1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 #include <linux/lockdep.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static void blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, unsigned int flags); 98 99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 100 { 101 unsigned int policy = 0; 102 103 if (blk_rq_sectors(rq)) 104 policy |= REQ_FSEQ_DATA; 105 106 if (fflags & (1UL << QUEUE_FLAG_WC)) { 107 if (rq->cmd_flags & REQ_PREFLUSH) 108 policy |= REQ_FSEQ_PREFLUSH; 109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 110 (rq->cmd_flags & REQ_FUA)) 111 policy |= REQ_FSEQ_POSTFLUSH; 112 } 113 return policy; 114 } 115 116 static unsigned int blk_flush_cur_seq(struct request *rq) 117 { 118 return 1 << ffz(rq->flush.seq); 119 } 120 121 static void blk_flush_restore_request(struct request *rq) 122 { 123 /* 124 * After flush data completion, @rq->bio is %NULL but we need to 125 * complete the bio again. @rq->biotail is guaranteed to equal the 126 * original @rq->bio. Restore it. 127 */ 128 rq->bio = rq->biotail; 129 130 /* make @rq a normal request */ 131 rq->rq_flags &= ~RQF_FLUSH_SEQ; 132 rq->end_io = rq->flush.saved_end_io; 133 } 134 135 static void blk_flush_queue_rq(struct request *rq, bool add_front) 136 { 137 blk_mq_add_to_requeue_list(rq, add_front, true); 138 } 139 140 static void blk_account_io_flush(struct request *rq) 141 { 142 struct hd_struct *part = &rq->rq_disk->part0; 143 144 part_stat_lock(); 145 part_stat_inc(part, ios[STAT_FLUSH]); 146 part_stat_add(part, nsecs[STAT_FLUSH], 147 ktime_get_ns() - rq->start_time_ns); 148 part_stat_unlock(); 149 } 150 151 /** 152 * blk_flush_complete_seq - complete flush sequence 153 * @rq: PREFLUSH/FUA request being sequenced 154 * @fq: flush queue 155 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 156 * @error: whether an error occurred 157 * 158 * @rq just completed @seq part of its flush sequence, record the 159 * completion and trigger the next step. 160 * 161 * CONTEXT: 162 * spin_lock_irq(fq->mq_flush_lock) 163 */ 164 static void blk_flush_complete_seq(struct request *rq, 165 struct blk_flush_queue *fq, 166 unsigned int seq, blk_status_t error) 167 { 168 struct request_queue *q = rq->q; 169 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 170 unsigned int cmd_flags; 171 172 BUG_ON(rq->flush.seq & seq); 173 rq->flush.seq |= seq; 174 cmd_flags = rq->cmd_flags; 175 176 if (likely(!error)) 177 seq = blk_flush_cur_seq(rq); 178 else 179 seq = REQ_FSEQ_DONE; 180 181 switch (seq) { 182 case REQ_FSEQ_PREFLUSH: 183 case REQ_FSEQ_POSTFLUSH: 184 /* queue for flush */ 185 if (list_empty(pending)) 186 fq->flush_pending_since = jiffies; 187 list_move_tail(&rq->flush.list, pending); 188 break; 189 190 case REQ_FSEQ_DATA: 191 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 192 blk_flush_queue_rq(rq, true); 193 break; 194 195 case REQ_FSEQ_DONE: 196 /* 197 * @rq was previously adjusted by blk_insert_flush() for 198 * flush sequencing and may already have gone through the 199 * flush data request completion path. Restore @rq for 200 * normal completion and end it. 201 */ 202 BUG_ON(!list_empty(&rq->queuelist)); 203 list_del_init(&rq->flush.list); 204 blk_flush_restore_request(rq); 205 blk_mq_end_request(rq, error); 206 break; 207 208 default: 209 BUG(); 210 } 211 212 blk_kick_flush(q, fq, cmd_flags); 213 } 214 215 static void flush_end_io(struct request *flush_rq, blk_status_t error) 216 { 217 struct request_queue *q = flush_rq->q; 218 struct list_head *running; 219 struct request *rq, *n; 220 unsigned long flags = 0; 221 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 222 223 blk_account_io_flush(flush_rq); 224 225 /* release the tag's ownership to the req cloned from */ 226 spin_lock_irqsave(&fq->mq_flush_lock, flags); 227 228 if (!refcount_dec_and_test(&flush_rq->ref)) { 229 fq->rq_status = error; 230 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 231 return; 232 } 233 234 /* 235 * Flush request has to be marked as IDLE when it is really ended 236 * because its .end_io() is called from timeout code path too for 237 * avoiding use-after-free. 238 */ 239 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 240 if (fq->rq_status != BLK_STS_OK) 241 error = fq->rq_status; 242 243 if (!q->elevator) { 244 flush_rq->tag = BLK_MQ_NO_TAG; 245 } else { 246 blk_mq_put_driver_tag(flush_rq); 247 flush_rq->internal_tag = BLK_MQ_NO_TAG; 248 } 249 250 running = &fq->flush_queue[fq->flush_running_idx]; 251 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 252 253 /* account completion of the flush request */ 254 fq->flush_running_idx ^= 1; 255 256 /* and push the waiting requests to the next stage */ 257 list_for_each_entry_safe(rq, n, running, flush.list) { 258 unsigned int seq = blk_flush_cur_seq(rq); 259 260 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 261 blk_flush_complete_seq(rq, fq, seq, error); 262 } 263 264 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 265 } 266 267 /** 268 * blk_kick_flush - consider issuing flush request 269 * @q: request_queue being kicked 270 * @fq: flush queue 271 * @flags: cmd_flags of the original request 272 * 273 * Flush related states of @q have changed, consider issuing flush request. 274 * Please read the comment at the top of this file for more info. 275 * 276 * CONTEXT: 277 * spin_lock_irq(fq->mq_flush_lock) 278 * 279 */ 280 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 281 unsigned int flags) 282 { 283 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 284 struct request *first_rq = 285 list_first_entry(pending, struct request, flush.list); 286 struct request *flush_rq = fq->flush_rq; 287 288 /* C1 described at the top of this file */ 289 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 290 return; 291 292 /* C2 and C3 */ 293 if (!list_empty(&fq->flush_data_in_flight) && 294 time_before(jiffies, 295 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 296 return; 297 298 /* 299 * Issue flush and toggle pending_idx. This makes pending_idx 300 * different from running_idx, which means flush is in flight. 301 */ 302 fq->flush_pending_idx ^= 1; 303 304 blk_rq_init(q, flush_rq); 305 306 /* 307 * In case of none scheduler, borrow tag from the first request 308 * since they can't be in flight at the same time. And acquire 309 * the tag's ownership for flush req. 310 * 311 * In case of IO scheduler, flush rq need to borrow scheduler tag 312 * just for cheating put/get driver tag. 313 */ 314 flush_rq->mq_ctx = first_rq->mq_ctx; 315 flush_rq->mq_hctx = first_rq->mq_hctx; 316 317 if (!q->elevator) { 318 flush_rq->tag = first_rq->tag; 319 320 /* 321 * We borrow data request's driver tag, so have to mark 322 * this flush request as INFLIGHT for avoiding double 323 * account of this driver tag 324 */ 325 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 326 } else 327 flush_rq->internal_tag = first_rq->internal_tag; 328 329 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 330 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 331 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 332 flush_rq->rq_disk = first_rq->rq_disk; 333 flush_rq->end_io = flush_end_io; 334 335 blk_flush_queue_rq(flush_rq, false); 336 } 337 338 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 339 { 340 struct request_queue *q = rq->q; 341 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 342 struct blk_mq_ctx *ctx = rq->mq_ctx; 343 unsigned long flags; 344 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 345 346 if (q->elevator) { 347 WARN_ON(rq->tag < 0); 348 blk_mq_put_driver_tag(rq); 349 } 350 351 /* 352 * After populating an empty queue, kick it to avoid stall. Read 353 * the comment in flush_end_io(). 354 */ 355 spin_lock_irqsave(&fq->mq_flush_lock, flags); 356 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 357 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 358 359 blk_mq_sched_restart(hctx); 360 } 361 362 /** 363 * blk_insert_flush - insert a new PREFLUSH/FUA request 364 * @rq: request to insert 365 * 366 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 367 * or __blk_mq_run_hw_queue() to dispatch request. 368 * @rq is being submitted. Analyze what needs to be done and put it on the 369 * right queue. 370 */ 371 void blk_insert_flush(struct request *rq) 372 { 373 struct request_queue *q = rq->q; 374 unsigned long fflags = q->queue_flags; /* may change, cache */ 375 unsigned int policy = blk_flush_policy(fflags, rq); 376 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 377 378 /* 379 * @policy now records what operations need to be done. Adjust 380 * REQ_PREFLUSH and FUA for the driver. 381 */ 382 rq->cmd_flags &= ~REQ_PREFLUSH; 383 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 384 rq->cmd_flags &= ~REQ_FUA; 385 386 /* 387 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 388 * of those flags, we have to set REQ_SYNC to avoid skewing 389 * the request accounting. 390 */ 391 rq->cmd_flags |= REQ_SYNC; 392 393 /* 394 * An empty flush handed down from a stacking driver may 395 * translate into nothing if the underlying device does not 396 * advertise a write-back cache. In this case, simply 397 * complete the request. 398 */ 399 if (!policy) { 400 blk_mq_end_request(rq, 0); 401 return; 402 } 403 404 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 405 406 /* 407 * If there's data but flush is not necessary, the request can be 408 * processed directly without going through flush machinery. Queue 409 * for normal execution. 410 */ 411 if ((policy & REQ_FSEQ_DATA) && 412 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 413 blk_mq_request_bypass_insert(rq, false, false); 414 return; 415 } 416 417 /* 418 * @rq should go through flush machinery. Mark it part of flush 419 * sequence and submit for further processing. 420 */ 421 memset(&rq->flush, 0, sizeof(rq->flush)); 422 INIT_LIST_HEAD(&rq->flush.list); 423 rq->rq_flags |= RQF_FLUSH_SEQ; 424 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 425 426 rq->end_io = mq_flush_data_end_io; 427 428 spin_lock_irq(&fq->mq_flush_lock); 429 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 430 spin_unlock_irq(&fq->mq_flush_lock); 431 } 432 433 /** 434 * blkdev_issue_flush - queue a flush 435 * @bdev: blockdev to issue flush for 436 * @gfp_mask: memory allocation flags (for bio_alloc) 437 * 438 * Description: 439 * Issue a flush for the block device in question. 440 */ 441 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 442 { 443 struct bio *bio; 444 int ret = 0; 445 446 bio = bio_alloc(gfp_mask, 0); 447 bio_set_dev(bio, bdev); 448 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 449 450 ret = submit_bio_wait(bio); 451 bio_put(bio); 452 return ret; 453 } 454 EXPORT_SYMBOL(blkdev_issue_flush); 455 456 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 457 gfp_t flags) 458 { 459 struct blk_flush_queue *fq; 460 int rq_sz = sizeof(struct request); 461 462 fq = kzalloc_node(sizeof(*fq), flags, node); 463 if (!fq) 464 goto fail; 465 466 spin_lock_init(&fq->mq_flush_lock); 467 468 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 469 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 470 if (!fq->flush_rq) 471 goto fail_rq; 472 473 INIT_LIST_HEAD(&fq->flush_queue[0]); 474 INIT_LIST_HEAD(&fq->flush_queue[1]); 475 INIT_LIST_HEAD(&fq->flush_data_in_flight); 476 477 lockdep_register_key(&fq->key); 478 lockdep_set_class(&fq->mq_flush_lock, &fq->key); 479 480 return fq; 481 482 fail_rq: 483 kfree(fq); 484 fail: 485 return NULL; 486 } 487 488 void blk_free_flush_queue(struct blk_flush_queue *fq) 489 { 490 /* bio based request queue hasn't flush queue */ 491 if (!fq) 492 return; 493 494 lockdep_unregister_key(&fq->key); 495 kfree(fq->flush_rq); 496 kfree(fq); 497 } 498