1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 #include <linux/lockdep.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static void blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, unsigned int flags); 98 99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 100 { 101 unsigned int policy = 0; 102 103 if (blk_rq_sectors(rq)) 104 policy |= REQ_FSEQ_DATA; 105 106 if (fflags & (1UL << QUEUE_FLAG_WC)) { 107 if (rq->cmd_flags & REQ_PREFLUSH) 108 policy |= REQ_FSEQ_PREFLUSH; 109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 110 (rq->cmd_flags & REQ_FUA)) 111 policy |= REQ_FSEQ_POSTFLUSH; 112 } 113 return policy; 114 } 115 116 static unsigned int blk_flush_cur_seq(struct request *rq) 117 { 118 return 1 << ffz(rq->flush.seq); 119 } 120 121 static void blk_flush_restore_request(struct request *rq) 122 { 123 /* 124 * After flush data completion, @rq->bio is %NULL but we need to 125 * complete the bio again. @rq->biotail is guaranteed to equal the 126 * original @rq->bio. Restore it. 127 */ 128 rq->bio = rq->biotail; 129 130 /* make @rq a normal request */ 131 rq->rq_flags &= ~RQF_FLUSH_SEQ; 132 rq->end_io = rq->flush.saved_end_io; 133 } 134 135 static void blk_flush_queue_rq(struct request *rq, bool add_front) 136 { 137 blk_mq_add_to_requeue_list(rq, add_front, true); 138 } 139 140 static void blk_account_io_flush(struct request *rq) 141 { 142 struct hd_struct *part = &rq->rq_disk->part0; 143 144 part_stat_lock(); 145 part_stat_inc(part, ios[STAT_FLUSH]); 146 part_stat_add(part, nsecs[STAT_FLUSH], 147 ktime_get_ns() - rq->start_time_ns); 148 part_stat_unlock(); 149 } 150 151 /** 152 * blk_flush_complete_seq - complete flush sequence 153 * @rq: PREFLUSH/FUA request being sequenced 154 * @fq: flush queue 155 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 156 * @error: whether an error occurred 157 * 158 * @rq just completed @seq part of its flush sequence, record the 159 * completion and trigger the next step. 160 * 161 * CONTEXT: 162 * spin_lock_irq(fq->mq_flush_lock) 163 */ 164 static void blk_flush_complete_seq(struct request *rq, 165 struct blk_flush_queue *fq, 166 unsigned int seq, blk_status_t error) 167 { 168 struct request_queue *q = rq->q; 169 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 170 unsigned int cmd_flags; 171 172 BUG_ON(rq->flush.seq & seq); 173 rq->flush.seq |= seq; 174 cmd_flags = rq->cmd_flags; 175 176 if (likely(!error)) 177 seq = blk_flush_cur_seq(rq); 178 else 179 seq = REQ_FSEQ_DONE; 180 181 switch (seq) { 182 case REQ_FSEQ_PREFLUSH: 183 case REQ_FSEQ_POSTFLUSH: 184 /* queue for flush */ 185 if (list_empty(pending)) 186 fq->flush_pending_since = jiffies; 187 list_move_tail(&rq->flush.list, pending); 188 break; 189 190 case REQ_FSEQ_DATA: 191 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 192 blk_flush_queue_rq(rq, true); 193 break; 194 195 case REQ_FSEQ_DONE: 196 /* 197 * @rq was previously adjusted by blk_insert_flush() for 198 * flush sequencing and may already have gone through the 199 * flush data request completion path. Restore @rq for 200 * normal completion and end it. 201 */ 202 BUG_ON(!list_empty(&rq->queuelist)); 203 list_del_init(&rq->flush.list); 204 blk_flush_restore_request(rq); 205 blk_mq_end_request(rq, error); 206 break; 207 208 default: 209 BUG(); 210 } 211 212 blk_kick_flush(q, fq, cmd_flags); 213 } 214 215 static void flush_end_io(struct request *flush_rq, blk_status_t error) 216 { 217 struct request_queue *q = flush_rq->q; 218 struct list_head *running; 219 struct request *rq, *n; 220 unsigned long flags = 0; 221 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 222 223 blk_account_io_flush(flush_rq); 224 225 /* release the tag's ownership to the req cloned from */ 226 spin_lock_irqsave(&fq->mq_flush_lock, flags); 227 228 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 229 if (!refcount_dec_and_test(&flush_rq->ref)) { 230 fq->rq_status = error; 231 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 232 return; 233 } 234 235 if (fq->rq_status != BLK_STS_OK) 236 error = fq->rq_status; 237 238 if (!q->elevator) { 239 flush_rq->tag = BLK_MQ_NO_TAG; 240 } else { 241 blk_mq_put_driver_tag(flush_rq); 242 flush_rq->internal_tag = BLK_MQ_NO_TAG; 243 } 244 245 running = &fq->flush_queue[fq->flush_running_idx]; 246 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 247 248 /* account completion of the flush request */ 249 fq->flush_running_idx ^= 1; 250 251 /* and push the waiting requests to the next stage */ 252 list_for_each_entry_safe(rq, n, running, flush.list) { 253 unsigned int seq = blk_flush_cur_seq(rq); 254 255 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 256 blk_flush_complete_seq(rq, fq, seq, error); 257 } 258 259 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 260 } 261 262 /** 263 * blk_kick_flush - consider issuing flush request 264 * @q: request_queue being kicked 265 * @fq: flush queue 266 * @flags: cmd_flags of the original request 267 * 268 * Flush related states of @q have changed, consider issuing flush request. 269 * Please read the comment at the top of this file for more info. 270 * 271 * CONTEXT: 272 * spin_lock_irq(fq->mq_flush_lock) 273 * 274 */ 275 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 276 unsigned int flags) 277 { 278 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 279 struct request *first_rq = 280 list_first_entry(pending, struct request, flush.list); 281 struct request *flush_rq = fq->flush_rq; 282 283 /* C1 described at the top of this file */ 284 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 285 return; 286 287 /* C2 and C3 */ 288 if (!list_empty(&fq->flush_data_in_flight) && 289 time_before(jiffies, 290 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 291 return; 292 293 /* 294 * Issue flush and toggle pending_idx. This makes pending_idx 295 * different from running_idx, which means flush is in flight. 296 */ 297 fq->flush_pending_idx ^= 1; 298 299 blk_rq_init(q, flush_rq); 300 301 /* 302 * In case of none scheduler, borrow tag from the first request 303 * since they can't be in flight at the same time. And acquire 304 * the tag's ownership for flush req. 305 * 306 * In case of IO scheduler, flush rq need to borrow scheduler tag 307 * just for cheating put/get driver tag. 308 */ 309 flush_rq->mq_ctx = first_rq->mq_ctx; 310 flush_rq->mq_hctx = first_rq->mq_hctx; 311 312 if (!q->elevator) { 313 flush_rq->tag = first_rq->tag; 314 315 /* 316 * We borrow data request's driver tag, so have to mark 317 * this flush request as INFLIGHT for avoiding double 318 * account of this driver tag 319 */ 320 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 321 } else 322 flush_rq->internal_tag = first_rq->internal_tag; 323 324 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 325 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 326 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 327 flush_rq->rq_disk = first_rq->rq_disk; 328 flush_rq->end_io = flush_end_io; 329 330 blk_flush_queue_rq(flush_rq, false); 331 } 332 333 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 334 { 335 struct request_queue *q = rq->q; 336 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 337 struct blk_mq_ctx *ctx = rq->mq_ctx; 338 unsigned long flags; 339 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 340 341 if (q->elevator) { 342 WARN_ON(rq->tag < 0); 343 blk_mq_put_driver_tag(rq); 344 } 345 346 /* 347 * After populating an empty queue, kick it to avoid stall. Read 348 * the comment in flush_end_io(). 349 */ 350 spin_lock_irqsave(&fq->mq_flush_lock, flags); 351 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 352 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 353 354 blk_mq_sched_restart(hctx); 355 } 356 357 /** 358 * blk_insert_flush - insert a new PREFLUSH/FUA request 359 * @rq: request to insert 360 * 361 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 362 * or __blk_mq_run_hw_queue() to dispatch request. 363 * @rq is being submitted. Analyze what needs to be done and put it on the 364 * right queue. 365 */ 366 void blk_insert_flush(struct request *rq) 367 { 368 struct request_queue *q = rq->q; 369 unsigned long fflags = q->queue_flags; /* may change, cache */ 370 unsigned int policy = blk_flush_policy(fflags, rq); 371 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 372 373 /* 374 * @policy now records what operations need to be done. Adjust 375 * REQ_PREFLUSH and FUA for the driver. 376 */ 377 rq->cmd_flags &= ~REQ_PREFLUSH; 378 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 379 rq->cmd_flags &= ~REQ_FUA; 380 381 /* 382 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 383 * of those flags, we have to set REQ_SYNC to avoid skewing 384 * the request accounting. 385 */ 386 rq->cmd_flags |= REQ_SYNC; 387 388 /* 389 * An empty flush handed down from a stacking driver may 390 * translate into nothing if the underlying device does not 391 * advertise a write-back cache. In this case, simply 392 * complete the request. 393 */ 394 if (!policy) { 395 blk_mq_end_request(rq, 0); 396 return; 397 } 398 399 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 400 401 /* 402 * If there's data but flush is not necessary, the request can be 403 * processed directly without going through flush machinery. Queue 404 * for normal execution. 405 */ 406 if ((policy & REQ_FSEQ_DATA) && 407 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 408 blk_mq_request_bypass_insert(rq, false, false); 409 return; 410 } 411 412 /* 413 * @rq should go through flush machinery. Mark it part of flush 414 * sequence and submit for further processing. 415 */ 416 memset(&rq->flush, 0, sizeof(rq->flush)); 417 INIT_LIST_HEAD(&rq->flush.list); 418 rq->rq_flags |= RQF_FLUSH_SEQ; 419 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 420 421 rq->end_io = mq_flush_data_end_io; 422 423 spin_lock_irq(&fq->mq_flush_lock); 424 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 425 spin_unlock_irq(&fq->mq_flush_lock); 426 } 427 428 /** 429 * blkdev_issue_flush - queue a flush 430 * @bdev: blockdev to issue flush for 431 * @gfp_mask: memory allocation flags (for bio_alloc) 432 * 433 * Description: 434 * Issue a flush for the block device in question. 435 */ 436 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 437 { 438 struct bio *bio; 439 int ret = 0; 440 441 bio = bio_alloc(gfp_mask, 0); 442 bio_set_dev(bio, bdev); 443 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 444 445 ret = submit_bio_wait(bio); 446 bio_put(bio); 447 return ret; 448 } 449 EXPORT_SYMBOL(blkdev_issue_flush); 450 451 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 452 gfp_t flags) 453 { 454 struct blk_flush_queue *fq; 455 int rq_sz = sizeof(struct request); 456 457 fq = kzalloc_node(sizeof(*fq), flags, node); 458 if (!fq) 459 goto fail; 460 461 spin_lock_init(&fq->mq_flush_lock); 462 463 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 464 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 465 if (!fq->flush_rq) 466 goto fail_rq; 467 468 INIT_LIST_HEAD(&fq->flush_queue[0]); 469 INIT_LIST_HEAD(&fq->flush_queue[1]); 470 INIT_LIST_HEAD(&fq->flush_data_in_flight); 471 472 lockdep_register_key(&fq->key); 473 lockdep_set_class(&fq->mq_flush_lock, &fq->key); 474 475 return fq; 476 477 fail_rq: 478 kfree(fq); 479 fail: 480 return NULL; 481 } 482 483 void blk_free_flush_queue(struct blk_flush_queue *fq) 484 { 485 /* bio based request queue hasn't flush queue */ 486 if (!fq) 487 return; 488 489 lockdep_unregister_key(&fq->key); 490 kfree(fq->flush_rq); 491 kfree(fq); 492 } 493