xref: /openbmc/linux/block/blk-flush.c (revision c24c57a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-tag.h"
76 #include "blk-mq-sched.h"
77 
78 /* PREFLUSH/FUA sequences */
79 enum {
80 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
81 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
82 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
83 	REQ_FSEQ_DONE		= (1 << 3),
84 
85 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
86 				  REQ_FSEQ_POSTFLUSH,
87 
88 	/*
89 	 * If flush has been pending longer than the following timeout,
90 	 * it's issued even if flush_data requests are still in flight.
91 	 */
92 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
93 };
94 
95 static void blk_kick_flush(struct request_queue *q,
96 			   struct blk_flush_queue *fq, unsigned int flags);
97 
98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
99 {
100 	unsigned int policy = 0;
101 
102 	if (blk_rq_sectors(rq))
103 		policy |= REQ_FSEQ_DATA;
104 
105 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
106 		if (rq->cmd_flags & REQ_PREFLUSH)
107 			policy |= REQ_FSEQ_PREFLUSH;
108 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
109 		    (rq->cmd_flags & REQ_FUA))
110 			policy |= REQ_FSEQ_POSTFLUSH;
111 	}
112 	return policy;
113 }
114 
115 static unsigned int blk_flush_cur_seq(struct request *rq)
116 {
117 	return 1 << ffz(rq->flush.seq);
118 }
119 
120 static void blk_flush_restore_request(struct request *rq)
121 {
122 	/*
123 	 * After flush data completion, @rq->bio is %NULL but we need to
124 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
125 	 * original @rq->bio.  Restore it.
126 	 */
127 	rq->bio = rq->biotail;
128 
129 	/* make @rq a normal request */
130 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
131 	rq->end_io = rq->flush.saved_end_io;
132 }
133 
134 static void blk_flush_queue_rq(struct request *rq, bool add_front)
135 {
136 	blk_mq_add_to_requeue_list(rq, add_front, true);
137 }
138 
139 static void blk_account_io_flush(struct request *rq)
140 {
141 	struct hd_struct *part = &rq->rq_disk->part0;
142 
143 	part_stat_lock();
144 	part_stat_inc(part, ios[STAT_FLUSH]);
145 	part_stat_add(part, nsecs[STAT_FLUSH],
146 		      ktime_get_ns() - rq->start_time_ns);
147 	part_stat_unlock();
148 }
149 
150 /**
151  * blk_flush_complete_seq - complete flush sequence
152  * @rq: PREFLUSH/FUA request being sequenced
153  * @fq: flush queue
154  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155  * @error: whether an error occurred
156  *
157  * @rq just completed @seq part of its flush sequence, record the
158  * completion and trigger the next step.
159  *
160  * CONTEXT:
161  * spin_lock_irq(fq->mq_flush_lock)
162  *
163  * RETURNS:
164  * %true if requests were added to the dispatch queue, %false otherwise.
165  */
166 static void blk_flush_complete_seq(struct request *rq,
167 				   struct blk_flush_queue *fq,
168 				   unsigned int seq, blk_status_t error)
169 {
170 	struct request_queue *q = rq->q;
171 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
172 	unsigned int cmd_flags;
173 
174 	BUG_ON(rq->flush.seq & seq);
175 	rq->flush.seq |= seq;
176 	cmd_flags = rq->cmd_flags;
177 
178 	if (likely(!error))
179 		seq = blk_flush_cur_seq(rq);
180 	else
181 		seq = REQ_FSEQ_DONE;
182 
183 	switch (seq) {
184 	case REQ_FSEQ_PREFLUSH:
185 	case REQ_FSEQ_POSTFLUSH:
186 		/* queue for flush */
187 		if (list_empty(pending))
188 			fq->flush_pending_since = jiffies;
189 		list_move_tail(&rq->flush.list, pending);
190 		break;
191 
192 	case REQ_FSEQ_DATA:
193 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
194 		blk_flush_queue_rq(rq, true);
195 		break;
196 
197 	case REQ_FSEQ_DONE:
198 		/*
199 		 * @rq was previously adjusted by blk_insert_flush() for
200 		 * flush sequencing and may already have gone through the
201 		 * flush data request completion path.  Restore @rq for
202 		 * normal completion and end it.
203 		 */
204 		BUG_ON(!list_empty(&rq->queuelist));
205 		list_del_init(&rq->flush.list);
206 		blk_flush_restore_request(rq);
207 		blk_mq_end_request(rq, error);
208 		break;
209 
210 	default:
211 		BUG();
212 	}
213 
214 	blk_kick_flush(q, fq, cmd_flags);
215 }
216 
217 static void flush_end_io(struct request *flush_rq, blk_status_t error)
218 {
219 	struct request_queue *q = flush_rq->q;
220 	struct list_head *running;
221 	struct request *rq, *n;
222 	unsigned long flags = 0;
223 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
224 	struct blk_mq_hw_ctx *hctx;
225 
226 	blk_account_io_flush(flush_rq);
227 
228 	/* release the tag's ownership to the req cloned from */
229 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
230 
231 	if (!refcount_dec_and_test(&flush_rq->ref)) {
232 		fq->rq_status = error;
233 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
234 		return;
235 	}
236 
237 	if (fq->rq_status != BLK_STS_OK)
238 		error = fq->rq_status;
239 
240 	hctx = flush_rq->mq_hctx;
241 	if (!q->elevator) {
242 		blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
243 		flush_rq->tag = -1;
244 	} else {
245 		blk_mq_put_driver_tag(flush_rq);
246 		flush_rq->internal_tag = -1;
247 	}
248 
249 	running = &fq->flush_queue[fq->flush_running_idx];
250 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
251 
252 	/* account completion of the flush request */
253 	fq->flush_running_idx ^= 1;
254 
255 	/* and push the waiting requests to the next stage */
256 	list_for_each_entry_safe(rq, n, running, flush.list) {
257 		unsigned int seq = blk_flush_cur_seq(rq);
258 
259 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
260 		blk_flush_complete_seq(rq, fq, seq, error);
261 	}
262 
263 	fq->flush_queue_delayed = 0;
264 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
265 }
266 
267 /**
268  * blk_kick_flush - consider issuing flush request
269  * @q: request_queue being kicked
270  * @fq: flush queue
271  * @flags: cmd_flags of the original request
272  *
273  * Flush related states of @q have changed, consider issuing flush request.
274  * Please read the comment at the top of this file for more info.
275  *
276  * CONTEXT:
277  * spin_lock_irq(fq->mq_flush_lock)
278  *
279  */
280 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
281 			   unsigned int flags)
282 {
283 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
284 	struct request *first_rq =
285 		list_first_entry(pending, struct request, flush.list);
286 	struct request *flush_rq = fq->flush_rq;
287 
288 	/* C1 described at the top of this file */
289 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
290 		return;
291 
292 	/* C2 and C3
293 	 *
294 	 * For blk-mq + scheduling, we can risk having all driver tags
295 	 * assigned to empty flushes, and we deadlock if we are expecting
296 	 * other requests to make progress. Don't defer for that case.
297 	 */
298 	if (!list_empty(&fq->flush_data_in_flight) && q->elevator &&
299 	    time_before(jiffies,
300 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
301 		return;
302 
303 	/*
304 	 * Issue flush and toggle pending_idx.  This makes pending_idx
305 	 * different from running_idx, which means flush is in flight.
306 	 */
307 	fq->flush_pending_idx ^= 1;
308 
309 	blk_rq_init(q, flush_rq);
310 
311 	/*
312 	 * In case of none scheduler, borrow tag from the first request
313 	 * since they can't be in flight at the same time. And acquire
314 	 * the tag's ownership for flush req.
315 	 *
316 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
317 	 * just for cheating put/get driver tag.
318 	 */
319 	flush_rq->mq_ctx = first_rq->mq_ctx;
320 	flush_rq->mq_hctx = first_rq->mq_hctx;
321 
322 	if (!q->elevator) {
323 		fq->orig_rq = first_rq;
324 		flush_rq->tag = first_rq->tag;
325 		blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq);
326 	} else {
327 		flush_rq->internal_tag = first_rq->internal_tag;
328 	}
329 
330 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
331 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
332 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
333 	flush_rq->rq_disk = first_rq->rq_disk;
334 	flush_rq->end_io = flush_end_io;
335 
336 	blk_flush_queue_rq(flush_rq, false);
337 }
338 
339 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
340 {
341 	struct request_queue *q = rq->q;
342 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
343 	struct blk_mq_ctx *ctx = rq->mq_ctx;
344 	unsigned long flags;
345 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
346 
347 	if (q->elevator) {
348 		WARN_ON(rq->tag < 0);
349 		blk_mq_put_driver_tag(rq);
350 	}
351 
352 	/*
353 	 * After populating an empty queue, kick it to avoid stall.  Read
354 	 * the comment in flush_end_io().
355 	 */
356 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
357 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
358 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
359 
360 	blk_mq_sched_restart(hctx);
361 }
362 
363 /**
364  * blk_insert_flush - insert a new PREFLUSH/FUA request
365  * @rq: request to insert
366  *
367  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
368  * or __blk_mq_run_hw_queue() to dispatch request.
369  * @rq is being submitted.  Analyze what needs to be done and put it on the
370  * right queue.
371  */
372 void blk_insert_flush(struct request *rq)
373 {
374 	struct request_queue *q = rq->q;
375 	unsigned long fflags = q->queue_flags;	/* may change, cache */
376 	unsigned int policy = blk_flush_policy(fflags, rq);
377 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
378 
379 	/*
380 	 * @policy now records what operations need to be done.  Adjust
381 	 * REQ_PREFLUSH and FUA for the driver.
382 	 */
383 	rq->cmd_flags &= ~REQ_PREFLUSH;
384 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
385 		rq->cmd_flags &= ~REQ_FUA;
386 
387 	/*
388 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
389 	 * of those flags, we have to set REQ_SYNC to avoid skewing
390 	 * the request accounting.
391 	 */
392 	rq->cmd_flags |= REQ_SYNC;
393 
394 	/*
395 	 * An empty flush handed down from a stacking driver may
396 	 * translate into nothing if the underlying device does not
397 	 * advertise a write-back cache.  In this case, simply
398 	 * complete the request.
399 	 */
400 	if (!policy) {
401 		blk_mq_end_request(rq, 0);
402 		return;
403 	}
404 
405 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
406 
407 	/*
408 	 * If there's data but flush is not necessary, the request can be
409 	 * processed directly without going through flush machinery.  Queue
410 	 * for normal execution.
411 	 */
412 	if ((policy & REQ_FSEQ_DATA) &&
413 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
414 		blk_mq_request_bypass_insert(rq, false);
415 		return;
416 	}
417 
418 	/*
419 	 * @rq should go through flush machinery.  Mark it part of flush
420 	 * sequence and submit for further processing.
421 	 */
422 	memset(&rq->flush, 0, sizeof(rq->flush));
423 	INIT_LIST_HEAD(&rq->flush.list);
424 	rq->rq_flags |= RQF_FLUSH_SEQ;
425 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
426 
427 	rq->end_io = mq_flush_data_end_io;
428 
429 	spin_lock_irq(&fq->mq_flush_lock);
430 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
431 	spin_unlock_irq(&fq->mq_flush_lock);
432 }
433 
434 /**
435  * blkdev_issue_flush - queue a flush
436  * @bdev:	blockdev to issue flush for
437  * @gfp_mask:	memory allocation flags (for bio_alloc)
438  * @error_sector:	error sector
439  *
440  * Description:
441  *    Issue a flush for the block device in question. Caller can supply
442  *    room for storing the error offset in case of a flush error, if they
443  *    wish to.
444  */
445 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
446 		sector_t *error_sector)
447 {
448 	struct request_queue *q;
449 	struct bio *bio;
450 	int ret = 0;
451 
452 	if (bdev->bd_disk == NULL)
453 		return -ENXIO;
454 
455 	q = bdev_get_queue(bdev);
456 	if (!q)
457 		return -ENXIO;
458 
459 	/*
460 	 * some block devices may not have their queue correctly set up here
461 	 * (e.g. loop device without a backing file) and so issuing a flush
462 	 * here will panic. Ensure there is a request function before issuing
463 	 * the flush.
464 	 */
465 	if (!q->make_request_fn)
466 		return -ENXIO;
467 
468 	bio = bio_alloc(gfp_mask, 0);
469 	bio_set_dev(bio, bdev);
470 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
471 
472 	ret = submit_bio_wait(bio);
473 
474 	/*
475 	 * The driver must store the error location in ->bi_sector, if
476 	 * it supports it. For non-stacked drivers, this should be
477 	 * copied from blk_rq_pos(rq).
478 	 */
479 	if (error_sector)
480 		*error_sector = bio->bi_iter.bi_sector;
481 
482 	bio_put(bio);
483 	return ret;
484 }
485 EXPORT_SYMBOL(blkdev_issue_flush);
486 
487 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
488 		int node, int cmd_size, gfp_t flags)
489 {
490 	struct blk_flush_queue *fq;
491 	int rq_sz = sizeof(struct request);
492 
493 	fq = kzalloc_node(sizeof(*fq), flags, node);
494 	if (!fq)
495 		goto fail;
496 
497 	spin_lock_init(&fq->mq_flush_lock);
498 
499 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
500 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
501 	if (!fq->flush_rq)
502 		goto fail_rq;
503 
504 	INIT_LIST_HEAD(&fq->flush_queue[0]);
505 	INIT_LIST_HEAD(&fq->flush_queue[1]);
506 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
507 
508 	return fq;
509 
510  fail_rq:
511 	kfree(fq);
512  fail:
513 	return NULL;
514 }
515 
516 void blk_free_flush_queue(struct blk_flush_queue *fq)
517 {
518 	/* bio based request queue hasn't flush queue */
519 	if (!fq)
520 		return;
521 
522 	kfree(fq->flush_rq);
523 	kfree(fq);
524 }
525