1 /* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a 32 * flush is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 77 /* FLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static bool blk_kick_flush(struct request_queue *q); 95 96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq) 97 { 98 unsigned int policy = 0; 99 100 if (blk_rq_sectors(rq)) 101 policy |= REQ_FSEQ_DATA; 102 103 if (fflags & REQ_FLUSH) { 104 if (rq->cmd_flags & REQ_FLUSH) 105 policy |= REQ_FSEQ_PREFLUSH; 106 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA)) 107 policy |= REQ_FSEQ_POSTFLUSH; 108 } 109 return policy; 110 } 111 112 static unsigned int blk_flush_cur_seq(struct request *rq) 113 { 114 return 1 << ffz(rq->flush.seq); 115 } 116 117 static void blk_flush_restore_request(struct request *rq) 118 { 119 /* 120 * After flush data completion, @rq->bio is %NULL but we need to 121 * complete the bio again. @rq->biotail is guaranteed to equal the 122 * original @rq->bio. Restore it. 123 */ 124 rq->bio = rq->biotail; 125 126 /* make @rq a normal request */ 127 rq->cmd_flags &= ~REQ_FLUSH_SEQ; 128 rq->end_io = rq->flush.saved_end_io; 129 130 blk_clear_rq_complete(rq); 131 } 132 133 static void mq_flush_run(struct work_struct *work) 134 { 135 struct request *rq; 136 137 rq = container_of(work, struct request, mq_flush_work); 138 139 memset(&rq->csd, 0, sizeof(rq->csd)); 140 blk_mq_insert_request(rq, false, true, false); 141 } 142 143 static bool blk_flush_queue_rq(struct request *rq, bool add_front) 144 { 145 if (rq->q->mq_ops) { 146 INIT_WORK(&rq->mq_flush_work, mq_flush_run); 147 kblockd_schedule_work(rq->q, &rq->mq_flush_work); 148 return false; 149 } else { 150 if (add_front) 151 list_add(&rq->queuelist, &rq->q->queue_head); 152 else 153 list_add_tail(&rq->queuelist, &rq->q->queue_head); 154 return true; 155 } 156 } 157 158 /** 159 * blk_flush_complete_seq - complete flush sequence 160 * @rq: FLUSH/FUA request being sequenced 161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 162 * @error: whether an error occurred 163 * 164 * @rq just completed @seq part of its flush sequence, record the 165 * completion and trigger the next step. 166 * 167 * CONTEXT: 168 * spin_lock_irq(q->queue_lock or q->mq_flush_lock) 169 * 170 * RETURNS: 171 * %true if requests were added to the dispatch queue, %false otherwise. 172 */ 173 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq, 174 int error) 175 { 176 struct request_queue *q = rq->q; 177 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 178 bool queued = false, kicked; 179 180 BUG_ON(rq->flush.seq & seq); 181 rq->flush.seq |= seq; 182 183 if (likely(!error)) 184 seq = blk_flush_cur_seq(rq); 185 else 186 seq = REQ_FSEQ_DONE; 187 188 switch (seq) { 189 case REQ_FSEQ_PREFLUSH: 190 case REQ_FSEQ_POSTFLUSH: 191 /* queue for flush */ 192 if (list_empty(pending)) 193 q->flush_pending_since = jiffies; 194 list_move_tail(&rq->flush.list, pending); 195 break; 196 197 case REQ_FSEQ_DATA: 198 list_move_tail(&rq->flush.list, &q->flush_data_in_flight); 199 queued = blk_flush_queue_rq(rq, true); 200 break; 201 202 case REQ_FSEQ_DONE: 203 /* 204 * @rq was previously adjusted by blk_flush_issue() for 205 * flush sequencing and may already have gone through the 206 * flush data request completion path. Restore @rq for 207 * normal completion and end it. 208 */ 209 BUG_ON(!list_empty(&rq->queuelist)); 210 list_del_init(&rq->flush.list); 211 blk_flush_restore_request(rq); 212 if (q->mq_ops) 213 blk_mq_end_io(rq, error); 214 else 215 __blk_end_request_all(rq, error); 216 break; 217 218 default: 219 BUG(); 220 } 221 222 kicked = blk_kick_flush(q); 223 return kicked | queued; 224 } 225 226 static void flush_end_io(struct request *flush_rq, int error) 227 { 228 struct request_queue *q = flush_rq->q; 229 struct list_head *running; 230 bool queued = false; 231 struct request *rq, *n; 232 unsigned long flags = 0; 233 234 if (q->mq_ops) 235 spin_lock_irqsave(&q->mq_flush_lock, flags); 236 237 running = &q->flush_queue[q->flush_running_idx]; 238 BUG_ON(q->flush_pending_idx == q->flush_running_idx); 239 240 /* account completion of the flush request */ 241 q->flush_running_idx ^= 1; 242 243 if (!q->mq_ops) 244 elv_completed_request(q, flush_rq); 245 246 /* and push the waiting requests to the next stage */ 247 list_for_each_entry_safe(rq, n, running, flush.list) { 248 unsigned int seq = blk_flush_cur_seq(rq); 249 250 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 251 queued |= blk_flush_complete_seq(rq, seq, error); 252 } 253 254 /* 255 * Kick the queue to avoid stall for two cases: 256 * 1. Moving a request silently to empty queue_head may stall the 257 * queue. 258 * 2. When flush request is running in non-queueable queue, the 259 * queue is hold. Restart the queue after flush request is finished 260 * to avoid stall. 261 * This function is called from request completion path and calling 262 * directly into request_fn may confuse the driver. Always use 263 * kblockd. 264 */ 265 if (queued || q->flush_queue_delayed) { 266 WARN_ON(q->mq_ops); 267 blk_run_queue_async(q); 268 } 269 q->flush_queue_delayed = 0; 270 if (q->mq_ops) 271 spin_unlock_irqrestore(&q->mq_flush_lock, flags); 272 } 273 274 /** 275 * blk_kick_flush - consider issuing flush request 276 * @q: request_queue being kicked 277 * 278 * Flush related states of @q have changed, consider issuing flush request. 279 * Please read the comment at the top of this file for more info. 280 * 281 * CONTEXT: 282 * spin_lock_irq(q->queue_lock or q->mq_flush_lock) 283 * 284 * RETURNS: 285 * %true if flush was issued, %false otherwise. 286 */ 287 static bool blk_kick_flush(struct request_queue *q) 288 { 289 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 290 struct request *first_rq = 291 list_first_entry(pending, struct request, flush.list); 292 293 /* C1 described at the top of this file */ 294 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending)) 295 return false; 296 297 /* C2 and C3 */ 298 if (!list_empty(&q->flush_data_in_flight) && 299 time_before(jiffies, 300 q->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 301 return false; 302 303 /* 304 * Issue flush and toggle pending_idx. This makes pending_idx 305 * different from running_idx, which means flush is in flight. 306 */ 307 q->flush_pending_idx ^= 1; 308 309 if (q->mq_ops) { 310 struct blk_mq_ctx *ctx = first_rq->mq_ctx; 311 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu); 312 313 blk_mq_rq_init(hctx, q->flush_rq); 314 q->flush_rq->mq_ctx = ctx; 315 316 /* 317 * Reuse the tag value from the fist waiting request, 318 * with blk-mq the tag is generated during request 319 * allocation and drivers can rely on it being inside 320 * the range they asked for. 321 */ 322 q->flush_rq->tag = first_rq->tag; 323 } else { 324 blk_rq_init(q, q->flush_rq); 325 } 326 327 q->flush_rq->cmd_type = REQ_TYPE_FS; 328 q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ; 329 q->flush_rq->rq_disk = first_rq->rq_disk; 330 q->flush_rq->end_io = flush_end_io; 331 332 return blk_flush_queue_rq(q->flush_rq, false); 333 } 334 335 static void flush_data_end_io(struct request *rq, int error) 336 { 337 struct request_queue *q = rq->q; 338 339 /* 340 * After populating an empty queue, kick it to avoid stall. Read 341 * the comment in flush_end_io(). 342 */ 343 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error)) 344 blk_run_queue_async(q); 345 } 346 347 static void mq_flush_data_end_io(struct request *rq, int error) 348 { 349 struct request_queue *q = rq->q; 350 struct blk_mq_hw_ctx *hctx; 351 struct blk_mq_ctx *ctx; 352 unsigned long flags; 353 354 ctx = rq->mq_ctx; 355 hctx = q->mq_ops->map_queue(q, ctx->cpu); 356 357 /* 358 * After populating an empty queue, kick it to avoid stall. Read 359 * the comment in flush_end_io(). 360 */ 361 spin_lock_irqsave(&q->mq_flush_lock, flags); 362 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error)) 363 blk_mq_run_hw_queue(hctx, true); 364 spin_unlock_irqrestore(&q->mq_flush_lock, flags); 365 } 366 367 /** 368 * blk_insert_flush - insert a new FLUSH/FUA request 369 * @rq: request to insert 370 * 371 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 372 * or __blk_mq_run_hw_queue() to dispatch request. 373 * @rq is being submitted. Analyze what needs to be done and put it on the 374 * right queue. 375 * 376 * CONTEXT: 377 * spin_lock_irq(q->queue_lock) in !mq case 378 */ 379 void blk_insert_flush(struct request *rq) 380 { 381 struct request_queue *q = rq->q; 382 unsigned int fflags = q->flush_flags; /* may change, cache */ 383 unsigned int policy = blk_flush_policy(fflags, rq); 384 385 /* 386 * @policy now records what operations need to be done. Adjust 387 * REQ_FLUSH and FUA for the driver. 388 */ 389 rq->cmd_flags &= ~REQ_FLUSH; 390 if (!(fflags & REQ_FUA)) 391 rq->cmd_flags &= ~REQ_FUA; 392 393 /* 394 * An empty flush handed down from a stacking driver may 395 * translate into nothing if the underlying device does not 396 * advertise a write-back cache. In this case, simply 397 * complete the request. 398 */ 399 if (!policy) { 400 if (q->mq_ops) 401 blk_mq_end_io(rq, 0); 402 else 403 __blk_end_bidi_request(rq, 0, 0, 0); 404 return; 405 } 406 407 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 408 409 /* 410 * If there's data but flush is not necessary, the request can be 411 * processed directly without going through flush machinery. Queue 412 * for normal execution. 413 */ 414 if ((policy & REQ_FSEQ_DATA) && 415 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 416 if (q->mq_ops) { 417 blk_mq_insert_request(rq, false, false, true); 418 } else 419 list_add_tail(&rq->queuelist, &q->queue_head); 420 return; 421 } 422 423 /* 424 * @rq should go through flush machinery. Mark it part of flush 425 * sequence and submit for further processing. 426 */ 427 memset(&rq->flush, 0, sizeof(rq->flush)); 428 INIT_LIST_HEAD(&rq->flush.list); 429 rq->cmd_flags |= REQ_FLUSH_SEQ; 430 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 431 if (q->mq_ops) { 432 rq->end_io = mq_flush_data_end_io; 433 434 spin_lock_irq(&q->mq_flush_lock); 435 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0); 436 spin_unlock_irq(&q->mq_flush_lock); 437 return; 438 } 439 rq->end_io = flush_data_end_io; 440 441 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0); 442 } 443 444 /** 445 * blk_abort_flushes - @q is being aborted, abort flush requests 446 * @q: request_queue being aborted 447 * 448 * To be called from elv_abort_queue(). @q is being aborted. Prepare all 449 * FLUSH/FUA requests for abortion. 450 * 451 * CONTEXT: 452 * spin_lock_irq(q->queue_lock) 453 */ 454 void blk_abort_flushes(struct request_queue *q) 455 { 456 struct request *rq, *n; 457 int i; 458 459 /* 460 * Requests in flight for data are already owned by the dispatch 461 * queue or the device driver. Just restore for normal completion. 462 */ 463 list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) { 464 list_del_init(&rq->flush.list); 465 blk_flush_restore_request(rq); 466 } 467 468 /* 469 * We need to give away requests on flush queues. Restore for 470 * normal completion and put them on the dispatch queue. 471 */ 472 for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) { 473 list_for_each_entry_safe(rq, n, &q->flush_queue[i], 474 flush.list) { 475 list_del_init(&rq->flush.list); 476 blk_flush_restore_request(rq); 477 list_add_tail(&rq->queuelist, &q->queue_head); 478 } 479 } 480 } 481 482 /** 483 * blkdev_issue_flush - queue a flush 484 * @bdev: blockdev to issue flush for 485 * @gfp_mask: memory allocation flags (for bio_alloc) 486 * @error_sector: error sector 487 * 488 * Description: 489 * Issue a flush for the block device in question. Caller can supply 490 * room for storing the error offset in case of a flush error, if they 491 * wish to. If WAIT flag is not passed then caller may check only what 492 * request was pushed in some internal queue for later handling. 493 */ 494 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 495 sector_t *error_sector) 496 { 497 struct request_queue *q; 498 struct bio *bio; 499 int ret = 0; 500 501 if (bdev->bd_disk == NULL) 502 return -ENXIO; 503 504 q = bdev_get_queue(bdev); 505 if (!q) 506 return -ENXIO; 507 508 /* 509 * some block devices may not have their queue correctly set up here 510 * (e.g. loop device without a backing file) and so issuing a flush 511 * here will panic. Ensure there is a request function before issuing 512 * the flush. 513 */ 514 if (!q->make_request_fn) 515 return -ENXIO; 516 517 bio = bio_alloc(gfp_mask, 0); 518 bio->bi_bdev = bdev; 519 520 ret = submit_bio_wait(WRITE_FLUSH, bio); 521 522 /* 523 * The driver must store the error location in ->bi_sector, if 524 * it supports it. For non-stacked drivers, this should be 525 * copied from blk_rq_pos(rq). 526 */ 527 if (error_sector) 528 *error_sector = bio->bi_iter.bi_sector; 529 530 bio_put(bio); 531 return ret; 532 } 533 EXPORT_SYMBOL(blkdev_issue_flush); 534 535 void blk_mq_init_flush(struct request_queue *q) 536 { 537 spin_lock_init(&q->mq_flush_lock); 538 } 539