1 /* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 32 * flush is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 78 /* FLUSH/FUA sequences */ 79 enum { 80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 83 REQ_FSEQ_DONE = (1 << 3), 84 85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 86 REQ_FSEQ_POSTFLUSH, 87 88 /* 89 * If flush has been pending longer than the following timeout, 90 * it's issued even if flush_data requests are still in flight. 91 */ 92 FLUSH_PENDING_TIMEOUT = 5 * HZ, 93 }; 94 95 static bool blk_kick_flush(struct request_queue *q, 96 struct blk_flush_queue *fq); 97 98 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq) 99 { 100 unsigned int policy = 0; 101 102 if (blk_rq_sectors(rq)) 103 policy |= REQ_FSEQ_DATA; 104 105 if (fflags & REQ_FLUSH) { 106 if (rq->cmd_flags & REQ_FLUSH) 107 policy |= REQ_FSEQ_PREFLUSH; 108 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA)) 109 policy |= REQ_FSEQ_POSTFLUSH; 110 } 111 return policy; 112 } 113 114 static unsigned int blk_flush_cur_seq(struct request *rq) 115 { 116 return 1 << ffz(rq->flush.seq); 117 } 118 119 static void blk_flush_restore_request(struct request *rq) 120 { 121 /* 122 * After flush data completion, @rq->bio is %NULL but we need to 123 * complete the bio again. @rq->biotail is guaranteed to equal the 124 * original @rq->bio. Restore it. 125 */ 126 rq->bio = rq->biotail; 127 128 /* make @rq a normal request */ 129 rq->cmd_flags &= ~REQ_FLUSH_SEQ; 130 rq->end_io = rq->flush.saved_end_io; 131 } 132 133 static bool blk_flush_queue_rq(struct request *rq, bool add_front) 134 { 135 if (rq->q->mq_ops) { 136 struct request_queue *q = rq->q; 137 138 blk_mq_add_to_requeue_list(rq, add_front); 139 blk_mq_kick_requeue_list(q); 140 return false; 141 } else { 142 if (add_front) 143 list_add(&rq->queuelist, &rq->q->queue_head); 144 else 145 list_add_tail(&rq->queuelist, &rq->q->queue_head); 146 return true; 147 } 148 } 149 150 /** 151 * blk_flush_complete_seq - complete flush sequence 152 * @rq: FLUSH/FUA request being sequenced 153 * @fq: flush queue 154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 155 * @error: whether an error occurred 156 * 157 * @rq just completed @seq part of its flush sequence, record the 158 * completion and trigger the next step. 159 * 160 * CONTEXT: 161 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 162 * 163 * RETURNS: 164 * %true if requests were added to the dispatch queue, %false otherwise. 165 */ 166 static bool blk_flush_complete_seq(struct request *rq, 167 struct blk_flush_queue *fq, 168 unsigned int seq, int error) 169 { 170 struct request_queue *q = rq->q; 171 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 172 bool queued = false, kicked; 173 174 BUG_ON(rq->flush.seq & seq); 175 rq->flush.seq |= seq; 176 177 if (likely(!error)) 178 seq = blk_flush_cur_seq(rq); 179 else 180 seq = REQ_FSEQ_DONE; 181 182 switch (seq) { 183 case REQ_FSEQ_PREFLUSH: 184 case REQ_FSEQ_POSTFLUSH: 185 /* queue for flush */ 186 if (list_empty(pending)) 187 fq->flush_pending_since = jiffies; 188 list_move_tail(&rq->flush.list, pending); 189 break; 190 191 case REQ_FSEQ_DATA: 192 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 193 queued = blk_flush_queue_rq(rq, true); 194 break; 195 196 case REQ_FSEQ_DONE: 197 /* 198 * @rq was previously adjusted by blk_flush_issue() for 199 * flush sequencing and may already have gone through the 200 * flush data request completion path. Restore @rq for 201 * normal completion and end it. 202 */ 203 BUG_ON(!list_empty(&rq->queuelist)); 204 list_del_init(&rq->flush.list); 205 blk_flush_restore_request(rq); 206 if (q->mq_ops) 207 blk_mq_end_request(rq, error); 208 else 209 __blk_end_request_all(rq, error); 210 break; 211 212 default: 213 BUG(); 214 } 215 216 kicked = blk_kick_flush(q, fq); 217 return kicked | queued; 218 } 219 220 static void flush_end_io(struct request *flush_rq, int error) 221 { 222 struct request_queue *q = flush_rq->q; 223 struct list_head *running; 224 bool queued = false; 225 struct request *rq, *n; 226 unsigned long flags = 0; 227 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 228 229 if (q->mq_ops) { 230 struct blk_mq_hw_ctx *hctx; 231 232 /* release the tag's ownership to the req cloned from */ 233 spin_lock_irqsave(&fq->mq_flush_lock, flags); 234 hctx = q->mq_ops->map_queue(q, flush_rq->mq_ctx->cpu); 235 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 236 flush_rq->tag = -1; 237 } 238 239 running = &fq->flush_queue[fq->flush_running_idx]; 240 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 241 242 /* account completion of the flush request */ 243 fq->flush_running_idx ^= 1; 244 245 if (!q->mq_ops) 246 elv_completed_request(q, flush_rq); 247 248 /* and push the waiting requests to the next stage */ 249 list_for_each_entry_safe(rq, n, running, flush.list) { 250 unsigned int seq = blk_flush_cur_seq(rq); 251 252 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 253 queued |= blk_flush_complete_seq(rq, fq, seq, error); 254 } 255 256 /* 257 * Kick the queue to avoid stall for two cases: 258 * 1. Moving a request silently to empty queue_head may stall the 259 * queue. 260 * 2. When flush request is running in non-queueable queue, the 261 * queue is hold. Restart the queue after flush request is finished 262 * to avoid stall. 263 * This function is called from request completion path and calling 264 * directly into request_fn may confuse the driver. Always use 265 * kblockd. 266 */ 267 if (queued || fq->flush_queue_delayed) { 268 WARN_ON(q->mq_ops); 269 blk_run_queue_async(q); 270 } 271 fq->flush_queue_delayed = 0; 272 if (q->mq_ops) 273 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 274 } 275 276 /** 277 * blk_kick_flush - consider issuing flush request 278 * @q: request_queue being kicked 279 * @fq: flush queue 280 * 281 * Flush related states of @q have changed, consider issuing flush request. 282 * Please read the comment at the top of this file for more info. 283 * 284 * CONTEXT: 285 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 286 * 287 * RETURNS: 288 * %true if flush was issued, %false otherwise. 289 */ 290 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq) 291 { 292 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 293 struct request *first_rq = 294 list_first_entry(pending, struct request, flush.list); 295 struct request *flush_rq = fq->flush_rq; 296 297 /* C1 described at the top of this file */ 298 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 299 return false; 300 301 /* C2 and C3 */ 302 if (!list_empty(&fq->flush_data_in_flight) && 303 time_before(jiffies, 304 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 305 return false; 306 307 /* 308 * Issue flush and toggle pending_idx. This makes pending_idx 309 * different from running_idx, which means flush is in flight. 310 */ 311 fq->flush_pending_idx ^= 1; 312 313 blk_rq_init(q, flush_rq); 314 315 /* 316 * Borrow tag from the first request since they can't 317 * be in flight at the same time. And acquire the tag's 318 * ownership for flush req. 319 */ 320 if (q->mq_ops) { 321 struct blk_mq_hw_ctx *hctx; 322 323 flush_rq->mq_ctx = first_rq->mq_ctx; 324 flush_rq->tag = first_rq->tag; 325 fq->orig_rq = first_rq; 326 327 hctx = q->mq_ops->map_queue(q, first_rq->mq_ctx->cpu); 328 blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq); 329 } 330 331 flush_rq->cmd_type = REQ_TYPE_FS; 332 flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ; 333 flush_rq->rq_disk = first_rq->rq_disk; 334 flush_rq->end_io = flush_end_io; 335 336 return blk_flush_queue_rq(flush_rq, false); 337 } 338 339 static void flush_data_end_io(struct request *rq, int error) 340 { 341 struct request_queue *q = rq->q; 342 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 343 344 /* 345 * After populating an empty queue, kick it to avoid stall. Read 346 * the comment in flush_end_io(). 347 */ 348 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error)) 349 blk_run_queue_async(q); 350 } 351 352 static void mq_flush_data_end_io(struct request *rq, int error) 353 { 354 struct request_queue *q = rq->q; 355 struct blk_mq_hw_ctx *hctx; 356 struct blk_mq_ctx *ctx = rq->mq_ctx; 357 unsigned long flags; 358 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 359 360 hctx = q->mq_ops->map_queue(q, ctx->cpu); 361 362 /* 363 * After populating an empty queue, kick it to avoid stall. Read 364 * the comment in flush_end_io(). 365 */ 366 spin_lock_irqsave(&fq->mq_flush_lock, flags); 367 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error)) 368 blk_mq_run_hw_queue(hctx, true); 369 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 370 } 371 372 /** 373 * blk_insert_flush - insert a new FLUSH/FUA request 374 * @rq: request to insert 375 * 376 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 377 * or __blk_mq_run_hw_queue() to dispatch request. 378 * @rq is being submitted. Analyze what needs to be done and put it on the 379 * right queue. 380 * 381 * CONTEXT: 382 * spin_lock_irq(q->queue_lock) in !mq case 383 */ 384 void blk_insert_flush(struct request *rq) 385 { 386 struct request_queue *q = rq->q; 387 unsigned int fflags = q->flush_flags; /* may change, cache */ 388 unsigned int policy = blk_flush_policy(fflags, rq); 389 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 390 391 /* 392 * @policy now records what operations need to be done. Adjust 393 * REQ_FLUSH and FUA for the driver. 394 */ 395 rq->cmd_flags &= ~REQ_FLUSH; 396 if (!(fflags & REQ_FUA)) 397 rq->cmd_flags &= ~REQ_FUA; 398 399 /* 400 * An empty flush handed down from a stacking driver may 401 * translate into nothing if the underlying device does not 402 * advertise a write-back cache. In this case, simply 403 * complete the request. 404 */ 405 if (!policy) { 406 if (q->mq_ops) 407 blk_mq_end_request(rq, 0); 408 else 409 __blk_end_bidi_request(rq, 0, 0, 0); 410 return; 411 } 412 413 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 414 415 /* 416 * If there's data but flush is not necessary, the request can be 417 * processed directly without going through flush machinery. Queue 418 * for normal execution. 419 */ 420 if ((policy & REQ_FSEQ_DATA) && 421 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 422 if (q->mq_ops) { 423 blk_mq_insert_request(rq, false, false, true); 424 } else 425 list_add_tail(&rq->queuelist, &q->queue_head); 426 return; 427 } 428 429 /* 430 * @rq should go through flush machinery. Mark it part of flush 431 * sequence and submit for further processing. 432 */ 433 memset(&rq->flush, 0, sizeof(rq->flush)); 434 INIT_LIST_HEAD(&rq->flush.list); 435 rq->cmd_flags |= REQ_FLUSH_SEQ; 436 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 437 if (q->mq_ops) { 438 rq->end_io = mq_flush_data_end_io; 439 440 spin_lock_irq(&fq->mq_flush_lock); 441 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 442 spin_unlock_irq(&fq->mq_flush_lock); 443 return; 444 } 445 rq->end_io = flush_data_end_io; 446 447 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 448 } 449 450 /** 451 * blkdev_issue_flush - queue a flush 452 * @bdev: blockdev to issue flush for 453 * @gfp_mask: memory allocation flags (for bio_alloc) 454 * @error_sector: error sector 455 * 456 * Description: 457 * Issue a flush for the block device in question. Caller can supply 458 * room for storing the error offset in case of a flush error, if they 459 * wish to. If WAIT flag is not passed then caller may check only what 460 * request was pushed in some internal queue for later handling. 461 */ 462 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 463 sector_t *error_sector) 464 { 465 struct request_queue *q; 466 struct bio *bio; 467 int ret = 0; 468 469 if (bdev->bd_disk == NULL) 470 return -ENXIO; 471 472 q = bdev_get_queue(bdev); 473 if (!q) 474 return -ENXIO; 475 476 /* 477 * some block devices may not have their queue correctly set up here 478 * (e.g. loop device without a backing file) and so issuing a flush 479 * here will panic. Ensure there is a request function before issuing 480 * the flush. 481 */ 482 if (!q->make_request_fn) 483 return -ENXIO; 484 485 bio = bio_alloc(gfp_mask, 0); 486 bio->bi_bdev = bdev; 487 488 ret = submit_bio_wait(WRITE_FLUSH, bio); 489 490 /* 491 * The driver must store the error location in ->bi_sector, if 492 * it supports it. For non-stacked drivers, this should be 493 * copied from blk_rq_pos(rq). 494 */ 495 if (error_sector) 496 *error_sector = bio->bi_iter.bi_sector; 497 498 bio_put(bio); 499 return ret; 500 } 501 EXPORT_SYMBOL(blkdev_issue_flush); 502 503 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 504 int node, int cmd_size) 505 { 506 struct blk_flush_queue *fq; 507 int rq_sz = sizeof(struct request); 508 509 fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node); 510 if (!fq) 511 goto fail; 512 513 if (q->mq_ops) { 514 spin_lock_init(&fq->mq_flush_lock); 515 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 516 } 517 518 fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node); 519 if (!fq->flush_rq) 520 goto fail_rq; 521 522 INIT_LIST_HEAD(&fq->flush_queue[0]); 523 INIT_LIST_HEAD(&fq->flush_queue[1]); 524 INIT_LIST_HEAD(&fq->flush_data_in_flight); 525 526 return fq; 527 528 fail_rq: 529 kfree(fq); 530 fail: 531 return NULL; 532 } 533 534 void blk_free_flush_queue(struct blk_flush_queue *fq) 535 { 536 /* bio based request queue hasn't flush queue */ 537 if (!fq) 538 return; 539 540 kfree(fq->flush_rq); 541 kfree(fq); 542 } 543