xref: /openbmc/linux/block/blk-flush.c (revision f6723b56)
1 /*
2  * Functions to sequence FLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_FLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no
21  * data or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_FLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27  * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * q->flush_queue[q->flush_pending_idx].  Once certain criteria are met, a
32  * flush is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of FLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without FLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each FLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 
77 /* FLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static bool blk_kick_flush(struct request_queue *q);
95 
96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
97 {
98 	unsigned int policy = 0;
99 
100 	if (blk_rq_sectors(rq))
101 		policy |= REQ_FSEQ_DATA;
102 
103 	if (fflags & REQ_FLUSH) {
104 		if (rq->cmd_flags & REQ_FLUSH)
105 			policy |= REQ_FSEQ_PREFLUSH;
106 		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
107 			policy |= REQ_FSEQ_POSTFLUSH;
108 	}
109 	return policy;
110 }
111 
112 static unsigned int blk_flush_cur_seq(struct request *rq)
113 {
114 	return 1 << ffz(rq->flush.seq);
115 }
116 
117 static void blk_flush_restore_request(struct request *rq)
118 {
119 	/*
120 	 * After flush data completion, @rq->bio is %NULL but we need to
121 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
122 	 * original @rq->bio.  Restore it.
123 	 */
124 	rq->bio = rq->biotail;
125 
126 	/* make @rq a normal request */
127 	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
128 	rq->end_io = rq->flush.saved_end_io;
129 
130 	blk_clear_rq_complete(rq);
131 }
132 
133 static void mq_flush_run(struct work_struct *work)
134 {
135 	struct request *rq;
136 
137 	rq = container_of(work, struct request, mq_flush_work);
138 
139 	memset(&rq->csd, 0, sizeof(rq->csd));
140 	blk_mq_run_request(rq, true, false);
141 }
142 
143 static bool blk_flush_queue_rq(struct request *rq)
144 {
145 	if (rq->q->mq_ops) {
146 		INIT_WORK(&rq->mq_flush_work, mq_flush_run);
147 		kblockd_schedule_work(rq->q, &rq->mq_flush_work);
148 		return false;
149 	} else {
150 		list_add_tail(&rq->queuelist, &rq->q->queue_head);
151 		return true;
152 	}
153 }
154 
155 /**
156  * blk_flush_complete_seq - complete flush sequence
157  * @rq: FLUSH/FUA request being sequenced
158  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
159  * @error: whether an error occurred
160  *
161  * @rq just completed @seq part of its flush sequence, record the
162  * completion and trigger the next step.
163  *
164  * CONTEXT:
165  * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
166  *
167  * RETURNS:
168  * %true if requests were added to the dispatch queue, %false otherwise.
169  */
170 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
171 				   int error)
172 {
173 	struct request_queue *q = rq->q;
174 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
175 	bool queued = false, kicked;
176 
177 	BUG_ON(rq->flush.seq & seq);
178 	rq->flush.seq |= seq;
179 
180 	if (likely(!error))
181 		seq = blk_flush_cur_seq(rq);
182 	else
183 		seq = REQ_FSEQ_DONE;
184 
185 	switch (seq) {
186 	case REQ_FSEQ_PREFLUSH:
187 	case REQ_FSEQ_POSTFLUSH:
188 		/* queue for flush */
189 		if (list_empty(pending))
190 			q->flush_pending_since = jiffies;
191 		list_move_tail(&rq->flush.list, pending);
192 		break;
193 
194 	case REQ_FSEQ_DATA:
195 		list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
196 		queued = blk_flush_queue_rq(rq);
197 		break;
198 
199 	case REQ_FSEQ_DONE:
200 		/*
201 		 * @rq was previously adjusted by blk_flush_issue() for
202 		 * flush sequencing and may already have gone through the
203 		 * flush data request completion path.  Restore @rq for
204 		 * normal completion and end it.
205 		 */
206 		BUG_ON(!list_empty(&rq->queuelist));
207 		list_del_init(&rq->flush.list);
208 		blk_flush_restore_request(rq);
209 		if (q->mq_ops)
210 			blk_mq_end_io(rq, error);
211 		else
212 			__blk_end_request_all(rq, error);
213 		break;
214 
215 	default:
216 		BUG();
217 	}
218 
219 	kicked = blk_kick_flush(q);
220 	return kicked | queued;
221 }
222 
223 static void flush_end_io(struct request *flush_rq, int error)
224 {
225 	struct request_queue *q = flush_rq->q;
226 	struct list_head *running;
227 	bool queued = false;
228 	struct request *rq, *n;
229 	unsigned long flags = 0;
230 
231 	if (q->mq_ops)
232 		spin_lock_irqsave(&q->mq_flush_lock, flags);
233 
234 	running = &q->flush_queue[q->flush_running_idx];
235 	BUG_ON(q->flush_pending_idx == q->flush_running_idx);
236 
237 	/* account completion of the flush request */
238 	q->flush_running_idx ^= 1;
239 
240 	if (!q->mq_ops)
241 		elv_completed_request(q, flush_rq);
242 
243 	/* and push the waiting requests to the next stage */
244 	list_for_each_entry_safe(rq, n, running, flush.list) {
245 		unsigned int seq = blk_flush_cur_seq(rq);
246 
247 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
248 		queued |= blk_flush_complete_seq(rq, seq, error);
249 	}
250 
251 	/*
252 	 * Kick the queue to avoid stall for two cases:
253 	 * 1. Moving a request silently to empty queue_head may stall the
254 	 * queue.
255 	 * 2. When flush request is running in non-queueable queue, the
256 	 * queue is hold. Restart the queue after flush request is finished
257 	 * to avoid stall.
258 	 * This function is called from request completion path and calling
259 	 * directly into request_fn may confuse the driver.  Always use
260 	 * kblockd.
261 	 */
262 	if (queued || q->flush_queue_delayed) {
263 		WARN_ON(q->mq_ops);
264 		blk_run_queue_async(q);
265 	}
266 	q->flush_queue_delayed = 0;
267 	if (q->mq_ops)
268 		spin_unlock_irqrestore(&q->mq_flush_lock, flags);
269 }
270 
271 /**
272  * blk_kick_flush - consider issuing flush request
273  * @q: request_queue being kicked
274  *
275  * Flush related states of @q have changed, consider issuing flush request.
276  * Please read the comment at the top of this file for more info.
277  *
278  * CONTEXT:
279  * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
280  *
281  * RETURNS:
282  * %true if flush was issued, %false otherwise.
283  */
284 static bool blk_kick_flush(struct request_queue *q)
285 {
286 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
287 	struct request *first_rq =
288 		list_first_entry(pending, struct request, flush.list);
289 
290 	/* C1 described at the top of this file */
291 	if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
292 		return false;
293 
294 	/* C2 and C3 */
295 	if (!list_empty(&q->flush_data_in_flight) &&
296 	    time_before(jiffies,
297 			q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
298 		return false;
299 
300 	/*
301 	 * Issue flush and toggle pending_idx.  This makes pending_idx
302 	 * different from running_idx, which means flush is in flight.
303 	 */
304 	q->flush_pending_idx ^= 1;
305 
306 	if (q->mq_ops) {
307 		struct blk_mq_ctx *ctx = first_rq->mq_ctx;
308 		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
309 
310 		blk_mq_rq_init(hctx, q->flush_rq);
311 		q->flush_rq->mq_ctx = ctx;
312 
313 		/*
314 		 * Reuse the tag value from the fist waiting request,
315 		 * with blk-mq the tag is generated during request
316 		 * allocation and drivers can rely on it being inside
317 		 * the range they asked for.
318 		 */
319 		q->flush_rq->tag = first_rq->tag;
320 	} else {
321 		blk_rq_init(q, q->flush_rq);
322 	}
323 
324 	q->flush_rq->cmd_type = REQ_TYPE_FS;
325 	q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
326 	q->flush_rq->rq_disk = first_rq->rq_disk;
327 	q->flush_rq->end_io = flush_end_io;
328 
329 	return blk_flush_queue_rq(q->flush_rq);
330 }
331 
332 static void flush_data_end_io(struct request *rq, int error)
333 {
334 	struct request_queue *q = rq->q;
335 
336 	/*
337 	 * After populating an empty queue, kick it to avoid stall.  Read
338 	 * the comment in flush_end_io().
339 	 */
340 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
341 		blk_run_queue_async(q);
342 }
343 
344 static void mq_flush_data_end_io(struct request *rq, int error)
345 {
346 	struct request_queue *q = rq->q;
347 	struct blk_mq_hw_ctx *hctx;
348 	struct blk_mq_ctx *ctx;
349 	unsigned long flags;
350 
351 	ctx = rq->mq_ctx;
352 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
353 
354 	/*
355 	 * After populating an empty queue, kick it to avoid stall.  Read
356 	 * the comment in flush_end_io().
357 	 */
358 	spin_lock_irqsave(&q->mq_flush_lock, flags);
359 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
360 		blk_mq_run_hw_queue(hctx, true);
361 	spin_unlock_irqrestore(&q->mq_flush_lock, flags);
362 }
363 
364 /**
365  * blk_insert_flush - insert a new FLUSH/FUA request
366  * @rq: request to insert
367  *
368  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
369  * or __blk_mq_run_hw_queue() to dispatch request.
370  * @rq is being submitted.  Analyze what needs to be done and put it on the
371  * right queue.
372  *
373  * CONTEXT:
374  * spin_lock_irq(q->queue_lock) in !mq case
375  */
376 void blk_insert_flush(struct request *rq)
377 {
378 	struct request_queue *q = rq->q;
379 	unsigned int fflags = q->flush_flags;	/* may change, cache */
380 	unsigned int policy = blk_flush_policy(fflags, rq);
381 
382 	/*
383 	 * @policy now records what operations need to be done.  Adjust
384 	 * REQ_FLUSH and FUA for the driver.
385 	 */
386 	rq->cmd_flags &= ~REQ_FLUSH;
387 	if (!(fflags & REQ_FUA))
388 		rq->cmd_flags &= ~REQ_FUA;
389 
390 	/*
391 	 * An empty flush handed down from a stacking driver may
392 	 * translate into nothing if the underlying device does not
393 	 * advertise a write-back cache.  In this case, simply
394 	 * complete the request.
395 	 */
396 	if (!policy) {
397 		if (q->mq_ops)
398 			blk_mq_end_io(rq, 0);
399 		else
400 			__blk_end_bidi_request(rq, 0, 0, 0);
401 		return;
402 	}
403 
404 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
405 
406 	/*
407 	 * If there's data but flush is not necessary, the request can be
408 	 * processed directly without going through flush machinery.  Queue
409 	 * for normal execution.
410 	 */
411 	if ((policy & REQ_FSEQ_DATA) &&
412 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
413 		if (q->mq_ops) {
414 			blk_mq_run_request(rq, false, true);
415 		} else
416 			list_add_tail(&rq->queuelist, &q->queue_head);
417 		return;
418 	}
419 
420 	/*
421 	 * @rq should go through flush machinery.  Mark it part of flush
422 	 * sequence and submit for further processing.
423 	 */
424 	memset(&rq->flush, 0, sizeof(rq->flush));
425 	INIT_LIST_HEAD(&rq->flush.list);
426 	rq->cmd_flags |= REQ_FLUSH_SEQ;
427 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
428 	if (q->mq_ops) {
429 		rq->end_io = mq_flush_data_end_io;
430 
431 		spin_lock_irq(&q->mq_flush_lock);
432 		blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
433 		spin_unlock_irq(&q->mq_flush_lock);
434 		return;
435 	}
436 	rq->end_io = flush_data_end_io;
437 
438 	blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
439 }
440 
441 /**
442  * blk_abort_flushes - @q is being aborted, abort flush requests
443  * @q: request_queue being aborted
444  *
445  * To be called from elv_abort_queue().  @q is being aborted.  Prepare all
446  * FLUSH/FUA requests for abortion.
447  *
448  * CONTEXT:
449  * spin_lock_irq(q->queue_lock)
450  */
451 void blk_abort_flushes(struct request_queue *q)
452 {
453 	struct request *rq, *n;
454 	int i;
455 
456 	/*
457 	 * Requests in flight for data are already owned by the dispatch
458 	 * queue or the device driver.  Just restore for normal completion.
459 	 */
460 	list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
461 		list_del_init(&rq->flush.list);
462 		blk_flush_restore_request(rq);
463 	}
464 
465 	/*
466 	 * We need to give away requests on flush queues.  Restore for
467 	 * normal completion and put them on the dispatch queue.
468 	 */
469 	for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
470 		list_for_each_entry_safe(rq, n, &q->flush_queue[i],
471 					 flush.list) {
472 			list_del_init(&rq->flush.list);
473 			blk_flush_restore_request(rq);
474 			list_add_tail(&rq->queuelist, &q->queue_head);
475 		}
476 	}
477 }
478 
479 /**
480  * blkdev_issue_flush - queue a flush
481  * @bdev:	blockdev to issue flush for
482  * @gfp_mask:	memory allocation flags (for bio_alloc)
483  * @error_sector:	error sector
484  *
485  * Description:
486  *    Issue a flush for the block device in question. Caller can supply
487  *    room for storing the error offset in case of a flush error, if they
488  *    wish to. If WAIT flag is not passed then caller may check only what
489  *    request was pushed in some internal queue for later handling.
490  */
491 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
492 		sector_t *error_sector)
493 {
494 	struct request_queue *q;
495 	struct bio *bio;
496 	int ret = 0;
497 
498 	if (bdev->bd_disk == NULL)
499 		return -ENXIO;
500 
501 	q = bdev_get_queue(bdev);
502 	if (!q)
503 		return -ENXIO;
504 
505 	/*
506 	 * some block devices may not have their queue correctly set up here
507 	 * (e.g. loop device without a backing file) and so issuing a flush
508 	 * here will panic. Ensure there is a request function before issuing
509 	 * the flush.
510 	 */
511 	if (!q->make_request_fn)
512 		return -ENXIO;
513 
514 	bio = bio_alloc(gfp_mask, 0);
515 	bio->bi_bdev = bdev;
516 
517 	ret = submit_bio_wait(WRITE_FLUSH, bio);
518 
519 	/*
520 	 * The driver must store the error location in ->bi_sector, if
521 	 * it supports it. For non-stacked drivers, this should be
522 	 * copied from blk_rq_pos(rq).
523 	 */
524 	if (error_sector)
525 		*error_sector = bio->bi_iter.bi_sector;
526 
527 	bio_put(bio);
528 	return ret;
529 }
530 EXPORT_SYMBOL(blkdev_issue_flush);
531 
532 void blk_mq_init_flush(struct request_queue *q)
533 {
534 	spin_lock_init(&q->mq_flush_lock);
535 }
536