging++; 2197 2198 /* 2199 * Determine absolute usage factoring in in-flight IOs to avoid 2200 * high-latency completions appearing as idle. 2201 */ 2202 usage_us = iocg->usage_delta_us; 2203 usage_us_sum += usage_us; 2204 2205 if (vdone != vtime) { 2206 u64 inflight_us = DIV64_U64_ROUND_UP( 2207 cost_to_abs_cost(vtime - vdone, hw_inuse), 2208 ioc->vtime_base_rate); 2209 usage_us = max(usage_us, inflight_us); 2210 } 2211 2212 /* convert to hweight based usage ratio */ 2213 if (time_after64(iocg->activated_at, ioc->period_at)) 2214 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2215 else 2216 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2217 2218 usage = clamp_t(u32, 2219 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2220 usage_dur), 2221 1, WEIGHT_ONE); 2222 2223 /* see whether there's surplus vtime */ 2224 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2225 if (hw_inuse < hw_active || 2226 (!waitqueue_active(&iocg->waitq) && 2227 time_before64(vtime, now.vnow - ioc->margins.low))) { 2228 u32 hwa, old_hwi, hwm, new_hwi; 2229 2230 /* 2231 * Already donating or accumulated enough to start. 2232 * Determine the donation amount. 2233 */ 2234 current_hweight(iocg, &hwa, &old_hwi); 2235 hwm = current_hweight_max(iocg); 2236 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2237 usage, &now); 2238 if (new_hwi < hwm) { 2239 iocg->hweight_donating = hwa; 2240 iocg->hweight_after_donation = new_hwi; 2241 list_add(&iocg->surplus_list, &surpluses); 2242 } else { 2243 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2244 iocg->inuse, iocg->active, 2245 iocg->hweight_inuse, new_hwi); 2246 2247 __propagate_weights(iocg, iocg->active, 2248 iocg->active, true, &now); 2249 nr_shortages++; 2250 } 2251 } else { 2252 /* genuinely short on vtime */ 2253 nr_shortages++; 2254 } 2255 } 2256 2257 if (!list_empty(&surpluses) && nr_shortages) 2258 transfer_surpluses(&surpluses, &now); 2259 2260 commit_weights(ioc); 2261 2262 /* surplus list should be dissolved after use */ 2263 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2264 list_del_init(&iocg->surplus_list); 2265 2266 /* 2267 * If q is getting clogged or we're missing too much, we're issuing 2268 * too much IO and should lower vtime rate. If we're not missing 2269 * and experiencing shortages but not surpluses, we're too stingy 2270 * and should increase vtime rate. 2271 */ 2272 prev_busy_level = ioc->busy_level; 2273 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2274 missed_ppm[READ] > ppm_rthr || 2275 missed_ppm[WRITE] > ppm_wthr) { 2276 /* clearly missing QoS targets, slow down vrate */ 2277 ioc->busy_level = max(ioc->busy_level, 0); 2278 ioc->busy_level++; 2279 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2280 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2281 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2282 /* QoS targets are being met with >25% margin */ 2283 if (nr_shortages) { 2284 /* 2285 * We're throttling while the device has spare 2286 * capacity. If vrate was being slowed down, stop. 2287 */ 2288 ioc->busy_level = min(ioc->busy_level, 0); 2289 2290 /* 2291 * If there are IOs spanning multiple periods, wait 2292 * them out before pushing the device harder. 2293 */ 2294 if (!nr_lagging) 2295 ioc->busy_level--; 2296 } else { 2297 /* 2298 * Nobody is being throttled and the users aren't 2299 * issuing enough IOs to saturate the device. We 2300 * simply don't know how close the device is to 2301 * saturation. Coast. 2302 */ 2303 ioc->busy_level = 0; 2304 } 2305 } else { 2306 /* inside the hysterisis margin, we're good */ 2307 ioc->busy_level = 0; 2308 } 2309 2310 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2311 2312 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { 2313 u64 vrate = ioc->vtime_base_rate; 2314 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 2315 2316 /* rq_wait signal is always reliable, ignore user vrate_min */ 2317 if (rq_wait_pct > RQ_WAIT_BUSY_PCT) 2318 vrate_min = VRATE_MIN; 2319 2320 /* 2321 * If vrate is out of bounds, apply clamp gradually as the 2322 * bounds can change abruptly. Otherwise, apply busy_level 2323 * based adjustment. 2324 */ 2325 if (vrate < vrate_min) { 2326 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 2327 100); 2328 vrate = min(vrate, vrate_min); 2329 } else if (vrate > vrate_max) { 2330 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 2331 100); 2332 vrate = max(vrate, vrate_max); 2333 } else { 2334 int idx = min_t(int, abs(ioc->busy_level), 2335 ARRAY_SIZE(vrate_adj_pct) - 1); 2336 u32 adj_pct = vrate_adj_pct[idx]; 2337 2338 if (ioc->busy_level > 0) 2339 adj_pct = 100 - adj_pct; 2340 else 2341 adj_pct = 100 + adj_pct; 2342 2343 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 2344 vrate_min, vrate_max); 2345 } 2346 2347 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 2348 nr_lagging, nr_shortages); 2349 2350 ioc->vtime_base_rate = vrate; 2351 ioc_refresh_margins(ioc); 2352 } else if (ioc->busy_level != prev_busy_level || nr_lagging) { 2353 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 2354 missed_ppm, rq_wait_pct, nr_lagging, 2355 nr_shortages); 2356 } 2357 2358 ioc_refresh_params(ioc, false); 2359 2360 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2361 2362 /* 2363 * This period is done. Move onto the next one. If nothing's 2364 * going on with the device, stop the timer. 2365 */ 2366 atomic64_inc(&ioc->cur_period); 2367 2368 if (ioc->running != IOC_STOP) { 2369 if (!list_empty(&ioc->active_iocgs)) { 2370 ioc_start_period(ioc, &now); 2371 } else { 2372 ioc->busy_level = 0; 2373 ioc->vtime_err = 0; 2374 ioc->running = IOC_IDLE; 2375 } 2376 2377 ioc_refresh_vrate(ioc, &now); 2378 } 2379 2380 spin_unlock_irq(&ioc->lock); 2381 } 2382 2383 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2384 u64 abs_cost, struct ioc_now *now) 2385 { 2386 struct ioc *ioc = iocg->ioc; 2387 struct ioc_margins *margins = &ioc->margins; 2388 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2389 u32 hwi, adj_step; 2390 s64 margin; 2391 u64 cost, new_inuse; 2392 2393 current_hweight(iocg, NULL, &hwi); 2394 old_hwi = hwi; 2395 cost = abs_cost_to_cost(abs_cost, hwi); 2396 margin = now->vnow - vtime - cost; 2397 2398 /* debt handling owns inuse for debtors */ 2399 if (iocg->abs_vdebt) 2400 return cost; 2401 2402 /* 2403 * We only increase inuse during period and do so iff the margin has 2404 * deteriorated since the previous adjustment. 2405 */ 2406 if (margin >= iocg->saved_margin || margin >= margins->low || 2407 iocg->inuse == iocg->active) 2408 return cost; 2409 2410 spin_lock_irq(&ioc->lock); 2411 2412 /* we own inuse only when @iocg is in the normal active state */ 2413 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2414 spin_unlock_irq(&ioc->lock); 2415 return cost; 2416 } 2417 2418 /* 2419 * Bump up inuse till @abs_cost fits in the existing budget. 2420 * adj_step must be determined after acquiring ioc->lock - we might 2421 * have raced and lost to another thread for activation and could 2422 * be reading 0 iocg->active before ioc->lock which will lead to 2423 * infinite loop. 2424 */ 2425 new_inuse = iocg->inuse; 2426 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2427 do { 2428 new_inuse = new_inuse + adj_step; 2429 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2430 current_hweight(iocg, NULL, &hwi); 2431 cost = abs_cost_to_cost(abs_cost, hwi); 2432 } while (time_after64(vtime + cost, now->vnow) && 2433 iocg->inuse != iocg->active); 2434 2435 spin_unlock_irq(&ioc->lock); 2436 2437 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2438 old_inuse, iocg->inuse, old_hwi, hwi); 2439 2440 return cost; 2441 } 2442 2443 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2444 bool is_merge, u64 *costp) 2445 { 2446 struct ioc *ioc = iocg->ioc; 2447 u64 coef_seqio, coef_randio, coef_page; 2448 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2449 u64 seek_pages = 0; 2450 u64 cost = 0; 2451 2452 switch (bio_op(bio)) { 2453 case REQ_OP_READ: 2454 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2455 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2456 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2457 break; 2458 case REQ_OP_WRITE: 2459 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2460 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2461 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2462 break; 2463 default: 2464 goto out; 2465 } 2466 2467 if (iocg->cursor) { 2468 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2469 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2470 } 2471 2472 if (!is_merge) { 2473 if (seek_pages > LCOEF_RANDIO_PAGES) { 2474 cost += coef_randio; 2475 } else { 2476 cost += coef_seqio; 2477 } 2478 } 2479 cost += pages * coef_page; 2480 out: 2481 *costp = cost; 2482 } 2483 2484 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2485 { 2486 u64 cost; 2487 2488 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2489 return cost; 2490 } 2491 2492 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2493 u64 *costp) 2494 { 2495 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2496 2497 switch (req_op(rq)) { 2498 case REQ_OP_READ: 2499 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2500 break; 2501 case REQ_OP_WRITE: 2502 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2503 break; 2504 default: 2505 *costp = 0; 2506 } 2507 } 2508 2509 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2510 { 2511 u64 cost; 2512 2513 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2514 return cost; 2515 } 2516 2517 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2518 { 2519 struct blkcg_gq *blkg = bio->bi_blkg; 2520 struct ioc *ioc = rqos_to_ioc(rqos); 2521 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2522 struct ioc_now now; 2523 struct iocg_wait wait; 2524 u64 abs_cost, cost, vtime; 2525 bool use_debt, ioc_locked; 2526 unsigned long flags; 2527 2528 /* bypass IOs if disabled or for root cgroup */ 2529 if (!ioc->enabled || !iocg->level) 2530 return; 2531 2532 /* calculate the absolute vtime cost */ 2533 abs_cost = calc_vtime_cost(bio, iocg, false); 2534 if (!abs_cost) 2535 return; 2536 2537 if (!iocg_activate(iocg, &now)) 2538 return; 2539 2540 iocg->cursor = bio_end_sector(bio); 2541 vtime = atomic64_read(&iocg->vtime); 2542 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2543 2544 /* 2545 * If no one's waiting and within budget, issue right away. The 2546 * tests are racy but the races aren't systemic - we only miss once 2547 * in a while which is fine. 2548 */ 2549 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2550 time_before_eq64(vtime + cost, now.vnow)) { 2551 iocg_commit_bio(iocg, bio, abs_cost, cost); 2552 return; 2553 } 2554 2555 /* 2556 * We're over budget. This can be handled in two ways. IOs which may 2557 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2558 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2559 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2560 * whether debt handling is needed and acquire locks accordingly. 2561 */ 2562 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2563 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2564 retry_lock: 2565 iocg_lock(iocg, ioc_locked, &flags); 2566 2567 /* 2568 * @iocg must stay activated for debt and waitq handling. Deactivation 2569 * is synchronized against both ioc->lock and waitq.lock and we won't 2570 * get deactivated as long as we're waiting or has debt, so we're good 2571 * if we're activated here. In the unlikely cases that we aren't, just 2572 * issue the IO. 2573 */ 2574 if (unlikely(list_empty(&iocg->active_list))) { 2575 iocg_unlock(iocg, ioc_locked, &flags); 2576 iocg_commit_bio(iocg, bio, abs_cost, cost); 2577 return; 2578 } 2579 2580 /* 2581 * We're over budget. If @bio has to be issued regardless, remember 2582 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2583 * off the debt before waking more IOs. 2584 * 2585 * This way, the debt is continuously paid off each period with the 2586 * actual budget available to the cgroup. If we just wound vtime, we 2587 * would incorrectly use the current hw_inuse for the entire amount 2588 * which, for example, can lead to the cgroup staying blocked for a 2589 * long time even with substantially raised hw_inuse. 2590 * 2591 * An iocg with vdebt should stay online so that the timer can keep 2592 * deducting its vdebt and [de]activate use_delay mechanism 2593 * accordingly. We don't want to race against the timer trying to 2594 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2595 * penalizing the cgroup and its descendants. 2596 */ 2597 if (use_debt) { 2598 iocg_incur_debt(iocg, abs_cost, &now); 2599 if (iocg_kick_delay(iocg, &now)) 2600 blkcg_schedule_throttle(rqos->q, 2601 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2602 iocg_unlock(iocg, ioc_locked, &flags); 2603 return; 2604 } 2605 2606 /* guarantee that iocgs w/ waiters have maximum inuse */ 2607 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2608 if (!ioc_locked) { 2609 iocg_unlock(iocg, false, &flags); 2610 ioc_locked = true; 2611 goto retry_lock; 2612 } 2613 propagate_weights(iocg, iocg->active, iocg->active, true, 2614 &now); 2615 } 2616 2617 /* 2618 * Append self to the waitq and schedule the wakeup timer if we're 2619 * the first waiter. The timer duration is calculated based on the 2620 * current vrate. vtime and hweight changes can make it too short 2621 * or too long. Each wait entry records the absolute cost it's 2622 * waiting for to allow re-evaluation using a custom wait entry. 2623 * 2624 * If too short, the timer simply reschedules itself. If too long, 2625 * the period timer will notice and trigger wakeups. 2626 * 2627 * All waiters are on iocg->waitq and the wait states are 2628 * synchronized using waitq.lock. 2629 */ 2630 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2631 wait.wait.private = current; 2632 wait.bio = bio; 2633 wait.abs_cost = abs_cost; 2634 wait.committed = false; /* will be set true by waker */ 2635 2636 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2637 iocg_kick_waitq(iocg, ioc_locked, &now); 2638 2639 iocg_unlock(iocg, ioc_locked, &flags); 2640 2641 while (true) { 2642 set_current_state(TASK_UNINTERRUPTIBLE); 2643 if (wait.committed) 2644 break; 2645 io_schedule(); 2646 } 2647 2648 /* waker already committed us, proceed */ 2649 finish_wait(&iocg->waitq, &wait.wait); 2650 } 2651 2652 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2653 struct bio *bio) 2654 { 2655 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2656 struct ioc *ioc = iocg->ioc; 2657 sector_t bio_end = bio_end_sector(bio); 2658 struct ioc_now now; 2659 u64 vtime, abs_cost, cost; 2660 unsigned long flags; 2661 2662 /* bypass if disabled or for root cgroup */ 2663 if (!ioc->enabled || !iocg->level) 2664 return; 2665 2666 abs_cost = calc_vtime_cost(bio, iocg, true); 2667 if (!abs_cost) 2668 return; 2669 2670 ioc_now(ioc, &now); 2671 2672 vtime = atomic64_read(&iocg->vtime); 2673 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2674 2675 /* update cursor if backmerging into the request at the cursor */ 2676 if (blk_rq_pos(rq) < bio_end && 2677 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2678 iocg->cursor = bio_end; 2679 2680 /* 2681 * Charge if there's enough vtime budget and the existing request has 2682 * cost assigned. 2683 */ 2684 if (rq->bio && rq->bio->bi_iocost_cost && 2685 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2686 iocg_commit_bio(iocg, bio, abs_cost, cost); 2687 return; 2688 } 2689 2690 /* 2691 * Otherwise, account it as debt if @iocg is online, which it should 2692 * be for the vast majority of cases. See debt handling in 2693 * ioc_rqos_throttle() for details. 2694 */ 2695 spin_lock_irqsave(&ioc->lock, flags); 2696 spin_lock(&iocg->waitq.lock); 2697 2698 if (likely(!list_empty(&iocg->active_list))) { 2699 iocg_incur_debt(iocg, abs_cost, &now); 2700 if (iocg_kick_delay(iocg, &now)) 2701 blkcg_schedule_throttle(rqos->q, 2702 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2703 } else { 2704 iocg_commit_bio(iocg, bio, abs_cost, cost); 2705 } 2706 2707 spin_unlock(&iocg->waitq.lock); 2708 spin_unlock_irqrestore(&ioc->lock, flags); 2709 } 2710 2711 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2712 { 2713 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2714 2715 if (iocg && bio->bi_iocost_cost) 2716 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2717 } 2718 2719 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2720 { 2721 struct ioc *ioc = rqos_to_ioc(rqos); 2722 struct ioc_pcpu_stat *ccs; 2723 u64 on_q_ns, rq_wait_ns, size_nsec; 2724 int pidx, rw; 2725 2726 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2727 return; 2728 2729 switch (req_op(rq) & REQ_OP_MASK) { 2730 case REQ_OP_READ: 2731 pidx = QOS_RLAT; 2732 rw = READ; 2733 break; 2734 case REQ_OP_WRITE: 2735 pidx = QOS_WLAT; 2736 rw = WRITE; 2737 break; 2738 default: 2739 return; 2740 } 2741 2742 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2743 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2744 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2745 2746 ccs = get_cpu_ptr(ioc->pcpu_stat); 2747 2748 if (on_q_ns <= size_nsec || 2749 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2750 local_inc(&ccs->missed[rw].nr_met); 2751 else 2752 local_inc(&ccs->missed[rw].nr_missed); 2753 2754 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2755 2756 put_cpu_ptr(ccs); 2757 } 2758 2759 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2760 { 2761 struct ioc *ioc = rqos_to_ioc(rqos); 2762 2763 spin_lock_irq(&ioc->lock); 2764 ioc_refresh_params(ioc, false); 2765 spin_unlock_irq(&ioc->lock); 2766 } 2767 2768 static void ioc_rqos_exit(struct rq_qos *rqos) 2769 { 2770 struct ioc *ioc = rqos_to_ioc(rqos); 2771 2772 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2773 2774 spin_lock_irq(&ioc->lock); 2775 ioc->running = IOC_STOP; 2776 spin_unlock_irq(&ioc->lock); 2777 2778 del_timer_sync(&ioc->timer); 2779 free_percpu(ioc->pcpu_stat); 2780 kfree(ioc); 2781 } 2782 2783 static struct rq_qos_ops ioc_rqos_ops = { 2784 .throttle = ioc_rqos_throttle, 2785 .merge = ioc_rqos_merge, 2786 .done_bio = ioc_rqos_done_bio, 2787 .done = ioc_rqos_done, 2788 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2789 .exit = ioc_rqos_exit, 2790 }; 2791 2792 static int blk_iocost_init(struct request_queue *q) 2793 { 2794 struct ioc *ioc; 2795 struct rq_qos *rqos; 2796 int i, cpu, ret; 2797 2798 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2799 if (!ioc) 2800 return -ENOMEM; 2801 2802 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2803 if (!ioc->pcpu_stat) { 2804 kfree(ioc); 2805 return -ENOMEM; 2806 } 2807 2808 for_each_possible_cpu(cpu) { 2809 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2810 2811 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2812 local_set(&ccs->missed[i].nr_met, 0); 2813 local_set(&ccs->missed[i].nr_missed, 0); 2814 } 2815 local64_set(&ccs->rq_wait_ns, 0); 2816 } 2817 2818 rqos = &ioc->rqos; 2819 rqos->id = RQ_QOS_COST; 2820 rqos->ops = &ioc_rqos_ops; 2821 rqos->q = q; 2822 2823 spin_lock_init(&ioc->lock); 2824 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2825 INIT_LIST_HEAD(&ioc->active_iocgs); 2826 2827 ioc->running = IOC_IDLE; 2828 ioc->vtime_base_rate = VTIME_PER_USEC; 2829 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2830 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2831 ioc->period_at = ktime_to_us(ktime_get()); 2832 atomic64_set(&ioc->cur_period, 0); 2833 atomic_set(&ioc->hweight_gen, 0); 2834 2835 spin_lock_irq(&ioc->lock); 2836 ioc->autop_idx = AUTOP_INVALID; 2837 ioc_refresh_params(ioc, true); 2838 spin_unlock_irq(&ioc->lock); 2839 2840 rq_qos_add(q, rqos); 2841 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2842 if (ret) { 2843 rq_qos_del(q, rqos); 2844 free_percpu(ioc->pcpu_stat); 2845 kfree(ioc); 2846 return ret; 2847 } 2848 return 0; 2849 } 2850 2851 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2852 { 2853 struct ioc_cgrp *iocc; 2854 2855 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2856 if (!iocc) 2857 return NULL; 2858 2859 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2860 return &iocc->cpd; 2861 } 2862 2863 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2864 { 2865 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2866 } 2867 2868 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2869 struct blkcg *blkcg) 2870 { 2871 int levels = blkcg->css.cgroup->level + 1; 2872 struct ioc_gq *iocg; 2873 2874 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2875 if (!iocg) 2876 return NULL; 2877 2878 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2879 if (!iocg->pcpu_stat) { 2880 kfree(iocg); 2881 return NULL; 2882 } 2883 2884 return &iocg->pd; 2885 } 2886 2887 static void ioc_pd_init(struct blkg_policy_data *pd) 2888 { 2889 struct ioc_gq *iocg = pd_to_iocg(pd); 2890 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2891 struct ioc *ioc = q_to_ioc(blkg->q); 2892 struct ioc_now now; 2893 struct blkcg_gq *tblkg; 2894 unsigned long flags; 2895 2896 ioc_now(ioc, &now); 2897 2898 iocg->ioc = ioc; 2899 atomic64_set(&iocg->vtime, now.vnow); 2900 atomic64_set(&iocg->done_vtime, now.vnow); 2901 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2902 INIT_LIST_HEAD(&iocg->active_list); 2903 INIT_LIST_HEAD(&iocg->walk_list); 2904 INIT_LIST_HEAD(&iocg->surplus_list); 2905 iocg->hweight_active = WEIGHT_ONE; 2906 iocg->hweight_inuse = WEIGHT_ONE; 2907 2908 init_waitqueue_head(&iocg->waitq); 2909 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2910 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2911 2912 iocg->level = blkg->blkcg->css.cgroup->level; 2913 2914 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2915 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2916 iocg->ancestors[tiocg->level] = tiocg; 2917 } 2918 2919 spin_lock_irqsave(&ioc->lock, flags); 2920 weight_updated(iocg, &now); 2921 spin_unlock_irqrestore(&ioc->lock, flags); 2922 } 2923 2924 static void ioc_pd_free(struct blkg_policy_data *pd) 2925 { 2926 struct ioc_gq *iocg = pd_to_iocg(pd); 2927 struct ioc *ioc = iocg->ioc; 2928 unsigned long flags; 2929 2930 if (ioc) { 2931 spin_lock_irqsave(&ioc->lock, flags); 2932 2933 if (!list_empty(&iocg->active_list)) { 2934 struct ioc_now now; 2935 2936 ioc_now(ioc, &now); 2937 propagate_weights(iocg, 0, 0, false, &now); 2938 list_del_init(&iocg->active_list); 2939 } 2940 2941 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2942 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2943 2944 spin_unlock_irqrestore(&ioc->lock, flags); 2945 2946 hrtimer_cancel(&iocg->waitq_timer); 2947 } 2948 free_percpu(iocg->pcpu_stat); 2949 kfree(iocg); 2950 } 2951 2952 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) 2953 { 2954 struct ioc_gq *iocg = pd_to_iocg(pd); 2955 struct ioc *ioc = iocg->ioc; 2956 size_t pos = 0; 2957 2958 if (!ioc->enabled) 2959 return 0; 2960 2961 if (iocg->level == 0) { 2962 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 2963 ioc->vtime_base_rate * 10000, 2964 VTIME_PER_USEC); 2965 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", 2966 vp10k / 100, vp10k % 100); 2967 } 2968 2969 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", 2970 iocg->last_stat.usage_us); 2971 2972 if (blkcg_debug_stats) 2973 pos += scnprintf(buf + pos, size - pos, 2974 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 2975 iocg->last_stat.wait_us, 2976 iocg->last_stat.indebt_us, 2977 iocg->last_stat.indelay_us); 2978 2979 return pos; 2980 } 2981 2982 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2983 int off) 2984 { 2985 const char *dname = blkg_dev_name(pd->blkg); 2986 struct ioc_gq *iocg = pd_to_iocg(pd); 2987 2988 if (dname && iocg->cfg_weight) 2989 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 2990 return 0; 2991 } 2992 2993 2994 static int ioc_weight_show(struct seq_file *sf, void *v) 2995 { 2996 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2997 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2998 2999 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3000 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3001 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3002 return 0; 3003 } 3004 3005 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3006 size_t nbytes, loff_t off) 3007 { 3008 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3009 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3010 struct blkg_conf_ctx ctx; 3011 struct ioc_now now; 3012 struct ioc_gq *iocg; 3013 u32 v; 3014 int ret; 3015 3016 if (!strchr(buf, ':')) { 3017 struct blkcg_gq *blkg; 3018 3019 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3020 return -EINVAL; 3021 3022 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3023 return -EINVAL; 3024 3025 spin_lock(&blkcg->lock); 3026 iocc->dfl_weight = v * WEIGHT_ONE; 3027 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3028 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3029 3030 if (iocg) { 3031 spin_lock_irq(&iocg->ioc->lock); 3032 ioc_now(iocg->ioc, &now); 3033 weight_updated(iocg, &now); 3034 spin_unlock_irq(&iocg->ioc->lock); 3035 } 3036 } 3037 spin_unlock(&blkcg->lock); 3038 3039 return nbytes; 3040 } 3041 3042 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3043 if (ret) 3044 return ret; 3045 3046 iocg = blkg_to_iocg(ctx.blkg); 3047 3048 if (!strncmp(ctx.body, "default", 7)) { 3049 v = 0; 3050 } else { 3051 if (!sscanf(ctx.body, "%u", &v)) 3052 goto einval; 3053 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3054 goto einval; 3055 } 3056 3057 spin_lock(&iocg->ioc->lock); 3058 iocg->cfg_weight = v * WEIGHT_ONE; 3059 ioc_now(iocg->ioc, &now); 3060 weight_updated(iocg, &now); 3061 spin_unlock(&iocg->ioc->lock); 3062 3063 blkg_conf_finish(&ctx); 3064 return nbytes; 3065 3066 einval: 3067 blkg_conf_finish(&ctx); 3068 return -EINVAL; 3069 } 3070 3071 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3072 int off) 3073 { 3074 const char *dname = blkg_dev_name(pd->blkg); 3075 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3076 3077 if (!dname) 3078 return 0; 3079 3080 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3081 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3082 ioc->params.qos[QOS_RPPM] / 10000, 3083 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3084 ioc->params.qos[QOS_RLAT], 3085 ioc->params.qos[QOS_WPPM] / 10000, 3086 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3087 ioc->params.qos[QOS_WLAT], 3088 ioc->params.qos[QOS_MIN] / 10000, 3089 ioc->params.qos[QOS_MIN] % 10000 / 100, 3090 ioc->params.qos[QOS_MAX] / 10000, 3091 ioc->params.qos[QOS_MAX] % 10000 / 100); 3092 return 0; 3093 } 3094 3095 static int ioc_qos_show(struct seq_file *sf, void *v) 3096 { 3097 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3098 3099 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3100 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3101 return 0; 3102 } 3103 3104 static const match_table_t qos_ctrl_tokens = { 3105 { QOS_ENABLE, "enable=%u" }, 3106 { QOS_CTRL, "ctrl=%s" }, 3107 { NR_QOS_CTRL_PARAMS, NULL }, 3108 }; 3109 3110 static const match_table_t qos_tokens = { 3111 { QOS_RPPM, "rpct=%s" }, 3112 { QOS_RLAT, "rlat=%u" }, 3113 { QOS_WPPM, "wpct=%s" }, 3114 { QOS_WLAT, "wlat=%u" }, 3115 { QOS_MIN, "min=%s" }, 3116 { QOS_MAX, "max=%s" }, 3117 { NR_QOS_PARAMS, NULL }, 3118 }; 3119 3120 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3121 size_t nbytes, loff_t off) 3122 { 3123 struct gendisk *disk; 3124 struct ioc *ioc; 3125 u32 qos[NR_QOS_PARAMS]; 3126 bool enable, user; 3127 char *p; 3128 int ret; 3129 3130 disk = blkcg_conf_get_disk(&input); 3131 if (IS_ERR(disk)) 3132 return PTR_ERR(disk); 3133 3134 ioc = q_to_ioc(disk->queue); 3135 if (!ioc) { 3136 ret = blk_iocost_init(disk->queue); 3137 if (ret) 3138 goto err; 3139 ioc = q_to_ioc(disk->queue); 3140 } 3141 3142 spin_lock_irq(&ioc->lock); 3143 memcpy(qos, ioc->params.qos, sizeof(qos)); 3144 enable = ioc->enabled; 3145 user = ioc->user_qos_params; 3146 spin_unlock_irq(&ioc->lock); 3147 3148 while ((p = strsep(&input, " \t\n"))) { 3149 substring_t args[MAX_OPT_ARGS]; 3150 char buf[32]; 3151 int tok; 3152 s64 v; 3153 3154 if (!*p) 3155 continue; 3156 3157 switch (match_token(p, qos_ctrl_tokens, args)) { 3158 case QOS_ENABLE: 3159 match_u64(&args[0], &v); 3160 enable = v; 3161 continue; 3162 case QOS_CTRL: 3163 match_strlcpy(buf, &args[0], sizeof(buf)); 3164 if (!strcmp(buf, "auto")) 3165 user = false; 3166 else if (!strcmp(buf, "user")) 3167 user = true; 3168 else 3169 goto einval; 3170 continue; 3171 } 3172 3173 tok = match_token(p, qos_tokens, args); 3174 switch (tok) { 3175 case QOS_RPPM: 3176 case QOS_WPPM: 3177 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3178 sizeof(buf)) 3179 goto einval; 3180 if (cgroup_parse_float(buf, 2, &v)) 3181 goto einval; 3182 if (v < 0 || v > 10000) 3183 goto einval; 3184 qos[tok] = v * 100; 3185 break; 3186 case QOS_RLAT: 3187 case QOS_WLAT: 3188 if (match_u64(&args[0], &v)) 3189 goto einval; 3190 qos[tok] = v; 3191 break; 3192 case QOS_MIN: 3193 case QOS_MAX: 3194 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3195 sizeof(buf)) 3196 goto einval; 3197 if (cgroup_parse_float(buf, 2, &v)) 3198 goto einval; 3199 if (v < 0) 3200 goto einval; 3201 qos[tok] = clamp_t(s64, v * 100, 3202 VRATE_MIN_PPM, VRATE_MAX_PPM); 3203 break; 3204 default: 3205 goto einval; 3206 } 3207 user = true; 3208 } 3209 3210 if (qos[QOS_MIN] > qos[QOS_MAX]) 3211 goto einval; 3212 3213 spin_lock_irq(&ioc->lock); 3214 3215 if (enable) { 3216 blk_stat_enable_accounting(ioc->rqos.q); 3217 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3218 ioc->enabled = true; 3219 } else { 3220 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3221 ioc->enabled = false; 3222 } 3223 3224 if (user) { 3225 memcpy(ioc->params.qos, qos, sizeof(qos)); 3226 ioc->user_qos_params = true; 3227 } else { 3228 ioc->user_qos_params = false; 3229 } 3230 3231 ioc_refresh_params(ioc, true); 3232 spin_unlock_irq(&ioc->lock); 3233 3234 put_disk_and_module(disk); 3235 return nbytes; 3236 einval: 3237 ret = -EINVAL; 3238 err: 3239 put_disk_and_module(disk); 3240 return ret; 3241 } 3242 3243 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3244 struct blkg_policy_data *pd, int off) 3245 { 3246 const char *dname = blkg_dev_name(pd->blkg); 3247 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3248 u64 *u = ioc->params.i_lcoefs; 3249 3250 if (!dname) 3251 return 0; 3252 3253 seq_printf(sf, "%s ctrl=%s model=linear " 3254 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3255 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3256 dname, ioc->user_cost_model ? "user" : "auto", 3257 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3258 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3259 return 0; 3260 } 3261 3262 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3263 { 3264 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3265 3266 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3267 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3268 return 0; 3269 } 3270 3271 static const match_table_t cost_ctrl_tokens = { 3272 { COST_CTRL, "ctrl=%s" }, 3273 { COST_MODEL, "model=%s" }, 3274 { NR_COST_CTRL_PARAMS, NULL }, 3275 }; 3276 3277 static const match_table_t i_lcoef_tokens = { 3278 { I_LCOEF_RBPS, "rbps=%u" }, 3279 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3280 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3281 { I_LCOEF_WBPS, "wbps=%u" }, 3282 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3283 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3284 { NR_I_LCOEFS, NULL }, 3285 }; 3286 3287 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3288 size_t nbytes, loff_t off) 3289 { 3290 struct gendisk *disk; 3291 struct ioc *ioc; 3292 u64 u[NR_I_LCOEFS]; 3293 bool user; 3294 char *p; 3295 int ret; 3296 3297 disk = blkcg_conf_get_disk(&input); 3298 if (IS_ERR(disk)) 3299 return PTR_ERR(disk); 3300 3301 ioc = q_to_ioc(disk->queue); 3302 if (!ioc) { 3303 ret = blk_iocost_init(disk->queue); 3304 if (ret) 3305 goto err; 3306 ioc = q_to_ioc(disk->queue); 3307 } 3308 3309 spin_lock_irq(&ioc->lock); 3310 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3311 user = ioc->user_cost_model; 3312 spin_unlock_irq(&ioc->lock); 3313 3314 while ((p = strsep(&input, " \t\n"))) { 3315 substring_t args[MAX_OPT_ARGS]; 3316 char buf[32]; 3317 int tok; 3318 u64 v; 3319 3320 if (!*p) 3321 continue; 3322 3323 switch (match_token(p, cost_ctrl_tokens, args)) { 3324 case COST_CTRL: 3325 match_strlcpy(buf, &args[0], sizeof(buf)); 3326 if (!strcmp(buf, "auto")) 3327 user = false; 3328 else if (!strcmp(buf, "user")) 3329 user = true; 3330 else 3331 goto einval; 3332 continue; 3333 case COST_MODEL: 3334 match_strlcpy(buf, &args[0], sizeof(buf)); 3335 if (strcmp(buf, "linear")) 3336 goto einval; 3337 continue; 3338 } 3339 3340 tok = match_token(p, i_lcoef_tokens, args); 3341 if (tok == NR_I_LCOEFS) 3342 goto einval; 3343 if (match_u64(&args[0], &v)) 3344 goto einval; 3345 u[tok] = v; 3346 user = true; 3347 } 3348 3349 spin_lock_irq(&ioc->lock); 3350 if (user) { 3351 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3352 ioc->user_cost_model = true; 3353 } else { 3354 ioc->user_cost_model = false; 3355 } 3356 ioc_refresh_params(ioc, true); 3357 spin_unlock_irq(&ioc->lock); 3358 3359 put_disk_and_module(disk); 3360 return nbytes; 3361 3362 einval: 3363 ret = -EINVAL; 3364 err: 3365 put_disk_and_module(disk); 3366 return ret; 3367 } 3368 3369 static struct cftype ioc_files[] = { 3370 { 3371 .name = "weight", 3372 .flags = CFTYPE_NOT_ON_ROOT, 3373 .seq_show = ioc_weight_show, 3374 .write = ioc_weight_write, 3375 }, 3376 { 3377 .name = "cost.qos", 3378 .flags = CFTYPE_ONLY_ON_ROOT, 3379 .seq_show = ioc_qos_show, 3380 .write = ioc_qos_write, 3381 }, 3382 { 3383 .name = "cost.model", 3384 .flags = CFTYPE_ONLY_ON_ROOT, 3385 .seq_show = ioc_cost_model_show, 3386 .write = ioc_cost_model_write, 3387 }, 3388 {} 3389 }; 3390 3391 static struct blkcg_policy blkcg_policy_iocost = { 3392 .dfl_cftypes = ioc_files, 3393 .cpd_alloc_fn = ioc_cpd_alloc, 3394 .cpd_free_fn = ioc_cpd_free, 3395 .pd_alloc_fn = ioc_pd_alloc, 3396 .pd_init_fn = ioc_pd_init, 3397 .pd_free_fn = ioc_pd_free, 3398 .pd_stat_fn = ioc_pd_stat, 3399 }; 3400 3401 static int __init ioc_init(void) 3402 { 3403 return blkcg_policy_register(&blkcg_policy_iocost); 3404 } 3405 3406 static void __exit ioc_exit(void) 3407 { 3408 blkcg_policy_unregister(&blkcg_policy_iocost); 3409 } 3410 3411 module_init(ioc_init); 3412 module_exit(ioc_exit); 3413