1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/part_stat.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-sched.h" 76 77 /* PREFLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static void blk_kick_flush(struct request_queue *q, 95 struct blk_flush_queue *fq, blk_opf_t flags); 96 97 static inline struct blk_flush_queue * 98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 99 { 100 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 101 } 102 103 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 104 { 105 unsigned int policy = 0; 106 107 if (blk_rq_sectors(rq)) 108 policy |= REQ_FSEQ_DATA; 109 110 if (fflags & (1UL << QUEUE_FLAG_WC)) { 111 if (rq->cmd_flags & REQ_PREFLUSH) 112 policy |= REQ_FSEQ_PREFLUSH; 113 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 114 (rq->cmd_flags & REQ_FUA)) 115 policy |= REQ_FSEQ_POSTFLUSH; 116 } 117 return policy; 118 } 119 120 static unsigned int blk_flush_cur_seq(struct request *rq) 121 { 122 return 1 << ffz(rq->flush.seq); 123 } 124 125 static void blk_flush_restore_request(struct request *rq) 126 { 127 /* 128 * After flush data completion, @rq->bio is %NULL but we need to 129 * complete the bio again. @rq->biotail is guaranteed to equal the 130 * original @rq->bio. Restore it. 131 */ 132 rq->bio = rq->biotail; 133 134 /* make @rq a normal request */ 135 rq->rq_flags &= ~RQF_FLUSH_SEQ; 136 rq->end_io = rq->flush.saved_end_io; 137 } 138 139 static void blk_account_io_flush(struct request *rq) 140 { 141 struct block_device *part = rq->q->disk->part0; 142 143 part_stat_lock(); 144 part_stat_inc(part, ios[STAT_FLUSH]); 145 part_stat_add(part, nsecs[STAT_FLUSH], 146 ktime_get_ns() - rq->start_time_ns); 147 part_stat_unlock(); 148 } 149 150 /** 151 * blk_flush_complete_seq - complete flush sequence 152 * @rq: PREFLUSH/FUA request being sequenced 153 * @fq: flush queue 154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 155 * @error: whether an error occurred 156 * 157 * @rq just completed @seq part of its flush sequence, record the 158 * completion and trigger the next step. 159 * 160 * CONTEXT: 161 * spin_lock_irq(fq->mq_flush_lock) 162 */ 163 static void blk_flush_complete_seq(struct request *rq, 164 struct blk_flush_queue *fq, 165 unsigned int seq, blk_status_t error) 166 { 167 struct request_queue *q = rq->q; 168 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 169 blk_opf_t cmd_flags; 170 171 BUG_ON(rq->flush.seq & seq); 172 rq->flush.seq |= seq; 173 cmd_flags = rq->cmd_flags; 174 175 if (likely(!error)) 176 seq = blk_flush_cur_seq(rq); 177 else 178 seq = REQ_FSEQ_DONE; 179 180 switch (seq) { 181 case REQ_FSEQ_PREFLUSH: 182 case REQ_FSEQ_POSTFLUSH: 183 /* queue for flush */ 184 if (list_empty(pending)) 185 fq->flush_pending_since = jiffies; 186 list_move_tail(&rq->flush.list, pending); 187 break; 188 189 case REQ_FSEQ_DATA: 190 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 191 blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD); 192 blk_mq_kick_requeue_list(q); 193 break; 194 195 case REQ_FSEQ_DONE: 196 /* 197 * @rq was previously adjusted by blk_insert_flush() for 198 * flush sequencing and may already have gone through the 199 * flush data request completion path. Restore @rq for 200 * normal completion and end it. 201 */ 202 list_del_init(&rq->flush.list); 203 blk_flush_restore_request(rq); 204 blk_mq_end_request(rq, error); 205 break; 206 207 default: 208 BUG(); 209 } 210 211 blk_kick_flush(q, fq, cmd_flags); 212 } 213 214 static enum rq_end_io_ret flush_end_io(struct request *flush_rq, 215 blk_status_t error) 216 { 217 struct request_queue *q = flush_rq->q; 218 struct list_head *running; 219 struct request *rq, *n; 220 unsigned long flags = 0; 221 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 222 223 /* release the tag's ownership to the req cloned from */ 224 spin_lock_irqsave(&fq->mq_flush_lock, flags); 225 226 if (!req_ref_put_and_test(flush_rq)) { 227 fq->rq_status = error; 228 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 229 return RQ_END_IO_NONE; 230 } 231 232 blk_account_io_flush(flush_rq); 233 /* 234 * Flush request has to be marked as IDLE when it is really ended 235 * because its .end_io() is called from timeout code path too for 236 * avoiding use-after-free. 237 */ 238 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 239 if (fq->rq_status != BLK_STS_OK) { 240 error = fq->rq_status; 241 fq->rq_status = BLK_STS_OK; 242 } 243 244 if (!q->elevator) { 245 flush_rq->tag = BLK_MQ_NO_TAG; 246 } else { 247 blk_mq_put_driver_tag(flush_rq); 248 flush_rq->internal_tag = BLK_MQ_NO_TAG; 249 } 250 251 running = &fq->flush_queue[fq->flush_running_idx]; 252 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 253 254 /* account completion of the flush request */ 255 fq->flush_running_idx ^= 1; 256 257 /* and push the waiting requests to the next stage */ 258 list_for_each_entry_safe(rq, n, running, flush.list) { 259 unsigned int seq = blk_flush_cur_seq(rq); 260 261 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 262 blk_flush_complete_seq(rq, fq, seq, error); 263 } 264 265 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 266 return RQ_END_IO_NONE; 267 } 268 269 bool is_flush_rq(struct request *rq) 270 { 271 return rq->end_io == flush_end_io; 272 } 273 274 /** 275 * blk_kick_flush - consider issuing flush request 276 * @q: request_queue being kicked 277 * @fq: flush queue 278 * @flags: cmd_flags of the original request 279 * 280 * Flush related states of @q have changed, consider issuing flush request. 281 * Please read the comment at the top of this file for more info. 282 * 283 * CONTEXT: 284 * spin_lock_irq(fq->mq_flush_lock) 285 * 286 */ 287 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 288 blk_opf_t flags) 289 { 290 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 291 struct request *first_rq = 292 list_first_entry(pending, struct request, flush.list); 293 struct request *flush_rq = fq->flush_rq; 294 295 /* C1 described at the top of this file */ 296 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 297 return; 298 299 /* C2 and C3 */ 300 if (!list_empty(&fq->flush_data_in_flight) && 301 time_before(jiffies, 302 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 303 return; 304 305 /* 306 * Issue flush and toggle pending_idx. This makes pending_idx 307 * different from running_idx, which means flush is in flight. 308 */ 309 fq->flush_pending_idx ^= 1; 310 311 blk_rq_init(q, flush_rq); 312 313 /* 314 * In case of none scheduler, borrow tag from the first request 315 * since they can't be in flight at the same time. And acquire 316 * the tag's ownership for flush req. 317 * 318 * In case of IO scheduler, flush rq need to borrow scheduler tag 319 * just for cheating put/get driver tag. 320 */ 321 flush_rq->mq_ctx = first_rq->mq_ctx; 322 flush_rq->mq_hctx = first_rq->mq_hctx; 323 324 if (!q->elevator) { 325 flush_rq->tag = first_rq->tag; 326 327 /* 328 * We borrow data request's driver tag, so have to mark 329 * this flush request as INFLIGHT for avoiding double 330 * account of this driver tag 331 */ 332 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 333 } else 334 flush_rq->internal_tag = first_rq->internal_tag; 335 336 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 337 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 338 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 339 flush_rq->end_io = flush_end_io; 340 /* 341 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 342 * implied in refcount_inc_not_zero() called from 343 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 344 * and READ flush_rq->end_io 345 */ 346 smp_wmb(); 347 req_ref_set(flush_rq, 1); 348 349 blk_mq_add_to_requeue_list(flush_rq, 0); 350 blk_mq_kick_requeue_list(q); 351 } 352 353 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, 354 blk_status_t error) 355 { 356 struct request_queue *q = rq->q; 357 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 358 struct blk_mq_ctx *ctx = rq->mq_ctx; 359 unsigned long flags; 360 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 361 362 if (q->elevator) { 363 WARN_ON(rq->tag < 0); 364 blk_mq_put_driver_tag(rq); 365 } 366 367 /* 368 * After populating an empty queue, kick it to avoid stall. Read 369 * the comment in flush_end_io(). 370 */ 371 spin_lock_irqsave(&fq->mq_flush_lock, flags); 372 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 373 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 374 375 blk_mq_sched_restart(hctx); 376 return RQ_END_IO_NONE; 377 } 378 379 /** 380 * blk_insert_flush - insert a new PREFLUSH/FUA request 381 * @rq: request to insert 382 * 383 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 384 * or __blk_mq_run_hw_queue() to dispatch request. 385 * @rq is being submitted. Analyze what needs to be done and put it on the 386 * right queue. 387 */ 388 void blk_insert_flush(struct request *rq) 389 { 390 struct request_queue *q = rq->q; 391 unsigned long fflags = q->queue_flags; /* may change, cache */ 392 unsigned int policy = blk_flush_policy(fflags, rq); 393 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 394 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 395 396 /* 397 * @policy now records what operations need to be done. Adjust 398 * REQ_PREFLUSH and FUA for the driver. 399 */ 400 rq->cmd_flags &= ~REQ_PREFLUSH; 401 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 402 rq->cmd_flags &= ~REQ_FUA; 403 404 /* 405 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 406 * of those flags, we have to set REQ_SYNC to avoid skewing 407 * the request accounting. 408 */ 409 rq->cmd_flags |= REQ_SYNC; 410 411 /* 412 * An empty flush handed down from a stacking driver may 413 * translate into nothing if the underlying device does not 414 * advertise a write-back cache. In this case, simply 415 * complete the request. 416 */ 417 if (!policy) { 418 blk_mq_end_request(rq, 0); 419 return; 420 } 421 422 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 423 424 /* 425 * If there's data but flush is not necessary, the request can be 426 * processed directly without going through flush machinery. Queue 427 * for normal execution. 428 */ 429 if ((policy & REQ_FSEQ_DATA) && 430 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 431 blk_mq_request_bypass_insert(rq, 0); 432 blk_mq_run_hw_queue(hctx, false); 433 return; 434 } 435 436 /* 437 * @rq should go through flush machinery. Mark it part of flush 438 * sequence and submit for further processing. 439 */ 440 memset(&rq->flush, 0, sizeof(rq->flush)); 441 INIT_LIST_HEAD(&rq->flush.list); 442 rq->rq_flags |= RQF_FLUSH_SEQ; 443 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 444 445 rq->end_io = mq_flush_data_end_io; 446 447 spin_lock_irq(&fq->mq_flush_lock); 448 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 449 spin_unlock_irq(&fq->mq_flush_lock); 450 } 451 452 /** 453 * blkdev_issue_flush - queue a flush 454 * @bdev: blockdev to issue flush for 455 * 456 * Description: 457 * Issue a flush for the block device in question. 458 */ 459 int blkdev_issue_flush(struct block_device *bdev) 460 { 461 struct bio bio; 462 463 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 464 return submit_bio_wait(&bio); 465 } 466 EXPORT_SYMBOL(blkdev_issue_flush); 467 468 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 469 gfp_t flags) 470 { 471 struct blk_flush_queue *fq; 472 int rq_sz = sizeof(struct request); 473 474 fq = kzalloc_node(sizeof(*fq), flags, node); 475 if (!fq) 476 goto fail; 477 478 spin_lock_init(&fq->mq_flush_lock); 479 480 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 481 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 482 if (!fq->flush_rq) 483 goto fail_rq; 484 485 INIT_LIST_HEAD(&fq->flush_queue[0]); 486 INIT_LIST_HEAD(&fq->flush_queue[1]); 487 INIT_LIST_HEAD(&fq->flush_data_in_flight); 488 489 return fq; 490 491 fail_rq: 492 kfree(fq); 493 fail: 494 return NULL; 495 } 496 497 void blk_free_flush_queue(struct blk_flush_queue *fq) 498 { 499 /* bio based request queue hasn't flush queue */ 500 if (!fq) 501 return; 502 503 kfree(fq->flush_rq); 504 kfree(fq); 505 } 506 507 /* 508 * Allow driver to set its own lock class to fq->mq_flush_lock for 509 * avoiding lockdep complaint. 510 * 511 * flush_end_io() may be called recursively from some driver, such as 512 * nvme-loop, so lockdep may complain 'possible recursive locking' because 513 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 514 * key. We need to assign different lock class for these driver's 515 * fq->mq_flush_lock for avoiding the lockdep warning. 516 * 517 * Use dynamically allocated lock class key for each 'blk_flush_queue' 518 * instance is over-kill, and more worse it introduces horrible boot delay 519 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 520 * is called for each hctx release. SCSI probing may synchronously create and 521 * destroy lots of MQ request_queues for non-existent devices, and some robot 522 * test kernel always enable lockdep option. It is observed that more than half 523 * an hour is taken during SCSI MQ probe with per-fq lock class. 524 */ 525 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 526 struct lock_class_key *key) 527 { 528 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 529 } 530 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 531