xref: /openbmc/linux/block/blk-iocost.c (revision 1c172ac7)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 };
236 
237 enum {
238 	/*
239 	 * As vtime is used to calculate the cost of each IO, it needs to
240 	 * be fairly high precision.  For example, it should be able to
241 	 * represent the cost of a single page worth of discard with
242 	 * suffificient accuracy.  At the same time, it should be able to
243 	 * represent reasonably long enough durations to be useful and
244 	 * convenient during operation.
245 	 *
246 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247 	 * granularity and days of wrap-around time even at extreme vrates.
248 	 */
249 	VTIME_PER_SEC_SHIFT	= 37,
250 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253 
254 	/* bound vrate adjustments within two orders of magnitude */
255 	VRATE_MIN_PPM		= 10000,	/* 1% */
256 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257 
258 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 	VRATE_CLAMP_ADJ_PCT	= 4,
260 
261 	/* switch iff the conditions are met for longer than this */
262 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
263 };
264 
265 enum {
266 	/* if IOs end up waiting for requests, issue less */
267 	RQ_WAIT_BUSY_PCT	= 5,
268 
269 	/* unbusy hysterisis */
270 	UNBUSY_THR_PCT		= 75,
271 
272 	/*
273 	 * The effect of delay is indirect and non-linear and a huge amount of
274 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 	 * up delay as debt is going up and then let it decay exponentially.
276 	 * This gives us quick ramp ups while delay is accumulating and long
277 	 * tails which can help reducing the frequency of debt explosions on
278 	 * unthrottle. The parameters are experimentally determined.
279 	 *
280 	 * The delay mechanism provides adequate protection and behavior in many
281 	 * cases. However, this is far from ideal and falls shorts on both
282 	 * fronts. The debtors are often throttled too harshly costing a
283 	 * significant level of fairness and possibly total work while the
284 	 * protection against their impacts on the system can be choppy and
285 	 * unreliable.
286 	 *
287 	 * The shortcoming primarily stems from the fact that, unlike for page
288 	 * cache, the kernel doesn't have well-defined back-pressure propagation
289 	 * mechanism and policies for anonymous memory. Fully addressing this
290 	 * issue will likely require substantial improvements in the area.
291 	 */
292 	MIN_DELAY_THR_PCT	= 500,
293 	MAX_DELAY_THR_PCT	= 25000,
294 	MIN_DELAY		= 250,
295 	MAX_DELAY		= 250 * USEC_PER_MSEC,
296 
297 	/* halve debts if avg usage over 100ms is under 50% */
298 	DFGV_USAGE_PCT		= 50,
299 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
300 
301 	/* don't let cmds which take a very long time pin lagging for too long */
302 	MAX_LAGGING_PERIODS	= 10,
303 
304 	/*
305 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
306 	 * size-proportional components of cost calculation in closer
307 	 * numbers of digits to per-IO cost components.
308 	 */
309 	IOC_PAGE_SHIFT		= 12,
310 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
311 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
312 
313 	/* if apart further than 16M, consider randio for linear model */
314 	LCOEF_RANDIO_PAGES	= 4096,
315 };
316 
317 enum ioc_running {
318 	IOC_IDLE,
319 	IOC_RUNNING,
320 	IOC_STOP,
321 };
322 
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 	QOS_ENABLE,
326 	QOS_CTRL,
327 	NR_QOS_CTRL_PARAMS,
328 };
329 
330 /* io.cost.qos params */
331 enum {
332 	QOS_RPPM,
333 	QOS_RLAT,
334 	QOS_WPPM,
335 	QOS_WLAT,
336 	QOS_MIN,
337 	QOS_MAX,
338 	NR_QOS_PARAMS,
339 };
340 
341 /* io.cost.model controls */
342 enum {
343 	COST_CTRL,
344 	COST_MODEL,
345 	NR_COST_CTRL_PARAMS,
346 };
347 
348 /* builtin linear cost model coefficients */
349 enum {
350 	I_LCOEF_RBPS,
351 	I_LCOEF_RSEQIOPS,
352 	I_LCOEF_RRANDIOPS,
353 	I_LCOEF_WBPS,
354 	I_LCOEF_WSEQIOPS,
355 	I_LCOEF_WRANDIOPS,
356 	NR_I_LCOEFS,
357 };
358 
359 enum {
360 	LCOEF_RPAGE,
361 	LCOEF_RSEQIO,
362 	LCOEF_RRANDIO,
363 	LCOEF_WPAGE,
364 	LCOEF_WSEQIO,
365 	LCOEF_WRANDIO,
366 	NR_LCOEFS,
367 };
368 
369 enum {
370 	AUTOP_INVALID,
371 	AUTOP_HDD,
372 	AUTOP_SSD_QD1,
373 	AUTOP_SSD_DFL,
374 	AUTOP_SSD_FAST,
375 };
376 
377 struct ioc_params {
378 	u32				qos[NR_QOS_PARAMS];
379 	u64				i_lcoefs[NR_I_LCOEFS];
380 	u64				lcoefs[NR_LCOEFS];
381 	u32				too_fast_vrate_pct;
382 	u32				too_slow_vrate_pct;
383 };
384 
385 struct ioc_margins {
386 	s64				min;
387 	s64				low;
388 	s64				target;
389 };
390 
391 struct ioc_missed {
392 	local_t				nr_met;
393 	local_t				nr_missed;
394 	u32				last_met;
395 	u32				last_missed;
396 };
397 
398 struct ioc_pcpu_stat {
399 	struct ioc_missed		missed[2];
400 
401 	local64_t			rq_wait_ns;
402 	u64				last_rq_wait_ns;
403 };
404 
405 /* per device */
406 struct ioc {
407 	struct rq_qos			rqos;
408 
409 	bool				enabled;
410 
411 	struct ioc_params		params;
412 	struct ioc_margins		margins;
413 	u32				period_us;
414 	u32				timer_slack_ns;
415 	u64				vrate_min;
416 	u64				vrate_max;
417 
418 	spinlock_t			lock;
419 	struct timer_list		timer;
420 	struct list_head		active_iocgs;	/* active cgroups */
421 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
422 
423 	enum ioc_running		running;
424 	atomic64_t			vtime_rate;
425 	u64				vtime_base_rate;
426 	s64				vtime_err;
427 
428 	seqcount_spinlock_t		period_seqcount;
429 	u64				period_at;	/* wallclock starttime */
430 	u64				period_at_vtime; /* vtime starttime */
431 
432 	atomic64_t			cur_period;	/* inc'd each period */
433 	int				busy_level;	/* saturation history */
434 
435 	bool				weights_updated;
436 	atomic_t			hweight_gen;	/* for lazy hweights */
437 
438 	/* debt forgivness */
439 	u64				dfgv_period_at;
440 	u64				dfgv_period_rem;
441 	u64				dfgv_usage_us_sum;
442 
443 	u64				autop_too_fast_at;
444 	u64				autop_too_slow_at;
445 	int				autop_idx;
446 	bool				user_qos_params:1;
447 	bool				user_cost_model:1;
448 };
449 
450 struct iocg_pcpu_stat {
451 	local64_t			abs_vusage;
452 };
453 
454 struct iocg_stat {
455 	u64				usage_us;
456 	u64				wait_us;
457 	u64				indebt_us;
458 	u64				indelay_us;
459 };
460 
461 /* per device-cgroup pair */
462 struct ioc_gq {
463 	struct blkg_policy_data		pd;
464 	struct ioc			*ioc;
465 
466 	/*
467 	 * A iocg can get its weight from two sources - an explicit
468 	 * per-device-cgroup configuration or the default weight of the
469 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470 	 * configuration.  `weight` is the effective considering both
471 	 * sources.
472 	 *
473 	 * When an idle cgroup becomes active its `active` goes from 0 to
474 	 * `weight`.  `inuse` is the surplus adjusted active weight.
475 	 * `active` and `inuse` are used to calculate `hweight_active` and
476 	 * `hweight_inuse`.
477 	 *
478 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 	 * surplus adjustments.
480 	 *
481 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 	 * to determine and track adjustments.
483 	 */
484 	u32				cfg_weight;
485 	u32				weight;
486 	u32				active;
487 	u32				inuse;
488 
489 	u32				last_inuse;
490 	s64				saved_margin;
491 
492 	sector_t			cursor;		/* to detect randio */
493 
494 	/*
495 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 	 * issued.  If lagging behind device vtime, the delta represents
497 	 * the currently available IO budget.  If running ahead, the
498 	 * overage.
499 	 *
500 	 * `vtime_done` is the same but progressed on completion rather
501 	 * than issue.  The delta behind `vtime` represents the cost of
502 	 * currently in-flight IOs.
503 	 */
504 	atomic64_t			vtime;
505 	atomic64_t			done_vtime;
506 	u64				abs_vdebt;
507 
508 	/* current delay in effect and when it started */
509 	u64				delay;
510 	u64				delay_at;
511 
512 	/*
513 	 * The period this iocg was last active in.  Used for deactivation
514 	 * and invalidating `vtime`.
515 	 */
516 	atomic64_t			active_period;
517 	struct list_head		active_list;
518 
519 	/* see __propagate_weights() and current_hweight() for details */
520 	u64				child_active_sum;
521 	u64				child_inuse_sum;
522 	u64				child_adjusted_sum;
523 	int				hweight_gen;
524 	u32				hweight_active;
525 	u32				hweight_inuse;
526 	u32				hweight_donating;
527 	u32				hweight_after_donation;
528 
529 	struct list_head		walk_list;
530 	struct list_head		surplus_list;
531 
532 	struct wait_queue_head		waitq;
533 	struct hrtimer			waitq_timer;
534 
535 	/* timestamp at the latest activation */
536 	u64				activated_at;
537 
538 	/* statistics */
539 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
540 	struct iocg_stat		stat;
541 	struct iocg_stat		last_stat;
542 	u64				last_stat_abs_vusage;
543 	u64				usage_delta_us;
544 	u64				wait_since;
545 	u64				indebt_since;
546 	u64				indelay_since;
547 
548 	/* this iocg's depth in the hierarchy and ancestors including self */
549 	int				level;
550 	struct ioc_gq			*ancestors[];
551 };
552 
553 /* per cgroup */
554 struct ioc_cgrp {
555 	struct blkcg_policy_data	cpd;
556 	unsigned int			dfl_weight;
557 };
558 
559 struct ioc_now {
560 	u64				now_ns;
561 	u64				now;
562 	u64				vnow;
563 };
564 
565 struct iocg_wait {
566 	struct wait_queue_entry		wait;
567 	struct bio			*bio;
568 	u64				abs_cost;
569 	bool				committed;
570 };
571 
572 struct iocg_wake_ctx {
573 	struct ioc_gq			*iocg;
574 	u32				hw_inuse;
575 	s64				vbudget;
576 };
577 
578 static const struct ioc_params autop[] = {
579 	[AUTOP_HDD] = {
580 		.qos				= {
581 			[QOS_RLAT]		=        250000, /* 250ms */
582 			[QOS_WLAT]		=        250000,
583 			[QOS_MIN]		= VRATE_MIN_PPM,
584 			[QOS_MAX]		= VRATE_MAX_PPM,
585 		},
586 		.i_lcoefs			= {
587 			[I_LCOEF_RBPS]		=     174019176,
588 			[I_LCOEF_RSEQIOPS]	=         41708,
589 			[I_LCOEF_RRANDIOPS]	=           370,
590 			[I_LCOEF_WBPS]		=     178075866,
591 			[I_LCOEF_WSEQIOPS]	=         42705,
592 			[I_LCOEF_WRANDIOPS]	=           378,
593 		},
594 	},
595 	[AUTOP_SSD_QD1] = {
596 		.qos				= {
597 			[QOS_RLAT]		=         25000, /* 25ms */
598 			[QOS_WLAT]		=         25000,
599 			[QOS_MIN]		= VRATE_MIN_PPM,
600 			[QOS_MAX]		= VRATE_MAX_PPM,
601 		},
602 		.i_lcoefs			= {
603 			[I_LCOEF_RBPS]		=     245855193,
604 			[I_LCOEF_RSEQIOPS]	=         61575,
605 			[I_LCOEF_RRANDIOPS]	=          6946,
606 			[I_LCOEF_WBPS]		=     141365009,
607 			[I_LCOEF_WSEQIOPS]	=         33716,
608 			[I_LCOEF_WRANDIOPS]	=         26796,
609 		},
610 	},
611 	[AUTOP_SSD_DFL] = {
612 		.qos				= {
613 			[QOS_RLAT]		=         25000, /* 25ms */
614 			[QOS_WLAT]		=         25000,
615 			[QOS_MIN]		= VRATE_MIN_PPM,
616 			[QOS_MAX]		= VRATE_MAX_PPM,
617 		},
618 		.i_lcoefs			= {
619 			[I_LCOEF_RBPS]		=     488636629,
620 			[I_LCOEF_RSEQIOPS]	=          8932,
621 			[I_LCOEF_RRANDIOPS]	=          8518,
622 			[I_LCOEF_WBPS]		=     427891549,
623 			[I_LCOEF_WSEQIOPS]	=         28755,
624 			[I_LCOEF_WRANDIOPS]	=         21940,
625 		},
626 		.too_fast_vrate_pct		=           500,
627 	},
628 	[AUTOP_SSD_FAST] = {
629 		.qos				= {
630 			[QOS_RLAT]		=          5000, /* 5ms */
631 			[QOS_WLAT]		=          5000,
632 			[QOS_MIN]		= VRATE_MIN_PPM,
633 			[QOS_MAX]		= VRATE_MAX_PPM,
634 		},
635 		.i_lcoefs			= {
636 			[I_LCOEF_RBPS]		=    3102524156LLU,
637 			[I_LCOEF_RSEQIOPS]	=        724816,
638 			[I_LCOEF_RRANDIOPS]	=        778122,
639 			[I_LCOEF_WBPS]		=    1742780862LLU,
640 			[I_LCOEF_WSEQIOPS]	=        425702,
641 			[I_LCOEF_WRANDIOPS]	=	 443193,
642 		},
643 		.too_slow_vrate_pct		=            10,
644 	},
645 };
646 
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static u32 vrate_adj_pct[] =
652 	{ 0, 0, 0, 0,
653 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656 
657 static struct blkcg_policy blkcg_policy_iocost;
658 
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662 	return container_of(rqos, struct ioc, rqos);
663 }
664 
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669 
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
671 {
672 	struct gendisk *disk = ioc->rqos.disk;
673 
674 	if (!disk)
675 		return "<unknown>";
676 	return disk->disk_name;
677 }
678 
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680 {
681 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682 }
683 
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685 {
686 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687 }
688 
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690 {
691 	return pd_to_blkg(&iocg->pd);
692 }
693 
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695 {
696 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697 			    struct ioc_cgrp, cpd);
698 }
699 
700 /*
701  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702  * weight, the more expensive each IO.  Must round up.
703  */
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705 {
706 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707 }
708 
709 /*
710  * The inverse of abs_cost_to_cost().  Must round up.
711  */
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713 {
714 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715 }
716 
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718 			    u64 abs_cost, u64 cost)
719 {
720 	struct iocg_pcpu_stat *gcs;
721 
722 	bio->bi_iocost_cost = cost;
723 	atomic64_add(cost, &iocg->vtime);
724 
725 	gcs = get_cpu_ptr(iocg->pcpu_stat);
726 	local64_add(abs_cost, &gcs->abs_vusage);
727 	put_cpu_ptr(gcs);
728 }
729 
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731 {
732 	if (lock_ioc) {
733 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
734 		spin_lock(&iocg->waitq.lock);
735 	} else {
736 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
737 	}
738 }
739 
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741 {
742 	if (unlock_ioc) {
743 		spin_unlock(&iocg->waitq.lock);
744 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745 	} else {
746 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747 	}
748 }
749 
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
752 
753 static void ioc_refresh_margins(struct ioc *ioc)
754 {
755 	struct ioc_margins *margins = &ioc->margins;
756 	u32 period_us = ioc->period_us;
757 	u64 vrate = ioc->vtime_base_rate;
758 
759 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762 }
763 
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
766 {
767 	u32 ppm, lat, multi, period_us;
768 
769 	lockdep_assert_held(&ioc->lock);
770 
771 	/* pick the higher latency target */
772 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773 		ppm = ioc->params.qos[QOS_RPPM];
774 		lat = ioc->params.qos[QOS_RLAT];
775 	} else {
776 		ppm = ioc->params.qos[QOS_WPPM];
777 		lat = ioc->params.qos[QOS_WLAT];
778 	}
779 
780 	/*
781 	 * We want the period to be long enough to contain a healthy number
782 	 * of IOs while short enough for granular control.  Define it as a
783 	 * multiple of the latency target.  Ideally, the multiplier should
784 	 * be scaled according to the percentile so that it would nominally
785 	 * contain a certain number of requests.  Let's be simpler and
786 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787 	 */
788 	if (ppm)
789 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790 	else
791 		multi = 2;
792 	period_us = multi * lat;
793 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794 
795 	/* calculate dependent params */
796 	ioc->period_us = period_us;
797 	ioc->timer_slack_ns = div64_u64(
798 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799 		100);
800 	ioc_refresh_margins(ioc);
801 }
802 
803 /*
804  *  ioc->rqos.disk isn't initialized when this function is called from
805  *  the init path.
806  */
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
808 {
809 	int idx = ioc->autop_idx;
810 	const struct ioc_params *p = &autop[idx];
811 	u32 vrate_pct;
812 	u64 now_ns;
813 
814 	/* rotational? */
815 	if (!blk_queue_nonrot(disk->queue))
816 		return AUTOP_HDD;
817 
818 	/* handle SATA SSDs w/ broken NCQ */
819 	if (blk_queue_depth(disk->queue) == 1)
820 		return AUTOP_SSD_QD1;
821 
822 	/* use one of the normal ssd sets */
823 	if (idx < AUTOP_SSD_DFL)
824 		return AUTOP_SSD_DFL;
825 
826 	/* if user is overriding anything, maintain what was there */
827 	if (ioc->user_qos_params || ioc->user_cost_model)
828 		return idx;
829 
830 	/* step up/down based on the vrate */
831 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 	now_ns = ktime_get_ns();
833 
834 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 		if (!ioc->autop_too_fast_at)
836 			ioc->autop_too_fast_at = now_ns;
837 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838 			return idx + 1;
839 	} else {
840 		ioc->autop_too_fast_at = 0;
841 	}
842 
843 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 		if (!ioc->autop_too_slow_at)
845 			ioc->autop_too_slow_at = now_ns;
846 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847 			return idx - 1;
848 	} else {
849 		ioc->autop_too_slow_at = 0;
850 	}
851 
852 	return idx;
853 }
854 
855 /*
856  * Take the followings as input
857  *
858  *  @bps	maximum sequential throughput
859  *  @seqiops	maximum sequential 4k iops
860  *  @randiops	maximum random 4k iops
861  *
862  * and calculate the linear model cost coefficients.
863  *
864  *  *@page	per-page cost		1s / (@bps / 4096)
865  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
866  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
867  */
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 			u64 *page, u64 *seqio, u64 *randio)
870 {
871 	u64 v;
872 
873 	*page = *seqio = *randio = 0;
874 
875 	if (bps) {
876 		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
877 
878 		if (bps_pages)
879 			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
880 		else
881 			*page = 1;
882 	}
883 
884 	if (seqiops) {
885 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886 		if (v > *page)
887 			*seqio = v - *page;
888 	}
889 
890 	if (randiops) {
891 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892 		if (v > *page)
893 			*randio = v - *page;
894 	}
895 }
896 
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
898 {
899 	u64 *u = ioc->params.i_lcoefs;
900 	u64 *c = ioc->params.lcoefs;
901 
902 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
906 }
907 
908 /*
909  * struct gendisk is required as an argument because ioc->rqos.disk
910  * is not properly initialized when called from the init path.
911  */
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913 				    struct gendisk *disk)
914 {
915 	const struct ioc_params *p;
916 	int idx;
917 
918 	lockdep_assert_held(&ioc->lock);
919 
920 	idx = ioc_autop_idx(ioc, disk);
921 	p = &autop[idx];
922 
923 	if (idx == ioc->autop_idx && !force)
924 		return false;
925 
926 	if (idx != ioc->autop_idx) {
927 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928 		ioc->vtime_base_rate = VTIME_PER_USEC;
929 	}
930 
931 	ioc->autop_idx = idx;
932 	ioc->autop_too_fast_at = 0;
933 	ioc->autop_too_slow_at = 0;
934 
935 	if (!ioc->user_qos_params)
936 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937 	if (!ioc->user_cost_model)
938 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
939 
940 	ioc_refresh_period_us(ioc);
941 	ioc_refresh_lcoefs(ioc);
942 
943 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944 					    VTIME_PER_USEC, MILLION);
945 	ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946 					    VTIME_PER_USEC, MILLION);
947 
948 	return true;
949 }
950 
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
952 {
953 	return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
954 }
955 
956 /*
957  * When an iocg accumulates too much vtime or gets deactivated, we throw away
958  * some vtime, which lowers the overall device utilization. As the exact amount
959  * which is being thrown away is known, we can compensate by accelerating the
960  * vrate accordingly so that the extra vtime generated in the current period
961  * matches what got lost.
962  */
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
964 {
965 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
966 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967 	s64 vcomp, vcomp_min, vcomp_max;
968 
969 	lockdep_assert_held(&ioc->lock);
970 
971 	/* we need some time left in this period */
972 	if (pleft <= 0)
973 		goto done;
974 
975 	/*
976 	 * Calculate how much vrate should be adjusted to offset the error.
977 	 * Limit the amount of adjustment and deduct the adjusted amount from
978 	 * the error.
979 	 */
980 	vcomp = -div64_s64(ioc->vtime_err, pleft);
981 	vcomp_min = -(ioc->vtime_base_rate >> 1);
982 	vcomp_max = ioc->vtime_base_rate;
983 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
984 
985 	ioc->vtime_err += vcomp * pleft;
986 
987 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
988 done:
989 	/* bound how much error can accumulate */
990 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
991 }
992 
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994 				  int nr_lagging, int nr_shortages,
995 				  int prev_busy_level, u32 *missed_ppm)
996 {
997 	u64 vrate = ioc->vtime_base_rate;
998 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
999 
1000 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001 		if (ioc->busy_level != prev_busy_level || nr_lagging)
1002 			trace_iocost_ioc_vrate_adj(ioc, vrate,
1003 						   missed_ppm, rq_wait_pct,
1004 						   nr_lagging, nr_shortages);
1005 
1006 		return;
1007 	}
1008 
1009 	/*
1010 	 * If vrate is out of bounds, apply clamp gradually as the
1011 	 * bounds can change abruptly.  Otherwise, apply busy_level
1012 	 * based adjustment.
1013 	 */
1014 	if (vrate < vrate_min) {
1015 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016 		vrate = min(vrate, vrate_min);
1017 	} else if (vrate > vrate_max) {
1018 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019 		vrate = max(vrate, vrate_max);
1020 	} else {
1021 		int idx = min_t(int, abs(ioc->busy_level),
1022 				ARRAY_SIZE(vrate_adj_pct) - 1);
1023 		u32 adj_pct = vrate_adj_pct[idx];
1024 
1025 		if (ioc->busy_level > 0)
1026 			adj_pct = 100 - adj_pct;
1027 		else
1028 			adj_pct = 100 + adj_pct;
1029 
1030 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031 			      vrate_min, vrate_max);
1032 	}
1033 
1034 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035 				   nr_lagging, nr_shortages);
1036 
1037 	ioc->vtime_base_rate = vrate;
1038 	ioc_refresh_margins(ioc);
1039 }
1040 
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1043 {
1044 	unsigned seq;
1045 	u64 vrate;
1046 
1047 	now->now_ns = ktime_get();
1048 	now->now = ktime_to_us(now->now_ns);
1049 	vrate = atomic64_read(&ioc->vtime_rate);
1050 
1051 	/*
1052 	 * The current vtime is
1053 	 *
1054 	 *   vtime at period start + (wallclock time since the start) * vrate
1055 	 *
1056 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057 	 * needed, they're seqcount protected.
1058 	 */
1059 	do {
1060 		seq = read_seqcount_begin(&ioc->period_seqcount);
1061 		now->vnow = ioc->period_at_vtime +
1062 			(now->now - ioc->period_at) * vrate;
1063 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1064 }
1065 
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1067 {
1068 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1069 
1070 	write_seqcount_begin(&ioc->period_seqcount);
1071 	ioc->period_at = now->now;
1072 	ioc->period_at_vtime = now->vnow;
1073 	write_seqcount_end(&ioc->period_seqcount);
1074 
1075 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076 	add_timer(&ioc->timer);
1077 }
1078 
1079 /*
1080  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081  * weight sums and propagate upwards accordingly. If @save, the current margin
1082  * is saved to be used as reference for later inuse in-period adjustments.
1083  */
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 				bool save, struct ioc_now *now)
1086 {
1087 	struct ioc *ioc = iocg->ioc;
1088 	int lvl;
1089 
1090 	lockdep_assert_held(&ioc->lock);
1091 
1092 	/*
1093 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1094 	 * @active. An active internal node's inuse is solely determined by the
1095 	 * inuse to active ratio of its children regardless of @inuse.
1096 	 */
1097 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099 					   iocg->child_active_sum);
1100 	} else {
1101 		inuse = clamp_t(u32, inuse, 1, active);
1102 	}
1103 
1104 	iocg->last_inuse = iocg->inuse;
1105 	if (save)
1106 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1107 
1108 	if (active == iocg->active && inuse == iocg->inuse)
1109 		return;
1110 
1111 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112 		struct ioc_gq *parent = iocg->ancestors[lvl];
1113 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114 		u32 parent_active = 0, parent_inuse = 0;
1115 
1116 		/* update the level sums */
1117 		parent->child_active_sum += (s32)(active - child->active);
1118 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119 		/* apply the updates */
1120 		child->active = active;
1121 		child->inuse = inuse;
1122 
1123 		/*
1124 		 * The delta between inuse and active sums indicates that
1125 		 * much of weight is being given away.  Parent's inuse
1126 		 * and active should reflect the ratio.
1127 		 */
1128 		if (parent->child_active_sum) {
1129 			parent_active = parent->weight;
1130 			parent_inuse = DIV64_U64_ROUND_UP(
1131 				parent_active * parent->child_inuse_sum,
1132 				parent->child_active_sum);
1133 		}
1134 
1135 		/* do we need to keep walking up? */
1136 		if (parent_active == parent->active &&
1137 		    parent_inuse == parent->inuse)
1138 			break;
1139 
1140 		active = parent_active;
1141 		inuse = parent_inuse;
1142 	}
1143 
1144 	ioc->weights_updated = true;
1145 }
1146 
1147 static void commit_weights(struct ioc *ioc)
1148 {
1149 	lockdep_assert_held(&ioc->lock);
1150 
1151 	if (ioc->weights_updated) {
1152 		/* paired with rmb in current_hweight(), see there */
1153 		smp_wmb();
1154 		atomic_inc(&ioc->hweight_gen);
1155 		ioc->weights_updated = false;
1156 	}
1157 }
1158 
1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160 			      bool save, struct ioc_now *now)
1161 {
1162 	__propagate_weights(iocg, active, inuse, save, now);
1163 	commit_weights(iocg->ioc);
1164 }
1165 
1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1167 {
1168 	struct ioc *ioc = iocg->ioc;
1169 	int lvl;
1170 	u32 hwa, hwi;
1171 	int ioc_gen;
1172 
1173 	/* hot path - if uptodate, use cached */
1174 	ioc_gen = atomic_read(&ioc->hweight_gen);
1175 	if (ioc_gen == iocg->hweight_gen)
1176 		goto out;
1177 
1178 	/*
1179 	 * Paired with wmb in commit_weights(). If we saw the updated
1180 	 * hweight_gen, all the weight updates from __propagate_weights() are
1181 	 * visible too.
1182 	 *
1183 	 * We can race with weight updates during calculation and get it
1184 	 * wrong.  However, hweight_gen would have changed and a future
1185 	 * reader will recalculate and we're guaranteed to discard the
1186 	 * wrong result soon.
1187 	 */
1188 	smp_rmb();
1189 
1190 	hwa = hwi = WEIGHT_ONE;
1191 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192 		struct ioc_gq *parent = iocg->ancestors[lvl];
1193 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1195 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196 		u32 active = READ_ONCE(child->active);
1197 		u32 inuse = READ_ONCE(child->inuse);
1198 
1199 		/* we can race with deactivations and either may read as zero */
1200 		if (!active_sum || !inuse_sum)
1201 			continue;
1202 
1203 		active_sum = max_t(u64, active, active_sum);
1204 		hwa = div64_u64((u64)hwa * active, active_sum);
1205 
1206 		inuse_sum = max_t(u64, inuse, inuse_sum);
1207 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1208 	}
1209 
1210 	iocg->hweight_active = max_t(u32, hwa, 1);
1211 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1212 	iocg->hweight_gen = ioc_gen;
1213 out:
1214 	if (hw_activep)
1215 		*hw_activep = iocg->hweight_active;
1216 	if (hw_inusep)
1217 		*hw_inusep = iocg->hweight_inuse;
1218 }
1219 
1220 /*
1221  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222  * other weights stay unchanged.
1223  */
1224 static u32 current_hweight_max(struct ioc_gq *iocg)
1225 {
1226 	u32 hwm = WEIGHT_ONE;
1227 	u32 inuse = iocg->active;
1228 	u64 child_inuse_sum;
1229 	int lvl;
1230 
1231 	lockdep_assert_held(&iocg->ioc->lock);
1232 
1233 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234 		struct ioc_gq *parent = iocg->ancestors[lvl];
1235 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1236 
1237 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240 					   parent->child_active_sum);
1241 	}
1242 
1243 	return max_t(u32, hwm, 1);
1244 }
1245 
1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1247 {
1248 	struct ioc *ioc = iocg->ioc;
1249 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1251 	u32 weight;
1252 
1253 	lockdep_assert_held(&ioc->lock);
1254 
1255 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256 	if (weight != iocg->weight && iocg->active)
1257 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1258 	iocg->weight = weight;
1259 }
1260 
1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1262 {
1263 	struct ioc *ioc = iocg->ioc;
1264 	u64 last_period, cur_period;
1265 	u64 vtime, vtarget;
1266 	int i;
1267 
1268 	/*
1269 	 * If seem to be already active, just update the stamp to tell the
1270 	 * timer that we're still active.  We don't mind occassional races.
1271 	 */
1272 	if (!list_empty(&iocg->active_list)) {
1273 		ioc_now(ioc, now);
1274 		cur_period = atomic64_read(&ioc->cur_period);
1275 		if (atomic64_read(&iocg->active_period) != cur_period)
1276 			atomic64_set(&iocg->active_period, cur_period);
1277 		return true;
1278 	}
1279 
1280 	/* racy check on internal node IOs, treat as root level IOs */
1281 	if (iocg->child_active_sum)
1282 		return false;
1283 
1284 	spin_lock_irq(&ioc->lock);
1285 
1286 	ioc_now(ioc, now);
1287 
1288 	/* update period */
1289 	cur_period = atomic64_read(&ioc->cur_period);
1290 	last_period = atomic64_read(&iocg->active_period);
1291 	atomic64_set(&iocg->active_period, cur_period);
1292 
1293 	/* already activated or breaking leaf-only constraint? */
1294 	if (!list_empty(&iocg->active_list))
1295 		goto succeed_unlock;
1296 	for (i = iocg->level - 1; i > 0; i--)
1297 		if (!list_empty(&iocg->ancestors[i]->active_list))
1298 			goto fail_unlock;
1299 
1300 	if (iocg->child_active_sum)
1301 		goto fail_unlock;
1302 
1303 	/*
1304 	 * Always start with the target budget. On deactivation, we throw away
1305 	 * anything above it.
1306 	 */
1307 	vtarget = now->vnow - ioc->margins.target;
1308 	vtime = atomic64_read(&iocg->vtime);
1309 
1310 	atomic64_add(vtarget - vtime, &iocg->vtime);
1311 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1312 	vtime = vtarget;
1313 
1314 	/*
1315 	 * Activate, propagate weight and start period timer if not
1316 	 * running.  Reset hweight_gen to avoid accidental match from
1317 	 * wrapping.
1318 	 */
1319 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320 	list_add(&iocg->active_list, &ioc->active_iocgs);
1321 
1322 	propagate_weights(iocg, iocg->weight,
1323 			  iocg->last_inuse ?: iocg->weight, true, now);
1324 
1325 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326 			last_period, cur_period, vtime);
1327 
1328 	iocg->activated_at = now->now;
1329 
1330 	if (ioc->running == IOC_IDLE) {
1331 		ioc->running = IOC_RUNNING;
1332 		ioc->dfgv_period_at = now->now;
1333 		ioc->dfgv_period_rem = 0;
1334 		ioc_start_period(ioc, now);
1335 	}
1336 
1337 succeed_unlock:
1338 	spin_unlock_irq(&ioc->lock);
1339 	return true;
1340 
1341 fail_unlock:
1342 	spin_unlock_irq(&ioc->lock);
1343 	return false;
1344 }
1345 
1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1347 {
1348 	struct ioc *ioc = iocg->ioc;
1349 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350 	u64 tdelta, delay, new_delay, shift;
1351 	s64 vover, vover_pct;
1352 	u32 hwa;
1353 
1354 	lockdep_assert_held(&iocg->waitq.lock);
1355 
1356 	/*
1357 	 * If the delay is set by another CPU, we may be in the past. No need to
1358 	 * change anything if so. This avoids decay calculation underflow.
1359 	 */
1360 	if (time_before64(now->now, iocg->delay_at))
1361 		return false;
1362 
1363 	/* calculate the current delay in effect - 1/2 every second */
1364 	tdelta = now->now - iocg->delay_at;
1365 	shift = div64_u64(tdelta, USEC_PER_SEC);
1366 	if (iocg->delay && shift < BITS_PER_LONG)
1367 		delay = iocg->delay >> shift;
1368 	else
1369 		delay = 0;
1370 
1371 	/* calculate the new delay from the debt amount */
1372 	current_hweight(iocg, &hwa, NULL);
1373 	vover = atomic64_read(&iocg->vtime) +
1374 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1375 	vover_pct = div64_s64(100 * vover,
1376 			      ioc->period_us * ioc->vtime_base_rate);
1377 
1378 	if (vover_pct <= MIN_DELAY_THR_PCT)
1379 		new_delay = 0;
1380 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1381 		new_delay = MAX_DELAY;
1382 	else
1383 		new_delay = MIN_DELAY +
1384 			div_u64((MAX_DELAY - MIN_DELAY) *
1385 				(vover_pct - MIN_DELAY_THR_PCT),
1386 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1387 
1388 	/* pick the higher one and apply */
1389 	if (new_delay > delay) {
1390 		iocg->delay = new_delay;
1391 		iocg->delay_at = now->now;
1392 		delay = new_delay;
1393 	}
1394 
1395 	if (delay >= MIN_DELAY) {
1396 		if (!iocg->indelay_since)
1397 			iocg->indelay_since = now->now;
1398 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1399 		return true;
1400 	} else {
1401 		if (iocg->indelay_since) {
1402 			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1403 			iocg->indelay_since = 0;
1404 		}
1405 		iocg->delay = 0;
1406 		blkcg_clear_delay(blkg);
1407 		return false;
1408 	}
1409 }
1410 
1411 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1412 			    struct ioc_now *now)
1413 {
1414 	struct iocg_pcpu_stat *gcs;
1415 
1416 	lockdep_assert_held(&iocg->ioc->lock);
1417 	lockdep_assert_held(&iocg->waitq.lock);
1418 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1419 
1420 	/*
1421 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1422 	 * inuse donating all of it share to others until its debt is paid off.
1423 	 */
1424 	if (!iocg->abs_vdebt && abs_cost) {
1425 		iocg->indebt_since = now->now;
1426 		propagate_weights(iocg, iocg->active, 0, false, now);
1427 	}
1428 
1429 	iocg->abs_vdebt += abs_cost;
1430 
1431 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1432 	local64_add(abs_cost, &gcs->abs_vusage);
1433 	put_cpu_ptr(gcs);
1434 }
1435 
1436 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1437 			  struct ioc_now *now)
1438 {
1439 	lockdep_assert_held(&iocg->ioc->lock);
1440 	lockdep_assert_held(&iocg->waitq.lock);
1441 
1442 	/*
1443 	 * make sure that nobody messed with @iocg. Check iocg->pd.online
1444 	 * to avoid warn when removing blkcg or disk.
1445 	 */
1446 	WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online);
1447 	WARN_ON_ONCE(iocg->inuse > 1);
1448 
1449 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1450 
1451 	/* if debt is paid in full, restore inuse */
1452 	if (!iocg->abs_vdebt) {
1453 		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1454 		iocg->indebt_since = 0;
1455 
1456 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1457 				  false, now);
1458 	}
1459 }
1460 
1461 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1462 			int flags, void *key)
1463 {
1464 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1465 	struct iocg_wake_ctx *ctx = key;
1466 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1467 
1468 	ctx->vbudget -= cost;
1469 
1470 	if (ctx->vbudget < 0)
1471 		return -1;
1472 
1473 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1474 	wait->committed = true;
1475 
1476 	/*
1477 	 * autoremove_wake_function() removes the wait entry only when it
1478 	 * actually changed the task state. We want the wait always removed.
1479 	 * Remove explicitly and use default_wake_function(). Note that the
1480 	 * order of operations is important as finish_wait() tests whether
1481 	 * @wq_entry is removed without grabbing the lock.
1482 	 */
1483 	default_wake_function(wq_entry, mode, flags, key);
1484 	list_del_init_careful(&wq_entry->entry);
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1490  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1491  * addition to iocg->waitq.lock.
1492  */
1493 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1494 			    struct ioc_now *now)
1495 {
1496 	struct ioc *ioc = iocg->ioc;
1497 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1498 	u64 vshortage, expires, oexpires;
1499 	s64 vbudget;
1500 	u32 hwa;
1501 
1502 	lockdep_assert_held(&iocg->waitq.lock);
1503 
1504 	current_hweight(iocg, &hwa, NULL);
1505 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1506 
1507 	/* pay off debt */
1508 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1509 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1510 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1511 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1512 
1513 		lockdep_assert_held(&ioc->lock);
1514 
1515 		atomic64_add(vpay, &iocg->vtime);
1516 		atomic64_add(vpay, &iocg->done_vtime);
1517 		iocg_pay_debt(iocg, abs_vpay, now);
1518 		vbudget -= vpay;
1519 	}
1520 
1521 	if (iocg->abs_vdebt || iocg->delay)
1522 		iocg_kick_delay(iocg, now);
1523 
1524 	/*
1525 	 * Debt can still be outstanding if we haven't paid all yet or the
1526 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1527 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1528 	 * not positive.
1529 	 */
1530 	if (iocg->abs_vdebt) {
1531 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1532 		vbudget = min_t(s64, 0, vbudget - vdebt);
1533 	}
1534 
1535 	/*
1536 	 * Wake up the ones which are due and see how much vtime we'll need for
1537 	 * the next one. As paying off debt restores hw_inuse, it must be read
1538 	 * after the above debt payment.
1539 	 */
1540 	ctx.vbudget = vbudget;
1541 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1542 
1543 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1544 
1545 	if (!waitqueue_active(&iocg->waitq)) {
1546 		if (iocg->wait_since) {
1547 			iocg->stat.wait_us += now->now - iocg->wait_since;
1548 			iocg->wait_since = 0;
1549 		}
1550 		return;
1551 	}
1552 
1553 	if (!iocg->wait_since)
1554 		iocg->wait_since = now->now;
1555 
1556 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1557 		return;
1558 
1559 	/* determine next wakeup, add a timer margin to guarantee chunking */
1560 	vshortage = -ctx.vbudget;
1561 	expires = now->now_ns +
1562 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1563 		NSEC_PER_USEC;
1564 	expires += ioc->timer_slack_ns;
1565 
1566 	/* if already active and close enough, don't bother */
1567 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1568 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1569 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1570 		return;
1571 
1572 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1573 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1574 }
1575 
1576 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1577 {
1578 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1579 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1580 	struct ioc_now now;
1581 	unsigned long flags;
1582 
1583 	ioc_now(iocg->ioc, &now);
1584 
1585 	iocg_lock(iocg, pay_debt, &flags);
1586 	iocg_kick_waitq(iocg, pay_debt, &now);
1587 	iocg_unlock(iocg, pay_debt, &flags);
1588 
1589 	return HRTIMER_NORESTART;
1590 }
1591 
1592 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1593 {
1594 	u32 nr_met[2] = { };
1595 	u32 nr_missed[2] = { };
1596 	u64 rq_wait_ns = 0;
1597 	int cpu, rw;
1598 
1599 	for_each_online_cpu(cpu) {
1600 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1601 		u64 this_rq_wait_ns;
1602 
1603 		for (rw = READ; rw <= WRITE; rw++) {
1604 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1605 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1606 
1607 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1608 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1609 			stat->missed[rw].last_met = this_met;
1610 			stat->missed[rw].last_missed = this_missed;
1611 		}
1612 
1613 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1614 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1615 		stat->last_rq_wait_ns = this_rq_wait_ns;
1616 	}
1617 
1618 	for (rw = READ; rw <= WRITE; rw++) {
1619 		if (nr_met[rw] + nr_missed[rw])
1620 			missed_ppm_ar[rw] =
1621 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1622 						   nr_met[rw] + nr_missed[rw]);
1623 		else
1624 			missed_ppm_ar[rw] = 0;
1625 	}
1626 
1627 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1628 				   ioc->period_us * NSEC_PER_USEC);
1629 }
1630 
1631 /* was iocg idle this period? */
1632 static bool iocg_is_idle(struct ioc_gq *iocg)
1633 {
1634 	struct ioc *ioc = iocg->ioc;
1635 
1636 	/* did something get issued this period? */
1637 	if (atomic64_read(&iocg->active_period) ==
1638 	    atomic64_read(&ioc->cur_period))
1639 		return false;
1640 
1641 	/* is something in flight? */
1642 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1643 		return false;
1644 
1645 	return true;
1646 }
1647 
1648 /*
1649  * Call this function on the target leaf @iocg's to build pre-order traversal
1650  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1651  * ->walk_list and the caller is responsible for dissolving the list after use.
1652  */
1653 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1654 				  struct list_head *inner_walk)
1655 {
1656 	int lvl;
1657 
1658 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1659 
1660 	/* find the first ancestor which hasn't been visited yet */
1661 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1662 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1663 			break;
1664 	}
1665 
1666 	/* walk down and visit the inner nodes to get pre-order traversal */
1667 	while (++lvl <= iocg->level - 1) {
1668 		struct ioc_gq *inner = iocg->ancestors[lvl];
1669 
1670 		/* record traversal order */
1671 		list_add_tail(&inner->walk_list, inner_walk);
1672 	}
1673 }
1674 
1675 /* propagate the deltas to the parent */
1676 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1677 {
1678 	if (iocg->level > 0) {
1679 		struct iocg_stat *parent_stat =
1680 			&iocg->ancestors[iocg->level - 1]->stat;
1681 
1682 		parent_stat->usage_us +=
1683 			iocg->stat.usage_us - iocg->last_stat.usage_us;
1684 		parent_stat->wait_us +=
1685 			iocg->stat.wait_us - iocg->last_stat.wait_us;
1686 		parent_stat->indebt_us +=
1687 			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1688 		parent_stat->indelay_us +=
1689 			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1690 	}
1691 
1692 	iocg->last_stat = iocg->stat;
1693 }
1694 
1695 /* collect per-cpu counters and propagate the deltas to the parent */
1696 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1697 {
1698 	struct ioc *ioc = iocg->ioc;
1699 	u64 abs_vusage = 0;
1700 	u64 vusage_delta;
1701 	int cpu;
1702 
1703 	lockdep_assert_held(&iocg->ioc->lock);
1704 
1705 	/* collect per-cpu counters */
1706 	for_each_possible_cpu(cpu) {
1707 		abs_vusage += local64_read(
1708 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1709 	}
1710 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1711 	iocg->last_stat_abs_vusage = abs_vusage;
1712 
1713 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1714 	iocg->stat.usage_us += iocg->usage_delta_us;
1715 
1716 	iocg_flush_stat_upward(iocg);
1717 }
1718 
1719 /* get stat counters ready for reading on all active iocgs */
1720 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1721 {
1722 	LIST_HEAD(inner_walk);
1723 	struct ioc_gq *iocg, *tiocg;
1724 
1725 	/* flush leaves and build inner node walk list */
1726 	list_for_each_entry(iocg, target_iocgs, active_list) {
1727 		iocg_flush_stat_leaf(iocg, now);
1728 		iocg_build_inner_walk(iocg, &inner_walk);
1729 	}
1730 
1731 	/* keep flushing upwards by walking the inner list backwards */
1732 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1733 		iocg_flush_stat_upward(iocg);
1734 		list_del_init(&iocg->walk_list);
1735 	}
1736 }
1737 
1738 /*
1739  * Determine what @iocg's hweight_inuse should be after donating unused
1740  * capacity. @hwm is the upper bound and used to signal no donation. This
1741  * function also throws away @iocg's excess budget.
1742  */
1743 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1744 				  u32 usage, struct ioc_now *now)
1745 {
1746 	struct ioc *ioc = iocg->ioc;
1747 	u64 vtime = atomic64_read(&iocg->vtime);
1748 	s64 excess, delta, target, new_hwi;
1749 
1750 	/* debt handling owns inuse for debtors */
1751 	if (iocg->abs_vdebt)
1752 		return 1;
1753 
1754 	/* see whether minimum margin requirement is met */
1755 	if (waitqueue_active(&iocg->waitq) ||
1756 	    time_after64(vtime, now->vnow - ioc->margins.min))
1757 		return hwm;
1758 
1759 	/* throw away excess above target */
1760 	excess = now->vnow - vtime - ioc->margins.target;
1761 	if (excess > 0) {
1762 		atomic64_add(excess, &iocg->vtime);
1763 		atomic64_add(excess, &iocg->done_vtime);
1764 		vtime += excess;
1765 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1766 	}
1767 
1768 	/*
1769 	 * Let's say the distance between iocg's and device's vtimes as a
1770 	 * fraction of period duration is delta. Assuming that the iocg will
1771 	 * consume the usage determined above, we want to determine new_hwi so
1772 	 * that delta equals MARGIN_TARGET at the end of the next period.
1773 	 *
1774 	 * We need to execute usage worth of IOs while spending the sum of the
1775 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1776 	 * (delta):
1777 	 *
1778 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1779 	 *
1780 	 * Therefore, the new_hwi is:
1781 	 *
1782 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1783 	 */
1784 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1785 			  now->vnow - ioc->period_at_vtime);
1786 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1787 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1788 
1789 	return clamp_t(s64, new_hwi, 1, hwm);
1790 }
1791 
1792 /*
1793  * For work-conservation, an iocg which isn't using all of its share should
1794  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1795  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1796  *
1797  * #1 is mathematically simpler but has the drawback of requiring synchronous
1798  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1799  * change due to donation snapbacks as it has the possibility of grossly
1800  * overshooting what's allowed by the model and vrate.
1801  *
1802  * #2 is inherently safe with local operations. The donating iocg can easily
1803  * snap back to higher weights when needed without worrying about impacts on
1804  * other nodes as the impacts will be inherently correct. This also makes idle
1805  * iocg activations safe. The only effect activations have is decreasing
1806  * hweight_inuse of others, the right solution to which is for those iocgs to
1807  * snap back to higher weights.
1808  *
1809  * So, we go with #2. The challenge is calculating how each donating iocg's
1810  * inuse should be adjusted to achieve the target donation amounts. This is done
1811  * using Andy's method described in the following pdf.
1812  *
1813  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1814  *
1815  * Given the weights and target after-donation hweight_inuse values, Andy's
1816  * method determines how the proportional distribution should look like at each
1817  * sibling level to maintain the relative relationship between all non-donating
1818  * pairs. To roughly summarize, it divides the tree into donating and
1819  * non-donating parts, calculates global donation rate which is used to
1820  * determine the target hweight_inuse for each node, and then derives per-level
1821  * proportions.
1822  *
1823  * The following pdf shows that global distribution calculated this way can be
1824  * achieved by scaling inuse weights of donating leaves and propagating the
1825  * adjustments upwards proportionally.
1826  *
1827  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1828  *
1829  * Combining the above two, we can determine how each leaf iocg's inuse should
1830  * be adjusted to achieve the target donation.
1831  *
1832  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1833  *
1834  * The inline comments use symbols from the last pdf.
1835  *
1836  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1837  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1838  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1839  *   w is the weight of the node. w = w_f + w_t
1840  *   w_f is the non-donating portion of w. w_f = w * f / b
1841  *   w_b is the donating portion of w. w_t = w * t / b
1842  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1843  *   s_f and s_t are the non-donating and donating portions of s.
1844  *
1845  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1846  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1847  * after adjustments. Subscript r denotes the root node's values.
1848  */
1849 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1850 {
1851 	LIST_HEAD(over_hwa);
1852 	LIST_HEAD(inner_walk);
1853 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1854 	u32 after_sum, over_sum, over_target, gamma;
1855 
1856 	/*
1857 	 * It's pretty unlikely but possible for the total sum of
1858 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1859 	 * confuse the following calculations. If such condition is detected,
1860 	 * scale down everyone over its full share equally to keep the sum below
1861 	 * WEIGHT_ONE.
1862 	 */
1863 	after_sum = 0;
1864 	over_sum = 0;
1865 	list_for_each_entry(iocg, surpluses, surplus_list) {
1866 		u32 hwa;
1867 
1868 		current_hweight(iocg, &hwa, NULL);
1869 		after_sum += iocg->hweight_after_donation;
1870 
1871 		if (iocg->hweight_after_donation > hwa) {
1872 			over_sum += iocg->hweight_after_donation;
1873 			list_add(&iocg->walk_list, &over_hwa);
1874 		}
1875 	}
1876 
1877 	if (after_sum >= WEIGHT_ONE) {
1878 		/*
1879 		 * The delta should be deducted from the over_sum, calculate
1880 		 * target over_sum value.
1881 		 */
1882 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1883 		WARN_ON_ONCE(over_sum <= over_delta);
1884 		over_target = over_sum - over_delta;
1885 	} else {
1886 		over_target = 0;
1887 	}
1888 
1889 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1890 		if (over_target)
1891 			iocg->hweight_after_donation =
1892 				div_u64((u64)iocg->hweight_after_donation *
1893 					over_target, over_sum);
1894 		list_del_init(&iocg->walk_list);
1895 	}
1896 
1897 	/*
1898 	 * Build pre-order inner node walk list and prepare for donation
1899 	 * adjustment calculations.
1900 	 */
1901 	list_for_each_entry(iocg, surpluses, surplus_list) {
1902 		iocg_build_inner_walk(iocg, &inner_walk);
1903 	}
1904 
1905 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1906 	WARN_ON_ONCE(root_iocg->level > 0);
1907 
1908 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1909 		iocg->child_adjusted_sum = 0;
1910 		iocg->hweight_donating = 0;
1911 		iocg->hweight_after_donation = 0;
1912 	}
1913 
1914 	/*
1915 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1916 	 * up the hierarchy.
1917 	 */
1918 	list_for_each_entry(iocg, surpluses, surplus_list) {
1919 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1920 
1921 		parent->hweight_donating += iocg->hweight_donating;
1922 		parent->hweight_after_donation += iocg->hweight_after_donation;
1923 	}
1924 
1925 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1926 		if (iocg->level > 0) {
1927 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1928 
1929 			parent->hweight_donating += iocg->hweight_donating;
1930 			parent->hweight_after_donation += iocg->hweight_after_donation;
1931 		}
1932 	}
1933 
1934 	/*
1935 	 * Calculate inner hwa's (b) and make sure the donation values are
1936 	 * within the accepted ranges as we're doing low res calculations with
1937 	 * roundups.
1938 	 */
1939 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1940 		if (iocg->level) {
1941 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1942 
1943 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1944 				(u64)parent->hweight_active * iocg->active,
1945 				parent->child_active_sum);
1946 
1947 		}
1948 
1949 		iocg->hweight_donating = min(iocg->hweight_donating,
1950 					     iocg->hweight_active);
1951 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1952 						   iocg->hweight_donating - 1);
1953 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1954 				 iocg->hweight_donating <= 1 ||
1955 				 iocg->hweight_after_donation == 0)) {
1956 			pr_warn("iocg: invalid donation weights in ");
1957 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1958 			pr_cont(": active=%u donating=%u after=%u\n",
1959 				iocg->hweight_active, iocg->hweight_donating,
1960 				iocg->hweight_after_donation);
1961 		}
1962 	}
1963 
1964 	/*
1965 	 * Calculate the global donation rate (gamma) - the rate to adjust
1966 	 * non-donating budgets by.
1967 	 *
1968 	 * No need to use 64bit multiplication here as the first operand is
1969 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1970 	 *
1971 	 * We know that there are beneficiary nodes and the sum of the donating
1972 	 * hweights can't be whole; however, due to the round-ups during hweight
1973 	 * calculations, root_iocg->hweight_donating might still end up equal to
1974 	 * or greater than whole. Limit the range when calculating the divider.
1975 	 *
1976 	 * gamma = (1 - t_r') / (1 - t_r)
1977 	 */
1978 	gamma = DIV_ROUND_UP(
1979 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1980 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1981 
1982 	/*
1983 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1984 	 * nodes.
1985 	 */
1986 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1987 		struct ioc_gq *parent;
1988 		u32 inuse, wpt, wptp;
1989 		u64 st, sf;
1990 
1991 		if (iocg->level == 0) {
1992 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1993 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1994 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1995 				WEIGHT_ONE - iocg->hweight_after_donation);
1996 			continue;
1997 		}
1998 
1999 		parent = iocg->ancestors[iocg->level - 1];
2000 
2001 		/* b' = gamma * b_f + b_t' */
2002 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
2003 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2004 			WEIGHT_ONE) + iocg->hweight_after_donation;
2005 
2006 		/* w' = s' * b' / b'_p */
2007 		inuse = DIV64_U64_ROUND_UP(
2008 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2009 			parent->hweight_inuse);
2010 
2011 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2012 		st = DIV64_U64_ROUND_UP(
2013 			iocg->child_active_sum * iocg->hweight_donating,
2014 			iocg->hweight_active);
2015 		sf = iocg->child_active_sum - st;
2016 		wpt = DIV64_U64_ROUND_UP(
2017 			(u64)iocg->active * iocg->hweight_donating,
2018 			iocg->hweight_active);
2019 		wptp = DIV64_U64_ROUND_UP(
2020 			(u64)inuse * iocg->hweight_after_donation,
2021 			iocg->hweight_inuse);
2022 
2023 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2024 	}
2025 
2026 	/*
2027 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2028 	 * we can finally determine leaf adjustments.
2029 	 */
2030 	list_for_each_entry(iocg, surpluses, surplus_list) {
2031 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2032 		u32 inuse;
2033 
2034 		/*
2035 		 * In-debt iocgs participated in the donation calculation with
2036 		 * the minimum target hweight_inuse. Configuring inuse
2037 		 * accordingly would work fine but debt handling expects
2038 		 * @iocg->inuse stay at the minimum and we don't wanna
2039 		 * interfere.
2040 		 */
2041 		if (iocg->abs_vdebt) {
2042 			WARN_ON_ONCE(iocg->inuse > 1);
2043 			continue;
2044 		}
2045 
2046 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2047 		inuse = DIV64_U64_ROUND_UP(
2048 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2049 			parent->hweight_inuse);
2050 
2051 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2052 				iocg->inuse, inuse,
2053 				iocg->hweight_inuse,
2054 				iocg->hweight_after_donation);
2055 
2056 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2057 	}
2058 
2059 	/* walk list should be dissolved after use */
2060 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2061 		list_del_init(&iocg->walk_list);
2062 }
2063 
2064 /*
2065  * A low weight iocg can amass a large amount of debt, for example, when
2066  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2067  * memory paired with a slow IO device, the debt can span multiple seconds or
2068  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2069  * up blocked paying its debt while the IO device is idle.
2070  *
2071  * The following protects against such cases. If the device has been
2072  * sufficiently idle for a while, the debts are halved and delays are
2073  * recalculated.
2074  */
2075 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2076 			      struct ioc_now *now)
2077 {
2078 	struct ioc_gq *iocg;
2079 	u64 dur, usage_pct, nr_cycles;
2080 
2081 	/* if no debtor, reset the cycle */
2082 	if (!nr_debtors) {
2083 		ioc->dfgv_period_at = now->now;
2084 		ioc->dfgv_period_rem = 0;
2085 		ioc->dfgv_usage_us_sum = 0;
2086 		return;
2087 	}
2088 
2089 	/*
2090 	 * Debtors can pass through a lot of writes choking the device and we
2091 	 * don't want to be forgiving debts while the device is struggling from
2092 	 * write bursts. If we're missing latency targets, consider the device
2093 	 * fully utilized.
2094 	 */
2095 	if (ioc->busy_level > 0)
2096 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2097 
2098 	ioc->dfgv_usage_us_sum += usage_us_sum;
2099 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2100 		return;
2101 
2102 	/*
2103 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2104 	 * average usage and reset the period counters.
2105 	 */
2106 	dur = now->now - ioc->dfgv_period_at;
2107 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2108 
2109 	ioc->dfgv_period_at = now->now;
2110 	ioc->dfgv_usage_us_sum = 0;
2111 
2112 	/* if was too busy, reset everything */
2113 	if (usage_pct > DFGV_USAGE_PCT) {
2114 		ioc->dfgv_period_rem = 0;
2115 		return;
2116 	}
2117 
2118 	/*
2119 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2120 	 * forgiveness runs off of the usual ioc timer but its period usually
2121 	 * doesn't match ioc's. Compensate the difference by performing the
2122 	 * reduction as many times as would fit in the duration since the last
2123 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2124 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2125 	 * reductions is doubled.
2126 	 */
2127 	nr_cycles = dur + ioc->dfgv_period_rem;
2128 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2129 
2130 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2131 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2132 
2133 		if (!iocg->abs_vdebt && !iocg->delay)
2134 			continue;
2135 
2136 		spin_lock(&iocg->waitq.lock);
2137 
2138 		old_debt = iocg->abs_vdebt;
2139 		old_delay = iocg->delay;
2140 
2141 		if (iocg->abs_vdebt)
2142 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2143 		if (iocg->delay)
2144 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2145 
2146 		iocg_kick_waitq(iocg, true, now);
2147 
2148 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2149 				old_debt, iocg->abs_vdebt,
2150 				old_delay, iocg->delay);
2151 
2152 		spin_unlock(&iocg->waitq.lock);
2153 	}
2154 }
2155 
2156 /*
2157  * Check the active iocgs' state to avoid oversleeping and deactive
2158  * idle iocgs.
2159  *
2160  * Since waiters determine the sleep durations based on the vrate
2161  * they saw at the time of sleep, if vrate has increased, some
2162  * waiters could be sleeping for too long. Wake up tardy waiters
2163  * which should have woken up in the last period and expire idle
2164  * iocgs.
2165  */
2166 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2167 {
2168 	int nr_debtors = 0;
2169 	struct ioc_gq *iocg, *tiocg;
2170 
2171 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2172 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2173 		    !iocg->delay && !iocg_is_idle(iocg))
2174 			continue;
2175 
2176 		spin_lock(&iocg->waitq.lock);
2177 
2178 		/* flush wait and indebt stat deltas */
2179 		if (iocg->wait_since) {
2180 			iocg->stat.wait_us += now->now - iocg->wait_since;
2181 			iocg->wait_since = now->now;
2182 		}
2183 		if (iocg->indebt_since) {
2184 			iocg->stat.indebt_us +=
2185 				now->now - iocg->indebt_since;
2186 			iocg->indebt_since = now->now;
2187 		}
2188 		if (iocg->indelay_since) {
2189 			iocg->stat.indelay_us +=
2190 				now->now - iocg->indelay_since;
2191 			iocg->indelay_since = now->now;
2192 		}
2193 
2194 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2195 		    iocg->delay) {
2196 			/* might be oversleeping vtime / hweight changes, kick */
2197 			iocg_kick_waitq(iocg, true, now);
2198 			if (iocg->abs_vdebt || iocg->delay)
2199 				nr_debtors++;
2200 		} else if (iocg_is_idle(iocg)) {
2201 			/* no waiter and idle, deactivate */
2202 			u64 vtime = atomic64_read(&iocg->vtime);
2203 			s64 excess;
2204 
2205 			/*
2206 			 * @iocg has been inactive for a full duration and will
2207 			 * have a high budget. Account anything above target as
2208 			 * error and throw away. On reactivation, it'll start
2209 			 * with the target budget.
2210 			 */
2211 			excess = now->vnow - vtime - ioc->margins.target;
2212 			if (excess > 0) {
2213 				u32 old_hwi;
2214 
2215 				current_hweight(iocg, NULL, &old_hwi);
2216 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2217 							    WEIGHT_ONE);
2218 			}
2219 
2220 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2221 					atomic64_read(&iocg->active_period),
2222 					atomic64_read(&ioc->cur_period), vtime);
2223 			__propagate_weights(iocg, 0, 0, false, now);
2224 			list_del_init(&iocg->active_list);
2225 		}
2226 
2227 		spin_unlock(&iocg->waitq.lock);
2228 	}
2229 
2230 	commit_weights(ioc);
2231 	return nr_debtors;
2232 }
2233 
2234 static void ioc_timer_fn(struct timer_list *timer)
2235 {
2236 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2237 	struct ioc_gq *iocg, *tiocg;
2238 	struct ioc_now now;
2239 	LIST_HEAD(surpluses);
2240 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2241 	u64 usage_us_sum = 0;
2242 	u32 ppm_rthr;
2243 	u32 ppm_wthr;
2244 	u32 missed_ppm[2], rq_wait_pct;
2245 	u64 period_vtime;
2246 	int prev_busy_level;
2247 
2248 	/* how were the latencies during the period? */
2249 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2250 
2251 	/* take care of active iocgs */
2252 	spin_lock_irq(&ioc->lock);
2253 
2254 	ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2255 	ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2256 	ioc_now(ioc, &now);
2257 
2258 	period_vtime = now.vnow - ioc->period_at_vtime;
2259 	if (WARN_ON_ONCE(!period_vtime)) {
2260 		spin_unlock_irq(&ioc->lock);
2261 		return;
2262 	}
2263 
2264 	nr_debtors = ioc_check_iocgs(ioc, &now);
2265 
2266 	/*
2267 	 * Wait and indebt stat are flushed above and the donation calculation
2268 	 * below needs updated usage stat. Let's bring stat up-to-date.
2269 	 */
2270 	iocg_flush_stat(&ioc->active_iocgs, &now);
2271 
2272 	/* calc usage and see whether some weights need to be moved around */
2273 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2274 		u64 vdone, vtime, usage_us;
2275 		u32 hw_active, hw_inuse;
2276 
2277 		/*
2278 		 * Collect unused and wind vtime closer to vnow to prevent
2279 		 * iocgs from accumulating a large amount of budget.
2280 		 */
2281 		vdone = atomic64_read(&iocg->done_vtime);
2282 		vtime = atomic64_read(&iocg->vtime);
2283 		current_hweight(iocg, &hw_active, &hw_inuse);
2284 
2285 		/*
2286 		 * Latency QoS detection doesn't account for IOs which are
2287 		 * in-flight for longer than a period.  Detect them by
2288 		 * comparing vdone against period start.  If lagging behind
2289 		 * IOs from past periods, don't increase vrate.
2290 		 */
2291 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2292 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2293 		    time_after64(vtime, vdone) &&
2294 		    time_after64(vtime, now.vnow -
2295 				 MAX_LAGGING_PERIODS * period_vtime) &&
2296 		    time_before64(vdone, now.vnow - period_vtime))
2297 			nr_lagging++;
2298 
2299 		/*
2300 		 * Determine absolute usage factoring in in-flight IOs to avoid
2301 		 * high-latency completions appearing as idle.
2302 		 */
2303 		usage_us = iocg->usage_delta_us;
2304 		usage_us_sum += usage_us;
2305 
2306 		/* see whether there's surplus vtime */
2307 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2308 		if (hw_inuse < hw_active ||
2309 		    (!waitqueue_active(&iocg->waitq) &&
2310 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2311 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2312 			u64 usage_dur;
2313 
2314 			if (vdone != vtime) {
2315 				u64 inflight_us = DIV64_U64_ROUND_UP(
2316 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2317 					ioc->vtime_base_rate);
2318 
2319 				usage_us = max(usage_us, inflight_us);
2320 			}
2321 
2322 			/* convert to hweight based usage ratio */
2323 			if (time_after64(iocg->activated_at, ioc->period_at))
2324 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2325 			else
2326 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2327 
2328 			usage = clamp_t(u32,
2329 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2330 						   usage_dur),
2331 				1, WEIGHT_ONE);
2332 
2333 			/*
2334 			 * Already donating or accumulated enough to start.
2335 			 * Determine the donation amount.
2336 			 */
2337 			current_hweight(iocg, &hwa, &old_hwi);
2338 			hwm = current_hweight_max(iocg);
2339 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2340 							 usage, &now);
2341 			/*
2342 			 * Donation calculation assumes hweight_after_donation
2343 			 * to be positive, a condition that a donor w/ hwa < 2
2344 			 * can't meet. Don't bother with donation if hwa is
2345 			 * below 2. It's not gonna make a meaningful difference
2346 			 * anyway.
2347 			 */
2348 			if (new_hwi < hwm && hwa >= 2) {
2349 				iocg->hweight_donating = hwa;
2350 				iocg->hweight_after_donation = new_hwi;
2351 				list_add(&iocg->surplus_list, &surpluses);
2352 			} else if (!iocg->abs_vdebt) {
2353 				/*
2354 				 * @iocg doesn't have enough to donate. Reset
2355 				 * its inuse to active.
2356 				 *
2357 				 * Don't reset debtors as their inuse's are
2358 				 * owned by debt handling. This shouldn't affect
2359 				 * donation calculuation in any meaningful way
2360 				 * as @iocg doesn't have a meaningful amount of
2361 				 * share anyway.
2362 				 */
2363 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2364 						iocg->inuse, iocg->active,
2365 						iocg->hweight_inuse, new_hwi);
2366 
2367 				__propagate_weights(iocg, iocg->active,
2368 						    iocg->active, true, &now);
2369 				nr_shortages++;
2370 			}
2371 		} else {
2372 			/* genuinely short on vtime */
2373 			nr_shortages++;
2374 		}
2375 	}
2376 
2377 	if (!list_empty(&surpluses) && nr_shortages)
2378 		transfer_surpluses(&surpluses, &now);
2379 
2380 	commit_weights(ioc);
2381 
2382 	/* surplus list should be dissolved after use */
2383 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2384 		list_del_init(&iocg->surplus_list);
2385 
2386 	/*
2387 	 * If q is getting clogged or we're missing too much, we're issuing
2388 	 * too much IO and should lower vtime rate.  If we're not missing
2389 	 * and experiencing shortages but not surpluses, we're too stingy
2390 	 * and should increase vtime rate.
2391 	 */
2392 	prev_busy_level = ioc->busy_level;
2393 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2394 	    missed_ppm[READ] > ppm_rthr ||
2395 	    missed_ppm[WRITE] > ppm_wthr) {
2396 		/* clearly missing QoS targets, slow down vrate */
2397 		ioc->busy_level = max(ioc->busy_level, 0);
2398 		ioc->busy_level++;
2399 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2400 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2401 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2402 		/* QoS targets are being met with >25% margin */
2403 		if (nr_shortages) {
2404 			/*
2405 			 * We're throttling while the device has spare
2406 			 * capacity.  If vrate was being slowed down, stop.
2407 			 */
2408 			ioc->busy_level = min(ioc->busy_level, 0);
2409 
2410 			/*
2411 			 * If there are IOs spanning multiple periods, wait
2412 			 * them out before pushing the device harder.
2413 			 */
2414 			if (!nr_lagging)
2415 				ioc->busy_level--;
2416 		} else {
2417 			/*
2418 			 * Nobody is being throttled and the users aren't
2419 			 * issuing enough IOs to saturate the device.  We
2420 			 * simply don't know how close the device is to
2421 			 * saturation.  Coast.
2422 			 */
2423 			ioc->busy_level = 0;
2424 		}
2425 	} else {
2426 		/* inside the hysterisis margin, we're good */
2427 		ioc->busy_level = 0;
2428 	}
2429 
2430 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2431 
2432 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2433 			      prev_busy_level, missed_ppm);
2434 
2435 	ioc_refresh_params(ioc, false);
2436 
2437 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2438 
2439 	/*
2440 	 * This period is done.  Move onto the next one.  If nothing's
2441 	 * going on with the device, stop the timer.
2442 	 */
2443 	atomic64_inc(&ioc->cur_period);
2444 
2445 	if (ioc->running != IOC_STOP) {
2446 		if (!list_empty(&ioc->active_iocgs)) {
2447 			ioc_start_period(ioc, &now);
2448 		} else {
2449 			ioc->busy_level = 0;
2450 			ioc->vtime_err = 0;
2451 			ioc->running = IOC_IDLE;
2452 		}
2453 
2454 		ioc_refresh_vrate(ioc, &now);
2455 	}
2456 
2457 	spin_unlock_irq(&ioc->lock);
2458 }
2459 
2460 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2461 				      u64 abs_cost, struct ioc_now *now)
2462 {
2463 	struct ioc *ioc = iocg->ioc;
2464 	struct ioc_margins *margins = &ioc->margins;
2465 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2466 	u32 hwi, adj_step;
2467 	s64 margin;
2468 	u64 cost, new_inuse;
2469 	unsigned long flags;
2470 
2471 	current_hweight(iocg, NULL, &hwi);
2472 	old_hwi = hwi;
2473 	cost = abs_cost_to_cost(abs_cost, hwi);
2474 	margin = now->vnow - vtime - cost;
2475 
2476 	/* debt handling owns inuse for debtors */
2477 	if (iocg->abs_vdebt)
2478 		return cost;
2479 
2480 	/*
2481 	 * We only increase inuse during period and do so if the margin has
2482 	 * deteriorated since the previous adjustment.
2483 	 */
2484 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2485 	    iocg->inuse == iocg->active)
2486 		return cost;
2487 
2488 	spin_lock_irqsave(&ioc->lock, flags);
2489 
2490 	/* we own inuse only when @iocg is in the normal active state */
2491 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2492 		spin_unlock_irqrestore(&ioc->lock, flags);
2493 		return cost;
2494 	}
2495 
2496 	/*
2497 	 * Bump up inuse till @abs_cost fits in the existing budget.
2498 	 * adj_step must be determined after acquiring ioc->lock - we might
2499 	 * have raced and lost to another thread for activation and could
2500 	 * be reading 0 iocg->active before ioc->lock which will lead to
2501 	 * infinite loop.
2502 	 */
2503 	new_inuse = iocg->inuse;
2504 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2505 	do {
2506 		new_inuse = new_inuse + adj_step;
2507 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2508 		current_hweight(iocg, NULL, &hwi);
2509 		cost = abs_cost_to_cost(abs_cost, hwi);
2510 	} while (time_after64(vtime + cost, now->vnow) &&
2511 		 iocg->inuse != iocg->active);
2512 
2513 	spin_unlock_irqrestore(&ioc->lock, flags);
2514 
2515 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2516 			old_inuse, iocg->inuse, old_hwi, hwi);
2517 
2518 	return cost;
2519 }
2520 
2521 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2522 				    bool is_merge, u64 *costp)
2523 {
2524 	struct ioc *ioc = iocg->ioc;
2525 	u64 coef_seqio, coef_randio, coef_page;
2526 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2527 	u64 seek_pages = 0;
2528 	u64 cost = 0;
2529 
2530 	/* Can't calculate cost for empty bio */
2531 	if (!bio->bi_iter.bi_size)
2532 		goto out;
2533 
2534 	switch (bio_op(bio)) {
2535 	case REQ_OP_READ:
2536 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2537 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2538 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2539 		break;
2540 	case REQ_OP_WRITE:
2541 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2542 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2543 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2544 		break;
2545 	default:
2546 		goto out;
2547 	}
2548 
2549 	if (iocg->cursor) {
2550 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2551 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2552 	}
2553 
2554 	if (!is_merge) {
2555 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2556 			cost += coef_randio;
2557 		} else {
2558 			cost += coef_seqio;
2559 		}
2560 	}
2561 	cost += pages * coef_page;
2562 out:
2563 	*costp = cost;
2564 }
2565 
2566 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2567 {
2568 	u64 cost;
2569 
2570 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2571 	return cost;
2572 }
2573 
2574 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2575 					 u64 *costp)
2576 {
2577 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2578 
2579 	switch (req_op(rq)) {
2580 	case REQ_OP_READ:
2581 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2582 		break;
2583 	case REQ_OP_WRITE:
2584 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2585 		break;
2586 	default:
2587 		*costp = 0;
2588 	}
2589 }
2590 
2591 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2592 {
2593 	u64 cost;
2594 
2595 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2596 	return cost;
2597 }
2598 
2599 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2600 {
2601 	struct blkcg_gq *blkg = bio->bi_blkg;
2602 	struct ioc *ioc = rqos_to_ioc(rqos);
2603 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2604 	struct ioc_now now;
2605 	struct iocg_wait wait;
2606 	u64 abs_cost, cost, vtime;
2607 	bool use_debt, ioc_locked;
2608 	unsigned long flags;
2609 
2610 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2611 	if (!ioc->enabled || !iocg || !iocg->level)
2612 		return;
2613 
2614 	/* calculate the absolute vtime cost */
2615 	abs_cost = calc_vtime_cost(bio, iocg, false);
2616 	if (!abs_cost)
2617 		return;
2618 
2619 	if (!iocg_activate(iocg, &now))
2620 		return;
2621 
2622 	iocg->cursor = bio_end_sector(bio);
2623 	vtime = atomic64_read(&iocg->vtime);
2624 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2625 
2626 	/*
2627 	 * If no one's waiting and within budget, issue right away.  The
2628 	 * tests are racy but the races aren't systemic - we only miss once
2629 	 * in a while which is fine.
2630 	 */
2631 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2632 	    time_before_eq64(vtime + cost, now.vnow)) {
2633 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2634 		return;
2635 	}
2636 
2637 	/*
2638 	 * We're over budget. This can be handled in two ways. IOs which may
2639 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2640 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2641 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2642 	 * whether debt handling is needed and acquire locks accordingly.
2643 	 */
2644 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2645 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2646 retry_lock:
2647 	iocg_lock(iocg, ioc_locked, &flags);
2648 
2649 	/*
2650 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2651 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2652 	 * get deactivated as long as we're waiting or has debt, so we're good
2653 	 * if we're activated here. In the unlikely cases that we aren't, just
2654 	 * issue the IO.
2655 	 */
2656 	if (unlikely(list_empty(&iocg->active_list))) {
2657 		iocg_unlock(iocg, ioc_locked, &flags);
2658 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2659 		return;
2660 	}
2661 
2662 	/*
2663 	 * We're over budget. If @bio has to be issued regardless, remember
2664 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2665 	 * off the debt before waking more IOs.
2666 	 *
2667 	 * This way, the debt is continuously paid off each period with the
2668 	 * actual budget available to the cgroup. If we just wound vtime, we
2669 	 * would incorrectly use the current hw_inuse for the entire amount
2670 	 * which, for example, can lead to the cgroup staying blocked for a
2671 	 * long time even with substantially raised hw_inuse.
2672 	 *
2673 	 * An iocg with vdebt should stay online so that the timer can keep
2674 	 * deducting its vdebt and [de]activate use_delay mechanism
2675 	 * accordingly. We don't want to race against the timer trying to
2676 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2677 	 * penalizing the cgroup and its descendants.
2678 	 */
2679 	if (use_debt) {
2680 		iocg_incur_debt(iocg, abs_cost, &now);
2681 		if (iocg_kick_delay(iocg, &now))
2682 			blkcg_schedule_throttle(rqos->disk,
2683 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2684 		iocg_unlock(iocg, ioc_locked, &flags);
2685 		return;
2686 	}
2687 
2688 	/* guarantee that iocgs w/ waiters have maximum inuse */
2689 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2690 		if (!ioc_locked) {
2691 			iocg_unlock(iocg, false, &flags);
2692 			ioc_locked = true;
2693 			goto retry_lock;
2694 		}
2695 		propagate_weights(iocg, iocg->active, iocg->active, true,
2696 				  &now);
2697 	}
2698 
2699 	/*
2700 	 * Append self to the waitq and schedule the wakeup timer if we're
2701 	 * the first waiter.  The timer duration is calculated based on the
2702 	 * current vrate.  vtime and hweight changes can make it too short
2703 	 * or too long.  Each wait entry records the absolute cost it's
2704 	 * waiting for to allow re-evaluation using a custom wait entry.
2705 	 *
2706 	 * If too short, the timer simply reschedules itself.  If too long,
2707 	 * the period timer will notice and trigger wakeups.
2708 	 *
2709 	 * All waiters are on iocg->waitq and the wait states are
2710 	 * synchronized using waitq.lock.
2711 	 */
2712 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2713 	wait.wait.private = current;
2714 	wait.bio = bio;
2715 	wait.abs_cost = abs_cost;
2716 	wait.committed = false;	/* will be set true by waker */
2717 
2718 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2719 	iocg_kick_waitq(iocg, ioc_locked, &now);
2720 
2721 	iocg_unlock(iocg, ioc_locked, &flags);
2722 
2723 	while (true) {
2724 		set_current_state(TASK_UNINTERRUPTIBLE);
2725 		if (wait.committed)
2726 			break;
2727 		io_schedule();
2728 	}
2729 
2730 	/* waker already committed us, proceed */
2731 	finish_wait(&iocg->waitq, &wait.wait);
2732 }
2733 
2734 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2735 			   struct bio *bio)
2736 {
2737 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2738 	struct ioc *ioc = rqos_to_ioc(rqos);
2739 	sector_t bio_end = bio_end_sector(bio);
2740 	struct ioc_now now;
2741 	u64 vtime, abs_cost, cost;
2742 	unsigned long flags;
2743 
2744 	/* bypass if disabled, still initializing, or for root cgroup */
2745 	if (!ioc->enabled || !iocg || !iocg->level)
2746 		return;
2747 
2748 	abs_cost = calc_vtime_cost(bio, iocg, true);
2749 	if (!abs_cost)
2750 		return;
2751 
2752 	ioc_now(ioc, &now);
2753 
2754 	vtime = atomic64_read(&iocg->vtime);
2755 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2756 
2757 	/* update cursor if backmerging into the request at the cursor */
2758 	if (blk_rq_pos(rq) < bio_end &&
2759 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2760 		iocg->cursor = bio_end;
2761 
2762 	/*
2763 	 * Charge if there's enough vtime budget and the existing request has
2764 	 * cost assigned.
2765 	 */
2766 	if (rq->bio && rq->bio->bi_iocost_cost &&
2767 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2768 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2769 		return;
2770 	}
2771 
2772 	/*
2773 	 * Otherwise, account it as debt if @iocg is online, which it should
2774 	 * be for the vast majority of cases. See debt handling in
2775 	 * ioc_rqos_throttle() for details.
2776 	 */
2777 	spin_lock_irqsave(&ioc->lock, flags);
2778 	spin_lock(&iocg->waitq.lock);
2779 
2780 	if (likely(!list_empty(&iocg->active_list))) {
2781 		iocg_incur_debt(iocg, abs_cost, &now);
2782 		if (iocg_kick_delay(iocg, &now))
2783 			blkcg_schedule_throttle(rqos->disk,
2784 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2785 	} else {
2786 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2787 	}
2788 
2789 	spin_unlock(&iocg->waitq.lock);
2790 	spin_unlock_irqrestore(&ioc->lock, flags);
2791 }
2792 
2793 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2794 {
2795 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2796 
2797 	if (iocg && bio->bi_iocost_cost)
2798 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2799 }
2800 
2801 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2802 {
2803 	struct ioc *ioc = rqos_to_ioc(rqos);
2804 	struct ioc_pcpu_stat *ccs;
2805 	u64 on_q_ns, rq_wait_ns, size_nsec;
2806 	int pidx, rw;
2807 
2808 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2809 		return;
2810 
2811 	switch (req_op(rq)) {
2812 	case REQ_OP_READ:
2813 		pidx = QOS_RLAT;
2814 		rw = READ;
2815 		break;
2816 	case REQ_OP_WRITE:
2817 		pidx = QOS_WLAT;
2818 		rw = WRITE;
2819 		break;
2820 	default:
2821 		return;
2822 	}
2823 
2824 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2825 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2826 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2827 
2828 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2829 
2830 	if (on_q_ns <= size_nsec ||
2831 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2832 		local_inc(&ccs->missed[rw].nr_met);
2833 	else
2834 		local_inc(&ccs->missed[rw].nr_missed);
2835 
2836 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2837 
2838 	put_cpu_ptr(ccs);
2839 }
2840 
2841 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2842 {
2843 	struct ioc *ioc = rqos_to_ioc(rqos);
2844 
2845 	spin_lock_irq(&ioc->lock);
2846 	ioc_refresh_params(ioc, false);
2847 	spin_unlock_irq(&ioc->lock);
2848 }
2849 
2850 static void ioc_rqos_exit(struct rq_qos *rqos)
2851 {
2852 	struct ioc *ioc = rqos_to_ioc(rqos);
2853 
2854 	blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2855 
2856 	spin_lock_irq(&ioc->lock);
2857 	ioc->running = IOC_STOP;
2858 	spin_unlock_irq(&ioc->lock);
2859 
2860 	timer_shutdown_sync(&ioc->timer);
2861 	free_percpu(ioc->pcpu_stat);
2862 	kfree(ioc);
2863 }
2864 
2865 static const struct rq_qos_ops ioc_rqos_ops = {
2866 	.throttle = ioc_rqos_throttle,
2867 	.merge = ioc_rqos_merge,
2868 	.done_bio = ioc_rqos_done_bio,
2869 	.done = ioc_rqos_done,
2870 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2871 	.exit = ioc_rqos_exit,
2872 };
2873 
2874 static int blk_iocost_init(struct gendisk *disk)
2875 {
2876 	struct ioc *ioc;
2877 	int i, cpu, ret;
2878 
2879 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2880 	if (!ioc)
2881 		return -ENOMEM;
2882 
2883 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2884 	if (!ioc->pcpu_stat) {
2885 		kfree(ioc);
2886 		return -ENOMEM;
2887 	}
2888 
2889 	for_each_possible_cpu(cpu) {
2890 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2891 
2892 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2893 			local_set(&ccs->missed[i].nr_met, 0);
2894 			local_set(&ccs->missed[i].nr_missed, 0);
2895 		}
2896 		local64_set(&ccs->rq_wait_ns, 0);
2897 	}
2898 
2899 	spin_lock_init(&ioc->lock);
2900 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2901 	INIT_LIST_HEAD(&ioc->active_iocgs);
2902 
2903 	ioc->running = IOC_IDLE;
2904 	ioc->vtime_base_rate = VTIME_PER_USEC;
2905 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2906 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2907 	ioc->period_at = ktime_to_us(ktime_get());
2908 	atomic64_set(&ioc->cur_period, 0);
2909 	atomic_set(&ioc->hweight_gen, 0);
2910 
2911 	spin_lock_irq(&ioc->lock);
2912 	ioc->autop_idx = AUTOP_INVALID;
2913 	ioc_refresh_params_disk(ioc, true, disk);
2914 	spin_unlock_irq(&ioc->lock);
2915 
2916 	/*
2917 	 * rqos must be added before activation to allow ioc_pd_init() to
2918 	 * lookup the ioc from q. This means that the rqos methods may get
2919 	 * called before policy activation completion, can't assume that the
2920 	 * target bio has an iocg associated and need to test for NULL iocg.
2921 	 */
2922 	ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2923 	if (ret)
2924 		goto err_free_ioc;
2925 
2926 	ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2927 	if (ret)
2928 		goto err_del_qos;
2929 	return 0;
2930 
2931 err_del_qos:
2932 	rq_qos_del(&ioc->rqos);
2933 err_free_ioc:
2934 	free_percpu(ioc->pcpu_stat);
2935 	kfree(ioc);
2936 	return ret;
2937 }
2938 
2939 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2940 {
2941 	struct ioc_cgrp *iocc;
2942 
2943 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2944 	if (!iocc)
2945 		return NULL;
2946 
2947 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2948 	return &iocc->cpd;
2949 }
2950 
2951 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2952 {
2953 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2954 }
2955 
2956 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2957 		struct blkcg *blkcg, gfp_t gfp)
2958 {
2959 	int levels = blkcg->css.cgroup->level + 1;
2960 	struct ioc_gq *iocg;
2961 
2962 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2963 			    disk->node_id);
2964 	if (!iocg)
2965 		return NULL;
2966 
2967 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2968 	if (!iocg->pcpu_stat) {
2969 		kfree(iocg);
2970 		return NULL;
2971 	}
2972 
2973 	return &iocg->pd;
2974 }
2975 
2976 static void ioc_pd_init(struct blkg_policy_data *pd)
2977 {
2978 	struct ioc_gq *iocg = pd_to_iocg(pd);
2979 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2980 	struct ioc *ioc = q_to_ioc(blkg->q);
2981 	struct ioc_now now;
2982 	struct blkcg_gq *tblkg;
2983 	unsigned long flags;
2984 
2985 	ioc_now(ioc, &now);
2986 
2987 	iocg->ioc = ioc;
2988 	atomic64_set(&iocg->vtime, now.vnow);
2989 	atomic64_set(&iocg->done_vtime, now.vnow);
2990 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2991 	INIT_LIST_HEAD(&iocg->active_list);
2992 	INIT_LIST_HEAD(&iocg->walk_list);
2993 	INIT_LIST_HEAD(&iocg->surplus_list);
2994 	iocg->hweight_active = WEIGHT_ONE;
2995 	iocg->hweight_inuse = WEIGHT_ONE;
2996 
2997 	init_waitqueue_head(&iocg->waitq);
2998 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2999 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
3000 
3001 	iocg->level = blkg->blkcg->css.cgroup->level;
3002 
3003 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3004 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3005 		iocg->ancestors[tiocg->level] = tiocg;
3006 	}
3007 
3008 	spin_lock_irqsave(&ioc->lock, flags);
3009 	weight_updated(iocg, &now);
3010 	spin_unlock_irqrestore(&ioc->lock, flags);
3011 }
3012 
3013 static void ioc_pd_free(struct blkg_policy_data *pd)
3014 {
3015 	struct ioc_gq *iocg = pd_to_iocg(pd);
3016 	struct ioc *ioc = iocg->ioc;
3017 	unsigned long flags;
3018 
3019 	if (ioc) {
3020 		spin_lock_irqsave(&ioc->lock, flags);
3021 
3022 		if (!list_empty(&iocg->active_list)) {
3023 			struct ioc_now now;
3024 
3025 			ioc_now(ioc, &now);
3026 			propagate_weights(iocg, 0, 0, false, &now);
3027 			list_del_init(&iocg->active_list);
3028 		}
3029 
3030 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3031 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3032 
3033 		spin_unlock_irqrestore(&ioc->lock, flags);
3034 
3035 		hrtimer_cancel(&iocg->waitq_timer);
3036 	}
3037 	free_percpu(iocg->pcpu_stat);
3038 	kfree(iocg);
3039 }
3040 
3041 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3042 {
3043 	struct ioc_gq *iocg = pd_to_iocg(pd);
3044 	struct ioc *ioc = iocg->ioc;
3045 
3046 	if (!ioc->enabled)
3047 		return;
3048 
3049 	if (iocg->level == 0) {
3050 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3051 			ioc->vtime_base_rate * 10000,
3052 			VTIME_PER_USEC);
3053 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3054 	}
3055 
3056 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3057 
3058 	if (blkcg_debug_stats)
3059 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3060 			iocg->last_stat.wait_us,
3061 			iocg->last_stat.indebt_us,
3062 			iocg->last_stat.indelay_us);
3063 }
3064 
3065 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3066 			     int off)
3067 {
3068 	const char *dname = blkg_dev_name(pd->blkg);
3069 	struct ioc_gq *iocg = pd_to_iocg(pd);
3070 
3071 	if (dname && iocg->cfg_weight)
3072 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3073 	return 0;
3074 }
3075 
3076 
3077 static int ioc_weight_show(struct seq_file *sf, void *v)
3078 {
3079 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3080 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3081 
3082 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3083 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3084 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3085 	return 0;
3086 }
3087 
3088 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3089 				size_t nbytes, loff_t off)
3090 {
3091 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3092 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3093 	struct blkg_conf_ctx ctx;
3094 	struct ioc_now now;
3095 	struct ioc_gq *iocg;
3096 	u32 v;
3097 	int ret;
3098 
3099 	if (!strchr(buf, ':')) {
3100 		struct blkcg_gq *blkg;
3101 
3102 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3103 			return -EINVAL;
3104 
3105 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3106 			return -EINVAL;
3107 
3108 		spin_lock_irq(&blkcg->lock);
3109 		iocc->dfl_weight = v * WEIGHT_ONE;
3110 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3111 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3112 
3113 			if (iocg) {
3114 				spin_lock(&iocg->ioc->lock);
3115 				ioc_now(iocg->ioc, &now);
3116 				weight_updated(iocg, &now);
3117 				spin_unlock(&iocg->ioc->lock);
3118 			}
3119 		}
3120 		spin_unlock_irq(&blkcg->lock);
3121 
3122 		return nbytes;
3123 	}
3124 
3125 	blkg_conf_init(&ctx, buf);
3126 
3127 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3128 	if (ret)
3129 		goto err;
3130 
3131 	iocg = blkg_to_iocg(ctx.blkg);
3132 
3133 	if (!strncmp(ctx.body, "default", 7)) {
3134 		v = 0;
3135 	} else {
3136 		if (!sscanf(ctx.body, "%u", &v))
3137 			goto einval;
3138 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3139 			goto einval;
3140 	}
3141 
3142 	spin_lock(&iocg->ioc->lock);
3143 	iocg->cfg_weight = v * WEIGHT_ONE;
3144 	ioc_now(iocg->ioc, &now);
3145 	weight_updated(iocg, &now);
3146 	spin_unlock(&iocg->ioc->lock);
3147 
3148 	blkg_conf_exit(&ctx);
3149 	return nbytes;
3150 
3151 einval:
3152 	ret = -EINVAL;
3153 err:
3154 	blkg_conf_exit(&ctx);
3155 	return ret;
3156 }
3157 
3158 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3159 			  int off)
3160 {
3161 	const char *dname = blkg_dev_name(pd->blkg);
3162 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3163 
3164 	if (!dname)
3165 		return 0;
3166 
3167 	spin_lock_irq(&ioc->lock);
3168 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3169 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3170 		   ioc->params.qos[QOS_RPPM] / 10000,
3171 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3172 		   ioc->params.qos[QOS_RLAT],
3173 		   ioc->params.qos[QOS_WPPM] / 10000,
3174 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3175 		   ioc->params.qos[QOS_WLAT],
3176 		   ioc->params.qos[QOS_MIN] / 10000,
3177 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3178 		   ioc->params.qos[QOS_MAX] / 10000,
3179 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3180 	spin_unlock_irq(&ioc->lock);
3181 	return 0;
3182 }
3183 
3184 static int ioc_qos_show(struct seq_file *sf, void *v)
3185 {
3186 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3187 
3188 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3189 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3190 	return 0;
3191 }
3192 
3193 static const match_table_t qos_ctrl_tokens = {
3194 	{ QOS_ENABLE,		"enable=%u"	},
3195 	{ QOS_CTRL,		"ctrl=%s"	},
3196 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3197 };
3198 
3199 static const match_table_t qos_tokens = {
3200 	{ QOS_RPPM,		"rpct=%s"	},
3201 	{ QOS_RLAT,		"rlat=%u"	},
3202 	{ QOS_WPPM,		"wpct=%s"	},
3203 	{ QOS_WLAT,		"wlat=%u"	},
3204 	{ QOS_MIN,		"min=%s"	},
3205 	{ QOS_MAX,		"max=%s"	},
3206 	{ NR_QOS_PARAMS,	NULL		},
3207 };
3208 
3209 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3210 			     size_t nbytes, loff_t off)
3211 {
3212 	struct blkg_conf_ctx ctx;
3213 	struct gendisk *disk;
3214 	struct ioc *ioc;
3215 	u32 qos[NR_QOS_PARAMS];
3216 	bool enable, user;
3217 	char *body, *p;
3218 	int ret;
3219 
3220 	blkg_conf_init(&ctx, input);
3221 
3222 	ret = blkg_conf_open_bdev(&ctx);
3223 	if (ret)
3224 		goto err;
3225 
3226 	body = ctx.body;
3227 	disk = ctx.bdev->bd_disk;
3228 	if (!queue_is_mq(disk->queue)) {
3229 		ret = -EOPNOTSUPP;
3230 		goto err;
3231 	}
3232 
3233 	ioc = q_to_ioc(disk->queue);
3234 	if (!ioc) {
3235 		ret = blk_iocost_init(disk);
3236 		if (ret)
3237 			goto err;
3238 		ioc = q_to_ioc(disk->queue);
3239 	}
3240 
3241 	blk_mq_freeze_queue(disk->queue);
3242 	blk_mq_quiesce_queue(disk->queue);
3243 
3244 	spin_lock_irq(&ioc->lock);
3245 	memcpy(qos, ioc->params.qos, sizeof(qos));
3246 	enable = ioc->enabled;
3247 	user = ioc->user_qos_params;
3248 
3249 	while ((p = strsep(&body, " \t\n"))) {
3250 		substring_t args[MAX_OPT_ARGS];
3251 		char buf[32];
3252 		int tok;
3253 		s64 v;
3254 
3255 		if (!*p)
3256 			continue;
3257 
3258 		switch (match_token(p, qos_ctrl_tokens, args)) {
3259 		case QOS_ENABLE:
3260 			if (match_u64(&args[0], &v))
3261 				goto einval;
3262 			enable = v;
3263 			continue;
3264 		case QOS_CTRL:
3265 			match_strlcpy(buf, &args[0], sizeof(buf));
3266 			if (!strcmp(buf, "auto"))
3267 				user = false;
3268 			else if (!strcmp(buf, "user"))
3269 				user = true;
3270 			else
3271 				goto einval;
3272 			continue;
3273 		}
3274 
3275 		tok = match_token(p, qos_tokens, args);
3276 		switch (tok) {
3277 		case QOS_RPPM:
3278 		case QOS_WPPM:
3279 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3280 			    sizeof(buf))
3281 				goto einval;
3282 			if (cgroup_parse_float(buf, 2, &v))
3283 				goto einval;
3284 			if (v < 0 || v > 10000)
3285 				goto einval;
3286 			qos[tok] = v * 100;
3287 			break;
3288 		case QOS_RLAT:
3289 		case QOS_WLAT:
3290 			if (match_u64(&args[0], &v))
3291 				goto einval;
3292 			qos[tok] = v;
3293 			break;
3294 		case QOS_MIN:
3295 		case QOS_MAX:
3296 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3297 			    sizeof(buf))
3298 				goto einval;
3299 			if (cgroup_parse_float(buf, 2, &v))
3300 				goto einval;
3301 			if (v < 0)
3302 				goto einval;
3303 			qos[tok] = clamp_t(s64, v * 100,
3304 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3305 			break;
3306 		default:
3307 			goto einval;
3308 		}
3309 		user = true;
3310 	}
3311 
3312 	if (qos[QOS_MIN] > qos[QOS_MAX])
3313 		goto einval;
3314 
3315 	if (enable && !ioc->enabled) {
3316 		blk_stat_enable_accounting(disk->queue);
3317 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3318 		ioc->enabled = true;
3319 	} else if (!enable && ioc->enabled) {
3320 		blk_stat_disable_accounting(disk->queue);
3321 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3322 		ioc->enabled = false;
3323 	}
3324 
3325 	if (user) {
3326 		memcpy(ioc->params.qos, qos, sizeof(qos));
3327 		ioc->user_qos_params = true;
3328 	} else {
3329 		ioc->user_qos_params = false;
3330 	}
3331 
3332 	ioc_refresh_params(ioc, true);
3333 	spin_unlock_irq(&ioc->lock);
3334 
3335 	if (enable)
3336 		wbt_disable_default(disk);
3337 	else
3338 		wbt_enable_default(disk);
3339 
3340 	blk_mq_unquiesce_queue(disk->queue);
3341 	blk_mq_unfreeze_queue(disk->queue);
3342 
3343 	blkg_conf_exit(&ctx);
3344 	return nbytes;
3345 einval:
3346 	spin_unlock_irq(&ioc->lock);
3347 
3348 	blk_mq_unquiesce_queue(disk->queue);
3349 	blk_mq_unfreeze_queue(disk->queue);
3350 
3351 	ret = -EINVAL;
3352 err:
3353 	blkg_conf_exit(&ctx);
3354 	return ret;
3355 }
3356 
3357 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3358 				 struct blkg_policy_data *pd, int off)
3359 {
3360 	const char *dname = blkg_dev_name(pd->blkg);
3361 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3362 	u64 *u = ioc->params.i_lcoefs;
3363 
3364 	if (!dname)
3365 		return 0;
3366 
3367 	spin_lock_irq(&ioc->lock);
3368 	seq_printf(sf, "%s ctrl=%s model=linear "
3369 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3370 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3371 		   dname, ioc->user_cost_model ? "user" : "auto",
3372 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3373 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3374 	spin_unlock_irq(&ioc->lock);
3375 	return 0;
3376 }
3377 
3378 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3379 {
3380 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3381 
3382 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3383 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3384 	return 0;
3385 }
3386 
3387 static const match_table_t cost_ctrl_tokens = {
3388 	{ COST_CTRL,		"ctrl=%s"	},
3389 	{ COST_MODEL,		"model=%s"	},
3390 	{ NR_COST_CTRL_PARAMS,	NULL		},
3391 };
3392 
3393 static const match_table_t i_lcoef_tokens = {
3394 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3395 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3396 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3397 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3398 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3399 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3400 	{ NR_I_LCOEFS,		NULL		},
3401 };
3402 
3403 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3404 				    size_t nbytes, loff_t off)
3405 {
3406 	struct blkg_conf_ctx ctx;
3407 	struct request_queue *q;
3408 	struct ioc *ioc;
3409 	u64 u[NR_I_LCOEFS];
3410 	bool user;
3411 	char *body, *p;
3412 	int ret;
3413 
3414 	blkg_conf_init(&ctx, input);
3415 
3416 	ret = blkg_conf_open_bdev(&ctx);
3417 	if (ret)
3418 		goto err;
3419 
3420 	body = ctx.body;
3421 	q = bdev_get_queue(ctx.bdev);
3422 	if (!queue_is_mq(q)) {
3423 		ret = -EOPNOTSUPP;
3424 		goto err;
3425 	}
3426 
3427 	ioc = q_to_ioc(q);
3428 	if (!ioc) {
3429 		ret = blk_iocost_init(ctx.bdev->bd_disk);
3430 		if (ret)
3431 			goto err;
3432 		ioc = q_to_ioc(q);
3433 	}
3434 
3435 	blk_mq_freeze_queue(q);
3436 	blk_mq_quiesce_queue(q);
3437 
3438 	spin_lock_irq(&ioc->lock);
3439 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3440 	user = ioc->user_cost_model;
3441 
3442 	while ((p = strsep(&body, " \t\n"))) {
3443 		substring_t args[MAX_OPT_ARGS];
3444 		char buf[32];
3445 		int tok;
3446 		u64 v;
3447 
3448 		if (!*p)
3449 			continue;
3450 
3451 		switch (match_token(p, cost_ctrl_tokens, args)) {
3452 		case COST_CTRL:
3453 			match_strlcpy(buf, &args[0], sizeof(buf));
3454 			if (!strcmp(buf, "auto"))
3455 				user = false;
3456 			else if (!strcmp(buf, "user"))
3457 				user = true;
3458 			else
3459 				goto einval;
3460 			continue;
3461 		case COST_MODEL:
3462 			match_strlcpy(buf, &args[0], sizeof(buf));
3463 			if (strcmp(buf, "linear"))
3464 				goto einval;
3465 			continue;
3466 		}
3467 
3468 		tok = match_token(p, i_lcoef_tokens, args);
3469 		if (tok == NR_I_LCOEFS)
3470 			goto einval;
3471 		if (match_u64(&args[0], &v))
3472 			goto einval;
3473 		u[tok] = v;
3474 		user = true;
3475 	}
3476 
3477 	if (user) {
3478 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3479 		ioc->user_cost_model = true;
3480 	} else {
3481 		ioc->user_cost_model = false;
3482 	}
3483 	ioc_refresh_params(ioc, true);
3484 	spin_unlock_irq(&ioc->lock);
3485 
3486 	blk_mq_unquiesce_queue(q);
3487 	blk_mq_unfreeze_queue(q);
3488 
3489 	blkg_conf_exit(&ctx);
3490 	return nbytes;
3491 
3492 einval:
3493 	spin_unlock_irq(&ioc->lock);
3494 
3495 	blk_mq_unquiesce_queue(q);
3496 	blk_mq_unfreeze_queue(q);
3497 
3498 	ret = -EINVAL;
3499 err:
3500 	blkg_conf_exit(&ctx);
3501 	return ret;
3502 }
3503 
3504 static struct cftype ioc_files[] = {
3505 	{
3506 		.name = "weight",
3507 		.flags = CFTYPE_NOT_ON_ROOT,
3508 		.seq_show = ioc_weight_show,
3509 		.write = ioc_weight_write,
3510 	},
3511 	{
3512 		.name = "cost.qos",
3513 		.flags = CFTYPE_ONLY_ON_ROOT,
3514 		.seq_show = ioc_qos_show,
3515 		.write = ioc_qos_write,
3516 	},
3517 	{
3518 		.name = "cost.model",
3519 		.flags = CFTYPE_ONLY_ON_ROOT,
3520 		.seq_show = ioc_cost_model_show,
3521 		.write = ioc_cost_model_write,
3522 	},
3523 	{}
3524 };
3525 
3526 static struct blkcg_policy blkcg_policy_iocost = {
3527 	.dfl_cftypes	= ioc_files,
3528 	.cpd_alloc_fn	= ioc_cpd_alloc,
3529 	.cpd_free_fn	= ioc_cpd_free,
3530 	.pd_alloc_fn	= ioc_pd_alloc,
3531 	.pd_init_fn	= ioc_pd_init,
3532 	.pd_free_fn	= ioc_pd_free,
3533 	.pd_stat_fn	= ioc_pd_stat,
3534 };
3535 
3536 static int __init ioc_init(void)
3537 {
3538 	return blkcg_policy_register(&blkcg_policy_iocost);
3539 }
3540 
3541 static void __exit ioc_exit(void)
3542 {
3543 	blkcg_policy_unregister(&blkcg_policy_iocost);
3544 }
3545 
3546 module_init(ioc_init);
3547 module_exit(ioc_exit);
3548