xref: /openbmc/linux/block/blk-flush.c (revision d086a1c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 #include <linux/lockdep.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78 
79 /* PREFLUSH/FUA sequences */
80 enum {
81 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
82 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
83 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
84 	REQ_FSEQ_DONE		= (1 << 3),
85 
86 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 				  REQ_FSEQ_POSTFLUSH,
88 
89 	/*
90 	 * If flush has been pending longer than the following timeout,
91 	 * it's issued even if flush_data requests are still in flight.
92 	 */
93 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
94 };
95 
96 static void blk_kick_flush(struct request_queue *q,
97 			   struct blk_flush_queue *fq, unsigned int flags);
98 
99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 	unsigned int policy = 0;
102 
103 	if (blk_rq_sectors(rq))
104 		policy |= REQ_FSEQ_DATA;
105 
106 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 		if (rq->cmd_flags & REQ_PREFLUSH)
108 			policy |= REQ_FSEQ_PREFLUSH;
109 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 		    (rq->cmd_flags & REQ_FUA))
111 			policy |= REQ_FSEQ_POSTFLUSH;
112 	}
113 	return policy;
114 }
115 
116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 	return 1 << ffz(rq->flush.seq);
119 }
120 
121 static void blk_flush_restore_request(struct request *rq)
122 {
123 	/*
124 	 * After flush data completion, @rq->bio is %NULL but we need to
125 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
126 	 * original @rq->bio.  Restore it.
127 	 */
128 	rq->bio = rq->biotail;
129 
130 	/* make @rq a normal request */
131 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 	rq->end_io = rq->flush.saved_end_io;
133 }
134 
135 static void blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 	blk_mq_add_to_requeue_list(rq, add_front, true);
138 }
139 
140 static void blk_account_io_flush(struct request *rq)
141 {
142 	struct hd_struct *part = &rq->rq_disk->part0;
143 
144 	part_stat_lock();
145 	part_stat_inc(part, ios[STAT_FLUSH]);
146 	part_stat_add(part, nsecs[STAT_FLUSH],
147 		      ktime_get_ns() - rq->start_time_ns);
148 	part_stat_unlock();
149 }
150 
151 /**
152  * blk_flush_complete_seq - complete flush sequence
153  * @rq: PREFLUSH/FUA request being sequenced
154  * @fq: flush queue
155  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
156  * @error: whether an error occurred
157  *
158  * @rq just completed @seq part of its flush sequence, record the
159  * completion and trigger the next step.
160  *
161  * CONTEXT:
162  * spin_lock_irq(fq->mq_flush_lock)
163  */
164 static void blk_flush_complete_seq(struct request *rq,
165 				   struct blk_flush_queue *fq,
166 				   unsigned int seq, blk_status_t error)
167 {
168 	struct request_queue *q = rq->q;
169 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
170 	unsigned int cmd_flags;
171 
172 	BUG_ON(rq->flush.seq & seq);
173 	rq->flush.seq |= seq;
174 	cmd_flags = rq->cmd_flags;
175 
176 	if (likely(!error))
177 		seq = blk_flush_cur_seq(rq);
178 	else
179 		seq = REQ_FSEQ_DONE;
180 
181 	switch (seq) {
182 	case REQ_FSEQ_PREFLUSH:
183 	case REQ_FSEQ_POSTFLUSH:
184 		/* queue for flush */
185 		if (list_empty(pending))
186 			fq->flush_pending_since = jiffies;
187 		list_move_tail(&rq->flush.list, pending);
188 		break;
189 
190 	case REQ_FSEQ_DATA:
191 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
192 		blk_flush_queue_rq(rq, true);
193 		break;
194 
195 	case REQ_FSEQ_DONE:
196 		/*
197 		 * @rq was previously adjusted by blk_insert_flush() for
198 		 * flush sequencing and may already have gone through the
199 		 * flush data request completion path.  Restore @rq for
200 		 * normal completion and end it.
201 		 */
202 		BUG_ON(!list_empty(&rq->queuelist));
203 		list_del_init(&rq->flush.list);
204 		blk_flush_restore_request(rq);
205 		blk_mq_end_request(rq, error);
206 		break;
207 
208 	default:
209 		BUG();
210 	}
211 
212 	blk_kick_flush(q, fq, cmd_flags);
213 }
214 
215 static void flush_end_io(struct request *flush_rq, blk_status_t error)
216 {
217 	struct request_queue *q = flush_rq->q;
218 	struct list_head *running;
219 	struct request *rq, *n;
220 	unsigned long flags = 0;
221 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
222 
223 	blk_account_io_flush(flush_rq);
224 
225 	/* release the tag's ownership to the req cloned from */
226 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
227 
228 	if (!refcount_dec_and_test(&flush_rq->ref)) {
229 		fq->rq_status = error;
230 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
231 		return;
232 	}
233 
234 	if (fq->rq_status != BLK_STS_OK)
235 		error = fq->rq_status;
236 
237 	if (!q->elevator) {
238 		flush_rq->tag = BLK_MQ_NO_TAG;
239 	} else {
240 		blk_mq_put_driver_tag(flush_rq);
241 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
242 	}
243 
244 	running = &fq->flush_queue[fq->flush_running_idx];
245 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
246 
247 	/* account completion of the flush request */
248 	fq->flush_running_idx ^= 1;
249 
250 	/* and push the waiting requests to the next stage */
251 	list_for_each_entry_safe(rq, n, running, flush.list) {
252 		unsigned int seq = blk_flush_cur_seq(rq);
253 
254 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
255 		blk_flush_complete_seq(rq, fq, seq, error);
256 	}
257 
258 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
259 }
260 
261 /**
262  * blk_kick_flush - consider issuing flush request
263  * @q: request_queue being kicked
264  * @fq: flush queue
265  * @flags: cmd_flags of the original request
266  *
267  * Flush related states of @q have changed, consider issuing flush request.
268  * Please read the comment at the top of this file for more info.
269  *
270  * CONTEXT:
271  * spin_lock_irq(fq->mq_flush_lock)
272  *
273  */
274 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
275 			   unsigned int flags)
276 {
277 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
278 	struct request *first_rq =
279 		list_first_entry(pending, struct request, flush.list);
280 	struct request *flush_rq = fq->flush_rq;
281 
282 	/* C1 described at the top of this file */
283 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
284 		return;
285 
286 	/* C2 and C3 */
287 	if (!list_empty(&fq->flush_data_in_flight) &&
288 	    time_before(jiffies,
289 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
290 		return;
291 
292 	/*
293 	 * Issue flush and toggle pending_idx.  This makes pending_idx
294 	 * different from running_idx, which means flush is in flight.
295 	 */
296 	fq->flush_pending_idx ^= 1;
297 
298 	blk_rq_init(q, flush_rq);
299 
300 	/*
301 	 * In case of none scheduler, borrow tag from the first request
302 	 * since they can't be in flight at the same time. And acquire
303 	 * the tag's ownership for flush req.
304 	 *
305 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
306 	 * just for cheating put/get driver tag.
307 	 */
308 	flush_rq->mq_ctx = first_rq->mq_ctx;
309 	flush_rq->mq_hctx = first_rq->mq_hctx;
310 
311 	if (!q->elevator) {
312 		flush_rq->tag = first_rq->tag;
313 
314 		/*
315 		 * We borrow data request's driver tag, so have to mark
316 		 * this flush request as INFLIGHT for avoiding double
317 		 * account of this driver tag
318 		 */
319 		flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
320 	} else
321 		flush_rq->internal_tag = first_rq->internal_tag;
322 
323 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
324 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
325 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
326 	flush_rq->rq_disk = first_rq->rq_disk;
327 	flush_rq->end_io = flush_end_io;
328 
329 	blk_flush_queue_rq(flush_rq, false);
330 }
331 
332 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
333 {
334 	struct request_queue *q = rq->q;
335 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
336 	struct blk_mq_ctx *ctx = rq->mq_ctx;
337 	unsigned long flags;
338 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
339 
340 	if (q->elevator) {
341 		WARN_ON(rq->tag < 0);
342 		blk_mq_put_driver_tag(rq);
343 	}
344 
345 	/*
346 	 * After populating an empty queue, kick it to avoid stall.  Read
347 	 * the comment in flush_end_io().
348 	 */
349 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
350 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
351 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
352 
353 	blk_mq_sched_restart(hctx);
354 }
355 
356 /**
357  * blk_insert_flush - insert a new PREFLUSH/FUA request
358  * @rq: request to insert
359  *
360  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
361  * or __blk_mq_run_hw_queue() to dispatch request.
362  * @rq is being submitted.  Analyze what needs to be done and put it on the
363  * right queue.
364  */
365 void blk_insert_flush(struct request *rq)
366 {
367 	struct request_queue *q = rq->q;
368 	unsigned long fflags = q->queue_flags;	/* may change, cache */
369 	unsigned int policy = blk_flush_policy(fflags, rq);
370 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
371 
372 	/*
373 	 * @policy now records what operations need to be done.  Adjust
374 	 * REQ_PREFLUSH and FUA for the driver.
375 	 */
376 	rq->cmd_flags &= ~REQ_PREFLUSH;
377 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
378 		rq->cmd_flags &= ~REQ_FUA;
379 
380 	/*
381 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
382 	 * of those flags, we have to set REQ_SYNC to avoid skewing
383 	 * the request accounting.
384 	 */
385 	rq->cmd_flags |= REQ_SYNC;
386 
387 	/*
388 	 * An empty flush handed down from a stacking driver may
389 	 * translate into nothing if the underlying device does not
390 	 * advertise a write-back cache.  In this case, simply
391 	 * complete the request.
392 	 */
393 	if (!policy) {
394 		blk_mq_end_request(rq, 0);
395 		return;
396 	}
397 
398 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
399 
400 	/*
401 	 * If there's data but flush is not necessary, the request can be
402 	 * processed directly without going through flush machinery.  Queue
403 	 * for normal execution.
404 	 */
405 	if ((policy & REQ_FSEQ_DATA) &&
406 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
407 		blk_mq_request_bypass_insert(rq, false, false);
408 		return;
409 	}
410 
411 	/*
412 	 * @rq should go through flush machinery.  Mark it part of flush
413 	 * sequence and submit for further processing.
414 	 */
415 	memset(&rq->flush, 0, sizeof(rq->flush));
416 	INIT_LIST_HEAD(&rq->flush.list);
417 	rq->rq_flags |= RQF_FLUSH_SEQ;
418 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
419 
420 	rq->end_io = mq_flush_data_end_io;
421 
422 	spin_lock_irq(&fq->mq_flush_lock);
423 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
424 	spin_unlock_irq(&fq->mq_flush_lock);
425 }
426 
427 /**
428  * blkdev_issue_flush - queue a flush
429  * @bdev:	blockdev to issue flush for
430  * @gfp_mask:	memory allocation flags (for bio_alloc)
431  *
432  * Description:
433  *    Issue a flush for the block device in question.
434  */
435 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
436 {
437 	struct bio *bio;
438 	int ret = 0;
439 
440 	bio = bio_alloc(gfp_mask, 0);
441 	bio_set_dev(bio, bdev);
442 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
443 
444 	ret = submit_bio_wait(bio);
445 	bio_put(bio);
446 	return ret;
447 }
448 EXPORT_SYMBOL(blkdev_issue_flush);
449 
450 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
451 					      gfp_t flags)
452 {
453 	struct blk_flush_queue *fq;
454 	int rq_sz = sizeof(struct request);
455 
456 	fq = kzalloc_node(sizeof(*fq), flags, node);
457 	if (!fq)
458 		goto fail;
459 
460 	spin_lock_init(&fq->mq_flush_lock);
461 
462 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
463 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
464 	if (!fq->flush_rq)
465 		goto fail_rq;
466 
467 	INIT_LIST_HEAD(&fq->flush_queue[0]);
468 	INIT_LIST_HEAD(&fq->flush_queue[1]);
469 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
470 
471 	lockdep_register_key(&fq->key);
472 	lockdep_set_class(&fq->mq_flush_lock, &fq->key);
473 
474 	return fq;
475 
476  fail_rq:
477 	kfree(fq);
478  fail:
479 	return NULL;
480 }
481 
482 void blk_free_flush_queue(struct blk_flush_queue *fq)
483 {
484 	/* bio based request queue hasn't flush queue */
485 	if (!fq)
486 		return;
487 
488 	lockdep_unregister_key(&fq->key);
489 	kfree(fq->flush_rq);
490 	kfree(fq);
491 }
492