1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, solely depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 }; 236 237 enum { 238 /* 239 * As vtime is used to calculate the cost of each IO, it needs to 240 * be fairly high precision. For example, it should be able to 241 * represent the cost of a single page worth of discard with 242 * suffificient accuracy. At the same time, it should be able to 243 * represent reasonably long enough durations to be useful and 244 * convenient during operation. 245 * 246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 247 * granularity and days of wrap-around time even at extreme vrates. 248 */ 249 VTIME_PER_SEC_SHIFT = 37, 250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 253 254 /* bound vrate adjustments within two orders of magnitude */ 255 VRATE_MIN_PPM = 10000, /* 1% */ 256 VRATE_MAX_PPM = 100000000, /* 10000% */ 257 258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 259 VRATE_CLAMP_ADJ_PCT = 4, 260 261 /* switch iff the conditions are met for longer than this */ 262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 263 }; 264 265 enum { 266 /* if IOs end up waiting for requests, issue less */ 267 RQ_WAIT_BUSY_PCT = 5, 268 269 /* unbusy hysterisis */ 270 UNBUSY_THR_PCT = 75, 271 272 /* 273 * The effect of delay is indirect and non-linear and a huge amount of 274 * future debt can accumulate abruptly while unthrottled. Linearly scale 275 * up delay as debt is going up and then let it decay exponentially. 276 * This gives us quick ramp ups while delay is accumulating and long 277 * tails which can help reducing the frequency of debt explosions on 278 * unthrottle. The parameters are experimentally determined. 279 * 280 * The delay mechanism provides adequate protection and behavior in many 281 * cases. However, this is far from ideal and falls shorts on both 282 * fronts. The debtors are often throttled too harshly costing a 283 * significant level of fairness and possibly total work while the 284 * protection against their impacts on the system can be choppy and 285 * unreliable. 286 * 287 * The shortcoming primarily stems from the fact that, unlike for page 288 * cache, the kernel doesn't have well-defined back-pressure propagation 289 * mechanism and policies for anonymous memory. Fully addressing this 290 * issue will likely require substantial improvements in the area. 291 */ 292 MIN_DELAY_THR_PCT = 500, 293 MAX_DELAY_THR_PCT = 25000, 294 MIN_DELAY = 250, 295 MAX_DELAY = 250 * USEC_PER_MSEC, 296 297 /* halve debts if avg usage over 100ms is under 50% */ 298 DFGV_USAGE_PCT = 50, 299 DFGV_PERIOD = 100 * USEC_PER_MSEC, 300 301 /* don't let cmds which take a very long time pin lagging for too long */ 302 MAX_LAGGING_PERIODS = 10, 303 304 /* 305 * Count IO size in 4k pages. The 12bit shift helps keeping 306 * size-proportional components of cost calculation in closer 307 * numbers of digits to per-IO cost components. 308 */ 309 IOC_PAGE_SHIFT = 12, 310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 312 313 /* if apart further than 16M, consider randio for linear model */ 314 LCOEF_RANDIO_PAGES = 4096, 315 }; 316 317 enum ioc_running { 318 IOC_IDLE, 319 IOC_RUNNING, 320 IOC_STOP, 321 }; 322 323 /* io.cost.qos controls including per-dev enable of the whole controller */ 324 enum { 325 QOS_ENABLE, 326 QOS_CTRL, 327 NR_QOS_CTRL_PARAMS, 328 }; 329 330 /* io.cost.qos params */ 331 enum { 332 QOS_RPPM, 333 QOS_RLAT, 334 QOS_WPPM, 335 QOS_WLAT, 336 QOS_MIN, 337 QOS_MAX, 338 NR_QOS_PARAMS, 339 }; 340 341 /* io.cost.model controls */ 342 enum { 343 COST_CTRL, 344 COST_MODEL, 345 NR_COST_CTRL_PARAMS, 346 }; 347 348 /* builtin linear cost model coefficients */ 349 enum { 350 I_LCOEF_RBPS, 351 I_LCOEF_RSEQIOPS, 352 I_LCOEF_RRANDIOPS, 353 I_LCOEF_WBPS, 354 I_LCOEF_WSEQIOPS, 355 I_LCOEF_WRANDIOPS, 356 NR_I_LCOEFS, 357 }; 358 359 enum { 360 LCOEF_RPAGE, 361 LCOEF_RSEQIO, 362 LCOEF_RRANDIO, 363 LCOEF_WPAGE, 364 LCOEF_WSEQIO, 365 LCOEF_WRANDIO, 366 NR_LCOEFS, 367 }; 368 369 enum { 370 AUTOP_INVALID, 371 AUTOP_HDD, 372 AUTOP_SSD_QD1, 373 AUTOP_SSD_DFL, 374 AUTOP_SSD_FAST, 375 }; 376 377 struct ioc_params { 378 u32 qos[NR_QOS_PARAMS]; 379 u64 i_lcoefs[NR_I_LCOEFS]; 380 u64 lcoefs[NR_LCOEFS]; 381 u32 too_fast_vrate_pct; 382 u32 too_slow_vrate_pct; 383 }; 384 385 struct ioc_margins { 386 s64 min; 387 s64 low; 388 s64 target; 389 }; 390 391 struct ioc_missed { 392 local_t nr_met; 393 local_t nr_missed; 394 u32 last_met; 395 u32 last_missed; 396 }; 397 398 struct ioc_pcpu_stat { 399 struct ioc_missed missed[2]; 400 401 local64_t rq_wait_ns; 402 u64 last_rq_wait_ns; 403 }; 404 405 /* per device */ 406 struct ioc { 407 struct rq_qos rqos; 408 409 bool enabled; 410 411 struct ioc_params params; 412 struct ioc_margins margins; 413 u32 period_us; 414 u32 timer_slack_ns; 415 u64 vrate_min; 416 u64 vrate_max; 417 418 spinlock_t lock; 419 struct timer_list timer; 420 struct list_head active_iocgs; /* active cgroups */ 421 struct ioc_pcpu_stat __percpu *pcpu_stat; 422 423 enum ioc_running running; 424 atomic64_t vtime_rate; 425 u64 vtime_base_rate; 426 s64 vtime_err; 427 428 seqcount_spinlock_t period_seqcount; 429 u64 period_at; /* wallclock starttime */ 430 u64 period_at_vtime; /* vtime starttime */ 431 432 atomic64_t cur_period; /* inc'd each period */ 433 int busy_level; /* saturation history */ 434 435 bool weights_updated; 436 atomic_t hweight_gen; /* for lazy hweights */ 437 438 /* debt forgivness */ 439 u64 dfgv_period_at; 440 u64 dfgv_period_rem; 441 u64 dfgv_usage_us_sum; 442 443 u64 autop_too_fast_at; 444 u64 autop_too_slow_at; 445 int autop_idx; 446 bool user_qos_params:1; 447 bool user_cost_model:1; 448 }; 449 450 struct iocg_pcpu_stat { 451 local64_t abs_vusage; 452 }; 453 454 struct iocg_stat { 455 u64 usage_us; 456 u64 wait_us; 457 u64 indebt_us; 458 u64 indelay_us; 459 }; 460 461 /* per device-cgroup pair */ 462 struct ioc_gq { 463 struct blkg_policy_data pd; 464 struct ioc *ioc; 465 466 /* 467 * A iocg can get its weight from two sources - an explicit 468 * per-device-cgroup configuration or the default weight of the 469 * cgroup. `cfg_weight` is the explicit per-device-cgroup 470 * configuration. `weight` is the effective considering both 471 * sources. 472 * 473 * When an idle cgroup becomes active its `active` goes from 0 to 474 * `weight`. `inuse` is the surplus adjusted active weight. 475 * `active` and `inuse` are used to calculate `hweight_active` and 476 * `hweight_inuse`. 477 * 478 * `last_inuse` remembers `inuse` while an iocg is idle to persist 479 * surplus adjustments. 480 * 481 * `inuse` may be adjusted dynamically during period. `saved_*` are used 482 * to determine and track adjustments. 483 */ 484 u32 cfg_weight; 485 u32 weight; 486 u32 active; 487 u32 inuse; 488 489 u32 last_inuse; 490 s64 saved_margin; 491 492 sector_t cursor; /* to detect randio */ 493 494 /* 495 * `vtime` is this iocg's vtime cursor which progresses as IOs are 496 * issued. If lagging behind device vtime, the delta represents 497 * the currently available IO budget. If running ahead, the 498 * overage. 499 * 500 * `vtime_done` is the same but progressed on completion rather 501 * than issue. The delta behind `vtime` represents the cost of 502 * currently in-flight IOs. 503 */ 504 atomic64_t vtime; 505 atomic64_t done_vtime; 506 u64 abs_vdebt; 507 508 /* current delay in effect and when it started */ 509 u64 delay; 510 u64 delay_at; 511 512 /* 513 * The period this iocg was last active in. Used for deactivation 514 * and invalidating `vtime`. 515 */ 516 atomic64_t active_period; 517 struct list_head active_list; 518 519 /* see __propagate_weights() and current_hweight() for details */ 520 u64 child_active_sum; 521 u64 child_inuse_sum; 522 u64 child_adjusted_sum; 523 int hweight_gen; 524 u32 hweight_active; 525 u32 hweight_inuse; 526 u32 hweight_donating; 527 u32 hweight_after_donation; 528 529 struct list_head walk_list; 530 struct list_head surplus_list; 531 532 struct wait_queue_head waitq; 533 struct hrtimer waitq_timer; 534 535 /* timestamp at the latest activation */ 536 u64 activated_at; 537 538 /* statistics */ 539 struct iocg_pcpu_stat __percpu *pcpu_stat; 540 struct iocg_stat stat; 541 struct iocg_stat last_stat; 542 u64 last_stat_abs_vusage; 543 u64 usage_delta_us; 544 u64 wait_since; 545 u64 indebt_since; 546 u64 indelay_since; 547 548 /* this iocg's depth in the hierarchy and ancestors including self */ 549 int level; 550 struct ioc_gq *ancestors[]; 551 }; 552 553 /* per cgroup */ 554 struct ioc_cgrp { 555 struct blkcg_policy_data cpd; 556 unsigned int dfl_weight; 557 }; 558 559 struct ioc_now { 560 u64 now_ns; 561 u64 now; 562 u64 vnow; 563 }; 564 565 struct iocg_wait { 566 struct wait_queue_entry wait; 567 struct bio *bio; 568 u64 abs_cost; 569 bool committed; 570 }; 571 572 struct iocg_wake_ctx { 573 struct ioc_gq *iocg; 574 u32 hw_inuse; 575 s64 vbudget; 576 }; 577 578 static const struct ioc_params autop[] = { 579 [AUTOP_HDD] = { 580 .qos = { 581 [QOS_RLAT] = 250000, /* 250ms */ 582 [QOS_WLAT] = 250000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 174019176, 588 [I_LCOEF_RSEQIOPS] = 41708, 589 [I_LCOEF_RRANDIOPS] = 370, 590 [I_LCOEF_WBPS] = 178075866, 591 [I_LCOEF_WSEQIOPS] = 42705, 592 [I_LCOEF_WRANDIOPS] = 378, 593 }, 594 }, 595 [AUTOP_SSD_QD1] = { 596 .qos = { 597 [QOS_RLAT] = 25000, /* 25ms */ 598 [QOS_WLAT] = 25000, 599 [QOS_MIN] = VRATE_MIN_PPM, 600 [QOS_MAX] = VRATE_MAX_PPM, 601 }, 602 .i_lcoefs = { 603 [I_LCOEF_RBPS] = 245855193, 604 [I_LCOEF_RSEQIOPS] = 61575, 605 [I_LCOEF_RRANDIOPS] = 6946, 606 [I_LCOEF_WBPS] = 141365009, 607 [I_LCOEF_WSEQIOPS] = 33716, 608 [I_LCOEF_WRANDIOPS] = 26796, 609 }, 610 }, 611 [AUTOP_SSD_DFL] = { 612 .qos = { 613 [QOS_RLAT] = 25000, /* 25ms */ 614 [QOS_WLAT] = 25000, 615 [QOS_MIN] = VRATE_MIN_PPM, 616 [QOS_MAX] = VRATE_MAX_PPM, 617 }, 618 .i_lcoefs = { 619 [I_LCOEF_RBPS] = 488636629, 620 [I_LCOEF_RSEQIOPS] = 8932, 621 [I_LCOEF_RRANDIOPS] = 8518, 622 [I_LCOEF_WBPS] = 427891549, 623 [I_LCOEF_WSEQIOPS] = 28755, 624 [I_LCOEF_WRANDIOPS] = 21940, 625 }, 626 .too_fast_vrate_pct = 500, 627 }, 628 [AUTOP_SSD_FAST] = { 629 .qos = { 630 [QOS_RLAT] = 5000, /* 5ms */ 631 [QOS_WLAT] = 5000, 632 [QOS_MIN] = VRATE_MIN_PPM, 633 [QOS_MAX] = VRATE_MAX_PPM, 634 }, 635 .i_lcoefs = { 636 [I_LCOEF_RBPS] = 3102524156LLU, 637 [I_LCOEF_RSEQIOPS] = 724816, 638 [I_LCOEF_RRANDIOPS] = 778122, 639 [I_LCOEF_WBPS] = 1742780862LLU, 640 [I_LCOEF_WSEQIOPS] = 425702, 641 [I_LCOEF_WRANDIOPS] = 443193, 642 }, 643 .too_slow_vrate_pct = 10, 644 }, 645 }; 646 647 /* 648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 649 * vtime credit shortage and down on device saturation. 650 */ 651 static u32 vrate_adj_pct[] = 652 { 0, 0, 0, 0, 653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 656 657 static struct blkcg_policy blkcg_policy_iocost; 658 659 /* accessors and helpers */ 660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 661 { 662 return container_of(rqos, struct ioc, rqos); 663 } 664 665 static struct ioc *q_to_ioc(struct request_queue *q) 666 { 667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 668 } 669 670 static const char __maybe_unused *ioc_name(struct ioc *ioc) 671 { 672 struct gendisk *disk = ioc->rqos.disk; 673 674 if (!disk) 675 return "<unknown>"; 676 return disk->disk_name; 677 } 678 679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 680 { 681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 682 } 683 684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 685 { 686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 687 } 688 689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 690 { 691 return pd_to_blkg(&iocg->pd); 692 } 693 694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 695 { 696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 697 struct ioc_cgrp, cpd); 698 } 699 700 /* 701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 702 * weight, the more expensive each IO. Must round up. 703 */ 704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 705 { 706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 707 } 708 709 /* 710 * The inverse of abs_cost_to_cost(). Must round up. 711 */ 712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 713 { 714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 715 } 716 717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 718 u64 abs_cost, u64 cost) 719 { 720 struct iocg_pcpu_stat *gcs; 721 722 bio->bi_iocost_cost = cost; 723 atomic64_add(cost, &iocg->vtime); 724 725 gcs = get_cpu_ptr(iocg->pcpu_stat); 726 local64_add(abs_cost, &gcs->abs_vusage); 727 put_cpu_ptr(gcs); 728 } 729 730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 731 { 732 if (lock_ioc) { 733 spin_lock_irqsave(&iocg->ioc->lock, *flags); 734 spin_lock(&iocg->waitq.lock); 735 } else { 736 spin_lock_irqsave(&iocg->waitq.lock, *flags); 737 } 738 } 739 740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 741 { 742 if (unlock_ioc) { 743 spin_unlock(&iocg->waitq.lock); 744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 745 } else { 746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 747 } 748 } 749 750 #define CREATE_TRACE_POINTS 751 #include <trace/events/iocost.h> 752 753 static void ioc_refresh_margins(struct ioc *ioc) 754 { 755 struct ioc_margins *margins = &ioc->margins; 756 u32 period_us = ioc->period_us; 757 u64 vrate = ioc->vtime_base_rate; 758 759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 762 } 763 764 /* latency Qos params changed, update period_us and all the dependent params */ 765 static void ioc_refresh_period_us(struct ioc *ioc) 766 { 767 u32 ppm, lat, multi, period_us; 768 769 lockdep_assert_held(&ioc->lock); 770 771 /* pick the higher latency target */ 772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 773 ppm = ioc->params.qos[QOS_RPPM]; 774 lat = ioc->params.qos[QOS_RLAT]; 775 } else { 776 ppm = ioc->params.qos[QOS_WPPM]; 777 lat = ioc->params.qos[QOS_WLAT]; 778 } 779 780 /* 781 * We want the period to be long enough to contain a healthy number 782 * of IOs while short enough for granular control. Define it as a 783 * multiple of the latency target. Ideally, the multiplier should 784 * be scaled according to the percentile so that it would nominally 785 * contain a certain number of requests. Let's be simpler and 786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 787 */ 788 if (ppm) 789 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 790 else 791 multi = 2; 792 period_us = multi * lat; 793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 794 795 /* calculate dependent params */ 796 ioc->period_us = period_us; 797 ioc->timer_slack_ns = div64_u64( 798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 799 100); 800 ioc_refresh_margins(ioc); 801 } 802 803 /* 804 * ioc->rqos.disk isn't initialized when this function is called from 805 * the init path. 806 */ 807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk) 808 { 809 int idx = ioc->autop_idx; 810 const struct ioc_params *p = &autop[idx]; 811 u32 vrate_pct; 812 u64 now_ns; 813 814 /* rotational? */ 815 if (!blk_queue_nonrot(disk->queue)) 816 return AUTOP_HDD; 817 818 /* handle SATA SSDs w/ broken NCQ */ 819 if (blk_queue_depth(disk->queue) == 1) 820 return AUTOP_SSD_QD1; 821 822 /* use one of the normal ssd sets */ 823 if (idx < AUTOP_SSD_DFL) 824 return AUTOP_SSD_DFL; 825 826 /* if user is overriding anything, maintain what was there */ 827 if (ioc->user_qos_params || ioc->user_cost_model) 828 return idx; 829 830 /* step up/down based on the vrate */ 831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 832 now_ns = ktime_get_ns(); 833 834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 835 if (!ioc->autop_too_fast_at) 836 ioc->autop_too_fast_at = now_ns; 837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 838 return idx + 1; 839 } else { 840 ioc->autop_too_fast_at = 0; 841 } 842 843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 844 if (!ioc->autop_too_slow_at) 845 ioc->autop_too_slow_at = now_ns; 846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 847 return idx - 1; 848 } else { 849 ioc->autop_too_slow_at = 0; 850 } 851 852 return idx; 853 } 854 855 /* 856 * Take the followings as input 857 * 858 * @bps maximum sequential throughput 859 * @seqiops maximum sequential 4k iops 860 * @randiops maximum random 4k iops 861 * 862 * and calculate the linear model cost coefficients. 863 * 864 * *@page per-page cost 1s / (@bps / 4096) 865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 867 */ 868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 869 u64 *page, u64 *seqio, u64 *randio) 870 { 871 u64 v; 872 873 *page = *seqio = *randio = 0; 874 875 if (bps) { 876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); 877 878 if (bps_pages) 879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); 880 else 881 *page = 1; 882 } 883 884 if (seqiops) { 885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 886 if (v > *page) 887 *seqio = v - *page; 888 } 889 890 if (randiops) { 891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 892 if (v > *page) 893 *randio = v - *page; 894 } 895 } 896 897 static void ioc_refresh_lcoefs(struct ioc *ioc) 898 { 899 u64 *u = ioc->params.i_lcoefs; 900 u64 *c = ioc->params.lcoefs; 901 902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 906 } 907 908 /* 909 * struct gendisk is required as an argument because ioc->rqos.disk 910 * is not properly initialized when called from the init path. 911 */ 912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force, 913 struct gendisk *disk) 914 { 915 const struct ioc_params *p; 916 int idx; 917 918 lockdep_assert_held(&ioc->lock); 919 920 idx = ioc_autop_idx(ioc, disk); 921 p = &autop[idx]; 922 923 if (idx == ioc->autop_idx && !force) 924 return false; 925 926 if (idx != ioc->autop_idx) { 927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 928 ioc->vtime_base_rate = VTIME_PER_USEC; 929 } 930 931 ioc->autop_idx = idx; 932 ioc->autop_too_fast_at = 0; 933 ioc->autop_too_slow_at = 0; 934 935 if (!ioc->user_qos_params) 936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 937 if (!ioc->user_cost_model) 938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 939 940 ioc_refresh_period_us(ioc); 941 ioc_refresh_lcoefs(ioc); 942 943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 944 VTIME_PER_USEC, MILLION); 945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] * 946 VTIME_PER_USEC, MILLION); 947 948 return true; 949 } 950 951 static bool ioc_refresh_params(struct ioc *ioc, bool force) 952 { 953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk); 954 } 955 956 /* 957 * When an iocg accumulates too much vtime or gets deactivated, we throw away 958 * some vtime, which lowers the overall device utilization. As the exact amount 959 * which is being thrown away is known, we can compensate by accelerating the 960 * vrate accordingly so that the extra vtime generated in the current period 961 * matches what got lost. 962 */ 963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 964 { 965 s64 pleft = ioc->period_at + ioc->period_us - now->now; 966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 967 s64 vcomp, vcomp_min, vcomp_max; 968 969 lockdep_assert_held(&ioc->lock); 970 971 /* we need some time left in this period */ 972 if (pleft <= 0) 973 goto done; 974 975 /* 976 * Calculate how much vrate should be adjusted to offset the error. 977 * Limit the amount of adjustment and deduct the adjusted amount from 978 * the error. 979 */ 980 vcomp = -div64_s64(ioc->vtime_err, pleft); 981 vcomp_min = -(ioc->vtime_base_rate >> 1); 982 vcomp_max = ioc->vtime_base_rate; 983 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 984 985 ioc->vtime_err += vcomp * pleft; 986 987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 988 done: 989 /* bound how much error can accumulate */ 990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 991 } 992 993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 994 int nr_lagging, int nr_shortages, 995 int prev_busy_level, u32 *missed_ppm) 996 { 997 u64 vrate = ioc->vtime_base_rate; 998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 999 1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 1001 if (ioc->busy_level != prev_busy_level || nr_lagging) 1002 trace_iocost_ioc_vrate_adj(ioc, vrate, 1003 missed_ppm, rq_wait_pct, 1004 nr_lagging, nr_shortages); 1005 1006 return; 1007 } 1008 1009 /* 1010 * If vrate is out of bounds, apply clamp gradually as the 1011 * bounds can change abruptly. Otherwise, apply busy_level 1012 * based adjustment. 1013 */ 1014 if (vrate < vrate_min) { 1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 1016 vrate = min(vrate, vrate_min); 1017 } else if (vrate > vrate_max) { 1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1019 vrate = max(vrate, vrate_max); 1020 } else { 1021 int idx = min_t(int, abs(ioc->busy_level), 1022 ARRAY_SIZE(vrate_adj_pct) - 1); 1023 u32 adj_pct = vrate_adj_pct[idx]; 1024 1025 if (ioc->busy_level > 0) 1026 adj_pct = 100 - adj_pct; 1027 else 1028 adj_pct = 100 + adj_pct; 1029 1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1031 vrate_min, vrate_max); 1032 } 1033 1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1035 nr_lagging, nr_shortages); 1036 1037 ioc->vtime_base_rate = vrate; 1038 ioc_refresh_margins(ioc); 1039 } 1040 1041 /* take a snapshot of the current [v]time and vrate */ 1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1043 { 1044 unsigned seq; 1045 u64 vrate; 1046 1047 now->now_ns = ktime_get(); 1048 now->now = ktime_to_us(now->now_ns); 1049 vrate = atomic64_read(&ioc->vtime_rate); 1050 1051 /* 1052 * The current vtime is 1053 * 1054 * vtime at period start + (wallclock time since the start) * vrate 1055 * 1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1057 * needed, they're seqcount protected. 1058 */ 1059 do { 1060 seq = read_seqcount_begin(&ioc->period_seqcount); 1061 now->vnow = ioc->period_at_vtime + 1062 (now->now - ioc->period_at) * vrate; 1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1064 } 1065 1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1067 { 1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1069 1070 write_seqcount_begin(&ioc->period_seqcount); 1071 ioc->period_at = now->now; 1072 ioc->period_at_vtime = now->vnow; 1073 write_seqcount_end(&ioc->period_seqcount); 1074 1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1076 add_timer(&ioc->timer); 1077 } 1078 1079 /* 1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1081 * weight sums and propagate upwards accordingly. If @save, the current margin 1082 * is saved to be used as reference for later inuse in-period adjustments. 1083 */ 1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1085 bool save, struct ioc_now *now) 1086 { 1087 struct ioc *ioc = iocg->ioc; 1088 int lvl; 1089 1090 lockdep_assert_held(&ioc->lock); 1091 1092 /* 1093 * For an active leaf node, its inuse shouldn't be zero or exceed 1094 * @active. An active internal node's inuse is solely determined by the 1095 * inuse to active ratio of its children regardless of @inuse. 1096 */ 1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1099 iocg->child_active_sum); 1100 } else { 1101 inuse = clamp_t(u32, inuse, 1, active); 1102 } 1103 1104 iocg->last_inuse = iocg->inuse; 1105 if (save) 1106 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1107 1108 if (active == iocg->active && inuse == iocg->inuse) 1109 return; 1110 1111 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1112 struct ioc_gq *parent = iocg->ancestors[lvl]; 1113 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1114 u32 parent_active = 0, parent_inuse = 0; 1115 1116 /* update the level sums */ 1117 parent->child_active_sum += (s32)(active - child->active); 1118 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1119 /* apply the updates */ 1120 child->active = active; 1121 child->inuse = inuse; 1122 1123 /* 1124 * The delta between inuse and active sums indicates that 1125 * much of weight is being given away. Parent's inuse 1126 * and active should reflect the ratio. 1127 */ 1128 if (parent->child_active_sum) { 1129 parent_active = parent->weight; 1130 parent_inuse = DIV64_U64_ROUND_UP( 1131 parent_active * parent->child_inuse_sum, 1132 parent->child_active_sum); 1133 } 1134 1135 /* do we need to keep walking up? */ 1136 if (parent_active == parent->active && 1137 parent_inuse == parent->inuse) 1138 break; 1139 1140 active = parent_active; 1141 inuse = parent_inuse; 1142 } 1143 1144 ioc->weights_updated = true; 1145 } 1146 1147 static void commit_weights(struct ioc *ioc) 1148 { 1149 lockdep_assert_held(&ioc->lock); 1150 1151 if (ioc->weights_updated) { 1152 /* paired with rmb in current_hweight(), see there */ 1153 smp_wmb(); 1154 atomic_inc(&ioc->hweight_gen); 1155 ioc->weights_updated = false; 1156 } 1157 } 1158 1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1160 bool save, struct ioc_now *now) 1161 { 1162 __propagate_weights(iocg, active, inuse, save, now); 1163 commit_weights(iocg->ioc); 1164 } 1165 1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1167 { 1168 struct ioc *ioc = iocg->ioc; 1169 int lvl; 1170 u32 hwa, hwi; 1171 int ioc_gen; 1172 1173 /* hot path - if uptodate, use cached */ 1174 ioc_gen = atomic_read(&ioc->hweight_gen); 1175 if (ioc_gen == iocg->hweight_gen) 1176 goto out; 1177 1178 /* 1179 * Paired with wmb in commit_weights(). If we saw the updated 1180 * hweight_gen, all the weight updates from __propagate_weights() are 1181 * visible too. 1182 * 1183 * We can race with weight updates during calculation and get it 1184 * wrong. However, hweight_gen would have changed and a future 1185 * reader will recalculate and we're guaranteed to discard the 1186 * wrong result soon. 1187 */ 1188 smp_rmb(); 1189 1190 hwa = hwi = WEIGHT_ONE; 1191 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1192 struct ioc_gq *parent = iocg->ancestors[lvl]; 1193 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1194 u64 active_sum = READ_ONCE(parent->child_active_sum); 1195 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1196 u32 active = READ_ONCE(child->active); 1197 u32 inuse = READ_ONCE(child->inuse); 1198 1199 /* we can race with deactivations and either may read as zero */ 1200 if (!active_sum || !inuse_sum) 1201 continue; 1202 1203 active_sum = max_t(u64, active, active_sum); 1204 hwa = div64_u64((u64)hwa * active, active_sum); 1205 1206 inuse_sum = max_t(u64, inuse, inuse_sum); 1207 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1208 } 1209 1210 iocg->hweight_active = max_t(u32, hwa, 1); 1211 iocg->hweight_inuse = max_t(u32, hwi, 1); 1212 iocg->hweight_gen = ioc_gen; 1213 out: 1214 if (hw_activep) 1215 *hw_activep = iocg->hweight_active; 1216 if (hw_inusep) 1217 *hw_inusep = iocg->hweight_inuse; 1218 } 1219 1220 /* 1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1222 * other weights stay unchanged. 1223 */ 1224 static u32 current_hweight_max(struct ioc_gq *iocg) 1225 { 1226 u32 hwm = WEIGHT_ONE; 1227 u32 inuse = iocg->active; 1228 u64 child_inuse_sum; 1229 int lvl; 1230 1231 lockdep_assert_held(&iocg->ioc->lock); 1232 1233 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1234 struct ioc_gq *parent = iocg->ancestors[lvl]; 1235 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1236 1237 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1238 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1239 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1240 parent->child_active_sum); 1241 } 1242 1243 return max_t(u32, hwm, 1); 1244 } 1245 1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1247 { 1248 struct ioc *ioc = iocg->ioc; 1249 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1250 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1251 u32 weight; 1252 1253 lockdep_assert_held(&ioc->lock); 1254 1255 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1256 if (weight != iocg->weight && iocg->active) 1257 propagate_weights(iocg, weight, iocg->inuse, true, now); 1258 iocg->weight = weight; 1259 } 1260 1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1262 { 1263 struct ioc *ioc = iocg->ioc; 1264 u64 last_period, cur_period; 1265 u64 vtime, vtarget; 1266 int i; 1267 1268 /* 1269 * If seem to be already active, just update the stamp to tell the 1270 * timer that we're still active. We don't mind occassional races. 1271 */ 1272 if (!list_empty(&iocg->active_list)) { 1273 ioc_now(ioc, now); 1274 cur_period = atomic64_read(&ioc->cur_period); 1275 if (atomic64_read(&iocg->active_period) != cur_period) 1276 atomic64_set(&iocg->active_period, cur_period); 1277 return true; 1278 } 1279 1280 /* racy check on internal node IOs, treat as root level IOs */ 1281 if (iocg->child_active_sum) 1282 return false; 1283 1284 spin_lock_irq(&ioc->lock); 1285 1286 ioc_now(ioc, now); 1287 1288 /* update period */ 1289 cur_period = atomic64_read(&ioc->cur_period); 1290 last_period = atomic64_read(&iocg->active_period); 1291 atomic64_set(&iocg->active_period, cur_period); 1292 1293 /* already activated or breaking leaf-only constraint? */ 1294 if (!list_empty(&iocg->active_list)) 1295 goto succeed_unlock; 1296 for (i = iocg->level - 1; i > 0; i--) 1297 if (!list_empty(&iocg->ancestors[i]->active_list)) 1298 goto fail_unlock; 1299 1300 if (iocg->child_active_sum) 1301 goto fail_unlock; 1302 1303 /* 1304 * Always start with the target budget. On deactivation, we throw away 1305 * anything above it. 1306 */ 1307 vtarget = now->vnow - ioc->margins.target; 1308 vtime = atomic64_read(&iocg->vtime); 1309 1310 atomic64_add(vtarget - vtime, &iocg->vtime); 1311 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1312 vtime = vtarget; 1313 1314 /* 1315 * Activate, propagate weight and start period timer if not 1316 * running. Reset hweight_gen to avoid accidental match from 1317 * wrapping. 1318 */ 1319 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1320 list_add(&iocg->active_list, &ioc->active_iocgs); 1321 1322 propagate_weights(iocg, iocg->weight, 1323 iocg->last_inuse ?: iocg->weight, true, now); 1324 1325 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1326 last_period, cur_period, vtime); 1327 1328 iocg->activated_at = now->now; 1329 1330 if (ioc->running == IOC_IDLE) { 1331 ioc->running = IOC_RUNNING; 1332 ioc->dfgv_period_at = now->now; 1333 ioc->dfgv_period_rem = 0; 1334 ioc_start_period(ioc, now); 1335 } 1336 1337 succeed_unlock: 1338 spin_unlock_irq(&ioc->lock); 1339 return true; 1340 1341 fail_unlock: 1342 spin_unlock_irq(&ioc->lock); 1343 return false; 1344 } 1345 1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1347 { 1348 struct ioc *ioc = iocg->ioc; 1349 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1350 u64 tdelta, delay, new_delay; 1351 s64 vover, vover_pct; 1352 u32 hwa; 1353 1354 lockdep_assert_held(&iocg->waitq.lock); 1355 1356 /* calculate the current delay in effect - 1/2 every second */ 1357 tdelta = now->now - iocg->delay_at; 1358 if (iocg->delay) 1359 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1360 else 1361 delay = 0; 1362 1363 /* calculate the new delay from the debt amount */ 1364 current_hweight(iocg, &hwa, NULL); 1365 vover = atomic64_read(&iocg->vtime) + 1366 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1367 vover_pct = div64_s64(100 * vover, 1368 ioc->period_us * ioc->vtime_base_rate); 1369 1370 if (vover_pct <= MIN_DELAY_THR_PCT) 1371 new_delay = 0; 1372 else if (vover_pct >= MAX_DELAY_THR_PCT) 1373 new_delay = MAX_DELAY; 1374 else 1375 new_delay = MIN_DELAY + 1376 div_u64((MAX_DELAY - MIN_DELAY) * 1377 (vover_pct - MIN_DELAY_THR_PCT), 1378 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1379 1380 /* pick the higher one and apply */ 1381 if (new_delay > delay) { 1382 iocg->delay = new_delay; 1383 iocg->delay_at = now->now; 1384 delay = new_delay; 1385 } 1386 1387 if (delay >= MIN_DELAY) { 1388 if (!iocg->indelay_since) 1389 iocg->indelay_since = now->now; 1390 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1391 return true; 1392 } else { 1393 if (iocg->indelay_since) { 1394 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1395 iocg->indelay_since = 0; 1396 } 1397 iocg->delay = 0; 1398 blkcg_clear_delay(blkg); 1399 return false; 1400 } 1401 } 1402 1403 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1404 struct ioc_now *now) 1405 { 1406 struct iocg_pcpu_stat *gcs; 1407 1408 lockdep_assert_held(&iocg->ioc->lock); 1409 lockdep_assert_held(&iocg->waitq.lock); 1410 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1411 1412 /* 1413 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1414 * inuse donating all of it share to others until its debt is paid off. 1415 */ 1416 if (!iocg->abs_vdebt && abs_cost) { 1417 iocg->indebt_since = now->now; 1418 propagate_weights(iocg, iocg->active, 0, false, now); 1419 } 1420 1421 iocg->abs_vdebt += abs_cost; 1422 1423 gcs = get_cpu_ptr(iocg->pcpu_stat); 1424 local64_add(abs_cost, &gcs->abs_vusage); 1425 put_cpu_ptr(gcs); 1426 } 1427 1428 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1429 struct ioc_now *now) 1430 { 1431 lockdep_assert_held(&iocg->ioc->lock); 1432 lockdep_assert_held(&iocg->waitq.lock); 1433 1434 /* make sure that nobody messed with @iocg */ 1435 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1436 WARN_ON_ONCE(iocg->inuse > 1); 1437 1438 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1439 1440 /* if debt is paid in full, restore inuse */ 1441 if (!iocg->abs_vdebt) { 1442 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1443 iocg->indebt_since = 0; 1444 1445 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1446 false, now); 1447 } 1448 } 1449 1450 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1451 int flags, void *key) 1452 { 1453 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1454 struct iocg_wake_ctx *ctx = key; 1455 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1456 1457 ctx->vbudget -= cost; 1458 1459 if (ctx->vbudget < 0) 1460 return -1; 1461 1462 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1463 wait->committed = true; 1464 1465 /* 1466 * autoremove_wake_function() removes the wait entry only when it 1467 * actually changed the task state. We want the wait always removed. 1468 * Remove explicitly and use default_wake_function(). Note that the 1469 * order of operations is important as finish_wait() tests whether 1470 * @wq_entry is removed without grabbing the lock. 1471 */ 1472 default_wake_function(wq_entry, mode, flags, key); 1473 list_del_init_careful(&wq_entry->entry); 1474 return 0; 1475 } 1476 1477 /* 1478 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1479 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1480 * addition to iocg->waitq.lock. 1481 */ 1482 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1483 struct ioc_now *now) 1484 { 1485 struct ioc *ioc = iocg->ioc; 1486 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1487 u64 vshortage, expires, oexpires; 1488 s64 vbudget; 1489 u32 hwa; 1490 1491 lockdep_assert_held(&iocg->waitq.lock); 1492 1493 current_hweight(iocg, &hwa, NULL); 1494 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1495 1496 /* pay off debt */ 1497 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1498 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1499 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1500 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1501 1502 lockdep_assert_held(&ioc->lock); 1503 1504 atomic64_add(vpay, &iocg->vtime); 1505 atomic64_add(vpay, &iocg->done_vtime); 1506 iocg_pay_debt(iocg, abs_vpay, now); 1507 vbudget -= vpay; 1508 } 1509 1510 if (iocg->abs_vdebt || iocg->delay) 1511 iocg_kick_delay(iocg, now); 1512 1513 /* 1514 * Debt can still be outstanding if we haven't paid all yet or the 1515 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1516 * under debt. Make sure @vbudget reflects the outstanding amount and is 1517 * not positive. 1518 */ 1519 if (iocg->abs_vdebt) { 1520 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1521 vbudget = min_t(s64, 0, vbudget - vdebt); 1522 } 1523 1524 /* 1525 * Wake up the ones which are due and see how much vtime we'll need for 1526 * the next one. As paying off debt restores hw_inuse, it must be read 1527 * after the above debt payment. 1528 */ 1529 ctx.vbudget = vbudget; 1530 current_hweight(iocg, NULL, &ctx.hw_inuse); 1531 1532 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1533 1534 if (!waitqueue_active(&iocg->waitq)) { 1535 if (iocg->wait_since) { 1536 iocg->stat.wait_us += now->now - iocg->wait_since; 1537 iocg->wait_since = 0; 1538 } 1539 return; 1540 } 1541 1542 if (!iocg->wait_since) 1543 iocg->wait_since = now->now; 1544 1545 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1546 return; 1547 1548 /* determine next wakeup, add a timer margin to guarantee chunking */ 1549 vshortage = -ctx.vbudget; 1550 expires = now->now_ns + 1551 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1552 NSEC_PER_USEC; 1553 expires += ioc->timer_slack_ns; 1554 1555 /* if already active and close enough, don't bother */ 1556 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1557 if (hrtimer_is_queued(&iocg->waitq_timer) && 1558 abs(oexpires - expires) <= ioc->timer_slack_ns) 1559 return; 1560 1561 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1562 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1563 } 1564 1565 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1566 { 1567 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1568 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1569 struct ioc_now now; 1570 unsigned long flags; 1571 1572 ioc_now(iocg->ioc, &now); 1573 1574 iocg_lock(iocg, pay_debt, &flags); 1575 iocg_kick_waitq(iocg, pay_debt, &now); 1576 iocg_unlock(iocg, pay_debt, &flags); 1577 1578 return HRTIMER_NORESTART; 1579 } 1580 1581 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1582 { 1583 u32 nr_met[2] = { }; 1584 u32 nr_missed[2] = { }; 1585 u64 rq_wait_ns = 0; 1586 int cpu, rw; 1587 1588 for_each_online_cpu(cpu) { 1589 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1590 u64 this_rq_wait_ns; 1591 1592 for (rw = READ; rw <= WRITE; rw++) { 1593 u32 this_met = local_read(&stat->missed[rw].nr_met); 1594 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1595 1596 nr_met[rw] += this_met - stat->missed[rw].last_met; 1597 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1598 stat->missed[rw].last_met = this_met; 1599 stat->missed[rw].last_missed = this_missed; 1600 } 1601 1602 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1603 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1604 stat->last_rq_wait_ns = this_rq_wait_ns; 1605 } 1606 1607 for (rw = READ; rw <= WRITE; rw++) { 1608 if (nr_met[rw] + nr_missed[rw]) 1609 missed_ppm_ar[rw] = 1610 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1611 nr_met[rw] + nr_missed[rw]); 1612 else 1613 missed_ppm_ar[rw] = 0; 1614 } 1615 1616 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1617 ioc->period_us * NSEC_PER_USEC); 1618 } 1619 1620 /* was iocg idle this period? */ 1621 static bool iocg_is_idle(struct ioc_gq *iocg) 1622 { 1623 struct ioc *ioc = iocg->ioc; 1624 1625 /* did something get issued this period? */ 1626 if (atomic64_read(&iocg->active_period) == 1627 atomic64_read(&ioc->cur_period)) 1628 return false; 1629 1630 /* is something in flight? */ 1631 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1632 return false; 1633 1634 return true; 1635 } 1636 1637 /* 1638 * Call this function on the target leaf @iocg's to build pre-order traversal 1639 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1640 * ->walk_list and the caller is responsible for dissolving the list after use. 1641 */ 1642 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1643 struct list_head *inner_walk) 1644 { 1645 int lvl; 1646 1647 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1648 1649 /* find the first ancestor which hasn't been visited yet */ 1650 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1651 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1652 break; 1653 } 1654 1655 /* walk down and visit the inner nodes to get pre-order traversal */ 1656 while (++lvl <= iocg->level - 1) { 1657 struct ioc_gq *inner = iocg->ancestors[lvl]; 1658 1659 /* record traversal order */ 1660 list_add_tail(&inner->walk_list, inner_walk); 1661 } 1662 } 1663 1664 /* propagate the deltas to the parent */ 1665 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1666 { 1667 if (iocg->level > 0) { 1668 struct iocg_stat *parent_stat = 1669 &iocg->ancestors[iocg->level - 1]->stat; 1670 1671 parent_stat->usage_us += 1672 iocg->stat.usage_us - iocg->last_stat.usage_us; 1673 parent_stat->wait_us += 1674 iocg->stat.wait_us - iocg->last_stat.wait_us; 1675 parent_stat->indebt_us += 1676 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1677 parent_stat->indelay_us += 1678 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1679 } 1680 1681 iocg->last_stat = iocg->stat; 1682 } 1683 1684 /* collect per-cpu counters and propagate the deltas to the parent */ 1685 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1686 { 1687 struct ioc *ioc = iocg->ioc; 1688 u64 abs_vusage = 0; 1689 u64 vusage_delta; 1690 int cpu; 1691 1692 lockdep_assert_held(&iocg->ioc->lock); 1693 1694 /* collect per-cpu counters */ 1695 for_each_possible_cpu(cpu) { 1696 abs_vusage += local64_read( 1697 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1698 } 1699 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1700 iocg->last_stat_abs_vusage = abs_vusage; 1701 1702 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1703 iocg->stat.usage_us += iocg->usage_delta_us; 1704 1705 iocg_flush_stat_upward(iocg); 1706 } 1707 1708 /* get stat counters ready for reading on all active iocgs */ 1709 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1710 { 1711 LIST_HEAD(inner_walk); 1712 struct ioc_gq *iocg, *tiocg; 1713 1714 /* flush leaves and build inner node walk list */ 1715 list_for_each_entry(iocg, target_iocgs, active_list) { 1716 iocg_flush_stat_leaf(iocg, now); 1717 iocg_build_inner_walk(iocg, &inner_walk); 1718 } 1719 1720 /* keep flushing upwards by walking the inner list backwards */ 1721 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1722 iocg_flush_stat_upward(iocg); 1723 list_del_init(&iocg->walk_list); 1724 } 1725 } 1726 1727 /* 1728 * Determine what @iocg's hweight_inuse should be after donating unused 1729 * capacity. @hwm is the upper bound and used to signal no donation. This 1730 * function also throws away @iocg's excess budget. 1731 */ 1732 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1733 u32 usage, struct ioc_now *now) 1734 { 1735 struct ioc *ioc = iocg->ioc; 1736 u64 vtime = atomic64_read(&iocg->vtime); 1737 s64 excess, delta, target, new_hwi; 1738 1739 /* debt handling owns inuse for debtors */ 1740 if (iocg->abs_vdebt) 1741 return 1; 1742 1743 /* see whether minimum margin requirement is met */ 1744 if (waitqueue_active(&iocg->waitq) || 1745 time_after64(vtime, now->vnow - ioc->margins.min)) 1746 return hwm; 1747 1748 /* throw away excess above target */ 1749 excess = now->vnow - vtime - ioc->margins.target; 1750 if (excess > 0) { 1751 atomic64_add(excess, &iocg->vtime); 1752 atomic64_add(excess, &iocg->done_vtime); 1753 vtime += excess; 1754 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1755 } 1756 1757 /* 1758 * Let's say the distance between iocg's and device's vtimes as a 1759 * fraction of period duration is delta. Assuming that the iocg will 1760 * consume the usage determined above, we want to determine new_hwi so 1761 * that delta equals MARGIN_TARGET at the end of the next period. 1762 * 1763 * We need to execute usage worth of IOs while spending the sum of the 1764 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1765 * (delta): 1766 * 1767 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1768 * 1769 * Therefore, the new_hwi is: 1770 * 1771 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1772 */ 1773 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1774 now->vnow - ioc->period_at_vtime); 1775 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1776 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1777 1778 return clamp_t(s64, new_hwi, 1, hwm); 1779 } 1780 1781 /* 1782 * For work-conservation, an iocg which isn't using all of its share should 1783 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1784 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1785 * 1786 * #1 is mathematically simpler but has the drawback of requiring synchronous 1787 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1788 * change due to donation snapbacks as it has the possibility of grossly 1789 * overshooting what's allowed by the model and vrate. 1790 * 1791 * #2 is inherently safe with local operations. The donating iocg can easily 1792 * snap back to higher weights when needed without worrying about impacts on 1793 * other nodes as the impacts will be inherently correct. This also makes idle 1794 * iocg activations safe. The only effect activations have is decreasing 1795 * hweight_inuse of others, the right solution to which is for those iocgs to 1796 * snap back to higher weights. 1797 * 1798 * So, we go with #2. The challenge is calculating how each donating iocg's 1799 * inuse should be adjusted to achieve the target donation amounts. This is done 1800 * using Andy's method described in the following pdf. 1801 * 1802 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1803 * 1804 * Given the weights and target after-donation hweight_inuse values, Andy's 1805 * method determines how the proportional distribution should look like at each 1806 * sibling level to maintain the relative relationship between all non-donating 1807 * pairs. To roughly summarize, it divides the tree into donating and 1808 * non-donating parts, calculates global donation rate which is used to 1809 * determine the target hweight_inuse for each node, and then derives per-level 1810 * proportions. 1811 * 1812 * The following pdf shows that global distribution calculated this way can be 1813 * achieved by scaling inuse weights of donating leaves and propagating the 1814 * adjustments upwards proportionally. 1815 * 1816 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1817 * 1818 * Combining the above two, we can determine how each leaf iocg's inuse should 1819 * be adjusted to achieve the target donation. 1820 * 1821 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1822 * 1823 * The inline comments use symbols from the last pdf. 1824 * 1825 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1826 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1827 * t is the sum of the absolute budgets of donating nodes in the subtree. 1828 * w is the weight of the node. w = w_f + w_t 1829 * w_f is the non-donating portion of w. w_f = w * f / b 1830 * w_b is the donating portion of w. w_t = w * t / b 1831 * s is the sum of all sibling weights. s = Sum(w) for siblings 1832 * s_f and s_t are the non-donating and donating portions of s. 1833 * 1834 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1835 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1836 * after adjustments. Subscript r denotes the root node's values. 1837 */ 1838 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1839 { 1840 LIST_HEAD(over_hwa); 1841 LIST_HEAD(inner_walk); 1842 struct ioc_gq *iocg, *tiocg, *root_iocg; 1843 u32 after_sum, over_sum, over_target, gamma; 1844 1845 /* 1846 * It's pretty unlikely but possible for the total sum of 1847 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1848 * confuse the following calculations. If such condition is detected, 1849 * scale down everyone over its full share equally to keep the sum below 1850 * WEIGHT_ONE. 1851 */ 1852 after_sum = 0; 1853 over_sum = 0; 1854 list_for_each_entry(iocg, surpluses, surplus_list) { 1855 u32 hwa; 1856 1857 current_hweight(iocg, &hwa, NULL); 1858 after_sum += iocg->hweight_after_donation; 1859 1860 if (iocg->hweight_after_donation > hwa) { 1861 over_sum += iocg->hweight_after_donation; 1862 list_add(&iocg->walk_list, &over_hwa); 1863 } 1864 } 1865 1866 if (after_sum >= WEIGHT_ONE) { 1867 /* 1868 * The delta should be deducted from the over_sum, calculate 1869 * target over_sum value. 1870 */ 1871 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1872 WARN_ON_ONCE(over_sum <= over_delta); 1873 over_target = over_sum - over_delta; 1874 } else { 1875 over_target = 0; 1876 } 1877 1878 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1879 if (over_target) 1880 iocg->hweight_after_donation = 1881 div_u64((u64)iocg->hweight_after_donation * 1882 over_target, over_sum); 1883 list_del_init(&iocg->walk_list); 1884 } 1885 1886 /* 1887 * Build pre-order inner node walk list and prepare for donation 1888 * adjustment calculations. 1889 */ 1890 list_for_each_entry(iocg, surpluses, surplus_list) { 1891 iocg_build_inner_walk(iocg, &inner_walk); 1892 } 1893 1894 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1895 WARN_ON_ONCE(root_iocg->level > 0); 1896 1897 list_for_each_entry(iocg, &inner_walk, walk_list) { 1898 iocg->child_adjusted_sum = 0; 1899 iocg->hweight_donating = 0; 1900 iocg->hweight_after_donation = 0; 1901 } 1902 1903 /* 1904 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1905 * up the hierarchy. 1906 */ 1907 list_for_each_entry(iocg, surpluses, surplus_list) { 1908 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1909 1910 parent->hweight_donating += iocg->hweight_donating; 1911 parent->hweight_after_donation += iocg->hweight_after_donation; 1912 } 1913 1914 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1915 if (iocg->level > 0) { 1916 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1917 1918 parent->hweight_donating += iocg->hweight_donating; 1919 parent->hweight_after_donation += iocg->hweight_after_donation; 1920 } 1921 } 1922 1923 /* 1924 * Calculate inner hwa's (b) and make sure the donation values are 1925 * within the accepted ranges as we're doing low res calculations with 1926 * roundups. 1927 */ 1928 list_for_each_entry(iocg, &inner_walk, walk_list) { 1929 if (iocg->level) { 1930 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1931 1932 iocg->hweight_active = DIV64_U64_ROUND_UP( 1933 (u64)parent->hweight_active * iocg->active, 1934 parent->child_active_sum); 1935 1936 } 1937 1938 iocg->hweight_donating = min(iocg->hweight_donating, 1939 iocg->hweight_active); 1940 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1941 iocg->hweight_donating - 1); 1942 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1943 iocg->hweight_donating <= 1 || 1944 iocg->hweight_after_donation == 0)) { 1945 pr_warn("iocg: invalid donation weights in "); 1946 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1947 pr_cont(": active=%u donating=%u after=%u\n", 1948 iocg->hweight_active, iocg->hweight_donating, 1949 iocg->hweight_after_donation); 1950 } 1951 } 1952 1953 /* 1954 * Calculate the global donation rate (gamma) - the rate to adjust 1955 * non-donating budgets by. 1956 * 1957 * No need to use 64bit multiplication here as the first operand is 1958 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1959 * 1960 * We know that there are beneficiary nodes and the sum of the donating 1961 * hweights can't be whole; however, due to the round-ups during hweight 1962 * calculations, root_iocg->hweight_donating might still end up equal to 1963 * or greater than whole. Limit the range when calculating the divider. 1964 * 1965 * gamma = (1 - t_r') / (1 - t_r) 1966 */ 1967 gamma = DIV_ROUND_UP( 1968 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1969 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1970 1971 /* 1972 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1973 * nodes. 1974 */ 1975 list_for_each_entry(iocg, &inner_walk, walk_list) { 1976 struct ioc_gq *parent; 1977 u32 inuse, wpt, wptp; 1978 u64 st, sf; 1979 1980 if (iocg->level == 0) { 1981 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1982 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1983 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1984 WEIGHT_ONE - iocg->hweight_after_donation); 1985 continue; 1986 } 1987 1988 parent = iocg->ancestors[iocg->level - 1]; 1989 1990 /* b' = gamma * b_f + b_t' */ 1991 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1992 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1993 WEIGHT_ONE) + iocg->hweight_after_donation; 1994 1995 /* w' = s' * b' / b'_p */ 1996 inuse = DIV64_U64_ROUND_UP( 1997 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1998 parent->hweight_inuse); 1999 2000 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 2001 st = DIV64_U64_ROUND_UP( 2002 iocg->child_active_sum * iocg->hweight_donating, 2003 iocg->hweight_active); 2004 sf = iocg->child_active_sum - st; 2005 wpt = DIV64_U64_ROUND_UP( 2006 (u64)iocg->active * iocg->hweight_donating, 2007 iocg->hweight_active); 2008 wptp = DIV64_U64_ROUND_UP( 2009 (u64)inuse * iocg->hweight_after_donation, 2010 iocg->hweight_inuse); 2011 2012 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 2013 } 2014 2015 /* 2016 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2017 * we can finally determine leaf adjustments. 2018 */ 2019 list_for_each_entry(iocg, surpluses, surplus_list) { 2020 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2021 u32 inuse; 2022 2023 /* 2024 * In-debt iocgs participated in the donation calculation with 2025 * the minimum target hweight_inuse. Configuring inuse 2026 * accordingly would work fine but debt handling expects 2027 * @iocg->inuse stay at the minimum and we don't wanna 2028 * interfere. 2029 */ 2030 if (iocg->abs_vdebt) { 2031 WARN_ON_ONCE(iocg->inuse > 1); 2032 continue; 2033 } 2034 2035 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2036 inuse = DIV64_U64_ROUND_UP( 2037 parent->child_adjusted_sum * iocg->hweight_after_donation, 2038 parent->hweight_inuse); 2039 2040 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2041 iocg->inuse, inuse, 2042 iocg->hweight_inuse, 2043 iocg->hweight_after_donation); 2044 2045 __propagate_weights(iocg, iocg->active, inuse, true, now); 2046 } 2047 2048 /* walk list should be dissolved after use */ 2049 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2050 list_del_init(&iocg->walk_list); 2051 } 2052 2053 /* 2054 * A low weight iocg can amass a large amount of debt, for example, when 2055 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2056 * memory paired with a slow IO device, the debt can span multiple seconds or 2057 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2058 * up blocked paying its debt while the IO device is idle. 2059 * 2060 * The following protects against such cases. If the device has been 2061 * sufficiently idle for a while, the debts are halved and delays are 2062 * recalculated. 2063 */ 2064 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2065 struct ioc_now *now) 2066 { 2067 struct ioc_gq *iocg; 2068 u64 dur, usage_pct, nr_cycles; 2069 2070 /* if no debtor, reset the cycle */ 2071 if (!nr_debtors) { 2072 ioc->dfgv_period_at = now->now; 2073 ioc->dfgv_period_rem = 0; 2074 ioc->dfgv_usage_us_sum = 0; 2075 return; 2076 } 2077 2078 /* 2079 * Debtors can pass through a lot of writes choking the device and we 2080 * don't want to be forgiving debts while the device is struggling from 2081 * write bursts. If we're missing latency targets, consider the device 2082 * fully utilized. 2083 */ 2084 if (ioc->busy_level > 0) 2085 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2086 2087 ioc->dfgv_usage_us_sum += usage_us_sum; 2088 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2089 return; 2090 2091 /* 2092 * At least DFGV_PERIOD has passed since the last period. Calculate the 2093 * average usage and reset the period counters. 2094 */ 2095 dur = now->now - ioc->dfgv_period_at; 2096 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2097 2098 ioc->dfgv_period_at = now->now; 2099 ioc->dfgv_usage_us_sum = 0; 2100 2101 /* if was too busy, reset everything */ 2102 if (usage_pct > DFGV_USAGE_PCT) { 2103 ioc->dfgv_period_rem = 0; 2104 return; 2105 } 2106 2107 /* 2108 * Usage is lower than threshold. Let's forgive some debts. Debt 2109 * forgiveness runs off of the usual ioc timer but its period usually 2110 * doesn't match ioc's. Compensate the difference by performing the 2111 * reduction as many times as would fit in the duration since the last 2112 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2113 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2114 * reductions is doubled. 2115 */ 2116 nr_cycles = dur + ioc->dfgv_period_rem; 2117 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2118 2119 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2120 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2121 2122 if (!iocg->abs_vdebt && !iocg->delay) 2123 continue; 2124 2125 spin_lock(&iocg->waitq.lock); 2126 2127 old_debt = iocg->abs_vdebt; 2128 old_delay = iocg->delay; 2129 2130 if (iocg->abs_vdebt) 2131 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2132 if (iocg->delay) 2133 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2134 2135 iocg_kick_waitq(iocg, true, now); 2136 2137 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2138 old_debt, iocg->abs_vdebt, 2139 old_delay, iocg->delay); 2140 2141 spin_unlock(&iocg->waitq.lock); 2142 } 2143 } 2144 2145 /* 2146 * Check the active iocgs' state to avoid oversleeping and deactive 2147 * idle iocgs. 2148 * 2149 * Since waiters determine the sleep durations based on the vrate 2150 * they saw at the time of sleep, if vrate has increased, some 2151 * waiters could be sleeping for too long. Wake up tardy waiters 2152 * which should have woken up in the last period and expire idle 2153 * iocgs. 2154 */ 2155 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2156 { 2157 int nr_debtors = 0; 2158 struct ioc_gq *iocg, *tiocg; 2159 2160 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2161 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2162 !iocg->delay && !iocg_is_idle(iocg)) 2163 continue; 2164 2165 spin_lock(&iocg->waitq.lock); 2166 2167 /* flush wait and indebt stat deltas */ 2168 if (iocg->wait_since) { 2169 iocg->stat.wait_us += now->now - iocg->wait_since; 2170 iocg->wait_since = now->now; 2171 } 2172 if (iocg->indebt_since) { 2173 iocg->stat.indebt_us += 2174 now->now - iocg->indebt_since; 2175 iocg->indebt_since = now->now; 2176 } 2177 if (iocg->indelay_since) { 2178 iocg->stat.indelay_us += 2179 now->now - iocg->indelay_since; 2180 iocg->indelay_since = now->now; 2181 } 2182 2183 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2184 iocg->delay) { 2185 /* might be oversleeping vtime / hweight changes, kick */ 2186 iocg_kick_waitq(iocg, true, now); 2187 if (iocg->abs_vdebt || iocg->delay) 2188 nr_debtors++; 2189 } else if (iocg_is_idle(iocg)) { 2190 /* no waiter and idle, deactivate */ 2191 u64 vtime = atomic64_read(&iocg->vtime); 2192 s64 excess; 2193 2194 /* 2195 * @iocg has been inactive for a full duration and will 2196 * have a high budget. Account anything above target as 2197 * error and throw away. On reactivation, it'll start 2198 * with the target budget. 2199 */ 2200 excess = now->vnow - vtime - ioc->margins.target; 2201 if (excess > 0) { 2202 u32 old_hwi; 2203 2204 current_hweight(iocg, NULL, &old_hwi); 2205 ioc->vtime_err -= div64_u64(excess * old_hwi, 2206 WEIGHT_ONE); 2207 } 2208 2209 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2210 atomic64_read(&iocg->active_period), 2211 atomic64_read(&ioc->cur_period), vtime); 2212 __propagate_weights(iocg, 0, 0, false, now); 2213 list_del_init(&iocg->active_list); 2214 } 2215 2216 spin_unlock(&iocg->waitq.lock); 2217 } 2218 2219 commit_weights(ioc); 2220 return nr_debtors; 2221 } 2222 2223 static void ioc_timer_fn(struct timer_list *timer) 2224 { 2225 struct ioc *ioc = container_of(timer, struct ioc, timer); 2226 struct ioc_gq *iocg, *tiocg; 2227 struct ioc_now now; 2228 LIST_HEAD(surpluses); 2229 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2230 u64 usage_us_sum = 0; 2231 u32 ppm_rthr; 2232 u32 ppm_wthr; 2233 u32 missed_ppm[2], rq_wait_pct; 2234 u64 period_vtime; 2235 int prev_busy_level; 2236 2237 /* how were the latencies during the period? */ 2238 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2239 2240 /* take care of active iocgs */ 2241 spin_lock_irq(&ioc->lock); 2242 2243 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2244 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2245 ioc_now(ioc, &now); 2246 2247 period_vtime = now.vnow - ioc->period_at_vtime; 2248 if (WARN_ON_ONCE(!period_vtime)) { 2249 spin_unlock_irq(&ioc->lock); 2250 return; 2251 } 2252 2253 nr_debtors = ioc_check_iocgs(ioc, &now); 2254 2255 /* 2256 * Wait and indebt stat are flushed above and the donation calculation 2257 * below needs updated usage stat. Let's bring stat up-to-date. 2258 */ 2259 iocg_flush_stat(&ioc->active_iocgs, &now); 2260 2261 /* calc usage and see whether some weights need to be moved around */ 2262 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2263 u64 vdone, vtime, usage_us; 2264 u32 hw_active, hw_inuse; 2265 2266 /* 2267 * Collect unused and wind vtime closer to vnow to prevent 2268 * iocgs from accumulating a large amount of budget. 2269 */ 2270 vdone = atomic64_read(&iocg->done_vtime); 2271 vtime = atomic64_read(&iocg->vtime); 2272 current_hweight(iocg, &hw_active, &hw_inuse); 2273 2274 /* 2275 * Latency QoS detection doesn't account for IOs which are 2276 * in-flight for longer than a period. Detect them by 2277 * comparing vdone against period start. If lagging behind 2278 * IOs from past periods, don't increase vrate. 2279 */ 2280 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2281 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2282 time_after64(vtime, vdone) && 2283 time_after64(vtime, now.vnow - 2284 MAX_LAGGING_PERIODS * period_vtime) && 2285 time_before64(vdone, now.vnow - period_vtime)) 2286 nr_lagging++; 2287 2288 /* 2289 * Determine absolute usage factoring in in-flight IOs to avoid 2290 * high-latency completions appearing as idle. 2291 */ 2292 usage_us = iocg->usage_delta_us; 2293 usage_us_sum += usage_us; 2294 2295 /* see whether there's surplus vtime */ 2296 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2297 if (hw_inuse < hw_active || 2298 (!waitqueue_active(&iocg->waitq) && 2299 time_before64(vtime, now.vnow - ioc->margins.low))) { 2300 u32 hwa, old_hwi, hwm, new_hwi, usage; 2301 u64 usage_dur; 2302 2303 if (vdone != vtime) { 2304 u64 inflight_us = DIV64_U64_ROUND_UP( 2305 cost_to_abs_cost(vtime - vdone, hw_inuse), 2306 ioc->vtime_base_rate); 2307 2308 usage_us = max(usage_us, inflight_us); 2309 } 2310 2311 /* convert to hweight based usage ratio */ 2312 if (time_after64(iocg->activated_at, ioc->period_at)) 2313 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2314 else 2315 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2316 2317 usage = clamp_t(u32, 2318 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2319 usage_dur), 2320 1, WEIGHT_ONE); 2321 2322 /* 2323 * Already donating or accumulated enough to start. 2324 * Determine the donation amount. 2325 */ 2326 current_hweight(iocg, &hwa, &old_hwi); 2327 hwm = current_hweight_max(iocg); 2328 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2329 usage, &now); 2330 /* 2331 * Donation calculation assumes hweight_after_donation 2332 * to be positive, a condition that a donor w/ hwa < 2 2333 * can't meet. Don't bother with donation if hwa is 2334 * below 2. It's not gonna make a meaningful difference 2335 * anyway. 2336 */ 2337 if (new_hwi < hwm && hwa >= 2) { 2338 iocg->hweight_donating = hwa; 2339 iocg->hweight_after_donation = new_hwi; 2340 list_add(&iocg->surplus_list, &surpluses); 2341 } else if (!iocg->abs_vdebt) { 2342 /* 2343 * @iocg doesn't have enough to donate. Reset 2344 * its inuse to active. 2345 * 2346 * Don't reset debtors as their inuse's are 2347 * owned by debt handling. This shouldn't affect 2348 * donation calculuation in any meaningful way 2349 * as @iocg doesn't have a meaningful amount of 2350 * share anyway. 2351 */ 2352 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2353 iocg->inuse, iocg->active, 2354 iocg->hweight_inuse, new_hwi); 2355 2356 __propagate_weights(iocg, iocg->active, 2357 iocg->active, true, &now); 2358 nr_shortages++; 2359 } 2360 } else { 2361 /* genuinely short on vtime */ 2362 nr_shortages++; 2363 } 2364 } 2365 2366 if (!list_empty(&surpluses) && nr_shortages) 2367 transfer_surpluses(&surpluses, &now); 2368 2369 commit_weights(ioc); 2370 2371 /* surplus list should be dissolved after use */ 2372 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2373 list_del_init(&iocg->surplus_list); 2374 2375 /* 2376 * If q is getting clogged or we're missing too much, we're issuing 2377 * too much IO and should lower vtime rate. If we're not missing 2378 * and experiencing shortages but not surpluses, we're too stingy 2379 * and should increase vtime rate. 2380 */ 2381 prev_busy_level = ioc->busy_level; 2382 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2383 missed_ppm[READ] > ppm_rthr || 2384 missed_ppm[WRITE] > ppm_wthr) { 2385 /* clearly missing QoS targets, slow down vrate */ 2386 ioc->busy_level = max(ioc->busy_level, 0); 2387 ioc->busy_level++; 2388 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2389 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2390 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2391 /* QoS targets are being met with >25% margin */ 2392 if (nr_shortages) { 2393 /* 2394 * We're throttling while the device has spare 2395 * capacity. If vrate was being slowed down, stop. 2396 */ 2397 ioc->busy_level = min(ioc->busy_level, 0); 2398 2399 /* 2400 * If there are IOs spanning multiple periods, wait 2401 * them out before pushing the device harder. 2402 */ 2403 if (!nr_lagging) 2404 ioc->busy_level--; 2405 } else { 2406 /* 2407 * Nobody is being throttled and the users aren't 2408 * issuing enough IOs to saturate the device. We 2409 * simply don't know how close the device is to 2410 * saturation. Coast. 2411 */ 2412 ioc->busy_level = 0; 2413 } 2414 } else { 2415 /* inside the hysterisis margin, we're good */ 2416 ioc->busy_level = 0; 2417 } 2418 2419 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2420 2421 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2422 prev_busy_level, missed_ppm); 2423 2424 ioc_refresh_params(ioc, false); 2425 2426 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2427 2428 /* 2429 * This period is done. Move onto the next one. If nothing's 2430 * going on with the device, stop the timer. 2431 */ 2432 atomic64_inc(&ioc->cur_period); 2433 2434 if (ioc->running != IOC_STOP) { 2435 if (!list_empty(&ioc->active_iocgs)) { 2436 ioc_start_period(ioc, &now); 2437 } else { 2438 ioc->busy_level = 0; 2439 ioc->vtime_err = 0; 2440 ioc->running = IOC_IDLE; 2441 } 2442 2443 ioc_refresh_vrate(ioc, &now); 2444 } 2445 2446 spin_unlock_irq(&ioc->lock); 2447 } 2448 2449 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2450 u64 abs_cost, struct ioc_now *now) 2451 { 2452 struct ioc *ioc = iocg->ioc; 2453 struct ioc_margins *margins = &ioc->margins; 2454 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2455 u32 hwi, adj_step; 2456 s64 margin; 2457 u64 cost, new_inuse; 2458 2459 current_hweight(iocg, NULL, &hwi); 2460 old_hwi = hwi; 2461 cost = abs_cost_to_cost(abs_cost, hwi); 2462 margin = now->vnow - vtime - cost; 2463 2464 /* debt handling owns inuse for debtors */ 2465 if (iocg->abs_vdebt) 2466 return cost; 2467 2468 /* 2469 * We only increase inuse during period and do so if the margin has 2470 * deteriorated since the previous adjustment. 2471 */ 2472 if (margin >= iocg->saved_margin || margin >= margins->low || 2473 iocg->inuse == iocg->active) 2474 return cost; 2475 2476 spin_lock_irq(&ioc->lock); 2477 2478 /* we own inuse only when @iocg is in the normal active state */ 2479 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2480 spin_unlock_irq(&ioc->lock); 2481 return cost; 2482 } 2483 2484 /* 2485 * Bump up inuse till @abs_cost fits in the existing budget. 2486 * adj_step must be determined after acquiring ioc->lock - we might 2487 * have raced and lost to another thread for activation and could 2488 * be reading 0 iocg->active before ioc->lock which will lead to 2489 * infinite loop. 2490 */ 2491 new_inuse = iocg->inuse; 2492 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2493 do { 2494 new_inuse = new_inuse + adj_step; 2495 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2496 current_hweight(iocg, NULL, &hwi); 2497 cost = abs_cost_to_cost(abs_cost, hwi); 2498 } while (time_after64(vtime + cost, now->vnow) && 2499 iocg->inuse != iocg->active); 2500 2501 spin_unlock_irq(&ioc->lock); 2502 2503 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2504 old_inuse, iocg->inuse, old_hwi, hwi); 2505 2506 return cost; 2507 } 2508 2509 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2510 bool is_merge, u64 *costp) 2511 { 2512 struct ioc *ioc = iocg->ioc; 2513 u64 coef_seqio, coef_randio, coef_page; 2514 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2515 u64 seek_pages = 0; 2516 u64 cost = 0; 2517 2518 switch (bio_op(bio)) { 2519 case REQ_OP_READ: 2520 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2521 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2522 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2523 break; 2524 case REQ_OP_WRITE: 2525 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2526 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2527 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2528 break; 2529 default: 2530 goto out; 2531 } 2532 2533 if (iocg->cursor) { 2534 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2535 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2536 } 2537 2538 if (!is_merge) { 2539 if (seek_pages > LCOEF_RANDIO_PAGES) { 2540 cost += coef_randio; 2541 } else { 2542 cost += coef_seqio; 2543 } 2544 } 2545 cost += pages * coef_page; 2546 out: 2547 *costp = cost; 2548 } 2549 2550 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2551 { 2552 u64 cost; 2553 2554 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2555 return cost; 2556 } 2557 2558 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2559 u64 *costp) 2560 { 2561 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2562 2563 switch (req_op(rq)) { 2564 case REQ_OP_READ: 2565 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2566 break; 2567 case REQ_OP_WRITE: 2568 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2569 break; 2570 default: 2571 *costp = 0; 2572 } 2573 } 2574 2575 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2576 { 2577 u64 cost; 2578 2579 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2580 return cost; 2581 } 2582 2583 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2584 { 2585 struct blkcg_gq *blkg = bio->bi_blkg; 2586 struct ioc *ioc = rqos_to_ioc(rqos); 2587 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2588 struct ioc_now now; 2589 struct iocg_wait wait; 2590 u64 abs_cost, cost, vtime; 2591 bool use_debt, ioc_locked; 2592 unsigned long flags; 2593 2594 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2595 if (!ioc->enabled || !iocg || !iocg->level) 2596 return; 2597 2598 /* calculate the absolute vtime cost */ 2599 abs_cost = calc_vtime_cost(bio, iocg, false); 2600 if (!abs_cost) 2601 return; 2602 2603 if (!iocg_activate(iocg, &now)) 2604 return; 2605 2606 iocg->cursor = bio_end_sector(bio); 2607 vtime = atomic64_read(&iocg->vtime); 2608 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2609 2610 /* 2611 * If no one's waiting and within budget, issue right away. The 2612 * tests are racy but the races aren't systemic - we only miss once 2613 * in a while which is fine. 2614 */ 2615 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2616 time_before_eq64(vtime + cost, now.vnow)) { 2617 iocg_commit_bio(iocg, bio, abs_cost, cost); 2618 return; 2619 } 2620 2621 /* 2622 * We're over budget. This can be handled in two ways. IOs which may 2623 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2624 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2625 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2626 * whether debt handling is needed and acquire locks accordingly. 2627 */ 2628 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2629 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2630 retry_lock: 2631 iocg_lock(iocg, ioc_locked, &flags); 2632 2633 /* 2634 * @iocg must stay activated for debt and waitq handling. Deactivation 2635 * is synchronized against both ioc->lock and waitq.lock and we won't 2636 * get deactivated as long as we're waiting or has debt, so we're good 2637 * if we're activated here. In the unlikely cases that we aren't, just 2638 * issue the IO. 2639 */ 2640 if (unlikely(list_empty(&iocg->active_list))) { 2641 iocg_unlock(iocg, ioc_locked, &flags); 2642 iocg_commit_bio(iocg, bio, abs_cost, cost); 2643 return; 2644 } 2645 2646 /* 2647 * We're over budget. If @bio has to be issued regardless, remember 2648 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2649 * off the debt before waking more IOs. 2650 * 2651 * This way, the debt is continuously paid off each period with the 2652 * actual budget available to the cgroup. If we just wound vtime, we 2653 * would incorrectly use the current hw_inuse for the entire amount 2654 * which, for example, can lead to the cgroup staying blocked for a 2655 * long time even with substantially raised hw_inuse. 2656 * 2657 * An iocg with vdebt should stay online so that the timer can keep 2658 * deducting its vdebt and [de]activate use_delay mechanism 2659 * accordingly. We don't want to race against the timer trying to 2660 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2661 * penalizing the cgroup and its descendants. 2662 */ 2663 if (use_debt) { 2664 iocg_incur_debt(iocg, abs_cost, &now); 2665 if (iocg_kick_delay(iocg, &now)) 2666 blkcg_schedule_throttle(rqos->disk, 2667 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2668 iocg_unlock(iocg, ioc_locked, &flags); 2669 return; 2670 } 2671 2672 /* guarantee that iocgs w/ waiters have maximum inuse */ 2673 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2674 if (!ioc_locked) { 2675 iocg_unlock(iocg, false, &flags); 2676 ioc_locked = true; 2677 goto retry_lock; 2678 } 2679 propagate_weights(iocg, iocg->active, iocg->active, true, 2680 &now); 2681 } 2682 2683 /* 2684 * Append self to the waitq and schedule the wakeup timer if we're 2685 * the first waiter. The timer duration is calculated based on the 2686 * current vrate. vtime and hweight changes can make it too short 2687 * or too long. Each wait entry records the absolute cost it's 2688 * waiting for to allow re-evaluation using a custom wait entry. 2689 * 2690 * If too short, the timer simply reschedules itself. If too long, 2691 * the period timer will notice and trigger wakeups. 2692 * 2693 * All waiters are on iocg->waitq and the wait states are 2694 * synchronized using waitq.lock. 2695 */ 2696 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2697 wait.wait.private = current; 2698 wait.bio = bio; 2699 wait.abs_cost = abs_cost; 2700 wait.committed = false; /* will be set true by waker */ 2701 2702 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2703 iocg_kick_waitq(iocg, ioc_locked, &now); 2704 2705 iocg_unlock(iocg, ioc_locked, &flags); 2706 2707 while (true) { 2708 set_current_state(TASK_UNINTERRUPTIBLE); 2709 if (wait.committed) 2710 break; 2711 io_schedule(); 2712 } 2713 2714 /* waker already committed us, proceed */ 2715 finish_wait(&iocg->waitq, &wait.wait); 2716 } 2717 2718 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2719 struct bio *bio) 2720 { 2721 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2722 struct ioc *ioc = rqos_to_ioc(rqos); 2723 sector_t bio_end = bio_end_sector(bio); 2724 struct ioc_now now; 2725 u64 vtime, abs_cost, cost; 2726 unsigned long flags; 2727 2728 /* bypass if disabled, still initializing, or for root cgroup */ 2729 if (!ioc->enabled || !iocg || !iocg->level) 2730 return; 2731 2732 abs_cost = calc_vtime_cost(bio, iocg, true); 2733 if (!abs_cost) 2734 return; 2735 2736 ioc_now(ioc, &now); 2737 2738 vtime = atomic64_read(&iocg->vtime); 2739 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2740 2741 /* update cursor if backmerging into the request at the cursor */ 2742 if (blk_rq_pos(rq) < bio_end && 2743 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2744 iocg->cursor = bio_end; 2745 2746 /* 2747 * Charge if there's enough vtime budget and the existing request has 2748 * cost assigned. 2749 */ 2750 if (rq->bio && rq->bio->bi_iocost_cost && 2751 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2752 iocg_commit_bio(iocg, bio, abs_cost, cost); 2753 return; 2754 } 2755 2756 /* 2757 * Otherwise, account it as debt if @iocg is online, which it should 2758 * be for the vast majority of cases. See debt handling in 2759 * ioc_rqos_throttle() for details. 2760 */ 2761 spin_lock_irqsave(&ioc->lock, flags); 2762 spin_lock(&iocg->waitq.lock); 2763 2764 if (likely(!list_empty(&iocg->active_list))) { 2765 iocg_incur_debt(iocg, abs_cost, &now); 2766 if (iocg_kick_delay(iocg, &now)) 2767 blkcg_schedule_throttle(rqos->disk, 2768 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2769 } else { 2770 iocg_commit_bio(iocg, bio, abs_cost, cost); 2771 } 2772 2773 spin_unlock(&iocg->waitq.lock); 2774 spin_unlock_irqrestore(&ioc->lock, flags); 2775 } 2776 2777 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2778 { 2779 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2780 2781 if (iocg && bio->bi_iocost_cost) 2782 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2783 } 2784 2785 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2786 { 2787 struct ioc *ioc = rqos_to_ioc(rqos); 2788 struct ioc_pcpu_stat *ccs; 2789 u64 on_q_ns, rq_wait_ns, size_nsec; 2790 int pidx, rw; 2791 2792 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2793 return; 2794 2795 switch (req_op(rq)) { 2796 case REQ_OP_READ: 2797 pidx = QOS_RLAT; 2798 rw = READ; 2799 break; 2800 case REQ_OP_WRITE: 2801 pidx = QOS_WLAT; 2802 rw = WRITE; 2803 break; 2804 default: 2805 return; 2806 } 2807 2808 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2809 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2810 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2811 2812 ccs = get_cpu_ptr(ioc->pcpu_stat); 2813 2814 if (on_q_ns <= size_nsec || 2815 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2816 local_inc(&ccs->missed[rw].nr_met); 2817 else 2818 local_inc(&ccs->missed[rw].nr_missed); 2819 2820 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2821 2822 put_cpu_ptr(ccs); 2823 } 2824 2825 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2826 { 2827 struct ioc *ioc = rqos_to_ioc(rqos); 2828 2829 spin_lock_irq(&ioc->lock); 2830 ioc_refresh_params(ioc, false); 2831 spin_unlock_irq(&ioc->lock); 2832 } 2833 2834 static void ioc_rqos_exit(struct rq_qos *rqos) 2835 { 2836 struct ioc *ioc = rqos_to_ioc(rqos); 2837 2838 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost); 2839 2840 spin_lock_irq(&ioc->lock); 2841 ioc->running = IOC_STOP; 2842 spin_unlock_irq(&ioc->lock); 2843 2844 timer_shutdown_sync(&ioc->timer); 2845 free_percpu(ioc->pcpu_stat); 2846 kfree(ioc); 2847 } 2848 2849 static const struct rq_qos_ops ioc_rqos_ops = { 2850 .throttle = ioc_rqos_throttle, 2851 .merge = ioc_rqos_merge, 2852 .done_bio = ioc_rqos_done_bio, 2853 .done = ioc_rqos_done, 2854 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2855 .exit = ioc_rqos_exit, 2856 }; 2857 2858 static int blk_iocost_init(struct gendisk *disk) 2859 { 2860 struct ioc *ioc; 2861 int i, cpu, ret; 2862 2863 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2864 if (!ioc) 2865 return -ENOMEM; 2866 2867 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2868 if (!ioc->pcpu_stat) { 2869 kfree(ioc); 2870 return -ENOMEM; 2871 } 2872 2873 for_each_possible_cpu(cpu) { 2874 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2875 2876 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2877 local_set(&ccs->missed[i].nr_met, 0); 2878 local_set(&ccs->missed[i].nr_missed, 0); 2879 } 2880 local64_set(&ccs->rq_wait_ns, 0); 2881 } 2882 2883 spin_lock_init(&ioc->lock); 2884 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2885 INIT_LIST_HEAD(&ioc->active_iocgs); 2886 2887 ioc->running = IOC_IDLE; 2888 ioc->vtime_base_rate = VTIME_PER_USEC; 2889 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2890 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2891 ioc->period_at = ktime_to_us(ktime_get()); 2892 atomic64_set(&ioc->cur_period, 0); 2893 atomic_set(&ioc->hweight_gen, 0); 2894 2895 spin_lock_irq(&ioc->lock); 2896 ioc->autop_idx = AUTOP_INVALID; 2897 ioc_refresh_params_disk(ioc, true, disk); 2898 spin_unlock_irq(&ioc->lock); 2899 2900 /* 2901 * rqos must be added before activation to allow ioc_pd_init() to 2902 * lookup the ioc from q. This means that the rqos methods may get 2903 * called before policy activation completion, can't assume that the 2904 * target bio has an iocg associated and need to test for NULL iocg. 2905 */ 2906 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops); 2907 if (ret) 2908 goto err_free_ioc; 2909 2910 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost); 2911 if (ret) 2912 goto err_del_qos; 2913 return 0; 2914 2915 err_del_qos: 2916 rq_qos_del(&ioc->rqos); 2917 err_free_ioc: 2918 free_percpu(ioc->pcpu_stat); 2919 kfree(ioc); 2920 return ret; 2921 } 2922 2923 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2924 { 2925 struct ioc_cgrp *iocc; 2926 2927 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2928 if (!iocc) 2929 return NULL; 2930 2931 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2932 return &iocc->cpd; 2933 } 2934 2935 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2936 { 2937 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2938 } 2939 2940 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk, 2941 struct blkcg *blkcg, gfp_t gfp) 2942 { 2943 int levels = blkcg->css.cgroup->level + 1; 2944 struct ioc_gq *iocg; 2945 2946 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, 2947 disk->node_id); 2948 if (!iocg) 2949 return NULL; 2950 2951 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2952 if (!iocg->pcpu_stat) { 2953 kfree(iocg); 2954 return NULL; 2955 } 2956 2957 return &iocg->pd; 2958 } 2959 2960 static void ioc_pd_init(struct blkg_policy_data *pd) 2961 { 2962 struct ioc_gq *iocg = pd_to_iocg(pd); 2963 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2964 struct ioc *ioc = q_to_ioc(blkg->q); 2965 struct ioc_now now; 2966 struct blkcg_gq *tblkg; 2967 unsigned long flags; 2968 2969 ioc_now(ioc, &now); 2970 2971 iocg->ioc = ioc; 2972 atomic64_set(&iocg->vtime, now.vnow); 2973 atomic64_set(&iocg->done_vtime, now.vnow); 2974 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2975 INIT_LIST_HEAD(&iocg->active_list); 2976 INIT_LIST_HEAD(&iocg->walk_list); 2977 INIT_LIST_HEAD(&iocg->surplus_list); 2978 iocg->hweight_active = WEIGHT_ONE; 2979 iocg->hweight_inuse = WEIGHT_ONE; 2980 2981 init_waitqueue_head(&iocg->waitq); 2982 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2983 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2984 2985 iocg->level = blkg->blkcg->css.cgroup->level; 2986 2987 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2988 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2989 iocg->ancestors[tiocg->level] = tiocg; 2990 } 2991 2992 spin_lock_irqsave(&ioc->lock, flags); 2993 weight_updated(iocg, &now); 2994 spin_unlock_irqrestore(&ioc->lock, flags); 2995 } 2996 2997 static void ioc_pd_free(struct blkg_policy_data *pd) 2998 { 2999 struct ioc_gq *iocg = pd_to_iocg(pd); 3000 struct ioc *ioc = iocg->ioc; 3001 unsigned long flags; 3002 3003 if (ioc) { 3004 spin_lock_irqsave(&ioc->lock, flags); 3005 3006 if (!list_empty(&iocg->active_list)) { 3007 struct ioc_now now; 3008 3009 ioc_now(ioc, &now); 3010 propagate_weights(iocg, 0, 0, false, &now); 3011 list_del_init(&iocg->active_list); 3012 } 3013 3014 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 3015 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 3016 3017 spin_unlock_irqrestore(&ioc->lock, flags); 3018 3019 hrtimer_cancel(&iocg->waitq_timer); 3020 } 3021 free_percpu(iocg->pcpu_stat); 3022 kfree(iocg); 3023 } 3024 3025 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3026 { 3027 struct ioc_gq *iocg = pd_to_iocg(pd); 3028 struct ioc *ioc = iocg->ioc; 3029 3030 if (!ioc->enabled) 3031 return; 3032 3033 if (iocg->level == 0) { 3034 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3035 ioc->vtime_base_rate * 10000, 3036 VTIME_PER_USEC); 3037 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3038 } 3039 3040 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3041 3042 if (blkcg_debug_stats) 3043 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3044 iocg->last_stat.wait_us, 3045 iocg->last_stat.indebt_us, 3046 iocg->last_stat.indelay_us); 3047 } 3048 3049 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3050 int off) 3051 { 3052 const char *dname = blkg_dev_name(pd->blkg); 3053 struct ioc_gq *iocg = pd_to_iocg(pd); 3054 3055 if (dname && iocg->cfg_weight) 3056 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3057 return 0; 3058 } 3059 3060 3061 static int ioc_weight_show(struct seq_file *sf, void *v) 3062 { 3063 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3064 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3065 3066 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3067 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3068 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3069 return 0; 3070 } 3071 3072 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3073 size_t nbytes, loff_t off) 3074 { 3075 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3076 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3077 struct blkg_conf_ctx ctx; 3078 struct ioc_now now; 3079 struct ioc_gq *iocg; 3080 u32 v; 3081 int ret; 3082 3083 if (!strchr(buf, ':')) { 3084 struct blkcg_gq *blkg; 3085 3086 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3087 return -EINVAL; 3088 3089 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3090 return -EINVAL; 3091 3092 spin_lock_irq(&blkcg->lock); 3093 iocc->dfl_weight = v * WEIGHT_ONE; 3094 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3095 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3096 3097 if (iocg) { 3098 spin_lock(&iocg->ioc->lock); 3099 ioc_now(iocg->ioc, &now); 3100 weight_updated(iocg, &now); 3101 spin_unlock(&iocg->ioc->lock); 3102 } 3103 } 3104 spin_unlock_irq(&blkcg->lock); 3105 3106 return nbytes; 3107 } 3108 3109 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3110 if (ret) 3111 return ret; 3112 3113 iocg = blkg_to_iocg(ctx.blkg); 3114 3115 if (!strncmp(ctx.body, "default", 7)) { 3116 v = 0; 3117 } else { 3118 if (!sscanf(ctx.body, "%u", &v)) 3119 goto einval; 3120 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3121 goto einval; 3122 } 3123 3124 spin_lock(&iocg->ioc->lock); 3125 iocg->cfg_weight = v * WEIGHT_ONE; 3126 ioc_now(iocg->ioc, &now); 3127 weight_updated(iocg, &now); 3128 spin_unlock(&iocg->ioc->lock); 3129 3130 blkg_conf_finish(&ctx); 3131 return nbytes; 3132 3133 einval: 3134 blkg_conf_finish(&ctx); 3135 return -EINVAL; 3136 } 3137 3138 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3139 int off) 3140 { 3141 const char *dname = blkg_dev_name(pd->blkg); 3142 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3143 3144 if (!dname) 3145 return 0; 3146 3147 spin_lock_irq(&ioc->lock); 3148 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3149 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3150 ioc->params.qos[QOS_RPPM] / 10000, 3151 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3152 ioc->params.qos[QOS_RLAT], 3153 ioc->params.qos[QOS_WPPM] / 10000, 3154 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3155 ioc->params.qos[QOS_WLAT], 3156 ioc->params.qos[QOS_MIN] / 10000, 3157 ioc->params.qos[QOS_MIN] % 10000 / 100, 3158 ioc->params.qos[QOS_MAX] / 10000, 3159 ioc->params.qos[QOS_MAX] % 10000 / 100); 3160 spin_unlock_irq(&ioc->lock); 3161 return 0; 3162 } 3163 3164 static int ioc_qos_show(struct seq_file *sf, void *v) 3165 { 3166 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3167 3168 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3169 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3170 return 0; 3171 } 3172 3173 static const match_table_t qos_ctrl_tokens = { 3174 { QOS_ENABLE, "enable=%u" }, 3175 { QOS_CTRL, "ctrl=%s" }, 3176 { NR_QOS_CTRL_PARAMS, NULL }, 3177 }; 3178 3179 static const match_table_t qos_tokens = { 3180 { QOS_RPPM, "rpct=%s" }, 3181 { QOS_RLAT, "rlat=%u" }, 3182 { QOS_WPPM, "wpct=%s" }, 3183 { QOS_WLAT, "wlat=%u" }, 3184 { QOS_MIN, "min=%s" }, 3185 { QOS_MAX, "max=%s" }, 3186 { NR_QOS_PARAMS, NULL }, 3187 }; 3188 3189 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3190 size_t nbytes, loff_t off) 3191 { 3192 struct block_device *bdev; 3193 struct gendisk *disk; 3194 struct ioc *ioc; 3195 u32 qos[NR_QOS_PARAMS]; 3196 bool enable, user; 3197 char *p; 3198 int ret; 3199 3200 bdev = blkcg_conf_open_bdev(&input); 3201 if (IS_ERR(bdev)) 3202 return PTR_ERR(bdev); 3203 3204 disk = bdev->bd_disk; 3205 if (!queue_is_mq(disk->queue)) { 3206 ret = -EOPNOTSUPP; 3207 goto err; 3208 } 3209 3210 ioc = q_to_ioc(disk->queue); 3211 if (!ioc) { 3212 ret = blk_iocost_init(disk); 3213 if (ret) 3214 goto err; 3215 ioc = q_to_ioc(disk->queue); 3216 } 3217 3218 blk_mq_freeze_queue(disk->queue); 3219 blk_mq_quiesce_queue(disk->queue); 3220 3221 spin_lock_irq(&ioc->lock); 3222 memcpy(qos, ioc->params.qos, sizeof(qos)); 3223 enable = ioc->enabled; 3224 user = ioc->user_qos_params; 3225 3226 while ((p = strsep(&input, " \t\n"))) { 3227 substring_t args[MAX_OPT_ARGS]; 3228 char buf[32]; 3229 int tok; 3230 s64 v; 3231 3232 if (!*p) 3233 continue; 3234 3235 switch (match_token(p, qos_ctrl_tokens, args)) { 3236 case QOS_ENABLE: 3237 if (match_u64(&args[0], &v)) 3238 goto einval; 3239 enable = v; 3240 continue; 3241 case QOS_CTRL: 3242 match_strlcpy(buf, &args[0], sizeof(buf)); 3243 if (!strcmp(buf, "auto")) 3244 user = false; 3245 else if (!strcmp(buf, "user")) 3246 user = true; 3247 else 3248 goto einval; 3249 continue; 3250 } 3251 3252 tok = match_token(p, qos_tokens, args); 3253 switch (tok) { 3254 case QOS_RPPM: 3255 case QOS_WPPM: 3256 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3257 sizeof(buf)) 3258 goto einval; 3259 if (cgroup_parse_float(buf, 2, &v)) 3260 goto einval; 3261 if (v < 0 || v > 10000) 3262 goto einval; 3263 qos[tok] = v * 100; 3264 break; 3265 case QOS_RLAT: 3266 case QOS_WLAT: 3267 if (match_u64(&args[0], &v)) 3268 goto einval; 3269 qos[tok] = v; 3270 break; 3271 case QOS_MIN: 3272 case QOS_MAX: 3273 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3274 sizeof(buf)) 3275 goto einval; 3276 if (cgroup_parse_float(buf, 2, &v)) 3277 goto einval; 3278 if (v < 0) 3279 goto einval; 3280 qos[tok] = clamp_t(s64, v * 100, 3281 VRATE_MIN_PPM, VRATE_MAX_PPM); 3282 break; 3283 default: 3284 goto einval; 3285 } 3286 user = true; 3287 } 3288 3289 if (qos[QOS_MIN] > qos[QOS_MAX]) 3290 goto einval; 3291 3292 if (enable) { 3293 blk_stat_enable_accounting(disk->queue); 3294 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3295 ioc->enabled = true; 3296 wbt_disable_default(disk); 3297 } else { 3298 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3299 ioc->enabled = false; 3300 wbt_enable_default(disk); 3301 } 3302 3303 if (user) { 3304 memcpy(ioc->params.qos, qos, sizeof(qos)); 3305 ioc->user_qos_params = true; 3306 } else { 3307 ioc->user_qos_params = false; 3308 } 3309 3310 ioc_refresh_params(ioc, true); 3311 spin_unlock_irq(&ioc->lock); 3312 3313 blk_mq_unquiesce_queue(disk->queue); 3314 blk_mq_unfreeze_queue(disk->queue); 3315 3316 blkdev_put_no_open(bdev); 3317 return nbytes; 3318 einval: 3319 spin_unlock_irq(&ioc->lock); 3320 3321 blk_mq_unquiesce_queue(disk->queue); 3322 blk_mq_unfreeze_queue(disk->queue); 3323 3324 ret = -EINVAL; 3325 err: 3326 blkdev_put_no_open(bdev); 3327 return ret; 3328 } 3329 3330 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3331 struct blkg_policy_data *pd, int off) 3332 { 3333 const char *dname = blkg_dev_name(pd->blkg); 3334 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3335 u64 *u = ioc->params.i_lcoefs; 3336 3337 if (!dname) 3338 return 0; 3339 3340 spin_lock_irq(&ioc->lock); 3341 seq_printf(sf, "%s ctrl=%s model=linear " 3342 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3343 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3344 dname, ioc->user_cost_model ? "user" : "auto", 3345 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3346 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3347 spin_unlock_irq(&ioc->lock); 3348 return 0; 3349 } 3350 3351 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3352 { 3353 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3354 3355 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3356 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3357 return 0; 3358 } 3359 3360 static const match_table_t cost_ctrl_tokens = { 3361 { COST_CTRL, "ctrl=%s" }, 3362 { COST_MODEL, "model=%s" }, 3363 { NR_COST_CTRL_PARAMS, NULL }, 3364 }; 3365 3366 static const match_table_t i_lcoef_tokens = { 3367 { I_LCOEF_RBPS, "rbps=%u" }, 3368 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3369 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3370 { I_LCOEF_WBPS, "wbps=%u" }, 3371 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3372 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3373 { NR_I_LCOEFS, NULL }, 3374 }; 3375 3376 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3377 size_t nbytes, loff_t off) 3378 { 3379 struct block_device *bdev; 3380 struct request_queue *q; 3381 struct ioc *ioc; 3382 u64 u[NR_I_LCOEFS]; 3383 bool user; 3384 char *p; 3385 int ret; 3386 3387 bdev = blkcg_conf_open_bdev(&input); 3388 if (IS_ERR(bdev)) 3389 return PTR_ERR(bdev); 3390 3391 q = bdev_get_queue(bdev); 3392 if (!queue_is_mq(q)) { 3393 ret = -EOPNOTSUPP; 3394 goto err; 3395 } 3396 3397 ioc = q_to_ioc(q); 3398 if (!ioc) { 3399 ret = blk_iocost_init(bdev->bd_disk); 3400 if (ret) 3401 goto err; 3402 ioc = q_to_ioc(q); 3403 } 3404 3405 blk_mq_freeze_queue(q); 3406 blk_mq_quiesce_queue(q); 3407 3408 spin_lock_irq(&ioc->lock); 3409 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3410 user = ioc->user_cost_model; 3411 3412 while ((p = strsep(&input, " \t\n"))) { 3413 substring_t args[MAX_OPT_ARGS]; 3414 char buf[32]; 3415 int tok; 3416 u64 v; 3417 3418 if (!*p) 3419 continue; 3420 3421 switch (match_token(p, cost_ctrl_tokens, args)) { 3422 case COST_CTRL: 3423 match_strlcpy(buf, &args[0], sizeof(buf)); 3424 if (!strcmp(buf, "auto")) 3425 user = false; 3426 else if (!strcmp(buf, "user")) 3427 user = true; 3428 else 3429 goto einval; 3430 continue; 3431 case COST_MODEL: 3432 match_strlcpy(buf, &args[0], sizeof(buf)); 3433 if (strcmp(buf, "linear")) 3434 goto einval; 3435 continue; 3436 } 3437 3438 tok = match_token(p, i_lcoef_tokens, args); 3439 if (tok == NR_I_LCOEFS) 3440 goto einval; 3441 if (match_u64(&args[0], &v)) 3442 goto einval; 3443 u[tok] = v; 3444 user = true; 3445 } 3446 3447 if (user) { 3448 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3449 ioc->user_cost_model = true; 3450 } else { 3451 ioc->user_cost_model = false; 3452 } 3453 ioc_refresh_params(ioc, true); 3454 spin_unlock_irq(&ioc->lock); 3455 3456 blk_mq_unquiesce_queue(q); 3457 blk_mq_unfreeze_queue(q); 3458 3459 blkdev_put_no_open(bdev); 3460 return nbytes; 3461 3462 einval: 3463 spin_unlock_irq(&ioc->lock); 3464 3465 blk_mq_unquiesce_queue(q); 3466 blk_mq_unfreeze_queue(q); 3467 3468 ret = -EINVAL; 3469 err: 3470 blkdev_put_no_open(bdev); 3471 return ret; 3472 } 3473 3474 static struct cftype ioc_files[] = { 3475 { 3476 .name = "weight", 3477 .flags = CFTYPE_NOT_ON_ROOT, 3478 .seq_show = ioc_weight_show, 3479 .write = ioc_weight_write, 3480 }, 3481 { 3482 .name = "cost.qos", 3483 .flags = CFTYPE_ONLY_ON_ROOT, 3484 .seq_show = ioc_qos_show, 3485 .write = ioc_qos_write, 3486 }, 3487 { 3488 .name = "cost.model", 3489 .flags = CFTYPE_ONLY_ON_ROOT, 3490 .seq_show = ioc_cost_model_show, 3491 .write = ioc_cost_model_write, 3492 }, 3493 {} 3494 }; 3495 3496 static struct blkcg_policy blkcg_policy_iocost = { 3497 .dfl_cftypes = ioc_files, 3498 .cpd_alloc_fn = ioc_cpd_alloc, 3499 .cpd_free_fn = ioc_cpd_free, 3500 .pd_alloc_fn = ioc_pd_alloc, 3501 .pd_init_fn = ioc_pd_init, 3502 .pd_free_fn = ioc_pd_free, 3503 .pd_stat_fn = ioc_pd_stat, 3504 }; 3505 3506 static int __init ioc_init(void) 3507 { 3508 return blkcg_policy_register(&blkcg_policy_iocost); 3509 } 3510 3511 static void __exit ioc_exit(void) 3512 { 3513 blkcg_policy_unregister(&blkcg_policy_iocost); 3514 } 3515 3516 module_init(ioc_init); 3517 module_exit(ioc_exit); 3518