1 /* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a 32 * flush is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 73 #include "blk.h" 74 75 /* FLUSH/FUA sequences */ 76 enum { 77 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 78 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 79 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 80 REQ_FSEQ_DONE = (1 << 3), 81 82 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 83 REQ_FSEQ_POSTFLUSH, 84 85 /* 86 * If flush has been pending longer than the following timeout, 87 * it's issued even if flush_data requests are still in flight. 88 */ 89 FLUSH_PENDING_TIMEOUT = 5 * HZ, 90 }; 91 92 static bool blk_kick_flush(struct request_queue *q); 93 94 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq) 95 { 96 unsigned int policy = 0; 97 98 if (fflags & REQ_FLUSH) { 99 if (rq->cmd_flags & REQ_FLUSH) 100 policy |= REQ_FSEQ_PREFLUSH; 101 if (blk_rq_sectors(rq)) 102 policy |= REQ_FSEQ_DATA; 103 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA)) 104 policy |= REQ_FSEQ_POSTFLUSH; 105 } 106 return policy; 107 } 108 109 static unsigned int blk_flush_cur_seq(struct request *rq) 110 { 111 return 1 << ffz(rq->flush.seq); 112 } 113 114 static void blk_flush_restore_request(struct request *rq) 115 { 116 /* 117 * After flush data completion, @rq->bio is %NULL but we need to 118 * complete the bio again. @rq->biotail is guaranteed to equal the 119 * original @rq->bio. Restore it. 120 */ 121 rq->bio = rq->biotail; 122 123 /* make @rq a normal request */ 124 rq->cmd_flags &= ~REQ_FLUSH_SEQ; 125 rq->end_io = NULL; 126 } 127 128 /** 129 * blk_flush_complete_seq - complete flush sequence 130 * @rq: FLUSH/FUA request being sequenced 131 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 132 * @error: whether an error occurred 133 * 134 * @rq just completed @seq part of its flush sequence, record the 135 * completion and trigger the next step. 136 * 137 * CONTEXT: 138 * spin_lock_irq(q->queue_lock) 139 * 140 * RETURNS: 141 * %true if requests were added to the dispatch queue, %false otherwise. 142 */ 143 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq, 144 int error) 145 { 146 struct request_queue *q = rq->q; 147 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 148 bool queued = false; 149 150 BUG_ON(rq->flush.seq & seq); 151 rq->flush.seq |= seq; 152 153 if (likely(!error)) 154 seq = blk_flush_cur_seq(rq); 155 else 156 seq = REQ_FSEQ_DONE; 157 158 switch (seq) { 159 case REQ_FSEQ_PREFLUSH: 160 case REQ_FSEQ_POSTFLUSH: 161 /* queue for flush */ 162 if (list_empty(pending)) 163 q->flush_pending_since = jiffies; 164 list_move_tail(&rq->flush.list, pending); 165 break; 166 167 case REQ_FSEQ_DATA: 168 list_move_tail(&rq->flush.list, &q->flush_data_in_flight); 169 list_add(&rq->queuelist, &q->queue_head); 170 queued = true; 171 break; 172 173 case REQ_FSEQ_DONE: 174 /* 175 * @rq was previously adjusted by blk_flush_issue() for 176 * flush sequencing and may already have gone through the 177 * flush data request completion path. Restore @rq for 178 * normal completion and end it. 179 */ 180 BUG_ON(!list_empty(&rq->queuelist)); 181 list_del_init(&rq->flush.list); 182 blk_flush_restore_request(rq); 183 __blk_end_request_all(rq, error); 184 break; 185 186 default: 187 BUG(); 188 } 189 190 return blk_kick_flush(q) | queued; 191 } 192 193 static void flush_end_io(struct request *flush_rq, int error) 194 { 195 struct request_queue *q = flush_rq->q; 196 struct list_head *running = &q->flush_queue[q->flush_running_idx]; 197 bool queued = false; 198 struct request *rq, *n; 199 200 BUG_ON(q->flush_pending_idx == q->flush_running_idx); 201 202 /* account completion of the flush request */ 203 q->flush_running_idx ^= 1; 204 elv_completed_request(q, flush_rq); 205 206 /* and push the waiting requests to the next stage */ 207 list_for_each_entry_safe(rq, n, running, flush.list) { 208 unsigned int seq = blk_flush_cur_seq(rq); 209 210 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 211 queued |= blk_flush_complete_seq(rq, seq, error); 212 } 213 214 /* 215 * Kick the queue to avoid stall for two cases: 216 * 1. Moving a request silently to empty queue_head may stall the 217 * queue. 218 * 2. When flush request is running in non-queueable queue, the 219 * queue is hold. Restart the queue after flush request is finished 220 * to avoid stall. 221 * This function is called from request completion path and calling 222 * directly into request_fn may confuse the driver. Always use 223 * kblockd. 224 */ 225 if (queued || q->flush_queue_delayed) 226 blk_run_queue_async(q); 227 q->flush_queue_delayed = 0; 228 } 229 230 /** 231 * blk_kick_flush - consider issuing flush request 232 * @q: request_queue being kicked 233 * 234 * Flush related states of @q have changed, consider issuing flush request. 235 * Please read the comment at the top of this file for more info. 236 * 237 * CONTEXT: 238 * spin_lock_irq(q->queue_lock) 239 * 240 * RETURNS: 241 * %true if flush was issued, %false otherwise. 242 */ 243 static bool blk_kick_flush(struct request_queue *q) 244 { 245 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 246 struct request *first_rq = 247 list_first_entry(pending, struct request, flush.list); 248 249 /* C1 described at the top of this file */ 250 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending)) 251 return false; 252 253 /* C2 and C3 */ 254 if (!list_empty(&q->flush_data_in_flight) && 255 time_before(jiffies, 256 q->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 257 return false; 258 259 /* 260 * Issue flush and toggle pending_idx. This makes pending_idx 261 * different from running_idx, which means flush is in flight. 262 */ 263 blk_rq_init(q, &q->flush_rq); 264 q->flush_rq.cmd_type = REQ_TYPE_FS; 265 q->flush_rq.cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ; 266 q->flush_rq.rq_disk = first_rq->rq_disk; 267 q->flush_rq.end_io = flush_end_io; 268 269 q->flush_pending_idx ^= 1; 270 list_add_tail(&q->flush_rq.queuelist, &q->queue_head); 271 return true; 272 } 273 274 static void flush_data_end_io(struct request *rq, int error) 275 { 276 struct request_queue *q = rq->q; 277 278 /* 279 * After populating an empty queue, kick it to avoid stall. Read 280 * the comment in flush_end_io(). 281 */ 282 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error)) 283 blk_run_queue_async(q); 284 } 285 286 /** 287 * blk_insert_flush - insert a new FLUSH/FUA request 288 * @rq: request to insert 289 * 290 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 291 * @rq is being submitted. Analyze what needs to be done and put it on the 292 * right queue. 293 * 294 * CONTEXT: 295 * spin_lock_irq(q->queue_lock) 296 */ 297 void blk_insert_flush(struct request *rq) 298 { 299 struct request_queue *q = rq->q; 300 unsigned int fflags = q->flush_flags; /* may change, cache */ 301 unsigned int policy = blk_flush_policy(fflags, rq); 302 303 BUG_ON(rq->end_io); 304 BUG_ON(!rq->bio || rq->bio != rq->biotail); 305 306 /* 307 * @policy now records what operations need to be done. Adjust 308 * REQ_FLUSH and FUA for the driver. 309 */ 310 rq->cmd_flags &= ~REQ_FLUSH; 311 if (!(fflags & REQ_FUA)) 312 rq->cmd_flags &= ~REQ_FUA; 313 314 /* 315 * If there's data but flush is not necessary, the request can be 316 * processed directly without going through flush machinery. Queue 317 * for normal execution. 318 */ 319 if ((policy & REQ_FSEQ_DATA) && 320 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 321 list_add_tail(&rq->queuelist, &q->queue_head); 322 return; 323 } 324 325 /* 326 * @rq should go through flush machinery. Mark it part of flush 327 * sequence and submit for further processing. 328 */ 329 memset(&rq->flush, 0, sizeof(rq->flush)); 330 INIT_LIST_HEAD(&rq->flush.list); 331 rq->cmd_flags |= REQ_FLUSH_SEQ; 332 rq->end_io = flush_data_end_io; 333 334 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0); 335 } 336 337 /** 338 * blk_abort_flushes - @q is being aborted, abort flush requests 339 * @q: request_queue being aborted 340 * 341 * To be called from elv_abort_queue(). @q is being aborted. Prepare all 342 * FLUSH/FUA requests for abortion. 343 * 344 * CONTEXT: 345 * spin_lock_irq(q->queue_lock) 346 */ 347 void blk_abort_flushes(struct request_queue *q) 348 { 349 struct request *rq, *n; 350 int i; 351 352 /* 353 * Requests in flight for data are already owned by the dispatch 354 * queue or the device driver. Just restore for normal completion. 355 */ 356 list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) { 357 list_del_init(&rq->flush.list); 358 blk_flush_restore_request(rq); 359 } 360 361 /* 362 * We need to give away requests on flush queues. Restore for 363 * normal completion and put them on the dispatch queue. 364 */ 365 for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) { 366 list_for_each_entry_safe(rq, n, &q->flush_queue[i], 367 flush.list) { 368 list_del_init(&rq->flush.list); 369 blk_flush_restore_request(rq); 370 list_add_tail(&rq->queuelist, &q->queue_head); 371 } 372 } 373 } 374 375 static void bio_end_flush(struct bio *bio, int err) 376 { 377 if (err) 378 clear_bit(BIO_UPTODATE, &bio->bi_flags); 379 if (bio->bi_private) 380 complete(bio->bi_private); 381 bio_put(bio); 382 } 383 384 /** 385 * blkdev_issue_flush - queue a flush 386 * @bdev: blockdev to issue flush for 387 * @gfp_mask: memory allocation flags (for bio_alloc) 388 * @error_sector: error sector 389 * 390 * Description: 391 * Issue a flush for the block device in question. Caller can supply 392 * room for storing the error offset in case of a flush error, if they 393 * wish to. If WAIT flag is not passed then caller may check only what 394 * request was pushed in some internal queue for later handling. 395 */ 396 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 397 sector_t *error_sector) 398 { 399 DECLARE_COMPLETION_ONSTACK(wait); 400 struct request_queue *q; 401 struct bio *bio; 402 int ret = 0; 403 404 if (bdev->bd_disk == NULL) 405 return -ENXIO; 406 407 q = bdev_get_queue(bdev); 408 if (!q) 409 return -ENXIO; 410 411 /* 412 * some block devices may not have their queue correctly set up here 413 * (e.g. loop device without a backing file) and so issuing a flush 414 * here will panic. Ensure there is a request function before issuing 415 * the flush. 416 */ 417 if (!q->make_request_fn) 418 return -ENXIO; 419 420 bio = bio_alloc(gfp_mask, 0); 421 bio->bi_end_io = bio_end_flush; 422 bio->bi_bdev = bdev; 423 bio->bi_private = &wait; 424 425 bio_get(bio); 426 submit_bio(WRITE_FLUSH, bio); 427 wait_for_completion(&wait); 428 429 /* 430 * The driver must store the error location in ->bi_sector, if 431 * it supports it. For non-stacked drivers, this should be 432 * copied from blk_rq_pos(rq). 433 */ 434 if (error_sector) 435 *error_sector = bio->bi_sector; 436 437 if (!bio_flagged(bio, BIO_UPTODATE)) 438 ret = -EIO; 439 440 bio_put(bio); 441 return ret; 442 } 443 EXPORT_SYMBOL(blkdev_issue_flush); 444