1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 #include <linux/part_stat.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static void blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, blk_opf_t flags); 98 99 static inline struct blk_flush_queue * 100 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 101 { 102 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 103 } 104 105 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 106 { 107 unsigned int policy = 0; 108 109 if (blk_rq_sectors(rq)) 110 policy |= REQ_FSEQ_DATA; 111 112 if (fflags & (1UL << QUEUE_FLAG_WC)) { 113 if (rq->cmd_flags & REQ_PREFLUSH) 114 policy |= REQ_FSEQ_PREFLUSH; 115 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 116 (rq->cmd_flags & REQ_FUA)) 117 policy |= REQ_FSEQ_POSTFLUSH; 118 } 119 return policy; 120 } 121 122 static unsigned int blk_flush_cur_seq(struct request *rq) 123 { 124 return 1 << ffz(rq->flush.seq); 125 } 126 127 static void blk_flush_restore_request(struct request *rq) 128 { 129 /* 130 * After flush data completion, @rq->bio is %NULL but we need to 131 * complete the bio again. @rq->biotail is guaranteed to equal the 132 * original @rq->bio. Restore it. 133 */ 134 rq->bio = rq->biotail; 135 136 /* make @rq a normal request */ 137 rq->rq_flags &= ~RQF_FLUSH_SEQ; 138 rq->end_io = rq->flush.saved_end_io; 139 } 140 141 static void blk_flush_queue_rq(struct request *rq, bool add_front) 142 { 143 blk_mq_add_to_requeue_list(rq, add_front, true); 144 } 145 146 static void blk_account_io_flush(struct request *rq) 147 { 148 struct block_device *part = rq->q->disk->part0; 149 150 part_stat_lock(); 151 part_stat_inc(part, ios[STAT_FLUSH]); 152 part_stat_add(part, nsecs[STAT_FLUSH], 153 ktime_get_ns() - rq->start_time_ns); 154 part_stat_unlock(); 155 } 156 157 /** 158 * blk_flush_complete_seq - complete flush sequence 159 * @rq: PREFLUSH/FUA request being sequenced 160 * @fq: flush queue 161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 162 * @error: whether an error occurred 163 * 164 * @rq just completed @seq part of its flush sequence, record the 165 * completion and trigger the next step. 166 * 167 * CONTEXT: 168 * spin_lock_irq(fq->mq_flush_lock) 169 */ 170 static void blk_flush_complete_seq(struct request *rq, 171 struct blk_flush_queue *fq, 172 unsigned int seq, blk_status_t error) 173 { 174 struct request_queue *q = rq->q; 175 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 176 blk_opf_t cmd_flags; 177 178 BUG_ON(rq->flush.seq & seq); 179 rq->flush.seq |= seq; 180 cmd_flags = rq->cmd_flags; 181 182 if (likely(!error)) 183 seq = blk_flush_cur_seq(rq); 184 else 185 seq = REQ_FSEQ_DONE; 186 187 switch (seq) { 188 case REQ_FSEQ_PREFLUSH: 189 case REQ_FSEQ_POSTFLUSH: 190 /* queue for flush */ 191 if (list_empty(pending)) 192 fq->flush_pending_since = jiffies; 193 list_move_tail(&rq->flush.list, pending); 194 break; 195 196 case REQ_FSEQ_DATA: 197 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 198 blk_flush_queue_rq(rq, true); 199 break; 200 201 case REQ_FSEQ_DONE: 202 /* 203 * @rq was previously adjusted by blk_insert_flush() for 204 * flush sequencing and may already have gone through the 205 * flush data request completion path. Restore @rq for 206 * normal completion and end it. 207 */ 208 BUG_ON(!list_empty(&rq->queuelist)); 209 list_del_init(&rq->flush.list); 210 blk_flush_restore_request(rq); 211 blk_mq_end_request(rq, error); 212 break; 213 214 default: 215 BUG(); 216 } 217 218 blk_kick_flush(q, fq, cmd_flags); 219 } 220 221 static void flush_end_io(struct request *flush_rq, blk_status_t error) 222 { 223 struct request_queue *q = flush_rq->q; 224 struct list_head *running; 225 struct request *rq, *n; 226 unsigned long flags = 0; 227 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 228 229 /* release the tag's ownership to the req cloned from */ 230 spin_lock_irqsave(&fq->mq_flush_lock, flags); 231 232 if (!req_ref_put_and_test(flush_rq)) { 233 fq->rq_status = error; 234 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 235 return; 236 } 237 238 blk_account_io_flush(flush_rq); 239 /* 240 * Flush request has to be marked as IDLE when it is really ended 241 * because its .end_io() is called from timeout code path too for 242 * avoiding use-after-free. 243 */ 244 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 245 if (fq->rq_status != BLK_STS_OK) { 246 error = fq->rq_status; 247 fq->rq_status = BLK_STS_OK; 248 } 249 250 if (!q->elevator) { 251 flush_rq->tag = BLK_MQ_NO_TAG; 252 } else { 253 blk_mq_put_driver_tag(flush_rq); 254 flush_rq->internal_tag = BLK_MQ_NO_TAG; 255 } 256 257 running = &fq->flush_queue[fq->flush_running_idx]; 258 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 259 260 /* account completion of the flush request */ 261 fq->flush_running_idx ^= 1; 262 263 /* and push the waiting requests to the next stage */ 264 list_for_each_entry_safe(rq, n, running, flush.list) { 265 unsigned int seq = blk_flush_cur_seq(rq); 266 267 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 268 blk_flush_complete_seq(rq, fq, seq, error); 269 } 270 271 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 272 } 273 274 bool is_flush_rq(struct request *rq) 275 { 276 return rq->end_io == flush_end_io; 277 } 278 279 /** 280 * blk_kick_flush - consider issuing flush request 281 * @q: request_queue being kicked 282 * @fq: flush queue 283 * @flags: cmd_flags of the original request 284 * 285 * Flush related states of @q have changed, consider issuing flush request. 286 * Please read the comment at the top of this file for more info. 287 * 288 * CONTEXT: 289 * spin_lock_irq(fq->mq_flush_lock) 290 * 291 */ 292 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 293 blk_opf_t flags) 294 { 295 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 296 struct request *first_rq = 297 list_first_entry(pending, struct request, flush.list); 298 struct request *flush_rq = fq->flush_rq; 299 300 /* C1 described at the top of this file */ 301 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 302 return; 303 304 /* C2 and C3 */ 305 if (!list_empty(&fq->flush_data_in_flight) && 306 time_before(jiffies, 307 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 308 return; 309 310 /* 311 * Issue flush and toggle pending_idx. This makes pending_idx 312 * different from running_idx, which means flush is in flight. 313 */ 314 fq->flush_pending_idx ^= 1; 315 316 blk_rq_init(q, flush_rq); 317 318 /* 319 * In case of none scheduler, borrow tag from the first request 320 * since they can't be in flight at the same time. And acquire 321 * the tag's ownership for flush req. 322 * 323 * In case of IO scheduler, flush rq need to borrow scheduler tag 324 * just for cheating put/get driver tag. 325 */ 326 flush_rq->mq_ctx = first_rq->mq_ctx; 327 flush_rq->mq_hctx = first_rq->mq_hctx; 328 329 if (!q->elevator) { 330 flush_rq->tag = first_rq->tag; 331 332 /* 333 * We borrow data request's driver tag, so have to mark 334 * this flush request as INFLIGHT for avoiding double 335 * account of this driver tag 336 */ 337 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 338 } else 339 flush_rq->internal_tag = first_rq->internal_tag; 340 341 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 342 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 343 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 344 flush_rq->end_io = flush_end_io; 345 /* 346 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 347 * implied in refcount_inc_not_zero() called from 348 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 349 * and READ flush_rq->end_io 350 */ 351 smp_wmb(); 352 req_ref_set(flush_rq, 1); 353 354 blk_flush_queue_rq(flush_rq, false); 355 } 356 357 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 358 { 359 struct request_queue *q = rq->q; 360 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 361 struct blk_mq_ctx *ctx = rq->mq_ctx; 362 unsigned long flags; 363 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 364 365 if (q->elevator) { 366 WARN_ON(rq->tag < 0); 367 blk_mq_put_driver_tag(rq); 368 } 369 370 /* 371 * After populating an empty queue, kick it to avoid stall. Read 372 * the comment in flush_end_io(). 373 */ 374 spin_lock_irqsave(&fq->mq_flush_lock, flags); 375 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 376 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 377 378 blk_mq_sched_restart(hctx); 379 } 380 381 /** 382 * blk_insert_flush - insert a new PREFLUSH/FUA request 383 * @rq: request to insert 384 * 385 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 386 * or __blk_mq_run_hw_queue() to dispatch request. 387 * @rq is being submitted. Analyze what needs to be done and put it on the 388 * right queue. 389 */ 390 void blk_insert_flush(struct request *rq) 391 { 392 struct request_queue *q = rq->q; 393 unsigned long fflags = q->queue_flags; /* may change, cache */ 394 unsigned int policy = blk_flush_policy(fflags, rq); 395 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 396 397 /* 398 * @policy now records what operations need to be done. Adjust 399 * REQ_PREFLUSH and FUA for the driver. 400 */ 401 rq->cmd_flags &= ~REQ_PREFLUSH; 402 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 403 rq->cmd_flags &= ~REQ_FUA; 404 405 /* 406 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 407 * of those flags, we have to set REQ_SYNC to avoid skewing 408 * the request accounting. 409 */ 410 rq->cmd_flags |= REQ_SYNC; 411 412 /* 413 * An empty flush handed down from a stacking driver may 414 * translate into nothing if the underlying device does not 415 * advertise a write-back cache. In this case, simply 416 * complete the request. 417 */ 418 if (!policy) { 419 blk_mq_end_request(rq, 0); 420 return; 421 } 422 423 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 424 425 /* 426 * If there's data but flush is not necessary, the request can be 427 * processed directly without going through flush machinery. Queue 428 * for normal execution. 429 */ 430 if ((policy & REQ_FSEQ_DATA) && 431 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 432 blk_mq_request_bypass_insert(rq, false, true); 433 return; 434 } 435 436 /* 437 * @rq should go through flush machinery. Mark it part of flush 438 * sequence and submit for further processing. 439 */ 440 memset(&rq->flush, 0, sizeof(rq->flush)); 441 INIT_LIST_HEAD(&rq->flush.list); 442 rq->rq_flags |= RQF_FLUSH_SEQ; 443 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 444 445 rq->end_io = mq_flush_data_end_io; 446 447 spin_lock_irq(&fq->mq_flush_lock); 448 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 449 spin_unlock_irq(&fq->mq_flush_lock); 450 } 451 452 /** 453 * blkdev_issue_flush - queue a flush 454 * @bdev: blockdev to issue flush for 455 * 456 * Description: 457 * Issue a flush for the block device in question. 458 */ 459 int blkdev_issue_flush(struct block_device *bdev) 460 { 461 struct bio bio; 462 463 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 464 return submit_bio_wait(&bio); 465 } 466 EXPORT_SYMBOL(blkdev_issue_flush); 467 468 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 469 gfp_t flags) 470 { 471 struct blk_flush_queue *fq; 472 int rq_sz = sizeof(struct request); 473 474 fq = kzalloc_node(sizeof(*fq), flags, node); 475 if (!fq) 476 goto fail; 477 478 spin_lock_init(&fq->mq_flush_lock); 479 480 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 481 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 482 if (!fq->flush_rq) 483 goto fail_rq; 484 485 INIT_LIST_HEAD(&fq->flush_queue[0]); 486 INIT_LIST_HEAD(&fq->flush_queue[1]); 487 INIT_LIST_HEAD(&fq->flush_data_in_flight); 488 489 return fq; 490 491 fail_rq: 492 kfree(fq); 493 fail: 494 return NULL; 495 } 496 497 void blk_free_flush_queue(struct blk_flush_queue *fq) 498 { 499 /* bio based request queue hasn't flush queue */ 500 if (!fq) 501 return; 502 503 kfree(fq->flush_rq); 504 kfree(fq); 505 } 506 507 /* 508 * Allow driver to set its own lock class to fq->mq_flush_lock for 509 * avoiding lockdep complaint. 510 * 511 * flush_end_io() may be called recursively from some driver, such as 512 * nvme-loop, so lockdep may complain 'possible recursive locking' because 513 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 514 * key. We need to assign different lock class for these driver's 515 * fq->mq_flush_lock for avoiding the lockdep warning. 516 * 517 * Use dynamically allocated lock class key for each 'blk_flush_queue' 518 * instance is over-kill, and more worse it introduces horrible boot delay 519 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 520 * is called for each hctx release. SCSI probing may synchronously create and 521 * destroy lots of MQ request_queues for non-existent devices, and some robot 522 * test kernel always enable lockdep option. It is observed that more than half 523 * an hour is taken during SCSI MQ probe with per-fq lock class. 524 */ 525 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 526 struct lock_class_key *key) 527 { 528 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 529 } 530 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 531