1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-tag.h" 76 #include "blk-mq-sched.h" 77 78 /* PREFLUSH/FUA sequences */ 79 enum { 80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 83 REQ_FSEQ_DONE = (1 << 3), 84 85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 86 REQ_FSEQ_POSTFLUSH, 87 88 /* 89 * If flush has been pending longer than the following timeout, 90 * it's issued even if flush_data requests are still in flight. 91 */ 92 FLUSH_PENDING_TIMEOUT = 5 * HZ, 93 }; 94 95 static void blk_kick_flush(struct request_queue *q, 96 struct blk_flush_queue *fq, unsigned int flags); 97 98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 99 { 100 unsigned int policy = 0; 101 102 if (blk_rq_sectors(rq)) 103 policy |= REQ_FSEQ_DATA; 104 105 if (fflags & (1UL << QUEUE_FLAG_WC)) { 106 if (rq->cmd_flags & REQ_PREFLUSH) 107 policy |= REQ_FSEQ_PREFLUSH; 108 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 109 (rq->cmd_flags & REQ_FUA)) 110 policy |= REQ_FSEQ_POSTFLUSH; 111 } 112 return policy; 113 } 114 115 static unsigned int blk_flush_cur_seq(struct request *rq) 116 { 117 return 1 << ffz(rq->flush.seq); 118 } 119 120 static void blk_flush_restore_request(struct request *rq) 121 { 122 /* 123 * After flush data completion, @rq->bio is %NULL but we need to 124 * complete the bio again. @rq->biotail is guaranteed to equal the 125 * original @rq->bio. Restore it. 126 */ 127 rq->bio = rq->biotail; 128 129 /* make @rq a normal request */ 130 rq->rq_flags &= ~RQF_FLUSH_SEQ; 131 rq->end_io = rq->flush.saved_end_io; 132 } 133 134 static void blk_flush_queue_rq(struct request *rq, bool add_front) 135 { 136 blk_mq_add_to_requeue_list(rq, add_front, true); 137 } 138 139 static void blk_account_io_flush(struct request *rq) 140 { 141 struct block_device *part = rq->rq_disk->part0; 142 143 part_stat_lock(); 144 part_stat_inc(part, ios[STAT_FLUSH]); 145 part_stat_add(part, nsecs[STAT_FLUSH], 146 ktime_get_ns() - rq->start_time_ns); 147 part_stat_unlock(); 148 } 149 150 /** 151 * blk_flush_complete_seq - complete flush sequence 152 * @rq: PREFLUSH/FUA request being sequenced 153 * @fq: flush queue 154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 155 * @error: whether an error occurred 156 * 157 * @rq just completed @seq part of its flush sequence, record the 158 * completion and trigger the next step. 159 * 160 * CONTEXT: 161 * spin_lock_irq(fq->mq_flush_lock) 162 */ 163 static void blk_flush_complete_seq(struct request *rq, 164 struct blk_flush_queue *fq, 165 unsigned int seq, blk_status_t error) 166 { 167 struct request_queue *q = rq->q; 168 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 169 unsigned int cmd_flags; 170 171 BUG_ON(rq->flush.seq & seq); 172 rq->flush.seq |= seq; 173 cmd_flags = rq->cmd_flags; 174 175 if (likely(!error)) 176 seq = blk_flush_cur_seq(rq); 177 else 178 seq = REQ_FSEQ_DONE; 179 180 switch (seq) { 181 case REQ_FSEQ_PREFLUSH: 182 case REQ_FSEQ_POSTFLUSH: 183 /* queue for flush */ 184 if (list_empty(pending)) 185 fq->flush_pending_since = jiffies; 186 list_move_tail(&rq->flush.list, pending); 187 break; 188 189 case REQ_FSEQ_DATA: 190 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 191 blk_flush_queue_rq(rq, true); 192 break; 193 194 case REQ_FSEQ_DONE: 195 /* 196 * @rq was previously adjusted by blk_insert_flush() for 197 * flush sequencing and may already have gone through the 198 * flush data request completion path. Restore @rq for 199 * normal completion and end it. 200 */ 201 BUG_ON(!list_empty(&rq->queuelist)); 202 list_del_init(&rq->flush.list); 203 blk_flush_restore_request(rq); 204 blk_mq_end_request(rq, error); 205 break; 206 207 default: 208 BUG(); 209 } 210 211 blk_kick_flush(q, fq, cmd_flags); 212 } 213 214 static void flush_end_io(struct request *flush_rq, blk_status_t error) 215 { 216 struct request_queue *q = flush_rq->q; 217 struct list_head *running; 218 struct request *rq, *n; 219 unsigned long flags = 0; 220 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 221 222 /* release the tag's ownership to the req cloned from */ 223 spin_lock_irqsave(&fq->mq_flush_lock, flags); 224 225 if (!refcount_dec_and_test(&flush_rq->ref)) { 226 fq->rq_status = error; 227 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 228 return; 229 } 230 231 blk_account_io_flush(flush_rq); 232 /* 233 * Flush request has to be marked as IDLE when it is really ended 234 * because its .end_io() is called from timeout code path too for 235 * avoiding use-after-free. 236 */ 237 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 238 if (fq->rq_status != BLK_STS_OK) 239 error = fq->rq_status; 240 241 if (!q->elevator) { 242 flush_rq->tag = BLK_MQ_NO_TAG; 243 } else { 244 blk_mq_put_driver_tag(flush_rq); 245 flush_rq->internal_tag = BLK_MQ_NO_TAG; 246 } 247 248 running = &fq->flush_queue[fq->flush_running_idx]; 249 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 250 251 /* account completion of the flush request */ 252 fq->flush_running_idx ^= 1; 253 254 /* and push the waiting requests to the next stage */ 255 list_for_each_entry_safe(rq, n, running, flush.list) { 256 unsigned int seq = blk_flush_cur_seq(rq); 257 258 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 259 blk_flush_complete_seq(rq, fq, seq, error); 260 } 261 262 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 263 } 264 265 bool is_flush_rq(struct request *rq) 266 { 267 return rq->end_io == flush_end_io; 268 } 269 270 /** 271 * blk_kick_flush - consider issuing flush request 272 * @q: request_queue being kicked 273 * @fq: flush queue 274 * @flags: cmd_flags of the original request 275 * 276 * Flush related states of @q have changed, consider issuing flush request. 277 * Please read the comment at the top of this file for more info. 278 * 279 * CONTEXT: 280 * spin_lock_irq(fq->mq_flush_lock) 281 * 282 */ 283 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 284 unsigned int flags) 285 { 286 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 287 struct request *first_rq = 288 list_first_entry(pending, struct request, flush.list); 289 struct request *flush_rq = fq->flush_rq; 290 291 /* C1 described at the top of this file */ 292 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 293 return; 294 295 /* C2 and C3 */ 296 if (!list_empty(&fq->flush_data_in_flight) && 297 time_before(jiffies, 298 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 299 return; 300 301 /* 302 * Issue flush and toggle pending_idx. This makes pending_idx 303 * different from running_idx, which means flush is in flight. 304 */ 305 fq->flush_pending_idx ^= 1; 306 307 blk_rq_init(q, flush_rq); 308 309 /* 310 * In case of none scheduler, borrow tag from the first request 311 * since they can't be in flight at the same time. And acquire 312 * the tag's ownership for flush req. 313 * 314 * In case of IO scheduler, flush rq need to borrow scheduler tag 315 * just for cheating put/get driver tag. 316 */ 317 flush_rq->mq_ctx = first_rq->mq_ctx; 318 flush_rq->mq_hctx = first_rq->mq_hctx; 319 320 if (!q->elevator) { 321 flush_rq->tag = first_rq->tag; 322 323 /* 324 * We borrow data request's driver tag, so have to mark 325 * this flush request as INFLIGHT for avoiding double 326 * account of this driver tag 327 */ 328 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 329 } else 330 flush_rq->internal_tag = first_rq->internal_tag; 331 332 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 333 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 334 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 335 flush_rq->rq_disk = first_rq->rq_disk; 336 flush_rq->end_io = flush_end_io; 337 /* 338 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 339 * implied in refcount_inc_not_zero() called from 340 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 341 * and READ flush_rq->end_io 342 */ 343 smp_wmb(); 344 refcount_set(&flush_rq->ref, 1); 345 346 blk_flush_queue_rq(flush_rq, false); 347 } 348 349 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 350 { 351 struct request_queue *q = rq->q; 352 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 353 struct blk_mq_ctx *ctx = rq->mq_ctx; 354 unsigned long flags; 355 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 356 357 if (q->elevator) { 358 WARN_ON(rq->tag < 0); 359 blk_mq_put_driver_tag(rq); 360 } 361 362 /* 363 * After populating an empty queue, kick it to avoid stall. Read 364 * the comment in flush_end_io(). 365 */ 366 spin_lock_irqsave(&fq->mq_flush_lock, flags); 367 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 368 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 369 370 blk_mq_sched_restart(hctx); 371 } 372 373 /** 374 * blk_insert_flush - insert a new PREFLUSH/FUA request 375 * @rq: request to insert 376 * 377 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 378 * or __blk_mq_run_hw_queue() to dispatch request. 379 * @rq is being submitted. Analyze what needs to be done and put it on the 380 * right queue. 381 */ 382 void blk_insert_flush(struct request *rq) 383 { 384 struct request_queue *q = rq->q; 385 unsigned long fflags = q->queue_flags; /* may change, cache */ 386 unsigned int policy = blk_flush_policy(fflags, rq); 387 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 388 389 /* 390 * @policy now records what operations need to be done. Adjust 391 * REQ_PREFLUSH and FUA for the driver. 392 */ 393 rq->cmd_flags &= ~REQ_PREFLUSH; 394 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 395 rq->cmd_flags &= ~REQ_FUA; 396 397 /* 398 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 399 * of those flags, we have to set REQ_SYNC to avoid skewing 400 * the request accounting. 401 */ 402 rq->cmd_flags |= REQ_SYNC; 403 404 /* 405 * An empty flush handed down from a stacking driver may 406 * translate into nothing if the underlying device does not 407 * advertise a write-back cache. In this case, simply 408 * complete the request. 409 */ 410 if (!policy) { 411 blk_mq_end_request(rq, 0); 412 return; 413 } 414 415 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 416 417 /* 418 * If there's data but flush is not necessary, the request can be 419 * processed directly without going through flush machinery. Queue 420 * for normal execution. 421 */ 422 if ((policy & REQ_FSEQ_DATA) && 423 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 424 blk_mq_request_bypass_insert(rq, false, false); 425 return; 426 } 427 428 /* 429 * @rq should go through flush machinery. Mark it part of flush 430 * sequence and submit for further processing. 431 */ 432 memset(&rq->flush, 0, sizeof(rq->flush)); 433 INIT_LIST_HEAD(&rq->flush.list); 434 rq->rq_flags |= RQF_FLUSH_SEQ; 435 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 436 437 rq->end_io = mq_flush_data_end_io; 438 439 spin_lock_irq(&fq->mq_flush_lock); 440 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 441 spin_unlock_irq(&fq->mq_flush_lock); 442 } 443 444 /** 445 * blkdev_issue_flush - queue a flush 446 * @bdev: blockdev to issue flush for 447 * 448 * Description: 449 * Issue a flush for the block device in question. 450 */ 451 int blkdev_issue_flush(struct block_device *bdev) 452 { 453 struct bio bio; 454 455 bio_init(&bio, NULL, 0); 456 bio_set_dev(&bio, bdev); 457 bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 458 return submit_bio_wait(&bio); 459 } 460 EXPORT_SYMBOL(blkdev_issue_flush); 461 462 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 463 gfp_t flags) 464 { 465 struct blk_flush_queue *fq; 466 int rq_sz = sizeof(struct request); 467 468 fq = kzalloc_node(sizeof(*fq), flags, node); 469 if (!fq) 470 goto fail; 471 472 spin_lock_init(&fq->mq_flush_lock); 473 474 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 475 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 476 if (!fq->flush_rq) 477 goto fail_rq; 478 479 INIT_LIST_HEAD(&fq->flush_queue[0]); 480 INIT_LIST_HEAD(&fq->flush_queue[1]); 481 INIT_LIST_HEAD(&fq->flush_data_in_flight); 482 483 return fq; 484 485 fail_rq: 486 kfree(fq); 487 fail: 488 return NULL; 489 } 490 491 void blk_free_flush_queue(struct blk_flush_queue *fq) 492 { 493 /* bio based request queue hasn't flush queue */ 494 if (!fq) 495 return; 496 497 kfree(fq->flush_rq); 498 kfree(fq); 499 } 500 501 /* 502 * Allow driver to set its own lock class to fq->mq_flush_lock for 503 * avoiding lockdep complaint. 504 * 505 * flush_end_io() may be called recursively from some driver, such as 506 * nvme-loop, so lockdep may complain 'possible recursive locking' because 507 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 508 * key. We need to assign different lock class for these driver's 509 * fq->mq_flush_lock for avoiding the lockdep warning. 510 * 511 * Use dynamically allocated lock class key for each 'blk_flush_queue' 512 * instance is over-kill, and more worse it introduces horrible boot delay 513 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 514 * is called for each hctx release. SCSI probing may synchronously create and 515 * destroy lots of MQ request_queues for non-existent devices, and some robot 516 * test kernel always enable lockdep option. It is observed that more than half 517 * an hour is taken during SCSI MQ probe with per-fq lock class. 518 */ 519 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 520 struct lock_class_key *key) 521 { 522 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 523 } 524 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 525