xref: /openbmc/linux/block/blk-flush.c (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  * Functions to sequence FLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_FLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no
21  * data or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_FLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27  * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
32  * flush is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of FLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without FLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each FLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 
77 /* FLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static bool blk_kick_flush(struct request_queue *q,
95 			   struct blk_flush_queue *fq);
96 
97 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
98 {
99 	unsigned int policy = 0;
100 
101 	if (blk_rq_sectors(rq))
102 		policy |= REQ_FSEQ_DATA;
103 
104 	if (fflags & REQ_FLUSH) {
105 		if (rq->cmd_flags & REQ_FLUSH)
106 			policy |= REQ_FSEQ_PREFLUSH;
107 		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
108 			policy |= REQ_FSEQ_POSTFLUSH;
109 	}
110 	return policy;
111 }
112 
113 static unsigned int blk_flush_cur_seq(struct request *rq)
114 {
115 	return 1 << ffz(rq->flush.seq);
116 }
117 
118 static void blk_flush_restore_request(struct request *rq)
119 {
120 	/*
121 	 * After flush data completion, @rq->bio is %NULL but we need to
122 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
123 	 * original @rq->bio.  Restore it.
124 	 */
125 	rq->bio = rq->biotail;
126 
127 	/* make @rq a normal request */
128 	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
129 	rq->end_io = rq->flush.saved_end_io;
130 }
131 
132 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
133 {
134 	if (rq->q->mq_ops) {
135 		struct request_queue *q = rq->q;
136 
137 		blk_mq_add_to_requeue_list(rq, add_front);
138 		blk_mq_kick_requeue_list(q);
139 		return false;
140 	} else {
141 		if (add_front)
142 			list_add(&rq->queuelist, &rq->q->queue_head);
143 		else
144 			list_add_tail(&rq->queuelist, &rq->q->queue_head);
145 		return true;
146 	}
147 }
148 
149 /**
150  * blk_flush_complete_seq - complete flush sequence
151  * @rq: FLUSH/FUA request being sequenced
152  * @fq: flush queue
153  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
154  * @error: whether an error occurred
155  *
156  * @rq just completed @seq part of its flush sequence, record the
157  * completion and trigger the next step.
158  *
159  * CONTEXT:
160  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
161  *
162  * RETURNS:
163  * %true if requests were added to the dispatch queue, %false otherwise.
164  */
165 static bool blk_flush_complete_seq(struct request *rq,
166 				   struct blk_flush_queue *fq,
167 				   unsigned int seq, int error)
168 {
169 	struct request_queue *q = rq->q;
170 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171 	bool queued = false, kicked;
172 
173 	BUG_ON(rq->flush.seq & seq);
174 	rq->flush.seq |= seq;
175 
176 	if (likely(!error))
177 		seq = blk_flush_cur_seq(rq);
178 	else
179 		seq = REQ_FSEQ_DONE;
180 
181 	switch (seq) {
182 	case REQ_FSEQ_PREFLUSH:
183 	case REQ_FSEQ_POSTFLUSH:
184 		/* queue for flush */
185 		if (list_empty(pending))
186 			fq->flush_pending_since = jiffies;
187 		list_move_tail(&rq->flush.list, pending);
188 		break;
189 
190 	case REQ_FSEQ_DATA:
191 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
192 		queued = blk_flush_queue_rq(rq, true);
193 		break;
194 
195 	case REQ_FSEQ_DONE:
196 		/*
197 		 * @rq was previously adjusted by blk_flush_issue() for
198 		 * flush sequencing and may already have gone through the
199 		 * flush data request completion path.  Restore @rq for
200 		 * normal completion and end it.
201 		 */
202 		BUG_ON(!list_empty(&rq->queuelist));
203 		list_del_init(&rq->flush.list);
204 		blk_flush_restore_request(rq);
205 		if (q->mq_ops)
206 			blk_mq_end_request(rq, error);
207 		else
208 			__blk_end_request_all(rq, error);
209 		break;
210 
211 	default:
212 		BUG();
213 	}
214 
215 	kicked = blk_kick_flush(q, fq);
216 	return kicked | queued;
217 }
218 
219 static void flush_end_io(struct request *flush_rq, int error)
220 {
221 	struct request_queue *q = flush_rq->q;
222 	struct list_head *running;
223 	bool queued = false;
224 	struct request *rq, *n;
225 	unsigned long flags = 0;
226 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
227 
228 	if (q->mq_ops) {
229 		spin_lock_irqsave(&fq->mq_flush_lock, flags);
230 		flush_rq->tag = -1;
231 	}
232 
233 	running = &fq->flush_queue[fq->flush_running_idx];
234 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
235 
236 	/* account completion of the flush request */
237 	fq->flush_running_idx ^= 1;
238 
239 	if (!q->mq_ops)
240 		elv_completed_request(q, flush_rq);
241 
242 	/* and push the waiting requests to the next stage */
243 	list_for_each_entry_safe(rq, n, running, flush.list) {
244 		unsigned int seq = blk_flush_cur_seq(rq);
245 
246 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
247 		queued |= blk_flush_complete_seq(rq, fq, seq, error);
248 	}
249 
250 	/*
251 	 * Kick the queue to avoid stall for two cases:
252 	 * 1. Moving a request silently to empty queue_head may stall the
253 	 * queue.
254 	 * 2. When flush request is running in non-queueable queue, the
255 	 * queue is hold. Restart the queue after flush request is finished
256 	 * to avoid stall.
257 	 * This function is called from request completion path and calling
258 	 * directly into request_fn may confuse the driver.  Always use
259 	 * kblockd.
260 	 */
261 	if (queued || fq->flush_queue_delayed) {
262 		WARN_ON(q->mq_ops);
263 		blk_run_queue_async(q);
264 	}
265 	fq->flush_queue_delayed = 0;
266 	if (q->mq_ops)
267 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
268 }
269 
270 /**
271  * blk_kick_flush - consider issuing flush request
272  * @q: request_queue being kicked
273  * @fq: flush queue
274  *
275  * Flush related states of @q have changed, consider issuing flush request.
276  * Please read the comment at the top of this file for more info.
277  *
278  * CONTEXT:
279  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
280  *
281  * RETURNS:
282  * %true if flush was issued, %false otherwise.
283  */
284 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
285 {
286 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
287 	struct request *first_rq =
288 		list_first_entry(pending, struct request, flush.list);
289 	struct request *flush_rq = fq->flush_rq;
290 
291 	/* C1 described at the top of this file */
292 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
293 		return false;
294 
295 	/* C2 and C3 */
296 	if (!list_empty(&fq->flush_data_in_flight) &&
297 	    time_before(jiffies,
298 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
299 		return false;
300 
301 	/*
302 	 * Issue flush and toggle pending_idx.  This makes pending_idx
303 	 * different from running_idx, which means flush is in flight.
304 	 */
305 	fq->flush_pending_idx ^= 1;
306 
307 	blk_rq_init(q, flush_rq);
308 
309 	/*
310 	 * Borrow tag from the first request since they can't
311 	 * be in flight at the same time.
312 	 */
313 	if (q->mq_ops) {
314 		flush_rq->mq_ctx = first_rq->mq_ctx;
315 		flush_rq->tag = first_rq->tag;
316 	}
317 
318 	flush_rq->cmd_type = REQ_TYPE_FS;
319 	flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
320 	flush_rq->rq_disk = first_rq->rq_disk;
321 	flush_rq->end_io = flush_end_io;
322 
323 	return blk_flush_queue_rq(flush_rq, false);
324 }
325 
326 static void flush_data_end_io(struct request *rq, int error)
327 {
328 	struct request_queue *q = rq->q;
329 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
330 
331 	/*
332 	 * After populating an empty queue, kick it to avoid stall.  Read
333 	 * the comment in flush_end_io().
334 	 */
335 	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
336 		blk_run_queue_async(q);
337 }
338 
339 static void mq_flush_data_end_io(struct request *rq, int error)
340 {
341 	struct request_queue *q = rq->q;
342 	struct blk_mq_hw_ctx *hctx;
343 	struct blk_mq_ctx *ctx = rq->mq_ctx;
344 	unsigned long flags;
345 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
346 
347 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
348 
349 	/*
350 	 * After populating an empty queue, kick it to avoid stall.  Read
351 	 * the comment in flush_end_io().
352 	 */
353 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
354 	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
355 		blk_mq_run_hw_queue(hctx, true);
356 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
357 }
358 
359 /**
360  * blk_insert_flush - insert a new FLUSH/FUA request
361  * @rq: request to insert
362  *
363  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
364  * or __blk_mq_run_hw_queue() to dispatch request.
365  * @rq is being submitted.  Analyze what needs to be done and put it on the
366  * right queue.
367  *
368  * CONTEXT:
369  * spin_lock_irq(q->queue_lock) in !mq case
370  */
371 void blk_insert_flush(struct request *rq)
372 {
373 	struct request_queue *q = rq->q;
374 	unsigned int fflags = q->flush_flags;	/* may change, cache */
375 	unsigned int policy = blk_flush_policy(fflags, rq);
376 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
377 
378 	/*
379 	 * @policy now records what operations need to be done.  Adjust
380 	 * REQ_FLUSH and FUA for the driver.
381 	 */
382 	rq->cmd_flags &= ~REQ_FLUSH;
383 	if (!(fflags & REQ_FUA))
384 		rq->cmd_flags &= ~REQ_FUA;
385 
386 	/*
387 	 * An empty flush handed down from a stacking driver may
388 	 * translate into nothing if the underlying device does not
389 	 * advertise a write-back cache.  In this case, simply
390 	 * complete the request.
391 	 */
392 	if (!policy) {
393 		if (q->mq_ops)
394 			blk_mq_end_request(rq, 0);
395 		else
396 			__blk_end_bidi_request(rq, 0, 0, 0);
397 		return;
398 	}
399 
400 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
401 
402 	/*
403 	 * If there's data but flush is not necessary, the request can be
404 	 * processed directly without going through flush machinery.  Queue
405 	 * for normal execution.
406 	 */
407 	if ((policy & REQ_FSEQ_DATA) &&
408 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
409 		if (q->mq_ops) {
410 			blk_mq_insert_request(rq, false, false, true);
411 		} else
412 			list_add_tail(&rq->queuelist, &q->queue_head);
413 		return;
414 	}
415 
416 	/*
417 	 * @rq should go through flush machinery.  Mark it part of flush
418 	 * sequence and submit for further processing.
419 	 */
420 	memset(&rq->flush, 0, sizeof(rq->flush));
421 	INIT_LIST_HEAD(&rq->flush.list);
422 	rq->cmd_flags |= REQ_FLUSH_SEQ;
423 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
424 	if (q->mq_ops) {
425 		rq->end_io = mq_flush_data_end_io;
426 
427 		spin_lock_irq(&fq->mq_flush_lock);
428 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
429 		spin_unlock_irq(&fq->mq_flush_lock);
430 		return;
431 	}
432 	rq->end_io = flush_data_end_io;
433 
434 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
435 }
436 
437 /**
438  * blkdev_issue_flush - queue a flush
439  * @bdev:	blockdev to issue flush for
440  * @gfp_mask:	memory allocation flags (for bio_alloc)
441  * @error_sector:	error sector
442  *
443  * Description:
444  *    Issue a flush for the block device in question. Caller can supply
445  *    room for storing the error offset in case of a flush error, if they
446  *    wish to. If WAIT flag is not passed then caller may check only what
447  *    request was pushed in some internal queue for later handling.
448  */
449 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
450 		sector_t *error_sector)
451 {
452 	struct request_queue *q;
453 	struct bio *bio;
454 	int ret = 0;
455 
456 	if (bdev->bd_disk == NULL)
457 		return -ENXIO;
458 
459 	q = bdev_get_queue(bdev);
460 	if (!q)
461 		return -ENXIO;
462 
463 	/*
464 	 * some block devices may not have their queue correctly set up here
465 	 * (e.g. loop device without a backing file) and so issuing a flush
466 	 * here will panic. Ensure there is a request function before issuing
467 	 * the flush.
468 	 */
469 	if (!q->make_request_fn)
470 		return -ENXIO;
471 
472 	bio = bio_alloc(gfp_mask, 0);
473 	bio->bi_bdev = bdev;
474 
475 	ret = submit_bio_wait(WRITE_FLUSH, bio);
476 
477 	/*
478 	 * The driver must store the error location in ->bi_sector, if
479 	 * it supports it. For non-stacked drivers, this should be
480 	 * copied from blk_rq_pos(rq).
481 	 */
482 	if (error_sector)
483 		*error_sector = bio->bi_iter.bi_sector;
484 
485 	bio_put(bio);
486 	return ret;
487 }
488 EXPORT_SYMBOL(blkdev_issue_flush);
489 
490 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
491 		int node, int cmd_size)
492 {
493 	struct blk_flush_queue *fq;
494 	int rq_sz = sizeof(struct request);
495 
496 	fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
497 	if (!fq)
498 		goto fail;
499 
500 	if (q->mq_ops) {
501 		spin_lock_init(&fq->mq_flush_lock);
502 		rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
503 	}
504 
505 	fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
506 	if (!fq->flush_rq)
507 		goto fail_rq;
508 
509 	INIT_LIST_HEAD(&fq->flush_queue[0]);
510 	INIT_LIST_HEAD(&fq->flush_queue[1]);
511 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
512 
513 	return fq;
514 
515  fail_rq:
516 	kfree(fq);
517  fail:
518 	return NULL;
519 }
520 
521 void blk_free_flush_queue(struct blk_flush_queue *fq)
522 {
523 	/* bio based request queue hasn't flush queue */
524 	if (!fq)
525 		return;
526 
527 	kfree(fq->flush_rq);
528 	kfree(fq);
529 }
530