1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 #include <linux/lockdep.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static void blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, unsigned int flags); 98 99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 100 { 101 unsigned int policy = 0; 102 103 if (blk_rq_sectors(rq)) 104 policy |= REQ_FSEQ_DATA; 105 106 if (fflags & (1UL << QUEUE_FLAG_WC)) { 107 if (rq->cmd_flags & REQ_PREFLUSH) 108 policy |= REQ_FSEQ_PREFLUSH; 109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 110 (rq->cmd_flags & REQ_FUA)) 111 policy |= REQ_FSEQ_POSTFLUSH; 112 } 113 return policy; 114 } 115 116 static unsigned int blk_flush_cur_seq(struct request *rq) 117 { 118 return 1 << ffz(rq->flush.seq); 119 } 120 121 static void blk_flush_restore_request(struct request *rq) 122 { 123 /* 124 * After flush data completion, @rq->bio is %NULL but we need to 125 * complete the bio again. @rq->biotail is guaranteed to equal the 126 * original @rq->bio. Restore it. 127 */ 128 rq->bio = rq->biotail; 129 130 /* make @rq a normal request */ 131 rq->rq_flags &= ~RQF_FLUSH_SEQ; 132 rq->end_io = rq->flush.saved_end_io; 133 } 134 135 static void blk_flush_queue_rq(struct request *rq, bool add_front) 136 { 137 blk_mq_add_to_requeue_list(rq, add_front, true); 138 } 139 140 static void blk_account_io_flush(struct request *rq) 141 { 142 struct hd_struct *part = &rq->rq_disk->part0; 143 144 part_stat_lock(); 145 part_stat_inc(part, ios[STAT_FLUSH]); 146 part_stat_add(part, nsecs[STAT_FLUSH], 147 ktime_get_ns() - rq->start_time_ns); 148 part_stat_unlock(); 149 } 150 151 /** 152 * blk_flush_complete_seq - complete flush sequence 153 * @rq: PREFLUSH/FUA request being sequenced 154 * @fq: flush queue 155 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 156 * @error: whether an error occurred 157 * 158 * @rq just completed @seq part of its flush sequence, record the 159 * completion and trigger the next step. 160 * 161 * CONTEXT: 162 * spin_lock_irq(fq->mq_flush_lock) 163 */ 164 static void blk_flush_complete_seq(struct request *rq, 165 struct blk_flush_queue *fq, 166 unsigned int seq, blk_status_t error) 167 { 168 struct request_queue *q = rq->q; 169 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 170 unsigned int cmd_flags; 171 172 BUG_ON(rq->flush.seq & seq); 173 rq->flush.seq |= seq; 174 cmd_flags = rq->cmd_flags; 175 176 if (likely(!error)) 177 seq = blk_flush_cur_seq(rq); 178 else 179 seq = REQ_FSEQ_DONE; 180 181 switch (seq) { 182 case REQ_FSEQ_PREFLUSH: 183 case REQ_FSEQ_POSTFLUSH: 184 /* queue for flush */ 185 if (list_empty(pending)) 186 fq->flush_pending_since = jiffies; 187 list_move_tail(&rq->flush.list, pending); 188 break; 189 190 case REQ_FSEQ_DATA: 191 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 192 blk_flush_queue_rq(rq, true); 193 break; 194 195 case REQ_FSEQ_DONE: 196 /* 197 * @rq was previously adjusted by blk_insert_flush() for 198 * flush sequencing and may already have gone through the 199 * flush data request completion path. Restore @rq for 200 * normal completion and end it. 201 */ 202 BUG_ON(!list_empty(&rq->queuelist)); 203 list_del_init(&rq->flush.list); 204 blk_flush_restore_request(rq); 205 blk_mq_end_request(rq, error); 206 break; 207 208 default: 209 BUG(); 210 } 211 212 blk_kick_flush(q, fq, cmd_flags); 213 } 214 215 static void flush_end_io(struct request *flush_rq, blk_status_t error) 216 { 217 struct request_queue *q = flush_rq->q; 218 struct list_head *running; 219 struct request *rq, *n; 220 unsigned long flags = 0; 221 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 222 struct blk_mq_hw_ctx *hctx; 223 224 blk_account_io_flush(flush_rq); 225 226 /* release the tag's ownership to the req cloned from */ 227 spin_lock_irqsave(&fq->mq_flush_lock, flags); 228 229 if (!refcount_dec_and_test(&flush_rq->ref)) { 230 fq->rq_status = error; 231 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 232 return; 233 } 234 235 if (fq->rq_status != BLK_STS_OK) 236 error = fq->rq_status; 237 238 hctx = flush_rq->mq_hctx; 239 if (!q->elevator) { 240 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 241 flush_rq->tag = -1; 242 } else { 243 blk_mq_put_driver_tag(flush_rq); 244 flush_rq->internal_tag = -1; 245 } 246 247 running = &fq->flush_queue[fq->flush_running_idx]; 248 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 249 250 /* account completion of the flush request */ 251 fq->flush_running_idx ^= 1; 252 253 /* and push the waiting requests to the next stage */ 254 list_for_each_entry_safe(rq, n, running, flush.list) { 255 unsigned int seq = blk_flush_cur_seq(rq); 256 257 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 258 blk_flush_complete_seq(rq, fq, seq, error); 259 } 260 261 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 262 } 263 264 /** 265 * blk_kick_flush - consider issuing flush request 266 * @q: request_queue being kicked 267 * @fq: flush queue 268 * @flags: cmd_flags of the original request 269 * 270 * Flush related states of @q have changed, consider issuing flush request. 271 * Please read the comment at the top of this file for more info. 272 * 273 * CONTEXT: 274 * spin_lock_irq(fq->mq_flush_lock) 275 * 276 */ 277 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 278 unsigned int flags) 279 { 280 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 281 struct request *first_rq = 282 list_first_entry(pending, struct request, flush.list); 283 struct request *flush_rq = fq->flush_rq; 284 285 /* C1 described at the top of this file */ 286 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 287 return; 288 289 /* C2 and C3 290 * 291 * For blk-mq + scheduling, we can risk having all driver tags 292 * assigned to empty flushes, and we deadlock if we are expecting 293 * other requests to make progress. Don't defer for that case. 294 */ 295 if (!list_empty(&fq->flush_data_in_flight) && q->elevator && 296 time_before(jiffies, 297 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 298 return; 299 300 /* 301 * Issue flush and toggle pending_idx. This makes pending_idx 302 * different from running_idx, which means flush is in flight. 303 */ 304 fq->flush_pending_idx ^= 1; 305 306 blk_rq_init(q, flush_rq); 307 308 /* 309 * In case of none scheduler, borrow tag from the first request 310 * since they can't be in flight at the same time. And acquire 311 * the tag's ownership for flush req. 312 * 313 * In case of IO scheduler, flush rq need to borrow scheduler tag 314 * just for cheating put/get driver tag. 315 */ 316 flush_rq->mq_ctx = first_rq->mq_ctx; 317 flush_rq->mq_hctx = first_rq->mq_hctx; 318 319 if (!q->elevator) { 320 fq->orig_rq = first_rq; 321 flush_rq->tag = first_rq->tag; 322 blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq); 323 } else { 324 flush_rq->internal_tag = first_rq->internal_tag; 325 } 326 327 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 328 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 329 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 330 flush_rq->rq_disk = first_rq->rq_disk; 331 flush_rq->end_io = flush_end_io; 332 333 blk_flush_queue_rq(flush_rq, false); 334 } 335 336 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 337 { 338 struct request_queue *q = rq->q; 339 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 340 struct blk_mq_ctx *ctx = rq->mq_ctx; 341 unsigned long flags; 342 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 343 344 if (q->elevator) { 345 WARN_ON(rq->tag < 0); 346 blk_mq_put_driver_tag(rq); 347 } 348 349 /* 350 * After populating an empty queue, kick it to avoid stall. Read 351 * the comment in flush_end_io(). 352 */ 353 spin_lock_irqsave(&fq->mq_flush_lock, flags); 354 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 355 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 356 357 blk_mq_sched_restart(hctx); 358 } 359 360 /** 361 * blk_insert_flush - insert a new PREFLUSH/FUA request 362 * @rq: request to insert 363 * 364 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 365 * or __blk_mq_run_hw_queue() to dispatch request. 366 * @rq is being submitted. Analyze what needs to be done and put it on the 367 * right queue. 368 */ 369 void blk_insert_flush(struct request *rq) 370 { 371 struct request_queue *q = rq->q; 372 unsigned long fflags = q->queue_flags; /* may change, cache */ 373 unsigned int policy = blk_flush_policy(fflags, rq); 374 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 375 376 /* 377 * @policy now records what operations need to be done. Adjust 378 * REQ_PREFLUSH and FUA for the driver. 379 */ 380 rq->cmd_flags &= ~REQ_PREFLUSH; 381 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 382 rq->cmd_flags &= ~REQ_FUA; 383 384 /* 385 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 386 * of those flags, we have to set REQ_SYNC to avoid skewing 387 * the request accounting. 388 */ 389 rq->cmd_flags |= REQ_SYNC; 390 391 /* 392 * An empty flush handed down from a stacking driver may 393 * translate into nothing if the underlying device does not 394 * advertise a write-back cache. In this case, simply 395 * complete the request. 396 */ 397 if (!policy) { 398 blk_mq_end_request(rq, 0); 399 return; 400 } 401 402 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 403 404 /* 405 * If there's data but flush is not necessary, the request can be 406 * processed directly without going through flush machinery. Queue 407 * for normal execution. 408 */ 409 if ((policy & REQ_FSEQ_DATA) && 410 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 411 blk_mq_request_bypass_insert(rq, false, false); 412 return; 413 } 414 415 /* 416 * @rq should go through flush machinery. Mark it part of flush 417 * sequence and submit for further processing. 418 */ 419 memset(&rq->flush, 0, sizeof(rq->flush)); 420 INIT_LIST_HEAD(&rq->flush.list); 421 rq->rq_flags |= RQF_FLUSH_SEQ; 422 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 423 424 rq->end_io = mq_flush_data_end_io; 425 426 spin_lock_irq(&fq->mq_flush_lock); 427 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 428 spin_unlock_irq(&fq->mq_flush_lock); 429 } 430 431 /** 432 * blkdev_issue_flush - queue a flush 433 * @bdev: blockdev to issue flush for 434 * @gfp_mask: memory allocation flags (for bio_alloc) 435 * 436 * Description: 437 * Issue a flush for the block device in question. 438 */ 439 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 440 { 441 struct bio *bio; 442 int ret = 0; 443 444 bio = bio_alloc(gfp_mask, 0); 445 bio_set_dev(bio, bdev); 446 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 447 448 ret = submit_bio_wait(bio); 449 bio_put(bio); 450 return ret; 451 } 452 EXPORT_SYMBOL(blkdev_issue_flush); 453 454 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 455 gfp_t flags) 456 { 457 struct blk_flush_queue *fq; 458 int rq_sz = sizeof(struct request); 459 460 fq = kzalloc_node(sizeof(*fq), flags, node); 461 if (!fq) 462 goto fail; 463 464 spin_lock_init(&fq->mq_flush_lock); 465 466 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 467 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 468 if (!fq->flush_rq) 469 goto fail_rq; 470 471 INIT_LIST_HEAD(&fq->flush_queue[0]); 472 INIT_LIST_HEAD(&fq->flush_queue[1]); 473 INIT_LIST_HEAD(&fq->flush_data_in_flight); 474 475 lockdep_register_key(&fq->key); 476 lockdep_set_class(&fq->mq_flush_lock, &fq->key); 477 478 return fq; 479 480 fail_rq: 481 kfree(fq); 482 fail: 483 return NULL; 484 } 485 486 void blk_free_flush_queue(struct blk_flush_queue *fq) 487 { 488 /* bio based request queue hasn't flush queue */ 489 if (!fq) 490 return; 491 492 lockdep_unregister_key(&fq->key); 493 kfree(fq->flush_rq); 494 kfree(fq); 495 } 496