1 /* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a 32 * flush is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 77 /* FLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static bool blk_kick_flush(struct request_queue *q); 95 96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq) 97 { 98 unsigned int policy = 0; 99 100 if (blk_rq_sectors(rq)) 101 policy |= REQ_FSEQ_DATA; 102 103 if (fflags & REQ_FLUSH) { 104 if (rq->cmd_flags & REQ_FLUSH) 105 policy |= REQ_FSEQ_PREFLUSH; 106 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA)) 107 policy |= REQ_FSEQ_POSTFLUSH; 108 } 109 return policy; 110 } 111 112 static unsigned int blk_flush_cur_seq(struct request *rq) 113 { 114 return 1 << ffz(rq->flush.seq); 115 } 116 117 static void blk_flush_restore_request(struct request *rq) 118 { 119 /* 120 * After flush data completion, @rq->bio is %NULL but we need to 121 * complete the bio again. @rq->biotail is guaranteed to equal the 122 * original @rq->bio. Restore it. 123 */ 124 rq->bio = rq->biotail; 125 126 /* make @rq a normal request */ 127 rq->cmd_flags &= ~REQ_FLUSH_SEQ; 128 rq->end_io = rq->flush.saved_end_io; 129 130 blk_clear_rq_complete(rq); 131 } 132 133 static void mq_flush_run(struct work_struct *work) 134 { 135 struct request *rq; 136 137 rq = container_of(work, struct request, mq_flush_work); 138 139 memset(&rq->csd, 0, sizeof(rq->csd)); 140 blk_mq_run_request(rq, true, false); 141 } 142 143 static bool blk_flush_queue_rq(struct request *rq) 144 { 145 if (rq->q->mq_ops) { 146 INIT_WORK(&rq->mq_flush_work, mq_flush_run); 147 kblockd_schedule_work(rq->q, &rq->mq_flush_work); 148 return false; 149 } else { 150 list_add_tail(&rq->queuelist, &rq->q->queue_head); 151 return true; 152 } 153 } 154 155 /** 156 * blk_flush_complete_seq - complete flush sequence 157 * @rq: FLUSH/FUA request being sequenced 158 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 159 * @error: whether an error occurred 160 * 161 * @rq just completed @seq part of its flush sequence, record the 162 * completion and trigger the next step. 163 * 164 * CONTEXT: 165 * spin_lock_irq(q->queue_lock or q->mq_flush_lock) 166 * 167 * RETURNS: 168 * %true if requests were added to the dispatch queue, %false otherwise. 169 */ 170 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq, 171 int error) 172 { 173 struct request_queue *q = rq->q; 174 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 175 bool queued = false, kicked; 176 177 BUG_ON(rq->flush.seq & seq); 178 rq->flush.seq |= seq; 179 180 if (likely(!error)) 181 seq = blk_flush_cur_seq(rq); 182 else 183 seq = REQ_FSEQ_DONE; 184 185 switch (seq) { 186 case REQ_FSEQ_PREFLUSH: 187 case REQ_FSEQ_POSTFLUSH: 188 /* queue for flush */ 189 if (list_empty(pending)) 190 q->flush_pending_since = jiffies; 191 list_move_tail(&rq->flush.list, pending); 192 break; 193 194 case REQ_FSEQ_DATA: 195 list_move_tail(&rq->flush.list, &q->flush_data_in_flight); 196 queued = blk_flush_queue_rq(rq); 197 break; 198 199 case REQ_FSEQ_DONE: 200 /* 201 * @rq was previously adjusted by blk_flush_issue() for 202 * flush sequencing and may already have gone through the 203 * flush data request completion path. Restore @rq for 204 * normal completion and end it. 205 */ 206 BUG_ON(!list_empty(&rq->queuelist)); 207 list_del_init(&rq->flush.list); 208 blk_flush_restore_request(rq); 209 if (q->mq_ops) 210 blk_mq_end_io(rq, error); 211 else 212 __blk_end_request_all(rq, error); 213 break; 214 215 default: 216 BUG(); 217 } 218 219 kicked = blk_kick_flush(q); 220 return kicked | queued; 221 } 222 223 static void flush_end_io(struct request *flush_rq, int error) 224 { 225 struct request_queue *q = flush_rq->q; 226 struct list_head *running; 227 bool queued = false; 228 struct request *rq, *n; 229 unsigned long flags = 0; 230 231 if (q->mq_ops) 232 spin_lock_irqsave(&q->mq_flush_lock, flags); 233 234 running = &q->flush_queue[q->flush_running_idx]; 235 BUG_ON(q->flush_pending_idx == q->flush_running_idx); 236 237 /* account completion of the flush request */ 238 q->flush_running_idx ^= 1; 239 240 if (!q->mq_ops) 241 elv_completed_request(q, flush_rq); 242 243 /* and push the waiting requests to the next stage */ 244 list_for_each_entry_safe(rq, n, running, flush.list) { 245 unsigned int seq = blk_flush_cur_seq(rq); 246 247 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 248 queued |= blk_flush_complete_seq(rq, seq, error); 249 } 250 251 /* 252 * Kick the queue to avoid stall for two cases: 253 * 1. Moving a request silently to empty queue_head may stall the 254 * queue. 255 * 2. When flush request is running in non-queueable queue, the 256 * queue is hold. Restart the queue after flush request is finished 257 * to avoid stall. 258 * This function is called from request completion path and calling 259 * directly into request_fn may confuse the driver. Always use 260 * kblockd. 261 */ 262 if (queued || q->flush_queue_delayed) { 263 WARN_ON(q->mq_ops); 264 blk_run_queue_async(q); 265 } 266 q->flush_queue_delayed = 0; 267 if (q->mq_ops) 268 spin_unlock_irqrestore(&q->mq_flush_lock, flags); 269 } 270 271 /** 272 * blk_kick_flush - consider issuing flush request 273 * @q: request_queue being kicked 274 * 275 * Flush related states of @q have changed, consider issuing flush request. 276 * Please read the comment at the top of this file for more info. 277 * 278 * CONTEXT: 279 * spin_lock_irq(q->queue_lock or q->mq_flush_lock) 280 * 281 * RETURNS: 282 * %true if flush was issued, %false otherwise. 283 */ 284 static bool blk_kick_flush(struct request_queue *q) 285 { 286 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 287 struct request *first_rq = 288 list_first_entry(pending, struct request, flush.list); 289 290 /* C1 described at the top of this file */ 291 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending)) 292 return false; 293 294 /* C2 and C3 */ 295 if (!list_empty(&q->flush_data_in_flight) && 296 time_before(jiffies, 297 q->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 298 return false; 299 300 /* 301 * Issue flush and toggle pending_idx. This makes pending_idx 302 * different from running_idx, which means flush is in flight. 303 */ 304 q->flush_pending_idx ^= 1; 305 306 if (q->mq_ops) { 307 struct blk_mq_ctx *ctx = first_rq->mq_ctx; 308 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu); 309 310 blk_mq_rq_init(hctx, q->flush_rq); 311 q->flush_rq->mq_ctx = ctx; 312 313 /* 314 * Reuse the tag value from the fist waiting request, 315 * with blk-mq the tag is generated during request 316 * allocation and drivers can rely on it being inside 317 * the range they asked for. 318 */ 319 q->flush_rq->tag = first_rq->tag; 320 } else { 321 blk_rq_init(q, q->flush_rq); 322 } 323 324 q->flush_rq->cmd_type = REQ_TYPE_FS; 325 q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ; 326 q->flush_rq->rq_disk = first_rq->rq_disk; 327 q->flush_rq->end_io = flush_end_io; 328 329 return blk_flush_queue_rq(q->flush_rq); 330 } 331 332 static void flush_data_end_io(struct request *rq, int error) 333 { 334 struct request_queue *q = rq->q; 335 336 /* 337 * After populating an empty queue, kick it to avoid stall. Read 338 * the comment in flush_end_io(). 339 */ 340 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error)) 341 blk_run_queue_async(q); 342 } 343 344 static void mq_flush_data_end_io(struct request *rq, int error) 345 { 346 struct request_queue *q = rq->q; 347 struct blk_mq_hw_ctx *hctx; 348 struct blk_mq_ctx *ctx; 349 unsigned long flags; 350 351 ctx = rq->mq_ctx; 352 hctx = q->mq_ops->map_queue(q, ctx->cpu); 353 354 /* 355 * After populating an empty queue, kick it to avoid stall. Read 356 * the comment in flush_end_io(). 357 */ 358 spin_lock_irqsave(&q->mq_flush_lock, flags); 359 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error)) 360 blk_mq_run_hw_queue(hctx, true); 361 spin_unlock_irqrestore(&q->mq_flush_lock, flags); 362 } 363 364 /** 365 * blk_insert_flush - insert a new FLUSH/FUA request 366 * @rq: request to insert 367 * 368 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 369 * or __blk_mq_run_hw_queue() to dispatch request. 370 * @rq is being submitted. Analyze what needs to be done and put it on the 371 * right queue. 372 * 373 * CONTEXT: 374 * spin_lock_irq(q->queue_lock) in !mq case 375 */ 376 void blk_insert_flush(struct request *rq) 377 { 378 struct request_queue *q = rq->q; 379 unsigned int fflags = q->flush_flags; /* may change, cache */ 380 unsigned int policy = blk_flush_policy(fflags, rq); 381 382 /* 383 * @policy now records what operations need to be done. Adjust 384 * REQ_FLUSH and FUA for the driver. 385 */ 386 rq->cmd_flags &= ~REQ_FLUSH; 387 if (!(fflags & REQ_FUA)) 388 rq->cmd_flags &= ~REQ_FUA; 389 390 /* 391 * An empty flush handed down from a stacking driver may 392 * translate into nothing if the underlying device does not 393 * advertise a write-back cache. In this case, simply 394 * complete the request. 395 */ 396 if (!policy) { 397 if (q->mq_ops) 398 blk_mq_end_io(rq, 0); 399 else 400 __blk_end_bidi_request(rq, 0, 0, 0); 401 return; 402 } 403 404 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 405 406 /* 407 * If there's data but flush is not necessary, the request can be 408 * processed directly without going through flush machinery. Queue 409 * for normal execution. 410 */ 411 if ((policy & REQ_FSEQ_DATA) && 412 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 413 if (q->mq_ops) { 414 blk_mq_run_request(rq, false, true); 415 } else 416 list_add_tail(&rq->queuelist, &q->queue_head); 417 return; 418 } 419 420 /* 421 * @rq should go through flush machinery. Mark it part of flush 422 * sequence and submit for further processing. 423 */ 424 memset(&rq->flush, 0, sizeof(rq->flush)); 425 INIT_LIST_HEAD(&rq->flush.list); 426 rq->cmd_flags |= REQ_FLUSH_SEQ; 427 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 428 if (q->mq_ops) { 429 rq->end_io = mq_flush_data_end_io; 430 431 spin_lock_irq(&q->mq_flush_lock); 432 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0); 433 spin_unlock_irq(&q->mq_flush_lock); 434 return; 435 } 436 rq->end_io = flush_data_end_io; 437 438 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0); 439 } 440 441 /** 442 * blk_abort_flushes - @q is being aborted, abort flush requests 443 * @q: request_queue being aborted 444 * 445 * To be called from elv_abort_queue(). @q is being aborted. Prepare all 446 * FLUSH/FUA requests for abortion. 447 * 448 * CONTEXT: 449 * spin_lock_irq(q->queue_lock) 450 */ 451 void blk_abort_flushes(struct request_queue *q) 452 { 453 struct request *rq, *n; 454 int i; 455 456 /* 457 * Requests in flight for data are already owned by the dispatch 458 * queue or the device driver. Just restore for normal completion. 459 */ 460 list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) { 461 list_del_init(&rq->flush.list); 462 blk_flush_restore_request(rq); 463 } 464 465 /* 466 * We need to give away requests on flush queues. Restore for 467 * normal completion and put them on the dispatch queue. 468 */ 469 for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) { 470 list_for_each_entry_safe(rq, n, &q->flush_queue[i], 471 flush.list) { 472 list_del_init(&rq->flush.list); 473 blk_flush_restore_request(rq); 474 list_add_tail(&rq->queuelist, &q->queue_head); 475 } 476 } 477 } 478 479 /** 480 * blkdev_issue_flush - queue a flush 481 * @bdev: blockdev to issue flush for 482 * @gfp_mask: memory allocation flags (for bio_alloc) 483 * @error_sector: error sector 484 * 485 * Description: 486 * Issue a flush for the block device in question. Caller can supply 487 * room for storing the error offset in case of a flush error, if they 488 * wish to. If WAIT flag is not passed then caller may check only what 489 * request was pushed in some internal queue for later handling. 490 */ 491 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 492 sector_t *error_sector) 493 { 494 struct request_queue *q; 495 struct bio *bio; 496 int ret = 0; 497 498 if (bdev->bd_disk == NULL) 499 return -ENXIO; 500 501 q = bdev_get_queue(bdev); 502 if (!q) 503 return -ENXIO; 504 505 /* 506 * some block devices may not have their queue correctly set up here 507 * (e.g. loop device without a backing file) and so issuing a flush 508 * here will panic. Ensure there is a request function before issuing 509 * the flush. 510 */ 511 if (!q->make_request_fn) 512 return -ENXIO; 513 514 bio = bio_alloc(gfp_mask, 0); 515 bio->bi_bdev = bdev; 516 517 ret = submit_bio_wait(WRITE_FLUSH, bio); 518 519 /* 520 * The driver must store the error location in ->bi_sector, if 521 * it supports it. For non-stacked drivers, this should be 522 * copied from blk_rq_pos(rq). 523 */ 524 if (error_sector) 525 *error_sector = bio->bi_iter.bi_sector; 526 527 bio_put(bio); 528 return ret; 529 } 530 EXPORT_SYMBOL(blkdev_issue_flush); 531 532 void blk_mq_init_flush(struct request_queue *q) 533 { 534 spin_lock_init(&q->mq_flush_lock); 535 } 536