xref: /openbmc/linux/block/blk-flush.c (revision 7e60e389)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-tag.h"
76 #include "blk-mq-sched.h"
77 
78 /* PREFLUSH/FUA sequences */
79 enum {
80 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
81 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
82 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
83 	REQ_FSEQ_DONE		= (1 << 3),
84 
85 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
86 				  REQ_FSEQ_POSTFLUSH,
87 
88 	/*
89 	 * If flush has been pending longer than the following timeout,
90 	 * it's issued even if flush_data requests are still in flight.
91 	 */
92 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
93 };
94 
95 static void blk_kick_flush(struct request_queue *q,
96 			   struct blk_flush_queue *fq, unsigned int flags);
97 
98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
99 {
100 	unsigned int policy = 0;
101 
102 	if (blk_rq_sectors(rq))
103 		policy |= REQ_FSEQ_DATA;
104 
105 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
106 		if (rq->cmd_flags & REQ_PREFLUSH)
107 			policy |= REQ_FSEQ_PREFLUSH;
108 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
109 		    (rq->cmd_flags & REQ_FUA))
110 			policy |= REQ_FSEQ_POSTFLUSH;
111 	}
112 	return policy;
113 }
114 
115 static unsigned int blk_flush_cur_seq(struct request *rq)
116 {
117 	return 1 << ffz(rq->flush.seq);
118 }
119 
120 static void blk_flush_restore_request(struct request *rq)
121 {
122 	/*
123 	 * After flush data completion, @rq->bio is %NULL but we need to
124 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
125 	 * original @rq->bio.  Restore it.
126 	 */
127 	rq->bio = rq->biotail;
128 
129 	/* make @rq a normal request */
130 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
131 	rq->end_io = rq->flush.saved_end_io;
132 }
133 
134 static void blk_flush_queue_rq(struct request *rq, bool add_front)
135 {
136 	blk_mq_add_to_requeue_list(rq, add_front, true);
137 }
138 
139 static void blk_account_io_flush(struct request *rq)
140 {
141 	struct block_device *part = rq->rq_disk->part0;
142 
143 	part_stat_lock();
144 	part_stat_inc(part, ios[STAT_FLUSH]);
145 	part_stat_add(part, nsecs[STAT_FLUSH],
146 		      ktime_get_ns() - rq->start_time_ns);
147 	part_stat_unlock();
148 }
149 
150 /**
151  * blk_flush_complete_seq - complete flush sequence
152  * @rq: PREFLUSH/FUA request being sequenced
153  * @fq: flush queue
154  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155  * @error: whether an error occurred
156  *
157  * @rq just completed @seq part of its flush sequence, record the
158  * completion and trigger the next step.
159  *
160  * CONTEXT:
161  * spin_lock_irq(fq->mq_flush_lock)
162  */
163 static void blk_flush_complete_seq(struct request *rq,
164 				   struct blk_flush_queue *fq,
165 				   unsigned int seq, blk_status_t error)
166 {
167 	struct request_queue *q = rq->q;
168 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
169 	unsigned int cmd_flags;
170 
171 	BUG_ON(rq->flush.seq & seq);
172 	rq->flush.seq |= seq;
173 	cmd_flags = rq->cmd_flags;
174 
175 	if (likely(!error))
176 		seq = blk_flush_cur_seq(rq);
177 	else
178 		seq = REQ_FSEQ_DONE;
179 
180 	switch (seq) {
181 	case REQ_FSEQ_PREFLUSH:
182 	case REQ_FSEQ_POSTFLUSH:
183 		/* queue for flush */
184 		if (list_empty(pending))
185 			fq->flush_pending_since = jiffies;
186 		list_move_tail(&rq->flush.list, pending);
187 		break;
188 
189 	case REQ_FSEQ_DATA:
190 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
191 		blk_flush_queue_rq(rq, true);
192 		break;
193 
194 	case REQ_FSEQ_DONE:
195 		/*
196 		 * @rq was previously adjusted by blk_insert_flush() for
197 		 * flush sequencing and may already have gone through the
198 		 * flush data request completion path.  Restore @rq for
199 		 * normal completion and end it.
200 		 */
201 		BUG_ON(!list_empty(&rq->queuelist));
202 		list_del_init(&rq->flush.list);
203 		blk_flush_restore_request(rq);
204 		blk_mq_end_request(rq, error);
205 		break;
206 
207 	default:
208 		BUG();
209 	}
210 
211 	blk_kick_flush(q, fq, cmd_flags);
212 }
213 
214 static void flush_end_io(struct request *flush_rq, blk_status_t error)
215 {
216 	struct request_queue *q = flush_rq->q;
217 	struct list_head *running;
218 	struct request *rq, *n;
219 	unsigned long flags = 0;
220 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
221 
222 	blk_account_io_flush(flush_rq);
223 
224 	/* release the tag's ownership to the req cloned from */
225 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
226 
227 	if (!refcount_dec_and_test(&flush_rq->ref)) {
228 		fq->rq_status = error;
229 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
230 		return;
231 	}
232 
233 	/*
234 	 * Flush request has to be marked as IDLE when it is really ended
235 	 * because its .end_io() is called from timeout code path too for
236 	 * avoiding use-after-free.
237 	 */
238 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
239 	if (fq->rq_status != BLK_STS_OK)
240 		error = fq->rq_status;
241 
242 	if (!q->elevator) {
243 		flush_rq->tag = BLK_MQ_NO_TAG;
244 	} else {
245 		blk_mq_put_driver_tag(flush_rq);
246 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
247 	}
248 
249 	running = &fq->flush_queue[fq->flush_running_idx];
250 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
251 
252 	/* account completion of the flush request */
253 	fq->flush_running_idx ^= 1;
254 
255 	/* and push the waiting requests to the next stage */
256 	list_for_each_entry_safe(rq, n, running, flush.list) {
257 		unsigned int seq = blk_flush_cur_seq(rq);
258 
259 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
260 		blk_flush_complete_seq(rq, fq, seq, error);
261 	}
262 
263 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
264 }
265 
266 /**
267  * blk_kick_flush - consider issuing flush request
268  * @q: request_queue being kicked
269  * @fq: flush queue
270  * @flags: cmd_flags of the original request
271  *
272  * Flush related states of @q have changed, consider issuing flush request.
273  * Please read the comment at the top of this file for more info.
274  *
275  * CONTEXT:
276  * spin_lock_irq(fq->mq_flush_lock)
277  *
278  */
279 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
280 			   unsigned int flags)
281 {
282 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
283 	struct request *first_rq =
284 		list_first_entry(pending, struct request, flush.list);
285 	struct request *flush_rq = fq->flush_rq;
286 
287 	/* C1 described at the top of this file */
288 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
289 		return;
290 
291 	/* C2 and C3 */
292 	if (!list_empty(&fq->flush_data_in_flight) &&
293 	    time_before(jiffies,
294 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
295 		return;
296 
297 	/*
298 	 * Issue flush and toggle pending_idx.  This makes pending_idx
299 	 * different from running_idx, which means flush is in flight.
300 	 */
301 	fq->flush_pending_idx ^= 1;
302 
303 	blk_rq_init(q, flush_rq);
304 
305 	/*
306 	 * In case of none scheduler, borrow tag from the first request
307 	 * since they can't be in flight at the same time. And acquire
308 	 * the tag's ownership for flush req.
309 	 *
310 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
311 	 * just for cheating put/get driver tag.
312 	 */
313 	flush_rq->mq_ctx = first_rq->mq_ctx;
314 	flush_rq->mq_hctx = first_rq->mq_hctx;
315 
316 	if (!q->elevator) {
317 		flush_rq->tag = first_rq->tag;
318 
319 		/*
320 		 * We borrow data request's driver tag, so have to mark
321 		 * this flush request as INFLIGHT for avoiding double
322 		 * account of this driver tag
323 		 */
324 		flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
325 	} else
326 		flush_rq->internal_tag = first_rq->internal_tag;
327 
328 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
329 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
330 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
331 	flush_rq->rq_disk = first_rq->rq_disk;
332 	flush_rq->end_io = flush_end_io;
333 
334 	blk_flush_queue_rq(flush_rq, false);
335 }
336 
337 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
338 {
339 	struct request_queue *q = rq->q;
340 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
341 	struct blk_mq_ctx *ctx = rq->mq_ctx;
342 	unsigned long flags;
343 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
344 
345 	if (q->elevator) {
346 		WARN_ON(rq->tag < 0);
347 		blk_mq_put_driver_tag(rq);
348 	}
349 
350 	/*
351 	 * After populating an empty queue, kick it to avoid stall.  Read
352 	 * the comment in flush_end_io().
353 	 */
354 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
355 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
356 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
357 
358 	blk_mq_sched_restart(hctx);
359 }
360 
361 /**
362  * blk_insert_flush - insert a new PREFLUSH/FUA request
363  * @rq: request to insert
364  *
365  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
366  * or __blk_mq_run_hw_queue() to dispatch request.
367  * @rq is being submitted.  Analyze what needs to be done and put it on the
368  * right queue.
369  */
370 void blk_insert_flush(struct request *rq)
371 {
372 	struct request_queue *q = rq->q;
373 	unsigned long fflags = q->queue_flags;	/* may change, cache */
374 	unsigned int policy = blk_flush_policy(fflags, rq);
375 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
376 
377 	/*
378 	 * @policy now records what operations need to be done.  Adjust
379 	 * REQ_PREFLUSH and FUA for the driver.
380 	 */
381 	rq->cmd_flags &= ~REQ_PREFLUSH;
382 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
383 		rq->cmd_flags &= ~REQ_FUA;
384 
385 	/*
386 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
387 	 * of those flags, we have to set REQ_SYNC to avoid skewing
388 	 * the request accounting.
389 	 */
390 	rq->cmd_flags |= REQ_SYNC;
391 
392 	/*
393 	 * An empty flush handed down from a stacking driver may
394 	 * translate into nothing if the underlying device does not
395 	 * advertise a write-back cache.  In this case, simply
396 	 * complete the request.
397 	 */
398 	if (!policy) {
399 		blk_mq_end_request(rq, 0);
400 		return;
401 	}
402 
403 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
404 
405 	/*
406 	 * If there's data but flush is not necessary, the request can be
407 	 * processed directly without going through flush machinery.  Queue
408 	 * for normal execution.
409 	 */
410 	if ((policy & REQ_FSEQ_DATA) &&
411 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
412 		blk_mq_request_bypass_insert(rq, false, false);
413 		return;
414 	}
415 
416 	/*
417 	 * @rq should go through flush machinery.  Mark it part of flush
418 	 * sequence and submit for further processing.
419 	 */
420 	memset(&rq->flush, 0, sizeof(rq->flush));
421 	INIT_LIST_HEAD(&rq->flush.list);
422 	rq->rq_flags |= RQF_FLUSH_SEQ;
423 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
424 
425 	rq->end_io = mq_flush_data_end_io;
426 
427 	spin_lock_irq(&fq->mq_flush_lock);
428 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
429 	spin_unlock_irq(&fq->mq_flush_lock);
430 }
431 
432 /**
433  * blkdev_issue_flush - queue a flush
434  * @bdev:	blockdev to issue flush for
435  * @gfp_mask:	memory allocation flags (for bio_alloc)
436  *
437  * Description:
438  *    Issue a flush for the block device in question.
439  */
440 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
441 {
442 	struct bio *bio;
443 	int ret = 0;
444 
445 	bio = bio_alloc(gfp_mask, 0);
446 	bio_set_dev(bio, bdev);
447 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
448 
449 	ret = submit_bio_wait(bio);
450 	bio_put(bio);
451 	return ret;
452 }
453 EXPORT_SYMBOL(blkdev_issue_flush);
454 
455 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
456 					      gfp_t flags)
457 {
458 	struct blk_flush_queue *fq;
459 	int rq_sz = sizeof(struct request);
460 
461 	fq = kzalloc_node(sizeof(*fq), flags, node);
462 	if (!fq)
463 		goto fail;
464 
465 	spin_lock_init(&fq->mq_flush_lock);
466 
467 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
468 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
469 	if (!fq->flush_rq)
470 		goto fail_rq;
471 
472 	INIT_LIST_HEAD(&fq->flush_queue[0]);
473 	INIT_LIST_HEAD(&fq->flush_queue[1]);
474 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
475 
476 	return fq;
477 
478  fail_rq:
479 	kfree(fq);
480  fail:
481 	return NULL;
482 }
483 
484 void blk_free_flush_queue(struct blk_flush_queue *fq)
485 {
486 	/* bio based request queue hasn't flush queue */
487 	if (!fq)
488 		return;
489 
490 	kfree(fq->flush_rq);
491 	kfree(fq);
492 }
493 
494 /*
495  * Allow driver to set its own lock class to fq->mq_flush_lock for
496  * avoiding lockdep complaint.
497  *
498  * flush_end_io() may be called recursively from some driver, such as
499  * nvme-loop, so lockdep may complain 'possible recursive locking' because
500  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
501  * key. We need to assign different lock class for these driver's
502  * fq->mq_flush_lock for avoiding the lockdep warning.
503  *
504  * Use dynamically allocated lock class key for each 'blk_flush_queue'
505  * instance is over-kill, and more worse it introduces horrible boot delay
506  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
507  * is called for each hctx release. SCSI probing may synchronously create and
508  * destroy lots of MQ request_queues for non-existent devices, and some robot
509  * test kernel always enable lockdep option. It is observed that more than half
510  * an hour is taken during SCSI MQ probe with per-fq lock class.
511  */
512 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
513 		struct lock_class_key *key)
514 {
515 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
518