1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat local_stat; 537 struct iocg_stat desc_stat; 538 struct iocg_stat last_stat; 539 u64 last_stat_abs_vusage; 540 u64 usage_delta_us; 541 u64 wait_since; 542 u64 indebt_since; 543 u64 indelay_since; 544 545 /* this iocg's depth in the hierarchy and ancestors including self */ 546 int level; 547 struct ioc_gq *ancestors[]; 548 }; 549 550 /* per cgroup */ 551 struct ioc_cgrp { 552 struct blkcg_policy_data cpd; 553 unsigned int dfl_weight; 554 }; 555 556 struct ioc_now { 557 u64 now_ns; 558 u64 now; 559 u64 vnow; 560 u64 vrate; 561 }; 562 563 struct iocg_wait { 564 struct wait_queue_entry wait; 565 struct bio *bio; 566 u64 abs_cost; 567 bool committed; 568 }; 569 570 struct iocg_wake_ctx { 571 struct ioc_gq *iocg; 572 u32 hw_inuse; 573 s64 vbudget; 574 }; 575 576 static const struct ioc_params autop[] = { 577 [AUTOP_HDD] = { 578 .qos = { 579 [QOS_RLAT] = 250000, /* 250ms */ 580 [QOS_WLAT] = 250000, 581 [QOS_MIN] = VRATE_MIN_PPM, 582 [QOS_MAX] = VRATE_MAX_PPM, 583 }, 584 .i_lcoefs = { 585 [I_LCOEF_RBPS] = 174019176, 586 [I_LCOEF_RSEQIOPS] = 41708, 587 [I_LCOEF_RRANDIOPS] = 370, 588 [I_LCOEF_WBPS] = 178075866, 589 [I_LCOEF_WSEQIOPS] = 42705, 590 [I_LCOEF_WRANDIOPS] = 378, 591 }, 592 }, 593 [AUTOP_SSD_QD1] = { 594 .qos = { 595 [QOS_RLAT] = 25000, /* 25ms */ 596 [QOS_WLAT] = 25000, 597 [QOS_MIN] = VRATE_MIN_PPM, 598 [QOS_MAX] = VRATE_MAX_PPM, 599 }, 600 .i_lcoefs = { 601 [I_LCOEF_RBPS] = 245855193, 602 [I_LCOEF_RSEQIOPS] = 61575, 603 [I_LCOEF_RRANDIOPS] = 6946, 604 [I_LCOEF_WBPS] = 141365009, 605 [I_LCOEF_WSEQIOPS] = 33716, 606 [I_LCOEF_WRANDIOPS] = 26796, 607 }, 608 }, 609 [AUTOP_SSD_DFL] = { 610 .qos = { 611 [QOS_RLAT] = 25000, /* 25ms */ 612 [QOS_WLAT] = 25000, 613 [QOS_MIN] = VRATE_MIN_PPM, 614 [QOS_MAX] = VRATE_MAX_PPM, 615 }, 616 .i_lcoefs = { 617 [I_LCOEF_RBPS] = 488636629, 618 [I_LCOEF_RSEQIOPS] = 8932, 619 [I_LCOEF_RRANDIOPS] = 8518, 620 [I_LCOEF_WBPS] = 427891549, 621 [I_LCOEF_WSEQIOPS] = 28755, 622 [I_LCOEF_WRANDIOPS] = 21940, 623 }, 624 .too_fast_vrate_pct = 500, 625 }, 626 [AUTOP_SSD_FAST] = { 627 .qos = { 628 [QOS_RLAT] = 5000, /* 5ms */ 629 [QOS_WLAT] = 5000, 630 [QOS_MIN] = VRATE_MIN_PPM, 631 [QOS_MAX] = VRATE_MAX_PPM, 632 }, 633 .i_lcoefs = { 634 [I_LCOEF_RBPS] = 3102524156LLU, 635 [I_LCOEF_RSEQIOPS] = 724816, 636 [I_LCOEF_RRANDIOPS] = 778122, 637 [I_LCOEF_WBPS] = 1742780862LLU, 638 [I_LCOEF_WSEQIOPS] = 425702, 639 [I_LCOEF_WRANDIOPS] = 443193, 640 }, 641 .too_slow_vrate_pct = 10, 642 }, 643 }; 644 645 /* 646 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 647 * vtime credit shortage and down on device saturation. 648 */ 649 static u32 vrate_adj_pct[] = 650 { 0, 0, 0, 0, 651 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 652 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 653 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 654 655 static struct blkcg_policy blkcg_policy_iocost; 656 657 /* accessors and helpers */ 658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 659 { 660 return container_of(rqos, struct ioc, rqos); 661 } 662 663 static struct ioc *q_to_ioc(struct request_queue *q) 664 { 665 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 666 } 667 668 static const char *q_name(struct request_queue *q) 669 { 670 if (blk_queue_registered(q)) 671 return kobject_name(q->kobj.parent); 672 else 673 return "<unknown>"; 674 } 675 676 static const char __maybe_unused *ioc_name(struct ioc *ioc) 677 { 678 return q_name(ioc->rqos.q); 679 } 680 681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 682 { 683 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 684 } 685 686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 687 { 688 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 689 } 690 691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 692 { 693 return pd_to_blkg(&iocg->pd); 694 } 695 696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 697 { 698 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 699 struct ioc_cgrp, cpd); 700 } 701 702 /* 703 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 704 * weight, the more expensive each IO. Must round up. 705 */ 706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 707 { 708 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 709 } 710 711 /* 712 * The inverse of abs_cost_to_cost(). Must round up. 713 */ 714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 715 { 716 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 717 } 718 719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 720 u64 abs_cost, u64 cost) 721 { 722 struct iocg_pcpu_stat *gcs; 723 724 bio->bi_iocost_cost = cost; 725 atomic64_add(cost, &iocg->vtime); 726 727 gcs = get_cpu_ptr(iocg->pcpu_stat); 728 local64_add(abs_cost, &gcs->abs_vusage); 729 put_cpu_ptr(gcs); 730 } 731 732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 733 { 734 if (lock_ioc) { 735 spin_lock_irqsave(&iocg->ioc->lock, *flags); 736 spin_lock(&iocg->waitq.lock); 737 } else { 738 spin_lock_irqsave(&iocg->waitq.lock, *flags); 739 } 740 } 741 742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 743 { 744 if (unlock_ioc) { 745 spin_unlock(&iocg->waitq.lock); 746 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 747 } else { 748 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 749 } 750 } 751 752 #define CREATE_TRACE_POINTS 753 #include <trace/events/iocost.h> 754 755 static void ioc_refresh_margins(struct ioc *ioc) 756 { 757 struct ioc_margins *margins = &ioc->margins; 758 u32 period_us = ioc->period_us; 759 u64 vrate = ioc->vtime_base_rate; 760 761 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 762 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 763 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 764 } 765 766 /* latency Qos params changed, update period_us and all the dependent params */ 767 static void ioc_refresh_period_us(struct ioc *ioc) 768 { 769 u32 ppm, lat, multi, period_us; 770 771 lockdep_assert_held(&ioc->lock); 772 773 /* pick the higher latency target */ 774 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 775 ppm = ioc->params.qos[QOS_RPPM]; 776 lat = ioc->params.qos[QOS_RLAT]; 777 } else { 778 ppm = ioc->params.qos[QOS_WPPM]; 779 lat = ioc->params.qos[QOS_WLAT]; 780 } 781 782 /* 783 * We want the period to be long enough to contain a healthy number 784 * of IOs while short enough for granular control. Define it as a 785 * multiple of the latency target. Ideally, the multiplier should 786 * be scaled according to the percentile so that it would nominally 787 * contain a certain number of requests. Let's be simpler and 788 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 789 */ 790 if (ppm) 791 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 792 else 793 multi = 2; 794 period_us = multi * lat; 795 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 796 797 /* calculate dependent params */ 798 ioc->period_us = period_us; 799 ioc->timer_slack_ns = div64_u64( 800 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 801 100); 802 ioc_refresh_margins(ioc); 803 } 804 805 static int ioc_autop_idx(struct ioc *ioc) 806 { 807 int idx = ioc->autop_idx; 808 const struct ioc_params *p = &autop[idx]; 809 u32 vrate_pct; 810 u64 now_ns; 811 812 /* rotational? */ 813 if (!blk_queue_nonrot(ioc->rqos.q)) 814 return AUTOP_HDD; 815 816 /* handle SATA SSDs w/ broken NCQ */ 817 if (blk_queue_depth(ioc->rqos.q) == 1) 818 return AUTOP_SSD_QD1; 819 820 /* use one of the normal ssd sets */ 821 if (idx < AUTOP_SSD_DFL) 822 return AUTOP_SSD_DFL; 823 824 /* if user is overriding anything, maintain what was there */ 825 if (ioc->user_qos_params || ioc->user_cost_model) 826 return idx; 827 828 /* step up/down based on the vrate */ 829 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 830 now_ns = ktime_get_ns(); 831 832 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 833 if (!ioc->autop_too_fast_at) 834 ioc->autop_too_fast_at = now_ns; 835 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 836 return idx + 1; 837 } else { 838 ioc->autop_too_fast_at = 0; 839 } 840 841 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 842 if (!ioc->autop_too_slow_at) 843 ioc->autop_too_slow_at = now_ns; 844 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 845 return idx - 1; 846 } else { 847 ioc->autop_too_slow_at = 0; 848 } 849 850 return idx; 851 } 852 853 /* 854 * Take the followings as input 855 * 856 * @bps maximum sequential throughput 857 * @seqiops maximum sequential 4k iops 858 * @randiops maximum random 4k iops 859 * 860 * and calculate the linear model cost coefficients. 861 * 862 * *@page per-page cost 1s / (@bps / 4096) 863 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 864 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 865 */ 866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 867 u64 *page, u64 *seqio, u64 *randio) 868 { 869 u64 v; 870 871 *page = *seqio = *randio = 0; 872 873 if (bps) 874 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 875 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 876 877 if (seqiops) { 878 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 879 if (v > *page) 880 *seqio = v - *page; 881 } 882 883 if (randiops) { 884 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 885 if (v > *page) 886 *randio = v - *page; 887 } 888 } 889 890 static void ioc_refresh_lcoefs(struct ioc *ioc) 891 { 892 u64 *u = ioc->params.i_lcoefs; 893 u64 *c = ioc->params.lcoefs; 894 895 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 896 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 897 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 898 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 899 } 900 901 static bool ioc_refresh_params(struct ioc *ioc, bool force) 902 { 903 const struct ioc_params *p; 904 int idx; 905 906 lockdep_assert_held(&ioc->lock); 907 908 idx = ioc_autop_idx(ioc); 909 p = &autop[idx]; 910 911 if (idx == ioc->autop_idx && !force) 912 return false; 913 914 if (idx != ioc->autop_idx) 915 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 916 917 ioc->autop_idx = idx; 918 ioc->autop_too_fast_at = 0; 919 ioc->autop_too_slow_at = 0; 920 921 if (!ioc->user_qos_params) 922 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 923 if (!ioc->user_cost_model) 924 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 925 926 ioc_refresh_period_us(ioc); 927 ioc_refresh_lcoefs(ioc); 928 929 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 930 VTIME_PER_USEC, MILLION); 931 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 932 VTIME_PER_USEC, MILLION); 933 934 return true; 935 } 936 937 /* 938 * When an iocg accumulates too much vtime or gets deactivated, we throw away 939 * some vtime, which lowers the overall device utilization. As the exact amount 940 * which is being thrown away is known, we can compensate by accelerating the 941 * vrate accordingly so that the extra vtime generated in the current period 942 * matches what got lost. 943 */ 944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 945 { 946 s64 pleft = ioc->period_at + ioc->period_us - now->now; 947 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 948 s64 vcomp, vcomp_min, vcomp_max; 949 950 lockdep_assert_held(&ioc->lock); 951 952 /* we need some time left in this period */ 953 if (pleft <= 0) 954 goto done; 955 956 /* 957 * Calculate how much vrate should be adjusted to offset the error. 958 * Limit the amount of adjustment and deduct the adjusted amount from 959 * the error. 960 */ 961 vcomp = -div64_s64(ioc->vtime_err, pleft); 962 vcomp_min = -(ioc->vtime_base_rate >> 1); 963 vcomp_max = ioc->vtime_base_rate; 964 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 965 966 ioc->vtime_err += vcomp * pleft; 967 968 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 969 done: 970 /* bound how much error can accumulate */ 971 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 972 } 973 974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 975 int nr_lagging, int nr_shortages, 976 int prev_busy_level, u32 *missed_ppm) 977 { 978 u64 vrate = ioc->vtime_base_rate; 979 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 980 981 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 982 if (ioc->busy_level != prev_busy_level || nr_lagging) 983 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 984 missed_ppm, rq_wait_pct, 985 nr_lagging, nr_shortages); 986 987 return; 988 } 989 990 /* 991 * If vrate is out of bounds, apply clamp gradually as the 992 * bounds can change abruptly. Otherwise, apply busy_level 993 * based adjustment. 994 */ 995 if (vrate < vrate_min) { 996 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 997 vrate = min(vrate, vrate_min); 998 } else if (vrate > vrate_max) { 999 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1000 vrate = max(vrate, vrate_max); 1001 } else { 1002 int idx = min_t(int, abs(ioc->busy_level), 1003 ARRAY_SIZE(vrate_adj_pct) - 1); 1004 u32 adj_pct = vrate_adj_pct[idx]; 1005 1006 if (ioc->busy_level > 0) 1007 adj_pct = 100 - adj_pct; 1008 else 1009 adj_pct = 100 + adj_pct; 1010 1011 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1012 vrate_min, vrate_max); 1013 } 1014 1015 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1016 nr_lagging, nr_shortages); 1017 1018 ioc->vtime_base_rate = vrate; 1019 ioc_refresh_margins(ioc); 1020 } 1021 1022 /* take a snapshot of the current [v]time and vrate */ 1023 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1024 { 1025 unsigned seq; 1026 1027 now->now_ns = ktime_get(); 1028 now->now = ktime_to_us(now->now_ns); 1029 now->vrate = atomic64_read(&ioc->vtime_rate); 1030 1031 /* 1032 * The current vtime is 1033 * 1034 * vtime at period start + (wallclock time since the start) * vrate 1035 * 1036 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1037 * needed, they're seqcount protected. 1038 */ 1039 do { 1040 seq = read_seqcount_begin(&ioc->period_seqcount); 1041 now->vnow = ioc->period_at_vtime + 1042 (now->now - ioc->period_at) * now->vrate; 1043 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1044 } 1045 1046 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1047 { 1048 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1049 1050 write_seqcount_begin(&ioc->period_seqcount); 1051 ioc->period_at = now->now; 1052 ioc->period_at_vtime = now->vnow; 1053 write_seqcount_end(&ioc->period_seqcount); 1054 1055 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1056 add_timer(&ioc->timer); 1057 } 1058 1059 /* 1060 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1061 * weight sums and propagate upwards accordingly. If @save, the current margin 1062 * is saved to be used as reference for later inuse in-period adjustments. 1063 */ 1064 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1065 bool save, struct ioc_now *now) 1066 { 1067 struct ioc *ioc = iocg->ioc; 1068 int lvl; 1069 1070 lockdep_assert_held(&ioc->lock); 1071 1072 /* 1073 * For an active leaf node, its inuse shouldn't be zero or exceed 1074 * @active. An active internal node's inuse is solely determined by the 1075 * inuse to active ratio of its children regardless of @inuse. 1076 */ 1077 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1078 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1079 iocg->child_active_sum); 1080 } else { 1081 inuse = clamp_t(u32, inuse, 1, active); 1082 } 1083 1084 iocg->last_inuse = iocg->inuse; 1085 if (save) 1086 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1087 1088 if (active == iocg->active && inuse == iocg->inuse) 1089 return; 1090 1091 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1092 struct ioc_gq *parent = iocg->ancestors[lvl]; 1093 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1094 u32 parent_active = 0, parent_inuse = 0; 1095 1096 /* update the level sums */ 1097 parent->child_active_sum += (s32)(active - child->active); 1098 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1099 /* apply the updates */ 1100 child->active = active; 1101 child->inuse = inuse; 1102 1103 /* 1104 * The delta between inuse and active sums indicates that 1105 * much of weight is being given away. Parent's inuse 1106 * and active should reflect the ratio. 1107 */ 1108 if (parent->child_active_sum) { 1109 parent_active = parent->weight; 1110 parent_inuse = DIV64_U64_ROUND_UP( 1111 parent_active * parent->child_inuse_sum, 1112 parent->child_active_sum); 1113 } 1114 1115 /* do we need to keep walking up? */ 1116 if (parent_active == parent->active && 1117 parent_inuse == parent->inuse) 1118 break; 1119 1120 active = parent_active; 1121 inuse = parent_inuse; 1122 } 1123 1124 ioc->weights_updated = true; 1125 } 1126 1127 static void commit_weights(struct ioc *ioc) 1128 { 1129 lockdep_assert_held(&ioc->lock); 1130 1131 if (ioc->weights_updated) { 1132 /* paired with rmb in current_hweight(), see there */ 1133 smp_wmb(); 1134 atomic_inc(&ioc->hweight_gen); 1135 ioc->weights_updated = false; 1136 } 1137 } 1138 1139 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1140 bool save, struct ioc_now *now) 1141 { 1142 __propagate_weights(iocg, active, inuse, save, now); 1143 commit_weights(iocg->ioc); 1144 } 1145 1146 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1147 { 1148 struct ioc *ioc = iocg->ioc; 1149 int lvl; 1150 u32 hwa, hwi; 1151 int ioc_gen; 1152 1153 /* hot path - if uptodate, use cached */ 1154 ioc_gen = atomic_read(&ioc->hweight_gen); 1155 if (ioc_gen == iocg->hweight_gen) 1156 goto out; 1157 1158 /* 1159 * Paired with wmb in commit_weights(). If we saw the updated 1160 * hweight_gen, all the weight updates from __propagate_weights() are 1161 * visible too. 1162 * 1163 * We can race with weight updates during calculation and get it 1164 * wrong. However, hweight_gen would have changed and a future 1165 * reader will recalculate and we're guaranteed to discard the 1166 * wrong result soon. 1167 */ 1168 smp_rmb(); 1169 1170 hwa = hwi = WEIGHT_ONE; 1171 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1172 struct ioc_gq *parent = iocg->ancestors[lvl]; 1173 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1174 u64 active_sum = READ_ONCE(parent->child_active_sum); 1175 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1176 u32 active = READ_ONCE(child->active); 1177 u32 inuse = READ_ONCE(child->inuse); 1178 1179 /* we can race with deactivations and either may read as zero */ 1180 if (!active_sum || !inuse_sum) 1181 continue; 1182 1183 active_sum = max_t(u64, active, active_sum); 1184 hwa = div64_u64((u64)hwa * active, active_sum); 1185 1186 inuse_sum = max_t(u64, inuse, inuse_sum); 1187 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1188 } 1189 1190 iocg->hweight_active = max_t(u32, hwa, 1); 1191 iocg->hweight_inuse = max_t(u32, hwi, 1); 1192 iocg->hweight_gen = ioc_gen; 1193 out: 1194 if (hw_activep) 1195 *hw_activep = iocg->hweight_active; 1196 if (hw_inusep) 1197 *hw_inusep = iocg->hweight_inuse; 1198 } 1199 1200 /* 1201 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1202 * other weights stay unchanged. 1203 */ 1204 static u32 current_hweight_max(struct ioc_gq *iocg) 1205 { 1206 u32 hwm = WEIGHT_ONE; 1207 u32 inuse = iocg->active; 1208 u64 child_inuse_sum; 1209 int lvl; 1210 1211 lockdep_assert_held(&iocg->ioc->lock); 1212 1213 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1214 struct ioc_gq *parent = iocg->ancestors[lvl]; 1215 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1216 1217 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1218 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1219 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1220 parent->child_active_sum); 1221 } 1222 1223 return max_t(u32, hwm, 1); 1224 } 1225 1226 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1227 { 1228 struct ioc *ioc = iocg->ioc; 1229 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1230 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1231 u32 weight; 1232 1233 lockdep_assert_held(&ioc->lock); 1234 1235 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1236 if (weight != iocg->weight && iocg->active) 1237 propagate_weights(iocg, weight, iocg->inuse, true, now); 1238 iocg->weight = weight; 1239 } 1240 1241 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1242 { 1243 struct ioc *ioc = iocg->ioc; 1244 u64 last_period, cur_period; 1245 u64 vtime, vtarget; 1246 int i; 1247 1248 /* 1249 * If seem to be already active, just update the stamp to tell the 1250 * timer that we're still active. We don't mind occassional races. 1251 */ 1252 if (!list_empty(&iocg->active_list)) { 1253 ioc_now(ioc, now); 1254 cur_period = atomic64_read(&ioc->cur_period); 1255 if (atomic64_read(&iocg->active_period) != cur_period) 1256 atomic64_set(&iocg->active_period, cur_period); 1257 return true; 1258 } 1259 1260 /* racy check on internal node IOs, treat as root level IOs */ 1261 if (iocg->child_active_sum) 1262 return false; 1263 1264 spin_lock_irq(&ioc->lock); 1265 1266 ioc_now(ioc, now); 1267 1268 /* update period */ 1269 cur_period = atomic64_read(&ioc->cur_period); 1270 last_period = atomic64_read(&iocg->active_period); 1271 atomic64_set(&iocg->active_period, cur_period); 1272 1273 /* already activated or breaking leaf-only constraint? */ 1274 if (!list_empty(&iocg->active_list)) 1275 goto succeed_unlock; 1276 for (i = iocg->level - 1; i > 0; i--) 1277 if (!list_empty(&iocg->ancestors[i]->active_list)) 1278 goto fail_unlock; 1279 1280 if (iocg->child_active_sum) 1281 goto fail_unlock; 1282 1283 /* 1284 * Always start with the target budget. On deactivation, we throw away 1285 * anything above it. 1286 */ 1287 vtarget = now->vnow - ioc->margins.target; 1288 vtime = atomic64_read(&iocg->vtime); 1289 1290 atomic64_add(vtarget - vtime, &iocg->vtime); 1291 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1292 vtime = vtarget; 1293 1294 /* 1295 * Activate, propagate weight and start period timer if not 1296 * running. Reset hweight_gen to avoid accidental match from 1297 * wrapping. 1298 */ 1299 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1300 list_add(&iocg->active_list, &ioc->active_iocgs); 1301 1302 propagate_weights(iocg, iocg->weight, 1303 iocg->last_inuse ?: iocg->weight, true, now); 1304 1305 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1306 last_period, cur_period, vtime); 1307 1308 iocg->activated_at = now->now; 1309 1310 if (ioc->running == IOC_IDLE) { 1311 ioc->running = IOC_RUNNING; 1312 ioc->dfgv_period_at = now->now; 1313 ioc->dfgv_period_rem = 0; 1314 ioc_start_period(ioc, now); 1315 } 1316 1317 succeed_unlock: 1318 spin_unlock_irq(&ioc->lock); 1319 return true; 1320 1321 fail_unlock: 1322 spin_unlock_irq(&ioc->lock); 1323 return false; 1324 } 1325 1326 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1327 { 1328 struct ioc *ioc = iocg->ioc; 1329 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1330 u64 tdelta, delay, new_delay; 1331 s64 vover, vover_pct; 1332 u32 hwa; 1333 1334 lockdep_assert_held(&iocg->waitq.lock); 1335 1336 /* calculate the current delay in effect - 1/2 every second */ 1337 tdelta = now->now - iocg->delay_at; 1338 if (iocg->delay) 1339 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1340 else 1341 delay = 0; 1342 1343 /* calculate the new delay from the debt amount */ 1344 current_hweight(iocg, &hwa, NULL); 1345 vover = atomic64_read(&iocg->vtime) + 1346 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1347 vover_pct = div64_s64(100 * vover, 1348 ioc->period_us * ioc->vtime_base_rate); 1349 1350 if (vover_pct <= MIN_DELAY_THR_PCT) 1351 new_delay = 0; 1352 else if (vover_pct >= MAX_DELAY_THR_PCT) 1353 new_delay = MAX_DELAY; 1354 else 1355 new_delay = MIN_DELAY + 1356 div_u64((MAX_DELAY - MIN_DELAY) * 1357 (vover_pct - MIN_DELAY_THR_PCT), 1358 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1359 1360 /* pick the higher one and apply */ 1361 if (new_delay > delay) { 1362 iocg->delay = new_delay; 1363 iocg->delay_at = now->now; 1364 delay = new_delay; 1365 } 1366 1367 if (delay >= MIN_DELAY) { 1368 if (!iocg->indelay_since) 1369 iocg->indelay_since = now->now; 1370 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1371 return true; 1372 } else { 1373 if (iocg->indelay_since) { 1374 iocg->local_stat.indelay_us += now->now - iocg->indelay_since; 1375 iocg->indelay_since = 0; 1376 } 1377 iocg->delay = 0; 1378 blkcg_clear_delay(blkg); 1379 return false; 1380 } 1381 } 1382 1383 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1384 struct ioc_now *now) 1385 { 1386 struct iocg_pcpu_stat *gcs; 1387 1388 lockdep_assert_held(&iocg->ioc->lock); 1389 lockdep_assert_held(&iocg->waitq.lock); 1390 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1391 1392 /* 1393 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1394 * inuse donating all of it share to others until its debt is paid off. 1395 */ 1396 if (!iocg->abs_vdebt && abs_cost) { 1397 iocg->indebt_since = now->now; 1398 propagate_weights(iocg, iocg->active, 0, false, now); 1399 } 1400 1401 iocg->abs_vdebt += abs_cost; 1402 1403 gcs = get_cpu_ptr(iocg->pcpu_stat); 1404 local64_add(abs_cost, &gcs->abs_vusage); 1405 put_cpu_ptr(gcs); 1406 } 1407 1408 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1409 struct ioc_now *now) 1410 { 1411 lockdep_assert_held(&iocg->ioc->lock); 1412 lockdep_assert_held(&iocg->waitq.lock); 1413 1414 /* make sure that nobody messed with @iocg */ 1415 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1416 WARN_ON_ONCE(iocg->inuse > 1); 1417 1418 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1419 1420 /* if debt is paid in full, restore inuse */ 1421 if (!iocg->abs_vdebt) { 1422 iocg->local_stat.indebt_us += now->now - iocg->indebt_since; 1423 iocg->indebt_since = 0; 1424 1425 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1426 false, now); 1427 } 1428 } 1429 1430 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1431 int flags, void *key) 1432 { 1433 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1434 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1435 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1436 1437 ctx->vbudget -= cost; 1438 1439 if (ctx->vbudget < 0) 1440 return -1; 1441 1442 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1443 wait->committed = true; 1444 1445 /* 1446 * autoremove_wake_function() removes the wait entry only when it 1447 * actually changed the task state. We want the wait always removed. 1448 * Remove explicitly and use default_wake_function(). Note that the 1449 * order of operations is important as finish_wait() tests whether 1450 * @wq_entry is removed without grabbing the lock. 1451 */ 1452 default_wake_function(wq_entry, mode, flags, key); 1453 list_del_init_careful(&wq_entry->entry); 1454 return 0; 1455 } 1456 1457 /* 1458 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1459 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1460 * addition to iocg->waitq.lock. 1461 */ 1462 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1463 struct ioc_now *now) 1464 { 1465 struct ioc *ioc = iocg->ioc; 1466 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1467 u64 vshortage, expires, oexpires; 1468 s64 vbudget; 1469 u32 hwa; 1470 1471 lockdep_assert_held(&iocg->waitq.lock); 1472 1473 current_hweight(iocg, &hwa, NULL); 1474 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1475 1476 /* pay off debt */ 1477 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1478 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1479 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1480 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1481 1482 lockdep_assert_held(&ioc->lock); 1483 1484 atomic64_add(vpay, &iocg->vtime); 1485 atomic64_add(vpay, &iocg->done_vtime); 1486 iocg_pay_debt(iocg, abs_vpay, now); 1487 vbudget -= vpay; 1488 } 1489 1490 if (iocg->abs_vdebt || iocg->delay) 1491 iocg_kick_delay(iocg, now); 1492 1493 /* 1494 * Debt can still be outstanding if we haven't paid all yet or the 1495 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1496 * under debt. Make sure @vbudget reflects the outstanding amount and is 1497 * not positive. 1498 */ 1499 if (iocg->abs_vdebt) { 1500 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1501 vbudget = min_t(s64, 0, vbudget - vdebt); 1502 } 1503 1504 /* 1505 * Wake up the ones which are due and see how much vtime we'll need for 1506 * the next one. As paying off debt restores hw_inuse, it must be read 1507 * after the above debt payment. 1508 */ 1509 ctx.vbudget = vbudget; 1510 current_hweight(iocg, NULL, &ctx.hw_inuse); 1511 1512 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1513 1514 if (!waitqueue_active(&iocg->waitq)) { 1515 if (iocg->wait_since) { 1516 iocg->local_stat.wait_us += now->now - iocg->wait_since; 1517 iocg->wait_since = 0; 1518 } 1519 return; 1520 } 1521 1522 if (!iocg->wait_since) 1523 iocg->wait_since = now->now; 1524 1525 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1526 return; 1527 1528 /* determine next wakeup, add a timer margin to guarantee chunking */ 1529 vshortage = -ctx.vbudget; 1530 expires = now->now_ns + 1531 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1532 NSEC_PER_USEC; 1533 expires += ioc->timer_slack_ns; 1534 1535 /* if already active and close enough, don't bother */ 1536 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1537 if (hrtimer_is_queued(&iocg->waitq_timer) && 1538 abs(oexpires - expires) <= ioc->timer_slack_ns) 1539 return; 1540 1541 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1542 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1543 } 1544 1545 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1546 { 1547 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1548 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1549 struct ioc_now now; 1550 unsigned long flags; 1551 1552 ioc_now(iocg->ioc, &now); 1553 1554 iocg_lock(iocg, pay_debt, &flags); 1555 iocg_kick_waitq(iocg, pay_debt, &now); 1556 iocg_unlock(iocg, pay_debt, &flags); 1557 1558 return HRTIMER_NORESTART; 1559 } 1560 1561 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1562 { 1563 u32 nr_met[2] = { }; 1564 u32 nr_missed[2] = { }; 1565 u64 rq_wait_ns = 0; 1566 int cpu, rw; 1567 1568 for_each_online_cpu(cpu) { 1569 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1570 u64 this_rq_wait_ns; 1571 1572 for (rw = READ; rw <= WRITE; rw++) { 1573 u32 this_met = local_read(&stat->missed[rw].nr_met); 1574 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1575 1576 nr_met[rw] += this_met - stat->missed[rw].last_met; 1577 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1578 stat->missed[rw].last_met = this_met; 1579 stat->missed[rw].last_missed = this_missed; 1580 } 1581 1582 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1583 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1584 stat->last_rq_wait_ns = this_rq_wait_ns; 1585 } 1586 1587 for (rw = READ; rw <= WRITE; rw++) { 1588 if (nr_met[rw] + nr_missed[rw]) 1589 missed_ppm_ar[rw] = 1590 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1591 nr_met[rw] + nr_missed[rw]); 1592 else 1593 missed_ppm_ar[rw] = 0; 1594 } 1595 1596 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1597 ioc->period_us * NSEC_PER_USEC); 1598 } 1599 1600 /* was iocg idle this period? */ 1601 static bool iocg_is_idle(struct ioc_gq *iocg) 1602 { 1603 struct ioc *ioc = iocg->ioc; 1604 1605 /* did something get issued this period? */ 1606 if (atomic64_read(&iocg->active_period) == 1607 atomic64_read(&ioc->cur_period)) 1608 return false; 1609 1610 /* is something in flight? */ 1611 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1612 return false; 1613 1614 return true; 1615 } 1616 1617 /* 1618 * Call this function on the target leaf @iocg's to build pre-order traversal 1619 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1620 * ->walk_list and the caller is responsible for dissolving the list after use. 1621 */ 1622 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1623 struct list_head *inner_walk) 1624 { 1625 int lvl; 1626 1627 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1628 1629 /* find the first ancestor which hasn't been visited yet */ 1630 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1631 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1632 break; 1633 } 1634 1635 /* walk down and visit the inner nodes to get pre-order traversal */ 1636 while (++lvl <= iocg->level - 1) { 1637 struct ioc_gq *inner = iocg->ancestors[lvl]; 1638 1639 /* record traversal order */ 1640 list_add_tail(&inner->walk_list, inner_walk); 1641 } 1642 } 1643 1644 /* collect per-cpu counters and propagate the deltas to the parent */ 1645 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) 1646 { 1647 struct ioc *ioc = iocg->ioc; 1648 struct iocg_stat new_stat; 1649 u64 abs_vusage = 0; 1650 u64 vusage_delta; 1651 int cpu; 1652 1653 lockdep_assert_held(&iocg->ioc->lock); 1654 1655 /* collect per-cpu counters */ 1656 for_each_possible_cpu(cpu) { 1657 abs_vusage += local64_read( 1658 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1659 } 1660 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1661 iocg->last_stat_abs_vusage = abs_vusage; 1662 1663 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1664 iocg->local_stat.usage_us += iocg->usage_delta_us; 1665 1666 /* propagate upwards */ 1667 new_stat.usage_us = 1668 iocg->local_stat.usage_us + iocg->desc_stat.usage_us; 1669 new_stat.wait_us = 1670 iocg->local_stat.wait_us + iocg->desc_stat.wait_us; 1671 new_stat.indebt_us = 1672 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; 1673 new_stat.indelay_us = 1674 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; 1675 1676 /* propagate the deltas to the parent */ 1677 if (iocg->level > 0) { 1678 struct iocg_stat *parent_stat = 1679 &iocg->ancestors[iocg->level - 1]->desc_stat; 1680 1681 parent_stat->usage_us += 1682 new_stat.usage_us - iocg->last_stat.usage_us; 1683 parent_stat->wait_us += 1684 new_stat.wait_us - iocg->last_stat.wait_us; 1685 parent_stat->indebt_us += 1686 new_stat.indebt_us - iocg->last_stat.indebt_us; 1687 parent_stat->indelay_us += 1688 new_stat.indelay_us - iocg->last_stat.indelay_us; 1689 } 1690 1691 iocg->last_stat = new_stat; 1692 } 1693 1694 /* get stat counters ready for reading on all active iocgs */ 1695 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1696 { 1697 LIST_HEAD(inner_walk); 1698 struct ioc_gq *iocg, *tiocg; 1699 1700 /* flush leaves and build inner node walk list */ 1701 list_for_each_entry(iocg, target_iocgs, active_list) { 1702 iocg_flush_stat_one(iocg, now); 1703 iocg_build_inner_walk(iocg, &inner_walk); 1704 } 1705 1706 /* keep flushing upwards by walking the inner list backwards */ 1707 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1708 iocg_flush_stat_one(iocg, now); 1709 list_del_init(&iocg->walk_list); 1710 } 1711 } 1712 1713 /* 1714 * Determine what @iocg's hweight_inuse should be after donating unused 1715 * capacity. @hwm is the upper bound and used to signal no donation. This 1716 * function also throws away @iocg's excess budget. 1717 */ 1718 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1719 u32 usage, struct ioc_now *now) 1720 { 1721 struct ioc *ioc = iocg->ioc; 1722 u64 vtime = atomic64_read(&iocg->vtime); 1723 s64 excess, delta, target, new_hwi; 1724 1725 /* debt handling owns inuse for debtors */ 1726 if (iocg->abs_vdebt) 1727 return 1; 1728 1729 /* see whether minimum margin requirement is met */ 1730 if (waitqueue_active(&iocg->waitq) || 1731 time_after64(vtime, now->vnow - ioc->margins.min)) 1732 return hwm; 1733 1734 /* throw away excess above target */ 1735 excess = now->vnow - vtime - ioc->margins.target; 1736 if (excess > 0) { 1737 atomic64_add(excess, &iocg->vtime); 1738 atomic64_add(excess, &iocg->done_vtime); 1739 vtime += excess; 1740 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1741 } 1742 1743 /* 1744 * Let's say the distance between iocg's and device's vtimes as a 1745 * fraction of period duration is delta. Assuming that the iocg will 1746 * consume the usage determined above, we want to determine new_hwi so 1747 * that delta equals MARGIN_TARGET at the end of the next period. 1748 * 1749 * We need to execute usage worth of IOs while spending the sum of the 1750 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1751 * (delta): 1752 * 1753 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1754 * 1755 * Therefore, the new_hwi is: 1756 * 1757 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1758 */ 1759 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1760 now->vnow - ioc->period_at_vtime); 1761 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1762 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1763 1764 return clamp_t(s64, new_hwi, 1, hwm); 1765 } 1766 1767 /* 1768 * For work-conservation, an iocg which isn't using all of its share should 1769 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1770 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1771 * 1772 * #1 is mathematically simpler but has the drawback of requiring synchronous 1773 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1774 * change due to donation snapbacks as it has the possibility of grossly 1775 * overshooting what's allowed by the model and vrate. 1776 * 1777 * #2 is inherently safe with local operations. The donating iocg can easily 1778 * snap back to higher weights when needed without worrying about impacts on 1779 * other nodes as the impacts will be inherently correct. This also makes idle 1780 * iocg activations safe. The only effect activations have is decreasing 1781 * hweight_inuse of others, the right solution to which is for those iocgs to 1782 * snap back to higher weights. 1783 * 1784 * So, we go with #2. The challenge is calculating how each donating iocg's 1785 * inuse should be adjusted to achieve the target donation amounts. This is done 1786 * using Andy's method described in the following pdf. 1787 * 1788 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1789 * 1790 * Given the weights and target after-donation hweight_inuse values, Andy's 1791 * method determines how the proportional distribution should look like at each 1792 * sibling level to maintain the relative relationship between all non-donating 1793 * pairs. To roughly summarize, it divides the tree into donating and 1794 * non-donating parts, calculates global donation rate which is used to 1795 * determine the target hweight_inuse for each node, and then derives per-level 1796 * proportions. 1797 * 1798 * The following pdf shows that global distribution calculated this way can be 1799 * achieved by scaling inuse weights of donating leaves and propagating the 1800 * adjustments upwards proportionally. 1801 * 1802 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1803 * 1804 * Combining the above two, we can determine how each leaf iocg's inuse should 1805 * be adjusted to achieve the target donation. 1806 * 1807 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1808 * 1809 * The inline comments use symbols from the last pdf. 1810 * 1811 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1812 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1813 * t is the sum of the absolute budgets of donating nodes in the subtree. 1814 * w is the weight of the node. w = w_f + w_t 1815 * w_f is the non-donating portion of w. w_f = w * f / b 1816 * w_b is the donating portion of w. w_t = w * t / b 1817 * s is the sum of all sibling weights. s = Sum(w) for siblings 1818 * s_f and s_t are the non-donating and donating portions of s. 1819 * 1820 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1821 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1822 * after adjustments. Subscript r denotes the root node's values. 1823 */ 1824 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1825 { 1826 LIST_HEAD(over_hwa); 1827 LIST_HEAD(inner_walk); 1828 struct ioc_gq *iocg, *tiocg, *root_iocg; 1829 u32 after_sum, over_sum, over_target, gamma; 1830 1831 /* 1832 * It's pretty unlikely but possible for the total sum of 1833 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1834 * confuse the following calculations. If such condition is detected, 1835 * scale down everyone over its full share equally to keep the sum below 1836 * WEIGHT_ONE. 1837 */ 1838 after_sum = 0; 1839 over_sum = 0; 1840 list_for_each_entry(iocg, surpluses, surplus_list) { 1841 u32 hwa; 1842 1843 current_hweight(iocg, &hwa, NULL); 1844 after_sum += iocg->hweight_after_donation; 1845 1846 if (iocg->hweight_after_donation > hwa) { 1847 over_sum += iocg->hweight_after_donation; 1848 list_add(&iocg->walk_list, &over_hwa); 1849 } 1850 } 1851 1852 if (after_sum >= WEIGHT_ONE) { 1853 /* 1854 * The delta should be deducted from the over_sum, calculate 1855 * target over_sum value. 1856 */ 1857 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1858 WARN_ON_ONCE(over_sum <= over_delta); 1859 over_target = over_sum - over_delta; 1860 } else { 1861 over_target = 0; 1862 } 1863 1864 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1865 if (over_target) 1866 iocg->hweight_after_donation = 1867 div_u64((u64)iocg->hweight_after_donation * 1868 over_target, over_sum); 1869 list_del_init(&iocg->walk_list); 1870 } 1871 1872 /* 1873 * Build pre-order inner node walk list and prepare for donation 1874 * adjustment calculations. 1875 */ 1876 list_for_each_entry(iocg, surpluses, surplus_list) { 1877 iocg_build_inner_walk(iocg, &inner_walk); 1878 } 1879 1880 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1881 WARN_ON_ONCE(root_iocg->level > 0); 1882 1883 list_for_each_entry(iocg, &inner_walk, walk_list) { 1884 iocg->child_adjusted_sum = 0; 1885 iocg->hweight_donating = 0; 1886 iocg->hweight_after_donation = 0; 1887 } 1888 1889 /* 1890 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1891 * up the hierarchy. 1892 */ 1893 list_for_each_entry(iocg, surpluses, surplus_list) { 1894 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1895 1896 parent->hweight_donating += iocg->hweight_donating; 1897 parent->hweight_after_donation += iocg->hweight_after_donation; 1898 } 1899 1900 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1901 if (iocg->level > 0) { 1902 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1903 1904 parent->hweight_donating += iocg->hweight_donating; 1905 parent->hweight_after_donation += iocg->hweight_after_donation; 1906 } 1907 } 1908 1909 /* 1910 * Calculate inner hwa's (b) and make sure the donation values are 1911 * within the accepted ranges as we're doing low res calculations with 1912 * roundups. 1913 */ 1914 list_for_each_entry(iocg, &inner_walk, walk_list) { 1915 if (iocg->level) { 1916 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1917 1918 iocg->hweight_active = DIV64_U64_ROUND_UP( 1919 (u64)parent->hweight_active * iocg->active, 1920 parent->child_active_sum); 1921 1922 } 1923 1924 iocg->hweight_donating = min(iocg->hweight_donating, 1925 iocg->hweight_active); 1926 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1927 iocg->hweight_donating - 1); 1928 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1929 iocg->hweight_donating <= 1 || 1930 iocg->hweight_after_donation == 0)) { 1931 pr_warn("iocg: invalid donation weights in "); 1932 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1933 pr_cont(": active=%u donating=%u after=%u\n", 1934 iocg->hweight_active, iocg->hweight_donating, 1935 iocg->hweight_after_donation); 1936 } 1937 } 1938 1939 /* 1940 * Calculate the global donation rate (gamma) - the rate to adjust 1941 * non-donating budgets by. 1942 * 1943 * No need to use 64bit multiplication here as the first operand is 1944 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1945 * 1946 * We know that there are beneficiary nodes and the sum of the donating 1947 * hweights can't be whole; however, due to the round-ups during hweight 1948 * calculations, root_iocg->hweight_donating might still end up equal to 1949 * or greater than whole. Limit the range when calculating the divider. 1950 * 1951 * gamma = (1 - t_r') / (1 - t_r) 1952 */ 1953 gamma = DIV_ROUND_UP( 1954 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1955 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1956 1957 /* 1958 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1959 * nodes. 1960 */ 1961 list_for_each_entry(iocg, &inner_walk, walk_list) { 1962 struct ioc_gq *parent; 1963 u32 inuse, wpt, wptp; 1964 u64 st, sf; 1965 1966 if (iocg->level == 0) { 1967 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1968 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1969 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1970 WEIGHT_ONE - iocg->hweight_after_donation); 1971 continue; 1972 } 1973 1974 parent = iocg->ancestors[iocg->level - 1]; 1975 1976 /* b' = gamma * b_f + b_t' */ 1977 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1978 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1979 WEIGHT_ONE) + iocg->hweight_after_donation; 1980 1981 /* w' = s' * b' / b'_p */ 1982 inuse = DIV64_U64_ROUND_UP( 1983 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1984 parent->hweight_inuse); 1985 1986 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1987 st = DIV64_U64_ROUND_UP( 1988 iocg->child_active_sum * iocg->hweight_donating, 1989 iocg->hweight_active); 1990 sf = iocg->child_active_sum - st; 1991 wpt = DIV64_U64_ROUND_UP( 1992 (u64)iocg->active * iocg->hweight_donating, 1993 iocg->hweight_active); 1994 wptp = DIV64_U64_ROUND_UP( 1995 (u64)inuse * iocg->hweight_after_donation, 1996 iocg->hweight_inuse); 1997 1998 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1999 } 2000 2001 /* 2002 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2003 * we can finally determine leaf adjustments. 2004 */ 2005 list_for_each_entry(iocg, surpluses, surplus_list) { 2006 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2007 u32 inuse; 2008 2009 /* 2010 * In-debt iocgs participated in the donation calculation with 2011 * the minimum target hweight_inuse. Configuring inuse 2012 * accordingly would work fine but debt handling expects 2013 * @iocg->inuse stay at the minimum and we don't wanna 2014 * interfere. 2015 */ 2016 if (iocg->abs_vdebt) { 2017 WARN_ON_ONCE(iocg->inuse > 1); 2018 continue; 2019 } 2020 2021 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2022 inuse = DIV64_U64_ROUND_UP( 2023 parent->child_adjusted_sum * iocg->hweight_after_donation, 2024 parent->hweight_inuse); 2025 2026 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2027 iocg->inuse, inuse, 2028 iocg->hweight_inuse, 2029 iocg->hweight_after_donation); 2030 2031 __propagate_weights(iocg, iocg->active, inuse, true, now); 2032 } 2033 2034 /* walk list should be dissolved after use */ 2035 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2036 list_del_init(&iocg->walk_list); 2037 } 2038 2039 /* 2040 * A low weight iocg can amass a large amount of debt, for example, when 2041 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2042 * memory paired with a slow IO device, the debt can span multiple seconds or 2043 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2044 * up blocked paying its debt while the IO device is idle. 2045 * 2046 * The following protects against such cases. If the device has been 2047 * sufficiently idle for a while, the debts are halved and delays are 2048 * recalculated. 2049 */ 2050 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2051 struct ioc_now *now) 2052 { 2053 struct ioc_gq *iocg; 2054 u64 dur, usage_pct, nr_cycles; 2055 2056 /* if no debtor, reset the cycle */ 2057 if (!nr_debtors) { 2058 ioc->dfgv_period_at = now->now; 2059 ioc->dfgv_period_rem = 0; 2060 ioc->dfgv_usage_us_sum = 0; 2061 return; 2062 } 2063 2064 /* 2065 * Debtors can pass through a lot of writes choking the device and we 2066 * don't want to be forgiving debts while the device is struggling from 2067 * write bursts. If we're missing latency targets, consider the device 2068 * fully utilized. 2069 */ 2070 if (ioc->busy_level > 0) 2071 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2072 2073 ioc->dfgv_usage_us_sum += usage_us_sum; 2074 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2075 return; 2076 2077 /* 2078 * At least DFGV_PERIOD has passed since the last period. Calculate the 2079 * average usage and reset the period counters. 2080 */ 2081 dur = now->now - ioc->dfgv_period_at; 2082 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2083 2084 ioc->dfgv_period_at = now->now; 2085 ioc->dfgv_usage_us_sum = 0; 2086 2087 /* if was too busy, reset everything */ 2088 if (usage_pct > DFGV_USAGE_PCT) { 2089 ioc->dfgv_period_rem = 0; 2090 return; 2091 } 2092 2093 /* 2094 * Usage is lower than threshold. Let's forgive some debts. Debt 2095 * forgiveness runs off of the usual ioc timer but its period usually 2096 * doesn't match ioc's. Compensate the difference by performing the 2097 * reduction as many times as would fit in the duration since the last 2098 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2099 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2100 * reductions is doubled. 2101 */ 2102 nr_cycles = dur + ioc->dfgv_period_rem; 2103 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2104 2105 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2106 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2107 2108 if (!iocg->abs_vdebt && !iocg->delay) 2109 continue; 2110 2111 spin_lock(&iocg->waitq.lock); 2112 2113 old_debt = iocg->abs_vdebt; 2114 old_delay = iocg->delay; 2115 2116 if (iocg->abs_vdebt) 2117 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2118 if (iocg->delay) 2119 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2120 2121 iocg_kick_waitq(iocg, true, now); 2122 2123 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2124 old_debt, iocg->abs_vdebt, 2125 old_delay, iocg->delay); 2126 2127 spin_unlock(&iocg->waitq.lock); 2128 } 2129 } 2130 2131 /* 2132 * Check the active iocgs' state to avoid oversleeping and deactive 2133 * idle iocgs. 2134 * 2135 * Since waiters determine the sleep durations based on the vrate 2136 * they saw at the time of sleep, if vrate has increased, some 2137 * waiters could be sleeping for too long. Wake up tardy waiters 2138 * which should have woken up in the last period and expire idle 2139 * iocgs. 2140 */ 2141 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2142 { 2143 int nr_debtors = 0; 2144 struct ioc_gq *iocg, *tiocg; 2145 2146 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2147 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2148 !iocg->delay && !iocg_is_idle(iocg)) 2149 continue; 2150 2151 spin_lock(&iocg->waitq.lock); 2152 2153 /* flush wait and indebt stat deltas */ 2154 if (iocg->wait_since) { 2155 iocg->local_stat.wait_us += now->now - iocg->wait_since; 2156 iocg->wait_since = now->now; 2157 } 2158 if (iocg->indebt_since) { 2159 iocg->local_stat.indebt_us += 2160 now->now - iocg->indebt_since; 2161 iocg->indebt_since = now->now; 2162 } 2163 if (iocg->indelay_since) { 2164 iocg->local_stat.indelay_us += 2165 now->now - iocg->indelay_since; 2166 iocg->indelay_since = now->now; 2167 } 2168 2169 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2170 iocg->delay) { 2171 /* might be oversleeping vtime / hweight changes, kick */ 2172 iocg_kick_waitq(iocg, true, now); 2173 if (iocg->abs_vdebt || iocg->delay) 2174 nr_debtors++; 2175 } else if (iocg_is_idle(iocg)) { 2176 /* no waiter and idle, deactivate */ 2177 u64 vtime = atomic64_read(&iocg->vtime); 2178 s64 excess; 2179 2180 /* 2181 * @iocg has been inactive for a full duration and will 2182 * have a high budget. Account anything above target as 2183 * error and throw away. On reactivation, it'll start 2184 * with the target budget. 2185 */ 2186 excess = now->vnow - vtime - ioc->margins.target; 2187 if (excess > 0) { 2188 u32 old_hwi; 2189 2190 current_hweight(iocg, NULL, &old_hwi); 2191 ioc->vtime_err -= div64_u64(excess * old_hwi, 2192 WEIGHT_ONE); 2193 } 2194 2195 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2196 atomic64_read(&iocg->active_period), 2197 atomic64_read(&ioc->cur_period), vtime); 2198 __propagate_weights(iocg, 0, 0, false, now); 2199 list_del_init(&iocg->active_list); 2200 } 2201 2202 spin_unlock(&iocg->waitq.lock); 2203 } 2204 2205 commit_weights(ioc); 2206 return nr_debtors; 2207 } 2208 2209 static void ioc_timer_fn(struct timer_list *timer) 2210 { 2211 struct ioc *ioc = container_of(timer, struct ioc, timer); 2212 struct ioc_gq *iocg, *tiocg; 2213 struct ioc_now now; 2214 LIST_HEAD(surpluses); 2215 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2216 u64 usage_us_sum = 0; 2217 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2218 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2219 u32 missed_ppm[2], rq_wait_pct; 2220 u64 period_vtime; 2221 int prev_busy_level; 2222 2223 /* how were the latencies during the period? */ 2224 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2225 2226 /* take care of active iocgs */ 2227 spin_lock_irq(&ioc->lock); 2228 2229 ioc_now(ioc, &now); 2230 2231 period_vtime = now.vnow - ioc->period_at_vtime; 2232 if (WARN_ON_ONCE(!period_vtime)) { 2233 spin_unlock_irq(&ioc->lock); 2234 return; 2235 } 2236 2237 nr_debtors = ioc_check_iocgs(ioc, &now); 2238 2239 /* 2240 * Wait and indebt stat are flushed above and the donation calculation 2241 * below needs updated usage stat. Let's bring stat up-to-date. 2242 */ 2243 iocg_flush_stat(&ioc->active_iocgs, &now); 2244 2245 /* calc usage and see whether some weights need to be moved around */ 2246 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2247 u64 vdone, vtime, usage_us; 2248 u32 hw_active, hw_inuse; 2249 2250 /* 2251 * Collect unused and wind vtime closer to vnow to prevent 2252 * iocgs from accumulating a large amount of budget. 2253 */ 2254 vdone = atomic64_read(&iocg->done_vtime); 2255 vtime = atomic64_read(&iocg->vtime); 2256 current_hweight(iocg, &hw_active, &hw_inuse); 2257 2258 /* 2259 * Latency QoS detection doesn't account for IOs which are 2260 * in-flight for longer than a period. Detect them by 2261 * comparing vdone against period start. If lagging behind 2262 * IOs from past periods, don't increase vrate. 2263 */ 2264 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2265 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2266 time_after64(vtime, vdone) && 2267 time_after64(vtime, now.vnow - 2268 MAX_LAGGING_PERIODS * period_vtime) && 2269 time_before64(vdone, now.vnow - period_vtime)) 2270 nr_lagging++; 2271 2272 /* 2273 * Determine absolute usage factoring in in-flight IOs to avoid 2274 * high-latency completions appearing as idle. 2275 */ 2276 usage_us = iocg->usage_delta_us; 2277 usage_us_sum += usage_us; 2278 2279 /* see whether there's surplus vtime */ 2280 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2281 if (hw_inuse < hw_active || 2282 (!waitqueue_active(&iocg->waitq) && 2283 time_before64(vtime, now.vnow - ioc->margins.low))) { 2284 u32 hwa, old_hwi, hwm, new_hwi, usage; 2285 u64 usage_dur; 2286 2287 if (vdone != vtime) { 2288 u64 inflight_us = DIV64_U64_ROUND_UP( 2289 cost_to_abs_cost(vtime - vdone, hw_inuse), 2290 ioc->vtime_base_rate); 2291 2292 usage_us = max(usage_us, inflight_us); 2293 } 2294 2295 /* convert to hweight based usage ratio */ 2296 if (time_after64(iocg->activated_at, ioc->period_at)) 2297 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2298 else 2299 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2300 2301 usage = clamp_t(u32, 2302 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2303 usage_dur), 2304 1, WEIGHT_ONE); 2305 2306 /* 2307 * Already donating or accumulated enough to start. 2308 * Determine the donation amount. 2309 */ 2310 current_hweight(iocg, &hwa, &old_hwi); 2311 hwm = current_hweight_max(iocg); 2312 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2313 usage, &now); 2314 /* 2315 * Donation calculation assumes hweight_after_donation 2316 * to be positive, a condition that a donor w/ hwa < 2 2317 * can't meet. Don't bother with donation if hwa is 2318 * below 2. It's not gonna make a meaningful difference 2319 * anyway. 2320 */ 2321 if (new_hwi < hwm && hwa >= 2) { 2322 iocg->hweight_donating = hwa; 2323 iocg->hweight_after_donation = new_hwi; 2324 list_add(&iocg->surplus_list, &surpluses); 2325 } else if (!iocg->abs_vdebt) { 2326 /* 2327 * @iocg doesn't have enough to donate. Reset 2328 * its inuse to active. 2329 * 2330 * Don't reset debtors as their inuse's are 2331 * owned by debt handling. This shouldn't affect 2332 * donation calculuation in any meaningful way 2333 * as @iocg doesn't have a meaningful amount of 2334 * share anyway. 2335 */ 2336 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2337 iocg->inuse, iocg->active, 2338 iocg->hweight_inuse, new_hwi); 2339 2340 __propagate_weights(iocg, iocg->active, 2341 iocg->active, true, &now); 2342 nr_shortages++; 2343 } 2344 } else { 2345 /* genuinely short on vtime */ 2346 nr_shortages++; 2347 } 2348 } 2349 2350 if (!list_empty(&surpluses) && nr_shortages) 2351 transfer_surpluses(&surpluses, &now); 2352 2353 commit_weights(ioc); 2354 2355 /* surplus list should be dissolved after use */ 2356 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2357 list_del_init(&iocg->surplus_list); 2358 2359 /* 2360 * If q is getting clogged or we're missing too much, we're issuing 2361 * too much IO and should lower vtime rate. If we're not missing 2362 * and experiencing shortages but not surpluses, we're too stingy 2363 * and should increase vtime rate. 2364 */ 2365 prev_busy_level = ioc->busy_level; 2366 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2367 missed_ppm[READ] > ppm_rthr || 2368 missed_ppm[WRITE] > ppm_wthr) { 2369 /* clearly missing QoS targets, slow down vrate */ 2370 ioc->busy_level = max(ioc->busy_level, 0); 2371 ioc->busy_level++; 2372 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2373 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2374 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2375 /* QoS targets are being met with >25% margin */ 2376 if (nr_shortages) { 2377 /* 2378 * We're throttling while the device has spare 2379 * capacity. If vrate was being slowed down, stop. 2380 */ 2381 ioc->busy_level = min(ioc->busy_level, 0); 2382 2383 /* 2384 * If there are IOs spanning multiple periods, wait 2385 * them out before pushing the device harder. 2386 */ 2387 if (!nr_lagging) 2388 ioc->busy_level--; 2389 } else { 2390 /* 2391 * Nobody is being throttled and the users aren't 2392 * issuing enough IOs to saturate the device. We 2393 * simply don't know how close the device is to 2394 * saturation. Coast. 2395 */ 2396 ioc->busy_level = 0; 2397 } 2398 } else { 2399 /* inside the hysterisis margin, we're good */ 2400 ioc->busy_level = 0; 2401 } 2402 2403 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2404 2405 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2406 prev_busy_level, missed_ppm); 2407 2408 ioc_refresh_params(ioc, false); 2409 2410 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2411 2412 /* 2413 * This period is done. Move onto the next one. If nothing's 2414 * going on with the device, stop the timer. 2415 */ 2416 atomic64_inc(&ioc->cur_period); 2417 2418 if (ioc->running != IOC_STOP) { 2419 if (!list_empty(&ioc->active_iocgs)) { 2420 ioc_start_period(ioc, &now); 2421 } else { 2422 ioc->busy_level = 0; 2423 ioc->vtime_err = 0; 2424 ioc->running = IOC_IDLE; 2425 } 2426 2427 ioc_refresh_vrate(ioc, &now); 2428 } 2429 2430 spin_unlock_irq(&ioc->lock); 2431 } 2432 2433 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2434 u64 abs_cost, struct ioc_now *now) 2435 { 2436 struct ioc *ioc = iocg->ioc; 2437 struct ioc_margins *margins = &ioc->margins; 2438 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2439 u32 hwi, adj_step; 2440 s64 margin; 2441 u64 cost, new_inuse; 2442 2443 current_hweight(iocg, NULL, &hwi); 2444 old_hwi = hwi; 2445 cost = abs_cost_to_cost(abs_cost, hwi); 2446 margin = now->vnow - vtime - cost; 2447 2448 /* debt handling owns inuse for debtors */ 2449 if (iocg->abs_vdebt) 2450 return cost; 2451 2452 /* 2453 * We only increase inuse during period and do so if the margin has 2454 * deteriorated since the previous adjustment. 2455 */ 2456 if (margin >= iocg->saved_margin || margin >= margins->low || 2457 iocg->inuse == iocg->active) 2458 return cost; 2459 2460 spin_lock_irq(&ioc->lock); 2461 2462 /* we own inuse only when @iocg is in the normal active state */ 2463 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2464 spin_unlock_irq(&ioc->lock); 2465 return cost; 2466 } 2467 2468 /* 2469 * Bump up inuse till @abs_cost fits in the existing budget. 2470 * adj_step must be determined after acquiring ioc->lock - we might 2471 * have raced and lost to another thread for activation and could 2472 * be reading 0 iocg->active before ioc->lock which will lead to 2473 * infinite loop. 2474 */ 2475 new_inuse = iocg->inuse; 2476 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2477 do { 2478 new_inuse = new_inuse + adj_step; 2479 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2480 current_hweight(iocg, NULL, &hwi); 2481 cost = abs_cost_to_cost(abs_cost, hwi); 2482 } while (time_after64(vtime + cost, now->vnow) && 2483 iocg->inuse != iocg->active); 2484 2485 spin_unlock_irq(&ioc->lock); 2486 2487 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2488 old_inuse, iocg->inuse, old_hwi, hwi); 2489 2490 return cost; 2491 } 2492 2493 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2494 bool is_merge, u64 *costp) 2495 { 2496 struct ioc *ioc = iocg->ioc; 2497 u64 coef_seqio, coef_randio, coef_page; 2498 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2499 u64 seek_pages = 0; 2500 u64 cost = 0; 2501 2502 switch (bio_op(bio)) { 2503 case REQ_OP_READ: 2504 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2505 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2506 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2507 break; 2508 case REQ_OP_WRITE: 2509 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2510 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2511 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2512 break; 2513 default: 2514 goto out; 2515 } 2516 2517 if (iocg->cursor) { 2518 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2519 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2520 } 2521 2522 if (!is_merge) { 2523 if (seek_pages > LCOEF_RANDIO_PAGES) { 2524 cost += coef_randio; 2525 } else { 2526 cost += coef_seqio; 2527 } 2528 } 2529 cost += pages * coef_page; 2530 out: 2531 *costp = cost; 2532 } 2533 2534 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2535 { 2536 u64 cost; 2537 2538 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2539 return cost; 2540 } 2541 2542 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2543 u64 *costp) 2544 { 2545 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2546 2547 switch (req_op(rq)) { 2548 case REQ_OP_READ: 2549 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2550 break; 2551 case REQ_OP_WRITE: 2552 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2553 break; 2554 default: 2555 *costp = 0; 2556 } 2557 } 2558 2559 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2560 { 2561 u64 cost; 2562 2563 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2564 return cost; 2565 } 2566 2567 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2568 { 2569 struct blkcg_gq *blkg = bio->bi_blkg; 2570 struct ioc *ioc = rqos_to_ioc(rqos); 2571 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2572 struct ioc_now now; 2573 struct iocg_wait wait; 2574 u64 abs_cost, cost, vtime; 2575 bool use_debt, ioc_locked; 2576 unsigned long flags; 2577 2578 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2579 if (!ioc->enabled || !iocg || !iocg->level) 2580 return; 2581 2582 /* calculate the absolute vtime cost */ 2583 abs_cost = calc_vtime_cost(bio, iocg, false); 2584 if (!abs_cost) 2585 return; 2586 2587 if (!iocg_activate(iocg, &now)) 2588 return; 2589 2590 iocg->cursor = bio_end_sector(bio); 2591 vtime = atomic64_read(&iocg->vtime); 2592 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2593 2594 /* 2595 * If no one's waiting and within budget, issue right away. The 2596 * tests are racy but the races aren't systemic - we only miss once 2597 * in a while which is fine. 2598 */ 2599 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2600 time_before_eq64(vtime + cost, now.vnow)) { 2601 iocg_commit_bio(iocg, bio, abs_cost, cost); 2602 return; 2603 } 2604 2605 /* 2606 * We're over budget. This can be handled in two ways. IOs which may 2607 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2608 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2609 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2610 * whether debt handling is needed and acquire locks accordingly. 2611 */ 2612 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2613 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2614 retry_lock: 2615 iocg_lock(iocg, ioc_locked, &flags); 2616 2617 /* 2618 * @iocg must stay activated for debt and waitq handling. Deactivation 2619 * is synchronized against both ioc->lock and waitq.lock and we won't 2620 * get deactivated as long as we're waiting or has debt, so we're good 2621 * if we're activated here. In the unlikely cases that we aren't, just 2622 * issue the IO. 2623 */ 2624 if (unlikely(list_empty(&iocg->active_list))) { 2625 iocg_unlock(iocg, ioc_locked, &flags); 2626 iocg_commit_bio(iocg, bio, abs_cost, cost); 2627 return; 2628 } 2629 2630 /* 2631 * We're over budget. If @bio has to be issued regardless, remember 2632 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2633 * off the debt before waking more IOs. 2634 * 2635 * This way, the debt is continuously paid off each period with the 2636 * actual budget available to the cgroup. If we just wound vtime, we 2637 * would incorrectly use the current hw_inuse for the entire amount 2638 * which, for example, can lead to the cgroup staying blocked for a 2639 * long time even with substantially raised hw_inuse. 2640 * 2641 * An iocg with vdebt should stay online so that the timer can keep 2642 * deducting its vdebt and [de]activate use_delay mechanism 2643 * accordingly. We don't want to race against the timer trying to 2644 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2645 * penalizing the cgroup and its descendants. 2646 */ 2647 if (use_debt) { 2648 iocg_incur_debt(iocg, abs_cost, &now); 2649 if (iocg_kick_delay(iocg, &now)) 2650 blkcg_schedule_throttle(rqos->q, 2651 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2652 iocg_unlock(iocg, ioc_locked, &flags); 2653 return; 2654 } 2655 2656 /* guarantee that iocgs w/ waiters have maximum inuse */ 2657 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2658 if (!ioc_locked) { 2659 iocg_unlock(iocg, false, &flags); 2660 ioc_locked = true; 2661 goto retry_lock; 2662 } 2663 propagate_weights(iocg, iocg->active, iocg->active, true, 2664 &now); 2665 } 2666 2667 /* 2668 * Append self to the waitq and schedule the wakeup timer if we're 2669 * the first waiter. The timer duration is calculated based on the 2670 * current vrate. vtime and hweight changes can make it too short 2671 * or too long. Each wait entry records the absolute cost it's 2672 * waiting for to allow re-evaluation using a custom wait entry. 2673 * 2674 * If too short, the timer simply reschedules itself. If too long, 2675 * the period timer will notice and trigger wakeups. 2676 * 2677 * All waiters are on iocg->waitq and the wait states are 2678 * synchronized using waitq.lock. 2679 */ 2680 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2681 wait.wait.private = current; 2682 wait.bio = bio; 2683 wait.abs_cost = abs_cost; 2684 wait.committed = false; /* will be set true by waker */ 2685 2686 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2687 iocg_kick_waitq(iocg, ioc_locked, &now); 2688 2689 iocg_unlock(iocg, ioc_locked, &flags); 2690 2691 while (true) { 2692 set_current_state(TASK_UNINTERRUPTIBLE); 2693 if (wait.committed) 2694 break; 2695 io_schedule(); 2696 } 2697 2698 /* waker already committed us, proceed */ 2699 finish_wait(&iocg->waitq, &wait.wait); 2700 } 2701 2702 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2703 struct bio *bio) 2704 { 2705 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2706 struct ioc *ioc = rqos_to_ioc(rqos); 2707 sector_t bio_end = bio_end_sector(bio); 2708 struct ioc_now now; 2709 u64 vtime, abs_cost, cost; 2710 unsigned long flags; 2711 2712 /* bypass if disabled, still initializing, or for root cgroup */ 2713 if (!ioc->enabled || !iocg || !iocg->level) 2714 return; 2715 2716 abs_cost = calc_vtime_cost(bio, iocg, true); 2717 if (!abs_cost) 2718 return; 2719 2720 ioc_now(ioc, &now); 2721 2722 vtime = atomic64_read(&iocg->vtime); 2723 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2724 2725 /* update cursor if backmerging into the request at the cursor */ 2726 if (blk_rq_pos(rq) < bio_end && 2727 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2728 iocg->cursor = bio_end; 2729 2730 /* 2731 * Charge if there's enough vtime budget and the existing request has 2732 * cost assigned. 2733 */ 2734 if (rq->bio && rq->bio->bi_iocost_cost && 2735 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2736 iocg_commit_bio(iocg, bio, abs_cost, cost); 2737 return; 2738 } 2739 2740 /* 2741 * Otherwise, account it as debt if @iocg is online, which it should 2742 * be for the vast majority of cases. See debt handling in 2743 * ioc_rqos_throttle() for details. 2744 */ 2745 spin_lock_irqsave(&ioc->lock, flags); 2746 spin_lock(&iocg->waitq.lock); 2747 2748 if (likely(!list_empty(&iocg->active_list))) { 2749 iocg_incur_debt(iocg, abs_cost, &now); 2750 if (iocg_kick_delay(iocg, &now)) 2751 blkcg_schedule_throttle(rqos->q, 2752 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2753 } else { 2754 iocg_commit_bio(iocg, bio, abs_cost, cost); 2755 } 2756 2757 spin_unlock(&iocg->waitq.lock); 2758 spin_unlock_irqrestore(&ioc->lock, flags); 2759 } 2760 2761 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2762 { 2763 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2764 2765 if (iocg && bio->bi_iocost_cost) 2766 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2767 } 2768 2769 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2770 { 2771 struct ioc *ioc = rqos_to_ioc(rqos); 2772 struct ioc_pcpu_stat *ccs; 2773 u64 on_q_ns, rq_wait_ns, size_nsec; 2774 int pidx, rw; 2775 2776 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2777 return; 2778 2779 switch (req_op(rq) & REQ_OP_MASK) { 2780 case REQ_OP_READ: 2781 pidx = QOS_RLAT; 2782 rw = READ; 2783 break; 2784 case REQ_OP_WRITE: 2785 pidx = QOS_WLAT; 2786 rw = WRITE; 2787 break; 2788 default: 2789 return; 2790 } 2791 2792 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2793 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2794 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2795 2796 ccs = get_cpu_ptr(ioc->pcpu_stat); 2797 2798 if (on_q_ns <= size_nsec || 2799 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2800 local_inc(&ccs->missed[rw].nr_met); 2801 else 2802 local_inc(&ccs->missed[rw].nr_missed); 2803 2804 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2805 2806 put_cpu_ptr(ccs); 2807 } 2808 2809 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2810 { 2811 struct ioc *ioc = rqos_to_ioc(rqos); 2812 2813 spin_lock_irq(&ioc->lock); 2814 ioc_refresh_params(ioc, false); 2815 spin_unlock_irq(&ioc->lock); 2816 } 2817 2818 static void ioc_rqos_exit(struct rq_qos *rqos) 2819 { 2820 struct ioc *ioc = rqos_to_ioc(rqos); 2821 2822 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2823 2824 spin_lock_irq(&ioc->lock); 2825 ioc->running = IOC_STOP; 2826 spin_unlock_irq(&ioc->lock); 2827 2828 del_timer_sync(&ioc->timer); 2829 free_percpu(ioc->pcpu_stat); 2830 kfree(ioc); 2831 } 2832 2833 static struct rq_qos_ops ioc_rqos_ops = { 2834 .throttle = ioc_rqos_throttle, 2835 .merge = ioc_rqos_merge, 2836 .done_bio = ioc_rqos_done_bio, 2837 .done = ioc_rqos_done, 2838 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2839 .exit = ioc_rqos_exit, 2840 }; 2841 2842 static int blk_iocost_init(struct request_queue *q) 2843 { 2844 struct ioc *ioc; 2845 struct rq_qos *rqos; 2846 int i, cpu, ret; 2847 2848 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2849 if (!ioc) 2850 return -ENOMEM; 2851 2852 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2853 if (!ioc->pcpu_stat) { 2854 kfree(ioc); 2855 return -ENOMEM; 2856 } 2857 2858 for_each_possible_cpu(cpu) { 2859 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2860 2861 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2862 local_set(&ccs->missed[i].nr_met, 0); 2863 local_set(&ccs->missed[i].nr_missed, 0); 2864 } 2865 local64_set(&ccs->rq_wait_ns, 0); 2866 } 2867 2868 rqos = &ioc->rqos; 2869 rqos->id = RQ_QOS_COST; 2870 rqos->ops = &ioc_rqos_ops; 2871 rqos->q = q; 2872 2873 spin_lock_init(&ioc->lock); 2874 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2875 INIT_LIST_HEAD(&ioc->active_iocgs); 2876 2877 ioc->running = IOC_IDLE; 2878 ioc->vtime_base_rate = VTIME_PER_USEC; 2879 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2880 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2881 ioc->period_at = ktime_to_us(ktime_get()); 2882 atomic64_set(&ioc->cur_period, 0); 2883 atomic_set(&ioc->hweight_gen, 0); 2884 2885 spin_lock_irq(&ioc->lock); 2886 ioc->autop_idx = AUTOP_INVALID; 2887 ioc_refresh_params(ioc, true); 2888 spin_unlock_irq(&ioc->lock); 2889 2890 /* 2891 * rqos must be added before activation to allow iocg_pd_init() to 2892 * lookup the ioc from q. This means that the rqos methods may get 2893 * called before policy activation completion, can't assume that the 2894 * target bio has an iocg associated and need to test for NULL iocg. 2895 */ 2896 rq_qos_add(q, rqos); 2897 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2898 if (ret) { 2899 rq_qos_del(q, rqos); 2900 free_percpu(ioc->pcpu_stat); 2901 kfree(ioc); 2902 return ret; 2903 } 2904 return 0; 2905 } 2906 2907 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2908 { 2909 struct ioc_cgrp *iocc; 2910 2911 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2912 if (!iocc) 2913 return NULL; 2914 2915 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2916 return &iocc->cpd; 2917 } 2918 2919 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2920 { 2921 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2922 } 2923 2924 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2925 struct blkcg *blkcg) 2926 { 2927 int levels = blkcg->css.cgroup->level + 1; 2928 struct ioc_gq *iocg; 2929 2930 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2931 if (!iocg) 2932 return NULL; 2933 2934 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2935 if (!iocg->pcpu_stat) { 2936 kfree(iocg); 2937 return NULL; 2938 } 2939 2940 return &iocg->pd; 2941 } 2942 2943 static void ioc_pd_init(struct blkg_policy_data *pd) 2944 { 2945 struct ioc_gq *iocg = pd_to_iocg(pd); 2946 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2947 struct ioc *ioc = q_to_ioc(blkg->q); 2948 struct ioc_now now; 2949 struct blkcg_gq *tblkg; 2950 unsigned long flags; 2951 2952 ioc_now(ioc, &now); 2953 2954 iocg->ioc = ioc; 2955 atomic64_set(&iocg->vtime, now.vnow); 2956 atomic64_set(&iocg->done_vtime, now.vnow); 2957 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2958 INIT_LIST_HEAD(&iocg->active_list); 2959 INIT_LIST_HEAD(&iocg->walk_list); 2960 INIT_LIST_HEAD(&iocg->surplus_list); 2961 iocg->hweight_active = WEIGHT_ONE; 2962 iocg->hweight_inuse = WEIGHT_ONE; 2963 2964 init_waitqueue_head(&iocg->waitq); 2965 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2966 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2967 2968 iocg->level = blkg->blkcg->css.cgroup->level; 2969 2970 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2971 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2972 iocg->ancestors[tiocg->level] = tiocg; 2973 } 2974 2975 spin_lock_irqsave(&ioc->lock, flags); 2976 weight_updated(iocg, &now); 2977 spin_unlock_irqrestore(&ioc->lock, flags); 2978 } 2979 2980 static void ioc_pd_free(struct blkg_policy_data *pd) 2981 { 2982 struct ioc_gq *iocg = pd_to_iocg(pd); 2983 struct ioc *ioc = iocg->ioc; 2984 unsigned long flags; 2985 2986 if (ioc) { 2987 spin_lock_irqsave(&ioc->lock, flags); 2988 2989 if (!list_empty(&iocg->active_list)) { 2990 struct ioc_now now; 2991 2992 ioc_now(ioc, &now); 2993 propagate_weights(iocg, 0, 0, false, &now); 2994 list_del_init(&iocg->active_list); 2995 } 2996 2997 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2998 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2999 3000 spin_unlock_irqrestore(&ioc->lock, flags); 3001 3002 hrtimer_cancel(&iocg->waitq_timer); 3003 } 3004 free_percpu(iocg->pcpu_stat); 3005 kfree(iocg); 3006 } 3007 3008 static bool ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3009 { 3010 struct ioc_gq *iocg = pd_to_iocg(pd); 3011 struct ioc *ioc = iocg->ioc; 3012 3013 if (!ioc->enabled) 3014 return false; 3015 3016 if (iocg->level == 0) { 3017 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3018 ioc->vtime_base_rate * 10000, 3019 VTIME_PER_USEC); 3020 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3021 } 3022 3023 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3024 3025 if (blkcg_debug_stats) 3026 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3027 iocg->last_stat.wait_us, 3028 iocg->last_stat.indebt_us, 3029 iocg->last_stat.indelay_us); 3030 return true; 3031 } 3032 3033 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3034 int off) 3035 { 3036 const char *dname = blkg_dev_name(pd->blkg); 3037 struct ioc_gq *iocg = pd_to_iocg(pd); 3038 3039 if (dname && iocg->cfg_weight) 3040 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3041 return 0; 3042 } 3043 3044 3045 static int ioc_weight_show(struct seq_file *sf, void *v) 3046 { 3047 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3048 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3049 3050 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3051 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3052 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3053 return 0; 3054 } 3055 3056 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3057 size_t nbytes, loff_t off) 3058 { 3059 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3060 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3061 struct blkg_conf_ctx ctx; 3062 struct ioc_now now; 3063 struct ioc_gq *iocg; 3064 u32 v; 3065 int ret; 3066 3067 if (!strchr(buf, ':')) { 3068 struct blkcg_gq *blkg; 3069 3070 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3071 return -EINVAL; 3072 3073 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3074 return -EINVAL; 3075 3076 spin_lock_irq(&blkcg->lock); 3077 iocc->dfl_weight = v * WEIGHT_ONE; 3078 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3079 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3080 3081 if (iocg) { 3082 spin_lock(&iocg->ioc->lock); 3083 ioc_now(iocg->ioc, &now); 3084 weight_updated(iocg, &now); 3085 spin_unlock(&iocg->ioc->lock); 3086 } 3087 } 3088 spin_unlock_irq(&blkcg->lock); 3089 3090 return nbytes; 3091 } 3092 3093 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3094 if (ret) 3095 return ret; 3096 3097 iocg = blkg_to_iocg(ctx.blkg); 3098 3099 if (!strncmp(ctx.body, "default", 7)) { 3100 v = 0; 3101 } else { 3102 if (!sscanf(ctx.body, "%u", &v)) 3103 goto einval; 3104 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3105 goto einval; 3106 } 3107 3108 spin_lock(&iocg->ioc->lock); 3109 iocg->cfg_weight = v * WEIGHT_ONE; 3110 ioc_now(iocg->ioc, &now); 3111 weight_updated(iocg, &now); 3112 spin_unlock(&iocg->ioc->lock); 3113 3114 blkg_conf_finish(&ctx); 3115 return nbytes; 3116 3117 einval: 3118 blkg_conf_finish(&ctx); 3119 return -EINVAL; 3120 } 3121 3122 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3123 int off) 3124 { 3125 const char *dname = blkg_dev_name(pd->blkg); 3126 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3127 3128 if (!dname) 3129 return 0; 3130 3131 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3132 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3133 ioc->params.qos[QOS_RPPM] / 10000, 3134 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3135 ioc->params.qos[QOS_RLAT], 3136 ioc->params.qos[QOS_WPPM] / 10000, 3137 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3138 ioc->params.qos[QOS_WLAT], 3139 ioc->params.qos[QOS_MIN] / 10000, 3140 ioc->params.qos[QOS_MIN] % 10000 / 100, 3141 ioc->params.qos[QOS_MAX] / 10000, 3142 ioc->params.qos[QOS_MAX] % 10000 / 100); 3143 return 0; 3144 } 3145 3146 static int ioc_qos_show(struct seq_file *sf, void *v) 3147 { 3148 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3149 3150 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3151 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3152 return 0; 3153 } 3154 3155 static const match_table_t qos_ctrl_tokens = { 3156 { QOS_ENABLE, "enable=%u" }, 3157 { QOS_CTRL, "ctrl=%s" }, 3158 { NR_QOS_CTRL_PARAMS, NULL }, 3159 }; 3160 3161 static const match_table_t qos_tokens = { 3162 { QOS_RPPM, "rpct=%s" }, 3163 { QOS_RLAT, "rlat=%u" }, 3164 { QOS_WPPM, "wpct=%s" }, 3165 { QOS_WLAT, "wlat=%u" }, 3166 { QOS_MIN, "min=%s" }, 3167 { QOS_MAX, "max=%s" }, 3168 { NR_QOS_PARAMS, NULL }, 3169 }; 3170 3171 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3172 size_t nbytes, loff_t off) 3173 { 3174 struct block_device *bdev; 3175 struct ioc *ioc; 3176 u32 qos[NR_QOS_PARAMS]; 3177 bool enable, user; 3178 char *p; 3179 int ret; 3180 3181 bdev = blkcg_conf_open_bdev(&input); 3182 if (IS_ERR(bdev)) 3183 return PTR_ERR(bdev); 3184 3185 ioc = q_to_ioc(bdev_get_queue(bdev)); 3186 if (!ioc) { 3187 ret = blk_iocost_init(bdev_get_queue(bdev)); 3188 if (ret) 3189 goto err; 3190 ioc = q_to_ioc(bdev_get_queue(bdev)); 3191 } 3192 3193 spin_lock_irq(&ioc->lock); 3194 memcpy(qos, ioc->params.qos, sizeof(qos)); 3195 enable = ioc->enabled; 3196 user = ioc->user_qos_params; 3197 spin_unlock_irq(&ioc->lock); 3198 3199 while ((p = strsep(&input, " \t\n"))) { 3200 substring_t args[MAX_OPT_ARGS]; 3201 char buf[32]; 3202 int tok; 3203 s64 v; 3204 3205 if (!*p) 3206 continue; 3207 3208 switch (match_token(p, qos_ctrl_tokens, args)) { 3209 case QOS_ENABLE: 3210 match_u64(&args[0], &v); 3211 enable = v; 3212 continue; 3213 case QOS_CTRL: 3214 match_strlcpy(buf, &args[0], sizeof(buf)); 3215 if (!strcmp(buf, "auto")) 3216 user = false; 3217 else if (!strcmp(buf, "user")) 3218 user = true; 3219 else 3220 goto einval; 3221 continue; 3222 } 3223 3224 tok = match_token(p, qos_tokens, args); 3225 switch (tok) { 3226 case QOS_RPPM: 3227 case QOS_WPPM: 3228 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3229 sizeof(buf)) 3230 goto einval; 3231 if (cgroup_parse_float(buf, 2, &v)) 3232 goto einval; 3233 if (v < 0 || v > 10000) 3234 goto einval; 3235 qos[tok] = v * 100; 3236 break; 3237 case QOS_RLAT: 3238 case QOS_WLAT: 3239 if (match_u64(&args[0], &v)) 3240 goto einval; 3241 qos[tok] = v; 3242 break; 3243 case QOS_MIN: 3244 case QOS_MAX: 3245 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3246 sizeof(buf)) 3247 goto einval; 3248 if (cgroup_parse_float(buf, 2, &v)) 3249 goto einval; 3250 if (v < 0) 3251 goto einval; 3252 qos[tok] = clamp_t(s64, v * 100, 3253 VRATE_MIN_PPM, VRATE_MAX_PPM); 3254 break; 3255 default: 3256 goto einval; 3257 } 3258 user = true; 3259 } 3260 3261 if (qos[QOS_MIN] > qos[QOS_MAX]) 3262 goto einval; 3263 3264 spin_lock_irq(&ioc->lock); 3265 3266 if (enable) { 3267 blk_stat_enable_accounting(ioc->rqos.q); 3268 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3269 ioc->enabled = true; 3270 } else { 3271 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3272 ioc->enabled = false; 3273 } 3274 3275 if (user) { 3276 memcpy(ioc->params.qos, qos, sizeof(qos)); 3277 ioc->user_qos_params = true; 3278 } else { 3279 ioc->user_qos_params = false; 3280 } 3281 3282 ioc_refresh_params(ioc, true); 3283 spin_unlock_irq(&ioc->lock); 3284 3285 blkdev_put_no_open(bdev); 3286 return nbytes; 3287 einval: 3288 ret = -EINVAL; 3289 err: 3290 blkdev_put_no_open(bdev); 3291 return ret; 3292 } 3293 3294 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3295 struct blkg_policy_data *pd, int off) 3296 { 3297 const char *dname = blkg_dev_name(pd->blkg); 3298 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3299 u64 *u = ioc->params.i_lcoefs; 3300 3301 if (!dname) 3302 return 0; 3303 3304 seq_printf(sf, "%s ctrl=%s model=linear " 3305 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3306 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3307 dname, ioc->user_cost_model ? "user" : "auto", 3308 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3309 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3310 return 0; 3311 } 3312 3313 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3314 { 3315 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3316 3317 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3318 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3319 return 0; 3320 } 3321 3322 static const match_table_t cost_ctrl_tokens = { 3323 { COST_CTRL, "ctrl=%s" }, 3324 { COST_MODEL, "model=%s" }, 3325 { NR_COST_CTRL_PARAMS, NULL }, 3326 }; 3327 3328 static const match_table_t i_lcoef_tokens = { 3329 { I_LCOEF_RBPS, "rbps=%u" }, 3330 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3331 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3332 { I_LCOEF_WBPS, "wbps=%u" }, 3333 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3334 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3335 { NR_I_LCOEFS, NULL }, 3336 }; 3337 3338 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3339 size_t nbytes, loff_t off) 3340 { 3341 struct block_device *bdev; 3342 struct ioc *ioc; 3343 u64 u[NR_I_LCOEFS]; 3344 bool user; 3345 char *p; 3346 int ret; 3347 3348 bdev = blkcg_conf_open_bdev(&input); 3349 if (IS_ERR(bdev)) 3350 return PTR_ERR(bdev); 3351 3352 ioc = q_to_ioc(bdev_get_queue(bdev)); 3353 if (!ioc) { 3354 ret = blk_iocost_init(bdev_get_queue(bdev)); 3355 if (ret) 3356 goto err; 3357 ioc = q_to_ioc(bdev_get_queue(bdev)); 3358 } 3359 3360 spin_lock_irq(&ioc->lock); 3361 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3362 user = ioc->user_cost_model; 3363 spin_unlock_irq(&ioc->lock); 3364 3365 while ((p = strsep(&input, " \t\n"))) { 3366 substring_t args[MAX_OPT_ARGS]; 3367 char buf[32]; 3368 int tok; 3369 u64 v; 3370 3371 if (!*p) 3372 continue; 3373 3374 switch (match_token(p, cost_ctrl_tokens, args)) { 3375 case COST_CTRL: 3376 match_strlcpy(buf, &args[0], sizeof(buf)); 3377 if (!strcmp(buf, "auto")) 3378 user = false; 3379 else if (!strcmp(buf, "user")) 3380 user = true; 3381 else 3382 goto einval; 3383 continue; 3384 case COST_MODEL: 3385 match_strlcpy(buf, &args[0], sizeof(buf)); 3386 if (strcmp(buf, "linear")) 3387 goto einval; 3388 continue; 3389 } 3390 3391 tok = match_token(p, i_lcoef_tokens, args); 3392 if (tok == NR_I_LCOEFS) 3393 goto einval; 3394 if (match_u64(&args[0], &v)) 3395 goto einval; 3396 u[tok] = v; 3397 user = true; 3398 } 3399 3400 spin_lock_irq(&ioc->lock); 3401 if (user) { 3402 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3403 ioc->user_cost_model = true; 3404 } else { 3405 ioc->user_cost_model = false; 3406 } 3407 ioc_refresh_params(ioc, true); 3408 spin_unlock_irq(&ioc->lock); 3409 3410 blkdev_put_no_open(bdev); 3411 return nbytes; 3412 3413 einval: 3414 ret = -EINVAL; 3415 err: 3416 blkdev_put_no_open(bdev); 3417 return ret; 3418 } 3419 3420 static struct cftype ioc_files[] = { 3421 { 3422 .name = "weight", 3423 .flags = CFTYPE_NOT_ON_ROOT, 3424 .seq_show = ioc_weight_show, 3425 .write = ioc_weight_write, 3426 }, 3427 { 3428 .name = "cost.qos", 3429 .flags = CFTYPE_ONLY_ON_ROOT, 3430 .seq_show = ioc_qos_show, 3431 .write = ioc_qos_write, 3432 }, 3433 { 3434 .name = "cost.model", 3435 .flags = CFTYPE_ONLY_ON_ROOT, 3436 .seq_show = ioc_cost_model_show, 3437 .write = ioc_cost_model_write, 3438 }, 3439 {} 3440 }; 3441 3442 static struct blkcg_policy blkcg_policy_iocost = { 3443 .dfl_cftypes = ioc_files, 3444 .cpd_alloc_fn = ioc_cpd_alloc, 3445 .cpd_free_fn = ioc_cpd_free, 3446 .pd_alloc_fn = ioc_pd_alloc, 3447 .pd_init_fn = ioc_pd_init, 3448 .pd_free_fn = ioc_pd_free, 3449 .pd_stat_fn = ioc_pd_stat, 3450 }; 3451 3452 static int __init ioc_init(void) 3453 { 3454 return blkcg_policy_register(&blkcg_policy_iocost); 3455 } 3456 3457 static void __exit ioc_exit(void) 3458 { 3459 blkcg_policy_unregister(&blkcg_policy_iocost); 3460 } 3461 3462 module_init(ioc_init); 3463 module_exit(ioc_exit); 3464