xref: /openbmc/linux/block/blk-flush.c (revision cc8bbe1a)
1 /*
2  * Functions to sequence FLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_FLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no
21  * data or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_FLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27  * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
32  * flush is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of FLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without FLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each FLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 
78 /* FLUSH/FUA sequences */
79 enum {
80 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
81 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
82 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
83 	REQ_FSEQ_DONE		= (1 << 3),
84 
85 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
86 				  REQ_FSEQ_POSTFLUSH,
87 
88 	/*
89 	 * If flush has been pending longer than the following timeout,
90 	 * it's issued even if flush_data requests are still in flight.
91 	 */
92 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
93 };
94 
95 static bool blk_kick_flush(struct request_queue *q,
96 			   struct blk_flush_queue *fq);
97 
98 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
99 {
100 	unsigned int policy = 0;
101 
102 	if (blk_rq_sectors(rq))
103 		policy |= REQ_FSEQ_DATA;
104 
105 	if (fflags & REQ_FLUSH) {
106 		if (rq->cmd_flags & REQ_FLUSH)
107 			policy |= REQ_FSEQ_PREFLUSH;
108 		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
109 			policy |= REQ_FSEQ_POSTFLUSH;
110 	}
111 	return policy;
112 }
113 
114 static unsigned int blk_flush_cur_seq(struct request *rq)
115 {
116 	return 1 << ffz(rq->flush.seq);
117 }
118 
119 static void blk_flush_restore_request(struct request *rq)
120 {
121 	/*
122 	 * After flush data completion, @rq->bio is %NULL but we need to
123 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
124 	 * original @rq->bio.  Restore it.
125 	 */
126 	rq->bio = rq->biotail;
127 
128 	/* make @rq a normal request */
129 	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
130 	rq->end_io = rq->flush.saved_end_io;
131 }
132 
133 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
134 {
135 	if (rq->q->mq_ops) {
136 		struct request_queue *q = rq->q;
137 
138 		blk_mq_add_to_requeue_list(rq, add_front);
139 		blk_mq_kick_requeue_list(q);
140 		return false;
141 	} else {
142 		if (add_front)
143 			list_add(&rq->queuelist, &rq->q->queue_head);
144 		else
145 			list_add_tail(&rq->queuelist, &rq->q->queue_head);
146 		return true;
147 	}
148 }
149 
150 /**
151  * blk_flush_complete_seq - complete flush sequence
152  * @rq: FLUSH/FUA request being sequenced
153  * @fq: flush queue
154  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155  * @error: whether an error occurred
156  *
157  * @rq just completed @seq part of its flush sequence, record the
158  * completion and trigger the next step.
159  *
160  * CONTEXT:
161  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
162  *
163  * RETURNS:
164  * %true if requests were added to the dispatch queue, %false otherwise.
165  */
166 static bool blk_flush_complete_seq(struct request *rq,
167 				   struct blk_flush_queue *fq,
168 				   unsigned int seq, int error)
169 {
170 	struct request_queue *q = rq->q;
171 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
172 	bool queued = false, kicked;
173 
174 	BUG_ON(rq->flush.seq & seq);
175 	rq->flush.seq |= seq;
176 
177 	if (likely(!error))
178 		seq = blk_flush_cur_seq(rq);
179 	else
180 		seq = REQ_FSEQ_DONE;
181 
182 	switch (seq) {
183 	case REQ_FSEQ_PREFLUSH:
184 	case REQ_FSEQ_POSTFLUSH:
185 		/* queue for flush */
186 		if (list_empty(pending))
187 			fq->flush_pending_since = jiffies;
188 		list_move_tail(&rq->flush.list, pending);
189 		break;
190 
191 	case REQ_FSEQ_DATA:
192 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
193 		queued = blk_flush_queue_rq(rq, true);
194 		break;
195 
196 	case REQ_FSEQ_DONE:
197 		/*
198 		 * @rq was previously adjusted by blk_flush_issue() for
199 		 * flush sequencing and may already have gone through the
200 		 * flush data request completion path.  Restore @rq for
201 		 * normal completion and end it.
202 		 */
203 		BUG_ON(!list_empty(&rq->queuelist));
204 		list_del_init(&rq->flush.list);
205 		blk_flush_restore_request(rq);
206 		if (q->mq_ops)
207 			blk_mq_end_request(rq, error);
208 		else
209 			__blk_end_request_all(rq, error);
210 		break;
211 
212 	default:
213 		BUG();
214 	}
215 
216 	kicked = blk_kick_flush(q, fq);
217 	return kicked | queued;
218 }
219 
220 static void flush_end_io(struct request *flush_rq, int error)
221 {
222 	struct request_queue *q = flush_rq->q;
223 	struct list_head *running;
224 	bool queued = false;
225 	struct request *rq, *n;
226 	unsigned long flags = 0;
227 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
228 
229 	if (q->mq_ops) {
230 		struct blk_mq_hw_ctx *hctx;
231 
232 		/* release the tag's ownership to the req cloned from */
233 		spin_lock_irqsave(&fq->mq_flush_lock, flags);
234 		hctx = q->mq_ops->map_queue(q, flush_rq->mq_ctx->cpu);
235 		blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
236 		flush_rq->tag = -1;
237 	}
238 
239 	running = &fq->flush_queue[fq->flush_running_idx];
240 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
241 
242 	/* account completion of the flush request */
243 	fq->flush_running_idx ^= 1;
244 
245 	if (!q->mq_ops)
246 		elv_completed_request(q, flush_rq);
247 
248 	/* and push the waiting requests to the next stage */
249 	list_for_each_entry_safe(rq, n, running, flush.list) {
250 		unsigned int seq = blk_flush_cur_seq(rq);
251 
252 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
253 		queued |= blk_flush_complete_seq(rq, fq, seq, error);
254 	}
255 
256 	/*
257 	 * Kick the queue to avoid stall for two cases:
258 	 * 1. Moving a request silently to empty queue_head may stall the
259 	 * queue.
260 	 * 2. When flush request is running in non-queueable queue, the
261 	 * queue is hold. Restart the queue after flush request is finished
262 	 * to avoid stall.
263 	 * This function is called from request completion path and calling
264 	 * directly into request_fn may confuse the driver.  Always use
265 	 * kblockd.
266 	 */
267 	if (queued || fq->flush_queue_delayed) {
268 		WARN_ON(q->mq_ops);
269 		blk_run_queue_async(q);
270 	}
271 	fq->flush_queue_delayed = 0;
272 	if (q->mq_ops)
273 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
274 }
275 
276 /**
277  * blk_kick_flush - consider issuing flush request
278  * @q: request_queue being kicked
279  * @fq: flush queue
280  *
281  * Flush related states of @q have changed, consider issuing flush request.
282  * Please read the comment at the top of this file for more info.
283  *
284  * CONTEXT:
285  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
286  *
287  * RETURNS:
288  * %true if flush was issued, %false otherwise.
289  */
290 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
291 {
292 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
293 	struct request *first_rq =
294 		list_first_entry(pending, struct request, flush.list);
295 	struct request *flush_rq = fq->flush_rq;
296 
297 	/* C1 described at the top of this file */
298 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
299 		return false;
300 
301 	/* C2 and C3 */
302 	if (!list_empty(&fq->flush_data_in_flight) &&
303 	    time_before(jiffies,
304 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
305 		return false;
306 
307 	/*
308 	 * Issue flush and toggle pending_idx.  This makes pending_idx
309 	 * different from running_idx, which means flush is in flight.
310 	 */
311 	fq->flush_pending_idx ^= 1;
312 
313 	blk_rq_init(q, flush_rq);
314 
315 	/*
316 	 * Borrow tag from the first request since they can't
317 	 * be in flight at the same time. And acquire the tag's
318 	 * ownership for flush req.
319 	 */
320 	if (q->mq_ops) {
321 		struct blk_mq_hw_ctx *hctx;
322 
323 		flush_rq->mq_ctx = first_rq->mq_ctx;
324 		flush_rq->tag = first_rq->tag;
325 		fq->orig_rq = first_rq;
326 
327 		hctx = q->mq_ops->map_queue(q, first_rq->mq_ctx->cpu);
328 		blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
329 	}
330 
331 	flush_rq->cmd_type = REQ_TYPE_FS;
332 	flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
333 	flush_rq->rq_disk = first_rq->rq_disk;
334 	flush_rq->end_io = flush_end_io;
335 
336 	return blk_flush_queue_rq(flush_rq, false);
337 }
338 
339 static void flush_data_end_io(struct request *rq, int error)
340 {
341 	struct request_queue *q = rq->q;
342 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
343 
344 	/*
345 	 * After populating an empty queue, kick it to avoid stall.  Read
346 	 * the comment in flush_end_io().
347 	 */
348 	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
349 		blk_run_queue_async(q);
350 }
351 
352 static void mq_flush_data_end_io(struct request *rq, int error)
353 {
354 	struct request_queue *q = rq->q;
355 	struct blk_mq_hw_ctx *hctx;
356 	struct blk_mq_ctx *ctx = rq->mq_ctx;
357 	unsigned long flags;
358 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
359 
360 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
361 
362 	/*
363 	 * After populating an empty queue, kick it to avoid stall.  Read
364 	 * the comment in flush_end_io().
365 	 */
366 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
367 	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
368 		blk_mq_run_hw_queue(hctx, true);
369 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
370 }
371 
372 /**
373  * blk_insert_flush - insert a new FLUSH/FUA request
374  * @rq: request to insert
375  *
376  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
377  * or __blk_mq_run_hw_queue() to dispatch request.
378  * @rq is being submitted.  Analyze what needs to be done and put it on the
379  * right queue.
380  *
381  * CONTEXT:
382  * spin_lock_irq(q->queue_lock) in !mq case
383  */
384 void blk_insert_flush(struct request *rq)
385 {
386 	struct request_queue *q = rq->q;
387 	unsigned int fflags = q->flush_flags;	/* may change, cache */
388 	unsigned int policy = blk_flush_policy(fflags, rq);
389 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
390 
391 	/*
392 	 * @policy now records what operations need to be done.  Adjust
393 	 * REQ_FLUSH and FUA for the driver.
394 	 */
395 	rq->cmd_flags &= ~REQ_FLUSH;
396 	if (!(fflags & REQ_FUA))
397 		rq->cmd_flags &= ~REQ_FUA;
398 
399 	/*
400 	 * An empty flush handed down from a stacking driver may
401 	 * translate into nothing if the underlying device does not
402 	 * advertise a write-back cache.  In this case, simply
403 	 * complete the request.
404 	 */
405 	if (!policy) {
406 		if (q->mq_ops)
407 			blk_mq_end_request(rq, 0);
408 		else
409 			__blk_end_bidi_request(rq, 0, 0, 0);
410 		return;
411 	}
412 
413 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
414 
415 	/*
416 	 * If there's data but flush is not necessary, the request can be
417 	 * processed directly without going through flush machinery.  Queue
418 	 * for normal execution.
419 	 */
420 	if ((policy & REQ_FSEQ_DATA) &&
421 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
422 		if (q->mq_ops) {
423 			blk_mq_insert_request(rq, false, false, true);
424 		} else
425 			list_add_tail(&rq->queuelist, &q->queue_head);
426 		return;
427 	}
428 
429 	/*
430 	 * @rq should go through flush machinery.  Mark it part of flush
431 	 * sequence and submit for further processing.
432 	 */
433 	memset(&rq->flush, 0, sizeof(rq->flush));
434 	INIT_LIST_HEAD(&rq->flush.list);
435 	rq->cmd_flags |= REQ_FLUSH_SEQ;
436 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
437 	if (q->mq_ops) {
438 		rq->end_io = mq_flush_data_end_io;
439 
440 		spin_lock_irq(&fq->mq_flush_lock);
441 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
442 		spin_unlock_irq(&fq->mq_flush_lock);
443 		return;
444 	}
445 	rq->end_io = flush_data_end_io;
446 
447 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
448 }
449 
450 /**
451  * blkdev_issue_flush - queue a flush
452  * @bdev:	blockdev to issue flush for
453  * @gfp_mask:	memory allocation flags (for bio_alloc)
454  * @error_sector:	error sector
455  *
456  * Description:
457  *    Issue a flush for the block device in question. Caller can supply
458  *    room for storing the error offset in case of a flush error, if they
459  *    wish to. If WAIT flag is not passed then caller may check only what
460  *    request was pushed in some internal queue for later handling.
461  */
462 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
463 		sector_t *error_sector)
464 {
465 	struct request_queue *q;
466 	struct bio *bio;
467 	int ret = 0;
468 
469 	if (bdev->bd_disk == NULL)
470 		return -ENXIO;
471 
472 	q = bdev_get_queue(bdev);
473 	if (!q)
474 		return -ENXIO;
475 
476 	/*
477 	 * some block devices may not have their queue correctly set up here
478 	 * (e.g. loop device without a backing file) and so issuing a flush
479 	 * here will panic. Ensure there is a request function before issuing
480 	 * the flush.
481 	 */
482 	if (!q->make_request_fn)
483 		return -ENXIO;
484 
485 	bio = bio_alloc(gfp_mask, 0);
486 	bio->bi_bdev = bdev;
487 
488 	ret = submit_bio_wait(WRITE_FLUSH, bio);
489 
490 	/*
491 	 * The driver must store the error location in ->bi_sector, if
492 	 * it supports it. For non-stacked drivers, this should be
493 	 * copied from blk_rq_pos(rq).
494 	 */
495 	if (error_sector)
496 		*error_sector = bio->bi_iter.bi_sector;
497 
498 	bio_put(bio);
499 	return ret;
500 }
501 EXPORT_SYMBOL(blkdev_issue_flush);
502 
503 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
504 		int node, int cmd_size)
505 {
506 	struct blk_flush_queue *fq;
507 	int rq_sz = sizeof(struct request);
508 
509 	fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
510 	if (!fq)
511 		goto fail;
512 
513 	if (q->mq_ops) {
514 		spin_lock_init(&fq->mq_flush_lock);
515 		rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
516 	}
517 
518 	fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
519 	if (!fq->flush_rq)
520 		goto fail_rq;
521 
522 	INIT_LIST_HEAD(&fq->flush_queue[0]);
523 	INIT_LIST_HEAD(&fq->flush_queue[1]);
524 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
525 
526 	return fq;
527 
528  fail_rq:
529 	kfree(fq);
530  fail:
531 	return NULL;
532 }
533 
534 void blk_free_flush_queue(struct blk_flush_queue *fq)
535 {
536 	/* bio based request queue hasn't flush queue */
537 	if (!fq)
538 		return;
539 
540 	kfree(fq->flush_rq);
541 	kfree(fq);
542 }
543