xref: /openbmc/linux/block/blk-flush.c (revision afb46f79)
1 /*
2  * Functions to sequence FLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_FLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no
21  * data or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_FLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27  * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * q->flush_queue[q->flush_pending_idx].  Once certain criteria are met, a
32  * flush is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of FLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without FLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each FLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 
77 /* FLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static bool blk_kick_flush(struct request_queue *q);
95 
96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
97 {
98 	unsigned int policy = 0;
99 
100 	if (blk_rq_sectors(rq))
101 		policy |= REQ_FSEQ_DATA;
102 
103 	if (fflags & REQ_FLUSH) {
104 		if (rq->cmd_flags & REQ_FLUSH)
105 			policy |= REQ_FSEQ_PREFLUSH;
106 		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
107 			policy |= REQ_FSEQ_POSTFLUSH;
108 	}
109 	return policy;
110 }
111 
112 static unsigned int blk_flush_cur_seq(struct request *rq)
113 {
114 	return 1 << ffz(rq->flush.seq);
115 }
116 
117 static void blk_flush_restore_request(struct request *rq)
118 {
119 	/*
120 	 * After flush data completion, @rq->bio is %NULL but we need to
121 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
122 	 * original @rq->bio.  Restore it.
123 	 */
124 	rq->bio = rq->biotail;
125 
126 	/* make @rq a normal request */
127 	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
128 	rq->end_io = rq->flush.saved_end_io;
129 
130 	blk_clear_rq_complete(rq);
131 }
132 
133 static void mq_flush_run(struct work_struct *work)
134 {
135 	struct request *rq;
136 
137 	rq = container_of(work, struct request, mq_flush_work);
138 
139 	memset(&rq->csd, 0, sizeof(rq->csd));
140 	blk_mq_insert_request(rq, false, true, false);
141 }
142 
143 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
144 {
145 	if (rq->q->mq_ops) {
146 		INIT_WORK(&rq->mq_flush_work, mq_flush_run);
147 		kblockd_schedule_work(rq->q, &rq->mq_flush_work);
148 		return false;
149 	} else {
150 		if (add_front)
151 			list_add(&rq->queuelist, &rq->q->queue_head);
152 		else
153 			list_add_tail(&rq->queuelist, &rq->q->queue_head);
154 		return true;
155 	}
156 }
157 
158 /**
159  * blk_flush_complete_seq - complete flush sequence
160  * @rq: FLUSH/FUA request being sequenced
161  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
162  * @error: whether an error occurred
163  *
164  * @rq just completed @seq part of its flush sequence, record the
165  * completion and trigger the next step.
166  *
167  * CONTEXT:
168  * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
169  *
170  * RETURNS:
171  * %true if requests were added to the dispatch queue, %false otherwise.
172  */
173 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
174 				   int error)
175 {
176 	struct request_queue *q = rq->q;
177 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
178 	bool queued = false, kicked;
179 
180 	BUG_ON(rq->flush.seq & seq);
181 	rq->flush.seq |= seq;
182 
183 	if (likely(!error))
184 		seq = blk_flush_cur_seq(rq);
185 	else
186 		seq = REQ_FSEQ_DONE;
187 
188 	switch (seq) {
189 	case REQ_FSEQ_PREFLUSH:
190 	case REQ_FSEQ_POSTFLUSH:
191 		/* queue for flush */
192 		if (list_empty(pending))
193 			q->flush_pending_since = jiffies;
194 		list_move_tail(&rq->flush.list, pending);
195 		break;
196 
197 	case REQ_FSEQ_DATA:
198 		list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
199 		queued = blk_flush_queue_rq(rq, true);
200 		break;
201 
202 	case REQ_FSEQ_DONE:
203 		/*
204 		 * @rq was previously adjusted by blk_flush_issue() for
205 		 * flush sequencing and may already have gone through the
206 		 * flush data request completion path.  Restore @rq for
207 		 * normal completion and end it.
208 		 */
209 		BUG_ON(!list_empty(&rq->queuelist));
210 		list_del_init(&rq->flush.list);
211 		blk_flush_restore_request(rq);
212 		if (q->mq_ops)
213 			blk_mq_end_io(rq, error);
214 		else
215 			__blk_end_request_all(rq, error);
216 		break;
217 
218 	default:
219 		BUG();
220 	}
221 
222 	kicked = blk_kick_flush(q);
223 	return kicked | queued;
224 }
225 
226 static void flush_end_io(struct request *flush_rq, int error)
227 {
228 	struct request_queue *q = flush_rq->q;
229 	struct list_head *running;
230 	bool queued = false;
231 	struct request *rq, *n;
232 	unsigned long flags = 0;
233 
234 	if (q->mq_ops)
235 		spin_lock_irqsave(&q->mq_flush_lock, flags);
236 
237 	running = &q->flush_queue[q->flush_running_idx];
238 	BUG_ON(q->flush_pending_idx == q->flush_running_idx);
239 
240 	/* account completion of the flush request */
241 	q->flush_running_idx ^= 1;
242 
243 	if (!q->mq_ops)
244 		elv_completed_request(q, flush_rq);
245 
246 	/* and push the waiting requests to the next stage */
247 	list_for_each_entry_safe(rq, n, running, flush.list) {
248 		unsigned int seq = blk_flush_cur_seq(rq);
249 
250 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
251 		queued |= blk_flush_complete_seq(rq, seq, error);
252 	}
253 
254 	/*
255 	 * Kick the queue to avoid stall for two cases:
256 	 * 1. Moving a request silently to empty queue_head may stall the
257 	 * queue.
258 	 * 2. When flush request is running in non-queueable queue, the
259 	 * queue is hold. Restart the queue after flush request is finished
260 	 * to avoid stall.
261 	 * This function is called from request completion path and calling
262 	 * directly into request_fn may confuse the driver.  Always use
263 	 * kblockd.
264 	 */
265 	if (queued || q->flush_queue_delayed) {
266 		WARN_ON(q->mq_ops);
267 		blk_run_queue_async(q);
268 	}
269 	q->flush_queue_delayed = 0;
270 	if (q->mq_ops)
271 		spin_unlock_irqrestore(&q->mq_flush_lock, flags);
272 }
273 
274 /**
275  * blk_kick_flush - consider issuing flush request
276  * @q: request_queue being kicked
277  *
278  * Flush related states of @q have changed, consider issuing flush request.
279  * Please read the comment at the top of this file for more info.
280  *
281  * CONTEXT:
282  * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
283  *
284  * RETURNS:
285  * %true if flush was issued, %false otherwise.
286  */
287 static bool blk_kick_flush(struct request_queue *q)
288 {
289 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
290 	struct request *first_rq =
291 		list_first_entry(pending, struct request, flush.list);
292 
293 	/* C1 described at the top of this file */
294 	if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
295 		return false;
296 
297 	/* C2 and C3 */
298 	if (!list_empty(&q->flush_data_in_flight) &&
299 	    time_before(jiffies,
300 			q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
301 		return false;
302 
303 	/*
304 	 * Issue flush and toggle pending_idx.  This makes pending_idx
305 	 * different from running_idx, which means flush is in flight.
306 	 */
307 	q->flush_pending_idx ^= 1;
308 
309 	if (q->mq_ops) {
310 		struct blk_mq_ctx *ctx = first_rq->mq_ctx;
311 		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
312 
313 		blk_mq_rq_init(hctx, q->flush_rq);
314 		q->flush_rq->mq_ctx = ctx;
315 
316 		/*
317 		 * Reuse the tag value from the fist waiting request,
318 		 * with blk-mq the tag is generated during request
319 		 * allocation and drivers can rely on it being inside
320 		 * the range they asked for.
321 		 */
322 		q->flush_rq->tag = first_rq->tag;
323 	} else {
324 		blk_rq_init(q, q->flush_rq);
325 	}
326 
327 	q->flush_rq->cmd_type = REQ_TYPE_FS;
328 	q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
329 	q->flush_rq->rq_disk = first_rq->rq_disk;
330 	q->flush_rq->end_io = flush_end_io;
331 
332 	return blk_flush_queue_rq(q->flush_rq, false);
333 }
334 
335 static void flush_data_end_io(struct request *rq, int error)
336 {
337 	struct request_queue *q = rq->q;
338 
339 	/*
340 	 * After populating an empty queue, kick it to avoid stall.  Read
341 	 * the comment in flush_end_io().
342 	 */
343 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
344 		blk_run_queue_async(q);
345 }
346 
347 static void mq_flush_data_end_io(struct request *rq, int error)
348 {
349 	struct request_queue *q = rq->q;
350 	struct blk_mq_hw_ctx *hctx;
351 	struct blk_mq_ctx *ctx;
352 	unsigned long flags;
353 
354 	ctx = rq->mq_ctx;
355 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
356 
357 	/*
358 	 * After populating an empty queue, kick it to avoid stall.  Read
359 	 * the comment in flush_end_io().
360 	 */
361 	spin_lock_irqsave(&q->mq_flush_lock, flags);
362 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
363 		blk_mq_run_hw_queue(hctx, true);
364 	spin_unlock_irqrestore(&q->mq_flush_lock, flags);
365 }
366 
367 /**
368  * blk_insert_flush - insert a new FLUSH/FUA request
369  * @rq: request to insert
370  *
371  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
372  * or __blk_mq_run_hw_queue() to dispatch request.
373  * @rq is being submitted.  Analyze what needs to be done and put it on the
374  * right queue.
375  *
376  * CONTEXT:
377  * spin_lock_irq(q->queue_lock) in !mq case
378  */
379 void blk_insert_flush(struct request *rq)
380 {
381 	struct request_queue *q = rq->q;
382 	unsigned int fflags = q->flush_flags;	/* may change, cache */
383 	unsigned int policy = blk_flush_policy(fflags, rq);
384 
385 	/*
386 	 * @policy now records what operations need to be done.  Adjust
387 	 * REQ_FLUSH and FUA for the driver.
388 	 */
389 	rq->cmd_flags &= ~REQ_FLUSH;
390 	if (!(fflags & REQ_FUA))
391 		rq->cmd_flags &= ~REQ_FUA;
392 
393 	/*
394 	 * An empty flush handed down from a stacking driver may
395 	 * translate into nothing if the underlying device does not
396 	 * advertise a write-back cache.  In this case, simply
397 	 * complete the request.
398 	 */
399 	if (!policy) {
400 		if (q->mq_ops)
401 			blk_mq_end_io(rq, 0);
402 		else
403 			__blk_end_bidi_request(rq, 0, 0, 0);
404 		return;
405 	}
406 
407 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
408 
409 	/*
410 	 * If there's data but flush is not necessary, the request can be
411 	 * processed directly without going through flush machinery.  Queue
412 	 * for normal execution.
413 	 */
414 	if ((policy & REQ_FSEQ_DATA) &&
415 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
416 		if (q->mq_ops) {
417 			blk_mq_insert_request(rq, false, false, true);
418 		} else
419 			list_add_tail(&rq->queuelist, &q->queue_head);
420 		return;
421 	}
422 
423 	/*
424 	 * @rq should go through flush machinery.  Mark it part of flush
425 	 * sequence and submit for further processing.
426 	 */
427 	memset(&rq->flush, 0, sizeof(rq->flush));
428 	INIT_LIST_HEAD(&rq->flush.list);
429 	rq->cmd_flags |= REQ_FLUSH_SEQ;
430 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
431 	if (q->mq_ops) {
432 		rq->end_io = mq_flush_data_end_io;
433 
434 		spin_lock_irq(&q->mq_flush_lock);
435 		blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
436 		spin_unlock_irq(&q->mq_flush_lock);
437 		return;
438 	}
439 	rq->end_io = flush_data_end_io;
440 
441 	blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
442 }
443 
444 /**
445  * blk_abort_flushes - @q is being aborted, abort flush requests
446  * @q: request_queue being aborted
447  *
448  * To be called from elv_abort_queue().  @q is being aborted.  Prepare all
449  * FLUSH/FUA requests for abortion.
450  *
451  * CONTEXT:
452  * spin_lock_irq(q->queue_lock)
453  */
454 void blk_abort_flushes(struct request_queue *q)
455 {
456 	struct request *rq, *n;
457 	int i;
458 
459 	/*
460 	 * Requests in flight for data are already owned by the dispatch
461 	 * queue or the device driver.  Just restore for normal completion.
462 	 */
463 	list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
464 		list_del_init(&rq->flush.list);
465 		blk_flush_restore_request(rq);
466 	}
467 
468 	/*
469 	 * We need to give away requests on flush queues.  Restore for
470 	 * normal completion and put them on the dispatch queue.
471 	 */
472 	for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
473 		list_for_each_entry_safe(rq, n, &q->flush_queue[i],
474 					 flush.list) {
475 			list_del_init(&rq->flush.list);
476 			blk_flush_restore_request(rq);
477 			list_add_tail(&rq->queuelist, &q->queue_head);
478 		}
479 	}
480 }
481 
482 /**
483  * blkdev_issue_flush - queue a flush
484  * @bdev:	blockdev to issue flush for
485  * @gfp_mask:	memory allocation flags (for bio_alloc)
486  * @error_sector:	error sector
487  *
488  * Description:
489  *    Issue a flush for the block device in question. Caller can supply
490  *    room for storing the error offset in case of a flush error, if they
491  *    wish to. If WAIT flag is not passed then caller may check only what
492  *    request was pushed in some internal queue for later handling.
493  */
494 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
495 		sector_t *error_sector)
496 {
497 	struct request_queue *q;
498 	struct bio *bio;
499 	int ret = 0;
500 
501 	if (bdev->bd_disk == NULL)
502 		return -ENXIO;
503 
504 	q = bdev_get_queue(bdev);
505 	if (!q)
506 		return -ENXIO;
507 
508 	/*
509 	 * some block devices may not have their queue correctly set up here
510 	 * (e.g. loop device without a backing file) and so issuing a flush
511 	 * here will panic. Ensure there is a request function before issuing
512 	 * the flush.
513 	 */
514 	if (!q->make_request_fn)
515 		return -ENXIO;
516 
517 	bio = bio_alloc(gfp_mask, 0);
518 	bio->bi_bdev = bdev;
519 
520 	ret = submit_bio_wait(WRITE_FLUSH, bio);
521 
522 	/*
523 	 * The driver must store the error location in ->bi_sector, if
524 	 * it supports it. For non-stacked drivers, this should be
525 	 * copied from blk_rq_pos(rq).
526 	 */
527 	if (error_sector)
528 		*error_sector = bio->bi_iter.bi_sector;
529 
530 	bio_put(bio);
531 	return ret;
532 }
533 EXPORT_SYMBOL(blkdev_issue_flush);
534 
535 void blk_mq_init_flush(struct request_queue *q)
536 {
537 	spin_lock_init(&q->mq_flush_lock);
538 }
539