1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/part_stat.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-sched.h" 76 77 /* PREFLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static void blk_kick_flush(struct request_queue *q, 95 struct blk_flush_queue *fq, blk_opf_t flags); 96 97 static inline struct blk_flush_queue * 98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 99 { 100 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 101 } 102 103 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 104 { 105 unsigned int policy = 0; 106 107 if (blk_rq_sectors(rq)) 108 policy |= REQ_FSEQ_DATA; 109 110 if (fflags & (1UL << QUEUE_FLAG_WC)) { 111 if (rq->cmd_flags & REQ_PREFLUSH) 112 policy |= REQ_FSEQ_PREFLUSH; 113 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 114 (rq->cmd_flags & REQ_FUA)) 115 policy |= REQ_FSEQ_POSTFLUSH; 116 } 117 return policy; 118 } 119 120 static unsigned int blk_flush_cur_seq(struct request *rq) 121 { 122 return 1 << ffz(rq->flush.seq); 123 } 124 125 static void blk_flush_restore_request(struct request *rq) 126 { 127 /* 128 * After flush data completion, @rq->bio is %NULL but we need to 129 * complete the bio again. @rq->biotail is guaranteed to equal the 130 * original @rq->bio. Restore it. 131 */ 132 rq->bio = rq->biotail; 133 134 /* make @rq a normal request */ 135 rq->rq_flags &= ~RQF_FLUSH_SEQ; 136 rq->end_io = rq->flush.saved_end_io; 137 } 138 139 static void blk_account_io_flush(struct request *rq) 140 { 141 struct block_device *part = rq->q->disk->part0; 142 143 part_stat_lock(); 144 part_stat_inc(part, ios[STAT_FLUSH]); 145 part_stat_add(part, nsecs[STAT_FLUSH], 146 ktime_get_ns() - rq->start_time_ns); 147 part_stat_unlock(); 148 } 149 150 /** 151 * blk_flush_complete_seq - complete flush sequence 152 * @rq: PREFLUSH/FUA request being sequenced 153 * @fq: flush queue 154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 155 * @error: whether an error occurred 156 * 157 * @rq just completed @seq part of its flush sequence, record the 158 * completion and trigger the next step. 159 * 160 * CONTEXT: 161 * spin_lock_irq(fq->mq_flush_lock) 162 */ 163 static void blk_flush_complete_seq(struct request *rq, 164 struct blk_flush_queue *fq, 165 unsigned int seq, blk_status_t error) 166 { 167 struct request_queue *q = rq->q; 168 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 169 blk_opf_t cmd_flags; 170 171 BUG_ON(rq->flush.seq & seq); 172 rq->flush.seq |= seq; 173 cmd_flags = rq->cmd_flags; 174 175 if (likely(!error)) 176 seq = blk_flush_cur_seq(rq); 177 else 178 seq = REQ_FSEQ_DONE; 179 180 switch (seq) { 181 case REQ_FSEQ_PREFLUSH: 182 case REQ_FSEQ_POSTFLUSH: 183 /* queue for flush */ 184 if (list_empty(pending)) 185 fq->flush_pending_since = jiffies; 186 list_add_tail(&rq->queuelist, pending); 187 break; 188 189 case REQ_FSEQ_DATA: 190 fq->flush_data_in_flight++; 191 spin_lock(&q->requeue_lock); 192 list_move(&rq->queuelist, &q->requeue_list); 193 spin_unlock(&q->requeue_lock); 194 blk_mq_kick_requeue_list(q); 195 break; 196 197 case REQ_FSEQ_DONE: 198 /* 199 * @rq was previously adjusted by blk_insert_flush() for 200 * flush sequencing and may already have gone through the 201 * flush data request completion path. Restore @rq for 202 * normal completion and end it. 203 */ 204 list_del_init(&rq->queuelist); 205 blk_flush_restore_request(rq); 206 blk_mq_end_request(rq, error); 207 break; 208 209 default: 210 BUG(); 211 } 212 213 blk_kick_flush(q, fq, cmd_flags); 214 } 215 216 static enum rq_end_io_ret flush_end_io(struct request *flush_rq, 217 blk_status_t error) 218 { 219 struct request_queue *q = flush_rq->q; 220 struct list_head *running; 221 struct request *rq, *n; 222 unsigned long flags = 0; 223 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 224 225 /* release the tag's ownership to the req cloned from */ 226 spin_lock_irqsave(&fq->mq_flush_lock, flags); 227 228 if (!req_ref_put_and_test(flush_rq)) { 229 fq->rq_status = error; 230 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 231 return RQ_END_IO_NONE; 232 } 233 234 blk_account_io_flush(flush_rq); 235 /* 236 * Flush request has to be marked as IDLE when it is really ended 237 * because its .end_io() is called from timeout code path too for 238 * avoiding use-after-free. 239 */ 240 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 241 if (fq->rq_status != BLK_STS_OK) { 242 error = fq->rq_status; 243 fq->rq_status = BLK_STS_OK; 244 } 245 246 if (!q->elevator) { 247 flush_rq->tag = BLK_MQ_NO_TAG; 248 } else { 249 blk_mq_put_driver_tag(flush_rq); 250 flush_rq->internal_tag = BLK_MQ_NO_TAG; 251 } 252 253 running = &fq->flush_queue[fq->flush_running_idx]; 254 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 255 256 /* account completion of the flush request */ 257 fq->flush_running_idx ^= 1; 258 259 /* and push the waiting requests to the next stage */ 260 list_for_each_entry_safe(rq, n, running, queuelist) { 261 unsigned int seq = blk_flush_cur_seq(rq); 262 263 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 264 list_del_init(&rq->queuelist); 265 blk_flush_complete_seq(rq, fq, seq, error); 266 } 267 268 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 269 return RQ_END_IO_NONE; 270 } 271 272 bool is_flush_rq(struct request *rq) 273 { 274 return rq->end_io == flush_end_io; 275 } 276 277 /** 278 * blk_kick_flush - consider issuing flush request 279 * @q: request_queue being kicked 280 * @fq: flush queue 281 * @flags: cmd_flags of the original request 282 * 283 * Flush related states of @q have changed, consider issuing flush request. 284 * Please read the comment at the top of this file for more info. 285 * 286 * CONTEXT: 287 * spin_lock_irq(fq->mq_flush_lock) 288 * 289 */ 290 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 291 blk_opf_t flags) 292 { 293 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 294 struct request *first_rq = 295 list_first_entry(pending, struct request, queuelist); 296 struct request *flush_rq = fq->flush_rq; 297 298 /* C1 described at the top of this file */ 299 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 300 return; 301 302 /* C2 and C3 */ 303 if (fq->flush_data_in_flight && 304 time_before(jiffies, 305 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 306 return; 307 308 /* 309 * Issue flush and toggle pending_idx. This makes pending_idx 310 * different from running_idx, which means flush is in flight. 311 */ 312 fq->flush_pending_idx ^= 1; 313 314 blk_rq_init(q, flush_rq); 315 316 /* 317 * In case of none scheduler, borrow tag from the first request 318 * since they can't be in flight at the same time. And acquire 319 * the tag's ownership for flush req. 320 * 321 * In case of IO scheduler, flush rq need to borrow scheduler tag 322 * just for cheating put/get driver tag. 323 */ 324 flush_rq->mq_ctx = first_rq->mq_ctx; 325 flush_rq->mq_hctx = first_rq->mq_hctx; 326 327 if (!q->elevator) { 328 flush_rq->tag = first_rq->tag; 329 330 /* 331 * We borrow data request's driver tag, so have to mark 332 * this flush request as INFLIGHT for avoiding double 333 * account of this driver tag 334 */ 335 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 336 } else 337 flush_rq->internal_tag = first_rq->internal_tag; 338 339 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 340 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 341 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 342 flush_rq->end_io = flush_end_io; 343 /* 344 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 345 * implied in refcount_inc_not_zero() called from 346 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 347 * and READ flush_rq->end_io 348 */ 349 smp_wmb(); 350 req_ref_set(flush_rq, 1); 351 352 spin_lock(&q->requeue_lock); 353 list_add_tail(&flush_rq->queuelist, &q->flush_list); 354 spin_unlock(&q->requeue_lock); 355 356 blk_mq_kick_requeue_list(q); 357 } 358 359 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, 360 blk_status_t error) 361 { 362 struct request_queue *q = rq->q; 363 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 364 struct blk_mq_ctx *ctx = rq->mq_ctx; 365 unsigned long flags; 366 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 367 368 if (q->elevator) { 369 WARN_ON(rq->tag < 0); 370 blk_mq_put_driver_tag(rq); 371 } 372 373 /* 374 * After populating an empty queue, kick it to avoid stall. Read 375 * the comment in flush_end_io(). 376 */ 377 spin_lock_irqsave(&fq->mq_flush_lock, flags); 378 fq->flush_data_in_flight--; 379 /* 380 * May have been corrupted by rq->rq_next reuse, we need to 381 * re-initialize rq->queuelist before reusing it here. 382 */ 383 INIT_LIST_HEAD(&rq->queuelist); 384 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 385 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 386 387 blk_mq_sched_restart(hctx); 388 return RQ_END_IO_NONE; 389 } 390 391 static void blk_rq_init_flush(struct request *rq) 392 { 393 rq->flush.seq = 0; 394 rq->rq_flags |= RQF_FLUSH_SEQ; 395 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 396 rq->end_io = mq_flush_data_end_io; 397 } 398 399 /* 400 * Insert a PREFLUSH/FUA request into the flush state machine. 401 * Returns true if the request has been consumed by the flush state machine, 402 * or false if the caller should continue to process it. 403 */ 404 bool blk_insert_flush(struct request *rq) 405 { 406 struct request_queue *q = rq->q; 407 unsigned long fflags = q->queue_flags; /* may change, cache */ 408 unsigned int policy = blk_flush_policy(fflags, rq); 409 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 410 411 /* FLUSH/FUA request must never be merged */ 412 WARN_ON_ONCE(rq->bio != rq->biotail); 413 414 /* 415 * @policy now records what operations need to be done. Adjust 416 * REQ_PREFLUSH and FUA for the driver. 417 */ 418 rq->cmd_flags &= ~REQ_PREFLUSH; 419 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 420 rq->cmd_flags &= ~REQ_FUA; 421 422 /* 423 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 424 * of those flags, we have to set REQ_SYNC to avoid skewing 425 * the request accounting. 426 */ 427 rq->cmd_flags |= REQ_SYNC; 428 429 switch (policy) { 430 case 0: 431 /* 432 * An empty flush handed down from a stacking driver may 433 * translate into nothing if the underlying device does not 434 * advertise a write-back cache. In this case, simply 435 * complete the request. 436 */ 437 blk_mq_end_request(rq, 0); 438 return true; 439 case REQ_FSEQ_DATA: 440 /* 441 * If there's data, but no flush is necessary, the request can 442 * be processed directly without going through flush machinery. 443 * Queue for normal execution. 444 */ 445 return false; 446 case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH: 447 /* 448 * Initialize the flush fields and completion handler to trigger 449 * the post flush, and then just pass the command on. 450 */ 451 blk_rq_init_flush(rq); 452 rq->flush.seq |= REQ_FSEQ_PREFLUSH; 453 spin_lock_irq(&fq->mq_flush_lock); 454 fq->flush_data_in_flight++; 455 spin_unlock_irq(&fq->mq_flush_lock); 456 return false; 457 default: 458 /* 459 * Mark the request as part of a flush sequence and submit it 460 * for further processing to the flush state machine. 461 */ 462 blk_rq_init_flush(rq); 463 spin_lock_irq(&fq->mq_flush_lock); 464 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 465 spin_unlock_irq(&fq->mq_flush_lock); 466 return true; 467 } 468 } 469 470 /** 471 * blkdev_issue_flush - queue a flush 472 * @bdev: blockdev to issue flush for 473 * 474 * Description: 475 * Issue a flush for the block device in question. 476 */ 477 int blkdev_issue_flush(struct block_device *bdev) 478 { 479 struct bio bio; 480 481 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 482 return submit_bio_wait(&bio); 483 } 484 EXPORT_SYMBOL(blkdev_issue_flush); 485 486 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 487 gfp_t flags) 488 { 489 struct blk_flush_queue *fq; 490 int rq_sz = sizeof(struct request); 491 492 fq = kzalloc_node(sizeof(*fq), flags, node); 493 if (!fq) 494 goto fail; 495 496 spin_lock_init(&fq->mq_flush_lock); 497 498 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 499 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 500 if (!fq->flush_rq) 501 goto fail_rq; 502 503 INIT_LIST_HEAD(&fq->flush_queue[0]); 504 INIT_LIST_HEAD(&fq->flush_queue[1]); 505 506 return fq; 507 508 fail_rq: 509 kfree(fq); 510 fail: 511 return NULL; 512 } 513 514 void blk_free_flush_queue(struct blk_flush_queue *fq) 515 { 516 /* bio based request queue hasn't flush queue */ 517 if (!fq) 518 return; 519 520 kfree(fq->flush_rq); 521 kfree(fq); 522 } 523 524 /* 525 * Allow driver to set its own lock class to fq->mq_flush_lock for 526 * avoiding lockdep complaint. 527 * 528 * flush_end_io() may be called recursively from some driver, such as 529 * nvme-loop, so lockdep may complain 'possible recursive locking' because 530 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 531 * key. We need to assign different lock class for these driver's 532 * fq->mq_flush_lock for avoiding the lockdep warning. 533 * 534 * Use dynamically allocated lock class key for each 'blk_flush_queue' 535 * instance is over-kill, and more worse it introduces horrible boot delay 536 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 537 * is called for each hctx release. SCSI probing may synchronously create and 538 * destroy lots of MQ request_queues for non-existent devices, and some robot 539 * test kernel always enable lockdep option. It is observed that more than half 540 * an hour is taken during SCSI MQ probe with per-fq lock class. 541 */ 542 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 543 struct lock_class_key *key) 544 { 545 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 546 } 547 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 548