1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-tag.h" 76 #include "blk-mq-sched.h" 77 78 /* PREFLUSH/FUA sequences */ 79 enum { 80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 83 REQ_FSEQ_DONE = (1 << 3), 84 85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 86 REQ_FSEQ_POSTFLUSH, 87 88 /* 89 * If flush has been pending longer than the following timeout, 90 * it's issued even if flush_data requests are still in flight. 91 */ 92 FLUSH_PENDING_TIMEOUT = 5 * HZ, 93 }; 94 95 static void blk_kick_flush(struct request_queue *q, 96 struct blk_flush_queue *fq, unsigned int flags); 97 98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 99 { 100 unsigned int policy = 0; 101 102 if (blk_rq_sectors(rq)) 103 policy |= REQ_FSEQ_DATA; 104 105 if (fflags & (1UL << QUEUE_FLAG_WC)) { 106 if (rq->cmd_flags & REQ_PREFLUSH) 107 policy |= REQ_FSEQ_PREFLUSH; 108 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 109 (rq->cmd_flags & REQ_FUA)) 110 policy |= REQ_FSEQ_POSTFLUSH; 111 } 112 return policy; 113 } 114 115 static unsigned int blk_flush_cur_seq(struct request *rq) 116 { 117 return 1 << ffz(rq->flush.seq); 118 } 119 120 static void blk_flush_restore_request(struct request *rq) 121 { 122 /* 123 * After flush data completion, @rq->bio is %NULL but we need to 124 * complete the bio again. @rq->biotail is guaranteed to equal the 125 * original @rq->bio. Restore it. 126 */ 127 rq->bio = rq->biotail; 128 129 /* make @rq a normal request */ 130 rq->rq_flags &= ~RQF_FLUSH_SEQ; 131 rq->end_io = rq->flush.saved_end_io; 132 } 133 134 static void blk_flush_queue_rq(struct request *rq, bool add_front) 135 { 136 blk_mq_add_to_requeue_list(rq, add_front, true); 137 } 138 139 /** 140 * blk_flush_complete_seq - complete flush sequence 141 * @rq: PREFLUSH/FUA request being sequenced 142 * @fq: flush queue 143 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 144 * @error: whether an error occurred 145 * 146 * @rq just completed @seq part of its flush sequence, record the 147 * completion and trigger the next step. 148 * 149 * CONTEXT: 150 * spin_lock_irq(fq->mq_flush_lock) 151 * 152 * RETURNS: 153 * %true if requests were added to the dispatch queue, %false otherwise. 154 */ 155 static void blk_flush_complete_seq(struct request *rq, 156 struct blk_flush_queue *fq, 157 unsigned int seq, blk_status_t error) 158 { 159 struct request_queue *q = rq->q; 160 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 161 unsigned int cmd_flags; 162 163 BUG_ON(rq->flush.seq & seq); 164 rq->flush.seq |= seq; 165 cmd_flags = rq->cmd_flags; 166 167 if (likely(!error)) 168 seq = blk_flush_cur_seq(rq); 169 else 170 seq = REQ_FSEQ_DONE; 171 172 switch (seq) { 173 case REQ_FSEQ_PREFLUSH: 174 case REQ_FSEQ_POSTFLUSH: 175 /* queue for flush */ 176 if (list_empty(pending)) 177 fq->flush_pending_since = jiffies; 178 list_move_tail(&rq->flush.list, pending); 179 break; 180 181 case REQ_FSEQ_DATA: 182 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 183 blk_flush_queue_rq(rq, true); 184 break; 185 186 case REQ_FSEQ_DONE: 187 /* 188 * @rq was previously adjusted by blk_flush_issue() for 189 * flush sequencing and may already have gone through the 190 * flush data request completion path. Restore @rq for 191 * normal completion and end it. 192 */ 193 BUG_ON(!list_empty(&rq->queuelist)); 194 list_del_init(&rq->flush.list); 195 blk_flush_restore_request(rq); 196 blk_mq_end_request(rq, error); 197 break; 198 199 default: 200 BUG(); 201 } 202 203 blk_kick_flush(q, fq, cmd_flags); 204 } 205 206 static void flush_end_io(struct request *flush_rq, blk_status_t error) 207 { 208 struct request_queue *q = flush_rq->q; 209 struct list_head *running; 210 struct request *rq, *n; 211 unsigned long flags = 0; 212 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 213 struct blk_mq_hw_ctx *hctx; 214 215 /* release the tag's ownership to the req cloned from */ 216 spin_lock_irqsave(&fq->mq_flush_lock, flags); 217 218 if (!refcount_dec_and_test(&flush_rq->ref)) { 219 fq->rq_status = error; 220 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 221 return; 222 } 223 224 if (fq->rq_status != BLK_STS_OK) 225 error = fq->rq_status; 226 227 hctx = flush_rq->mq_hctx; 228 if (!q->elevator) { 229 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 230 flush_rq->tag = -1; 231 } else { 232 blk_mq_put_driver_tag(flush_rq); 233 flush_rq->internal_tag = -1; 234 } 235 236 running = &fq->flush_queue[fq->flush_running_idx]; 237 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 238 239 /* account completion of the flush request */ 240 fq->flush_running_idx ^= 1; 241 242 /* and push the waiting requests to the next stage */ 243 list_for_each_entry_safe(rq, n, running, flush.list) { 244 unsigned int seq = blk_flush_cur_seq(rq); 245 246 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 247 blk_flush_complete_seq(rq, fq, seq, error); 248 } 249 250 fq->flush_queue_delayed = 0; 251 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 252 } 253 254 /** 255 * blk_kick_flush - consider issuing flush request 256 * @q: request_queue being kicked 257 * @fq: flush queue 258 * @flags: cmd_flags of the original request 259 * 260 * Flush related states of @q have changed, consider issuing flush request. 261 * Please read the comment at the top of this file for more info. 262 * 263 * CONTEXT: 264 * spin_lock_irq(fq->mq_flush_lock) 265 * 266 */ 267 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 268 unsigned int flags) 269 { 270 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 271 struct request *first_rq = 272 list_first_entry(pending, struct request, flush.list); 273 struct request *flush_rq = fq->flush_rq; 274 275 /* C1 described at the top of this file */ 276 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 277 return; 278 279 /* C2 and C3 280 * 281 * For blk-mq + scheduling, we can risk having all driver tags 282 * assigned to empty flushes, and we deadlock if we are expecting 283 * other requests to make progress. Don't defer for that case. 284 */ 285 if (!list_empty(&fq->flush_data_in_flight) && q->elevator && 286 time_before(jiffies, 287 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 288 return; 289 290 /* 291 * Issue flush and toggle pending_idx. This makes pending_idx 292 * different from running_idx, which means flush is in flight. 293 */ 294 fq->flush_pending_idx ^= 1; 295 296 blk_rq_init(q, flush_rq); 297 298 /* 299 * In case of none scheduler, borrow tag from the first request 300 * since they can't be in flight at the same time. And acquire 301 * the tag's ownership for flush req. 302 * 303 * In case of IO scheduler, flush rq need to borrow scheduler tag 304 * just for cheating put/get driver tag. 305 */ 306 flush_rq->mq_ctx = first_rq->mq_ctx; 307 flush_rq->mq_hctx = first_rq->mq_hctx; 308 309 if (!q->elevator) { 310 fq->orig_rq = first_rq; 311 flush_rq->tag = first_rq->tag; 312 blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq); 313 } else { 314 flush_rq->internal_tag = first_rq->internal_tag; 315 } 316 317 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 318 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 319 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 320 flush_rq->rq_disk = first_rq->rq_disk; 321 flush_rq->end_io = flush_end_io; 322 323 blk_flush_queue_rq(flush_rq, false); 324 } 325 326 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 327 { 328 struct request_queue *q = rq->q; 329 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 330 struct blk_mq_ctx *ctx = rq->mq_ctx; 331 unsigned long flags; 332 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 333 334 if (q->elevator) { 335 WARN_ON(rq->tag < 0); 336 blk_mq_put_driver_tag(rq); 337 } 338 339 /* 340 * After populating an empty queue, kick it to avoid stall. Read 341 * the comment in flush_end_io(). 342 */ 343 spin_lock_irqsave(&fq->mq_flush_lock, flags); 344 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 345 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 346 347 blk_mq_sched_restart(hctx); 348 } 349 350 /** 351 * blk_insert_flush - insert a new PREFLUSH/FUA request 352 * @rq: request to insert 353 * 354 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 355 * or __blk_mq_run_hw_queue() to dispatch request. 356 * @rq is being submitted. Analyze what needs to be done and put it on the 357 * right queue. 358 */ 359 void blk_insert_flush(struct request *rq) 360 { 361 struct request_queue *q = rq->q; 362 unsigned long fflags = q->queue_flags; /* may change, cache */ 363 unsigned int policy = blk_flush_policy(fflags, rq); 364 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 365 366 /* 367 * @policy now records what operations need to be done. Adjust 368 * REQ_PREFLUSH and FUA for the driver. 369 */ 370 rq->cmd_flags &= ~REQ_PREFLUSH; 371 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 372 rq->cmd_flags &= ~REQ_FUA; 373 374 /* 375 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 376 * of those flags, we have to set REQ_SYNC to avoid skewing 377 * the request accounting. 378 */ 379 rq->cmd_flags |= REQ_SYNC; 380 381 /* 382 * An empty flush handed down from a stacking driver may 383 * translate into nothing if the underlying device does not 384 * advertise a write-back cache. In this case, simply 385 * complete the request. 386 */ 387 if (!policy) { 388 blk_mq_end_request(rq, 0); 389 return; 390 } 391 392 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 393 394 /* 395 * If there's data but flush is not necessary, the request can be 396 * processed directly without going through flush machinery. Queue 397 * for normal execution. 398 */ 399 if ((policy & REQ_FSEQ_DATA) && 400 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 401 blk_mq_request_bypass_insert(rq, false); 402 return; 403 } 404 405 /* 406 * @rq should go through flush machinery. Mark it part of flush 407 * sequence and submit for further processing. 408 */ 409 memset(&rq->flush, 0, sizeof(rq->flush)); 410 INIT_LIST_HEAD(&rq->flush.list); 411 rq->rq_flags |= RQF_FLUSH_SEQ; 412 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 413 414 rq->end_io = mq_flush_data_end_io; 415 416 spin_lock_irq(&fq->mq_flush_lock); 417 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 418 spin_unlock_irq(&fq->mq_flush_lock); 419 } 420 421 /** 422 * blkdev_issue_flush - queue a flush 423 * @bdev: blockdev to issue flush for 424 * @gfp_mask: memory allocation flags (for bio_alloc) 425 * @error_sector: error sector 426 * 427 * Description: 428 * Issue a flush for the block device in question. Caller can supply 429 * room for storing the error offset in case of a flush error, if they 430 * wish to. 431 */ 432 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 433 sector_t *error_sector) 434 { 435 struct request_queue *q; 436 struct bio *bio; 437 int ret = 0; 438 439 if (bdev->bd_disk == NULL) 440 return -ENXIO; 441 442 q = bdev_get_queue(bdev); 443 if (!q) 444 return -ENXIO; 445 446 /* 447 * some block devices may not have their queue correctly set up here 448 * (e.g. loop device without a backing file) and so issuing a flush 449 * here will panic. Ensure there is a request function before issuing 450 * the flush. 451 */ 452 if (!q->make_request_fn) 453 return -ENXIO; 454 455 bio = bio_alloc(gfp_mask, 0); 456 bio_set_dev(bio, bdev); 457 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 458 459 ret = submit_bio_wait(bio); 460 461 /* 462 * The driver must store the error location in ->bi_sector, if 463 * it supports it. For non-stacked drivers, this should be 464 * copied from blk_rq_pos(rq). 465 */ 466 if (error_sector) 467 *error_sector = bio->bi_iter.bi_sector; 468 469 bio_put(bio); 470 return ret; 471 } 472 EXPORT_SYMBOL(blkdev_issue_flush); 473 474 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 475 int node, int cmd_size, gfp_t flags) 476 { 477 struct blk_flush_queue *fq; 478 int rq_sz = sizeof(struct request); 479 480 fq = kzalloc_node(sizeof(*fq), flags, node); 481 if (!fq) 482 goto fail; 483 484 spin_lock_init(&fq->mq_flush_lock); 485 486 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 487 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 488 if (!fq->flush_rq) 489 goto fail_rq; 490 491 INIT_LIST_HEAD(&fq->flush_queue[0]); 492 INIT_LIST_HEAD(&fq->flush_queue[1]); 493 INIT_LIST_HEAD(&fq->flush_data_in_flight); 494 495 return fq; 496 497 fail_rq: 498 kfree(fq); 499 fail: 500 return NULL; 501 } 502 503 void blk_free_flush_queue(struct blk_flush_queue *fq) 504 { 505 /* bio based request queue hasn't flush queue */ 506 if (!fq) 507 return; 508 509 kfree(fq->flush_rq); 510 kfree(fq); 511 } 512