xref: /openbmc/linux/block/blk-flush.c (revision e657c18a)
1 /*
2  * Functions to sequence PREFLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no data
21  * or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
27  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
32  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without PREFLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each PREFLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78 
79 /* PREFLUSH/FUA sequences */
80 enum {
81 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
82 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
83 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
84 	REQ_FSEQ_DONE		= (1 << 3),
85 
86 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 				  REQ_FSEQ_POSTFLUSH,
88 
89 	/*
90 	 * If flush has been pending longer than the following timeout,
91 	 * it's issued even if flush_data requests are still in flight.
92 	 */
93 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
94 };
95 
96 static void blk_kick_flush(struct request_queue *q,
97 			   struct blk_flush_queue *fq, unsigned int flags);
98 
99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 	unsigned int policy = 0;
102 
103 	if (blk_rq_sectors(rq))
104 		policy |= REQ_FSEQ_DATA;
105 
106 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 		if (rq->cmd_flags & REQ_PREFLUSH)
108 			policy |= REQ_FSEQ_PREFLUSH;
109 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 		    (rq->cmd_flags & REQ_FUA))
111 			policy |= REQ_FSEQ_POSTFLUSH;
112 	}
113 	return policy;
114 }
115 
116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 	return 1 << ffz(rq->flush.seq);
119 }
120 
121 static void blk_flush_restore_request(struct request *rq)
122 {
123 	/*
124 	 * After flush data completion, @rq->bio is %NULL but we need to
125 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
126 	 * original @rq->bio.  Restore it.
127 	 */
128 	rq->bio = rq->biotail;
129 
130 	/* make @rq a normal request */
131 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 	rq->end_io = rq->flush.saved_end_io;
133 }
134 
135 static void blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 	blk_mq_add_to_requeue_list(rq, add_front, true);
138 }
139 
140 /**
141  * blk_flush_complete_seq - complete flush sequence
142  * @rq: PREFLUSH/FUA request being sequenced
143  * @fq: flush queue
144  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
145  * @error: whether an error occurred
146  *
147  * @rq just completed @seq part of its flush sequence, record the
148  * completion and trigger the next step.
149  *
150  * CONTEXT:
151  * spin_lock_irq(fq->mq_flush_lock)
152  *
153  * RETURNS:
154  * %true if requests were added to the dispatch queue, %false otherwise.
155  */
156 static void blk_flush_complete_seq(struct request *rq,
157 				   struct blk_flush_queue *fq,
158 				   unsigned int seq, blk_status_t error)
159 {
160 	struct request_queue *q = rq->q;
161 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
162 	unsigned int cmd_flags;
163 
164 	BUG_ON(rq->flush.seq & seq);
165 	rq->flush.seq |= seq;
166 	cmd_flags = rq->cmd_flags;
167 
168 	if (likely(!error))
169 		seq = blk_flush_cur_seq(rq);
170 	else
171 		seq = REQ_FSEQ_DONE;
172 
173 	switch (seq) {
174 	case REQ_FSEQ_PREFLUSH:
175 	case REQ_FSEQ_POSTFLUSH:
176 		/* queue for flush */
177 		if (list_empty(pending))
178 			fq->flush_pending_since = jiffies;
179 		list_move_tail(&rq->flush.list, pending);
180 		break;
181 
182 	case REQ_FSEQ_DATA:
183 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
184 		blk_flush_queue_rq(rq, true);
185 		break;
186 
187 	case REQ_FSEQ_DONE:
188 		/*
189 		 * @rq was previously adjusted by blk_flush_issue() for
190 		 * flush sequencing and may already have gone through the
191 		 * flush data request completion path.  Restore @rq for
192 		 * normal completion and end it.
193 		 */
194 		BUG_ON(!list_empty(&rq->queuelist));
195 		list_del_init(&rq->flush.list);
196 		blk_flush_restore_request(rq);
197 		blk_mq_end_request(rq, error);
198 		break;
199 
200 	default:
201 		BUG();
202 	}
203 
204 	blk_kick_flush(q, fq, cmd_flags);
205 }
206 
207 static void flush_end_io(struct request *flush_rq, blk_status_t error)
208 {
209 	struct request_queue *q = flush_rq->q;
210 	struct list_head *running;
211 	struct request *rq, *n;
212 	unsigned long flags = 0;
213 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
214 	struct blk_mq_hw_ctx *hctx;
215 
216 	/* release the tag's ownership to the req cloned from */
217 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
218 	hctx = flush_rq->mq_hctx;
219 	if (!q->elevator) {
220 		blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
221 		flush_rq->tag = -1;
222 	} else {
223 		blk_mq_put_driver_tag(flush_rq);
224 		flush_rq->internal_tag = -1;
225 	}
226 
227 	running = &fq->flush_queue[fq->flush_running_idx];
228 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
229 
230 	/* account completion of the flush request */
231 	fq->flush_running_idx ^= 1;
232 
233 	/* and push the waiting requests to the next stage */
234 	list_for_each_entry_safe(rq, n, running, flush.list) {
235 		unsigned int seq = blk_flush_cur_seq(rq);
236 
237 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
238 		blk_flush_complete_seq(rq, fq, seq, error);
239 	}
240 
241 	fq->flush_queue_delayed = 0;
242 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
243 }
244 
245 /**
246  * blk_kick_flush - consider issuing flush request
247  * @q: request_queue being kicked
248  * @fq: flush queue
249  * @flags: cmd_flags of the original request
250  *
251  * Flush related states of @q have changed, consider issuing flush request.
252  * Please read the comment at the top of this file for more info.
253  *
254  * CONTEXT:
255  * spin_lock_irq(fq->mq_flush_lock)
256  *
257  */
258 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
259 			   unsigned int flags)
260 {
261 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
262 	struct request *first_rq =
263 		list_first_entry(pending, struct request, flush.list);
264 	struct request *flush_rq = fq->flush_rq;
265 
266 	/* C1 described at the top of this file */
267 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
268 		return;
269 
270 	/* C2 and C3
271 	 *
272 	 * For blk-mq + scheduling, we can risk having all driver tags
273 	 * assigned to empty flushes, and we deadlock if we are expecting
274 	 * other requests to make progress. Don't defer for that case.
275 	 */
276 	if (!list_empty(&fq->flush_data_in_flight) && q->elevator &&
277 	    time_before(jiffies,
278 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
279 		return;
280 
281 	/*
282 	 * Issue flush and toggle pending_idx.  This makes pending_idx
283 	 * different from running_idx, which means flush is in flight.
284 	 */
285 	fq->flush_pending_idx ^= 1;
286 
287 	blk_rq_init(q, flush_rq);
288 
289 	/*
290 	 * In case of none scheduler, borrow tag from the first request
291 	 * since they can't be in flight at the same time. And acquire
292 	 * the tag's ownership for flush req.
293 	 *
294 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
295 	 * just for cheating put/get driver tag.
296 	 */
297 	flush_rq->mq_ctx = first_rq->mq_ctx;
298 	flush_rq->mq_hctx = first_rq->mq_hctx;
299 
300 	if (!q->elevator) {
301 		fq->orig_rq = first_rq;
302 		flush_rq->tag = first_rq->tag;
303 		blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq);
304 	} else {
305 		flush_rq->internal_tag = first_rq->internal_tag;
306 	}
307 
308 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
309 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
310 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
311 	flush_rq->rq_disk = first_rq->rq_disk;
312 	flush_rq->end_io = flush_end_io;
313 
314 	blk_flush_queue_rq(flush_rq, false);
315 }
316 
317 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
318 {
319 	struct request_queue *q = rq->q;
320 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
321 	struct blk_mq_ctx *ctx = rq->mq_ctx;
322 	unsigned long flags;
323 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
324 
325 	if (q->elevator) {
326 		WARN_ON(rq->tag < 0);
327 		blk_mq_put_driver_tag(rq);
328 	}
329 
330 	/*
331 	 * After populating an empty queue, kick it to avoid stall.  Read
332 	 * the comment in flush_end_io().
333 	 */
334 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
335 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
336 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
337 
338 	blk_mq_sched_restart(hctx);
339 }
340 
341 /**
342  * blk_insert_flush - insert a new PREFLUSH/FUA request
343  * @rq: request to insert
344  *
345  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
346  * or __blk_mq_run_hw_queue() to dispatch request.
347  * @rq is being submitted.  Analyze what needs to be done and put it on the
348  * right queue.
349  */
350 void blk_insert_flush(struct request *rq)
351 {
352 	struct request_queue *q = rq->q;
353 	unsigned long fflags = q->queue_flags;	/* may change, cache */
354 	unsigned int policy = blk_flush_policy(fflags, rq);
355 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
356 
357 	/*
358 	 * @policy now records what operations need to be done.  Adjust
359 	 * REQ_PREFLUSH and FUA for the driver.
360 	 */
361 	rq->cmd_flags &= ~REQ_PREFLUSH;
362 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
363 		rq->cmd_flags &= ~REQ_FUA;
364 
365 	/*
366 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
367 	 * of those flags, we have to set REQ_SYNC to avoid skewing
368 	 * the request accounting.
369 	 */
370 	rq->cmd_flags |= REQ_SYNC;
371 
372 	/*
373 	 * An empty flush handed down from a stacking driver may
374 	 * translate into nothing if the underlying device does not
375 	 * advertise a write-back cache.  In this case, simply
376 	 * complete the request.
377 	 */
378 	if (!policy) {
379 		blk_mq_end_request(rq, 0);
380 		return;
381 	}
382 
383 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
384 
385 	/*
386 	 * If there's data but flush is not necessary, the request can be
387 	 * processed directly without going through flush machinery.  Queue
388 	 * for normal execution.
389 	 */
390 	if ((policy & REQ_FSEQ_DATA) &&
391 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
392 		blk_mq_request_bypass_insert(rq, false);
393 		return;
394 	}
395 
396 	/*
397 	 * @rq should go through flush machinery.  Mark it part of flush
398 	 * sequence and submit for further processing.
399 	 */
400 	memset(&rq->flush, 0, sizeof(rq->flush));
401 	INIT_LIST_HEAD(&rq->flush.list);
402 	rq->rq_flags |= RQF_FLUSH_SEQ;
403 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
404 
405 	rq->end_io = mq_flush_data_end_io;
406 
407 	spin_lock_irq(&fq->mq_flush_lock);
408 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
409 	spin_unlock_irq(&fq->mq_flush_lock);
410 }
411 
412 /**
413  * blkdev_issue_flush - queue a flush
414  * @bdev:	blockdev to issue flush for
415  * @gfp_mask:	memory allocation flags (for bio_alloc)
416  * @error_sector:	error sector
417  *
418  * Description:
419  *    Issue a flush for the block device in question. Caller can supply
420  *    room for storing the error offset in case of a flush error, if they
421  *    wish to.
422  */
423 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
424 		sector_t *error_sector)
425 {
426 	struct request_queue *q;
427 	struct bio *bio;
428 	int ret = 0;
429 
430 	if (bdev->bd_disk == NULL)
431 		return -ENXIO;
432 
433 	q = bdev_get_queue(bdev);
434 	if (!q)
435 		return -ENXIO;
436 
437 	/*
438 	 * some block devices may not have their queue correctly set up here
439 	 * (e.g. loop device without a backing file) and so issuing a flush
440 	 * here will panic. Ensure there is a request function before issuing
441 	 * the flush.
442 	 */
443 	if (!q->make_request_fn)
444 		return -ENXIO;
445 
446 	bio = bio_alloc(gfp_mask, 0);
447 	bio_set_dev(bio, bdev);
448 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
449 
450 	ret = submit_bio_wait(bio);
451 
452 	/*
453 	 * The driver must store the error location in ->bi_sector, if
454 	 * it supports it. For non-stacked drivers, this should be
455 	 * copied from blk_rq_pos(rq).
456 	 */
457 	if (error_sector)
458 		*error_sector = bio->bi_iter.bi_sector;
459 
460 	bio_put(bio);
461 	return ret;
462 }
463 EXPORT_SYMBOL(blkdev_issue_flush);
464 
465 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
466 		int node, int cmd_size, gfp_t flags)
467 {
468 	struct blk_flush_queue *fq;
469 	int rq_sz = sizeof(struct request);
470 
471 	fq = kzalloc_node(sizeof(*fq), flags, node);
472 	if (!fq)
473 		goto fail;
474 
475 	spin_lock_init(&fq->mq_flush_lock);
476 
477 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
478 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
479 	if (!fq->flush_rq)
480 		goto fail_rq;
481 
482 	INIT_LIST_HEAD(&fq->flush_queue[0]);
483 	INIT_LIST_HEAD(&fq->flush_queue[1]);
484 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
485 
486 	return fq;
487 
488  fail_rq:
489 	kfree(fq);
490  fail:
491 	return NULL;
492 }
493 
494 void blk_free_flush_queue(struct blk_flush_queue *fq)
495 {
496 	/* bio based request queue hasn't flush queue */
497 	if (!fq)
498 		return;
499 
500 	kfree(fq->flush_rq);
501 	kfree(fq);
502 }
503