1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 #include <linux/part_stat.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static void blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, blk_opf_t flags); 98 99 static inline struct blk_flush_queue * 100 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 101 { 102 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 103 } 104 105 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 106 { 107 unsigned int policy = 0; 108 109 if (blk_rq_sectors(rq)) 110 policy |= REQ_FSEQ_DATA; 111 112 if (fflags & (1UL << QUEUE_FLAG_WC)) { 113 if (rq->cmd_flags & REQ_PREFLUSH) 114 policy |= REQ_FSEQ_PREFLUSH; 115 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 116 (rq->cmd_flags & REQ_FUA)) 117 policy |= REQ_FSEQ_POSTFLUSH; 118 } 119 return policy; 120 } 121 122 static unsigned int blk_flush_cur_seq(struct request *rq) 123 { 124 return 1 << ffz(rq->flush.seq); 125 } 126 127 static void blk_flush_restore_request(struct request *rq) 128 { 129 /* 130 * After flush data completion, @rq->bio is %NULL but we need to 131 * complete the bio again. @rq->biotail is guaranteed to equal the 132 * original @rq->bio. Restore it. 133 */ 134 rq->bio = rq->biotail; 135 136 /* make @rq a normal request */ 137 rq->rq_flags &= ~RQF_FLUSH_SEQ; 138 rq->end_io = rq->flush.saved_end_io; 139 } 140 141 static void blk_flush_queue_rq(struct request *rq, bool add_front) 142 { 143 blk_mq_add_to_requeue_list(rq, add_front, true); 144 } 145 146 static void blk_account_io_flush(struct request *rq) 147 { 148 struct block_device *part = rq->q->disk->part0; 149 150 part_stat_lock(); 151 part_stat_inc(part, ios[STAT_FLUSH]); 152 part_stat_add(part, nsecs[STAT_FLUSH], 153 ktime_get_ns() - rq->start_time_ns); 154 part_stat_unlock(); 155 } 156 157 /** 158 * blk_flush_complete_seq - complete flush sequence 159 * @rq: PREFLUSH/FUA request being sequenced 160 * @fq: flush queue 161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 162 * @error: whether an error occurred 163 * 164 * @rq just completed @seq part of its flush sequence, record the 165 * completion and trigger the next step. 166 * 167 * CONTEXT: 168 * spin_lock_irq(fq->mq_flush_lock) 169 */ 170 static void blk_flush_complete_seq(struct request *rq, 171 struct blk_flush_queue *fq, 172 unsigned int seq, blk_status_t error) 173 { 174 struct request_queue *q = rq->q; 175 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 176 blk_opf_t cmd_flags; 177 178 BUG_ON(rq->flush.seq & seq); 179 rq->flush.seq |= seq; 180 cmd_flags = rq->cmd_flags; 181 182 if (likely(!error)) 183 seq = blk_flush_cur_seq(rq); 184 else 185 seq = REQ_FSEQ_DONE; 186 187 switch (seq) { 188 case REQ_FSEQ_PREFLUSH: 189 case REQ_FSEQ_POSTFLUSH: 190 /* queue for flush */ 191 if (list_empty(pending)) 192 fq->flush_pending_since = jiffies; 193 list_move_tail(&rq->flush.list, pending); 194 break; 195 196 case REQ_FSEQ_DATA: 197 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 198 blk_flush_queue_rq(rq, true); 199 break; 200 201 case REQ_FSEQ_DONE: 202 /* 203 * @rq was previously adjusted by blk_insert_flush() for 204 * flush sequencing and may already have gone through the 205 * flush data request completion path. Restore @rq for 206 * normal completion and end it. 207 */ 208 list_del_init(&rq->flush.list); 209 blk_flush_restore_request(rq); 210 blk_mq_end_request(rq, error); 211 break; 212 213 default: 214 BUG(); 215 } 216 217 blk_kick_flush(q, fq, cmd_flags); 218 } 219 220 static enum rq_end_io_ret flush_end_io(struct request *flush_rq, 221 blk_status_t error) 222 { 223 struct request_queue *q = flush_rq->q; 224 struct list_head *running; 225 struct request *rq, *n; 226 unsigned long flags = 0; 227 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 228 229 /* release the tag's ownership to the req cloned from */ 230 spin_lock_irqsave(&fq->mq_flush_lock, flags); 231 232 if (!req_ref_put_and_test(flush_rq)) { 233 fq->rq_status = error; 234 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 235 return RQ_END_IO_NONE; 236 } 237 238 blk_account_io_flush(flush_rq); 239 /* 240 * Flush request has to be marked as IDLE when it is really ended 241 * because its .end_io() is called from timeout code path too for 242 * avoiding use-after-free. 243 */ 244 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 245 if (fq->rq_status != BLK_STS_OK) { 246 error = fq->rq_status; 247 fq->rq_status = BLK_STS_OK; 248 } 249 250 if (!q->elevator) { 251 flush_rq->tag = BLK_MQ_NO_TAG; 252 } else { 253 blk_mq_put_driver_tag(flush_rq); 254 flush_rq->internal_tag = BLK_MQ_NO_TAG; 255 } 256 257 running = &fq->flush_queue[fq->flush_running_idx]; 258 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 259 260 /* account completion of the flush request */ 261 fq->flush_running_idx ^= 1; 262 263 /* and push the waiting requests to the next stage */ 264 list_for_each_entry_safe(rq, n, running, flush.list) { 265 unsigned int seq = blk_flush_cur_seq(rq); 266 267 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 268 blk_flush_complete_seq(rq, fq, seq, error); 269 } 270 271 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 272 return RQ_END_IO_NONE; 273 } 274 275 bool is_flush_rq(struct request *rq) 276 { 277 return rq->end_io == flush_end_io; 278 } 279 280 /** 281 * blk_kick_flush - consider issuing flush request 282 * @q: request_queue being kicked 283 * @fq: flush queue 284 * @flags: cmd_flags of the original request 285 * 286 * Flush related states of @q have changed, consider issuing flush request. 287 * Please read the comment at the top of this file for more info. 288 * 289 * CONTEXT: 290 * spin_lock_irq(fq->mq_flush_lock) 291 * 292 */ 293 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 294 blk_opf_t flags) 295 { 296 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 297 struct request *first_rq = 298 list_first_entry(pending, struct request, flush.list); 299 struct request *flush_rq = fq->flush_rq; 300 301 /* C1 described at the top of this file */ 302 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 303 return; 304 305 /* C2 and C3 */ 306 if (!list_empty(&fq->flush_data_in_flight) && 307 time_before(jiffies, 308 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 309 return; 310 311 /* 312 * Issue flush and toggle pending_idx. This makes pending_idx 313 * different from running_idx, which means flush is in flight. 314 */ 315 fq->flush_pending_idx ^= 1; 316 317 blk_rq_init(q, flush_rq); 318 319 /* 320 * In case of none scheduler, borrow tag from the first request 321 * since they can't be in flight at the same time. And acquire 322 * the tag's ownership for flush req. 323 * 324 * In case of IO scheduler, flush rq need to borrow scheduler tag 325 * just for cheating put/get driver tag. 326 */ 327 flush_rq->mq_ctx = first_rq->mq_ctx; 328 flush_rq->mq_hctx = first_rq->mq_hctx; 329 330 if (!q->elevator) { 331 flush_rq->tag = first_rq->tag; 332 333 /* 334 * We borrow data request's driver tag, so have to mark 335 * this flush request as INFLIGHT for avoiding double 336 * account of this driver tag 337 */ 338 flush_rq->rq_flags |= RQF_MQ_INFLIGHT; 339 } else 340 flush_rq->internal_tag = first_rq->internal_tag; 341 342 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 343 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 344 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 345 flush_rq->end_io = flush_end_io; 346 /* 347 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 348 * implied in refcount_inc_not_zero() called from 349 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 350 * and READ flush_rq->end_io 351 */ 352 smp_wmb(); 353 req_ref_set(flush_rq, 1); 354 355 blk_flush_queue_rq(flush_rq, false); 356 } 357 358 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, 359 blk_status_t error) 360 { 361 struct request_queue *q = rq->q; 362 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 363 struct blk_mq_ctx *ctx = rq->mq_ctx; 364 unsigned long flags; 365 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 366 367 if (q->elevator) { 368 WARN_ON(rq->tag < 0); 369 blk_mq_put_driver_tag(rq); 370 } 371 372 /* 373 * After populating an empty queue, kick it to avoid stall. Read 374 * the comment in flush_end_io(). 375 */ 376 spin_lock_irqsave(&fq->mq_flush_lock, flags); 377 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 378 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 379 380 blk_mq_sched_restart(hctx); 381 return RQ_END_IO_NONE; 382 } 383 384 /** 385 * blk_insert_flush - insert a new PREFLUSH/FUA request 386 * @rq: request to insert 387 * 388 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 389 * or __blk_mq_run_hw_queue() to dispatch request. 390 * @rq is being submitted. Analyze what needs to be done and put it on the 391 * right queue. 392 */ 393 void blk_insert_flush(struct request *rq) 394 { 395 struct request_queue *q = rq->q; 396 unsigned long fflags = q->queue_flags; /* may change, cache */ 397 unsigned int policy = blk_flush_policy(fflags, rq); 398 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 399 400 /* 401 * @policy now records what operations need to be done. Adjust 402 * REQ_PREFLUSH and FUA for the driver. 403 */ 404 rq->cmd_flags &= ~REQ_PREFLUSH; 405 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 406 rq->cmd_flags &= ~REQ_FUA; 407 408 /* 409 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 410 * of those flags, we have to set REQ_SYNC to avoid skewing 411 * the request accounting. 412 */ 413 rq->cmd_flags |= REQ_SYNC; 414 415 /* 416 * An empty flush handed down from a stacking driver may 417 * translate into nothing if the underlying device does not 418 * advertise a write-back cache. In this case, simply 419 * complete the request. 420 */ 421 if (!policy) { 422 blk_mq_end_request(rq, 0); 423 return; 424 } 425 426 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 427 428 /* 429 * If there's data but flush is not necessary, the request can be 430 * processed directly without going through flush machinery. Queue 431 * for normal execution. 432 */ 433 if ((policy & REQ_FSEQ_DATA) && 434 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 435 blk_mq_request_bypass_insert(rq, false, true); 436 return; 437 } 438 439 /* 440 * @rq should go through flush machinery. Mark it part of flush 441 * sequence and submit for further processing. 442 */ 443 memset(&rq->flush, 0, sizeof(rq->flush)); 444 INIT_LIST_HEAD(&rq->flush.list); 445 rq->rq_flags |= RQF_FLUSH_SEQ; 446 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 447 448 rq->end_io = mq_flush_data_end_io; 449 450 spin_lock_irq(&fq->mq_flush_lock); 451 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 452 spin_unlock_irq(&fq->mq_flush_lock); 453 } 454 455 /** 456 * blkdev_issue_flush - queue a flush 457 * @bdev: blockdev to issue flush for 458 * 459 * Description: 460 * Issue a flush for the block device in question. 461 */ 462 int blkdev_issue_flush(struct block_device *bdev) 463 { 464 struct bio bio; 465 466 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 467 return submit_bio_wait(&bio); 468 } 469 EXPORT_SYMBOL(blkdev_issue_flush); 470 471 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 472 gfp_t flags) 473 { 474 struct blk_flush_queue *fq; 475 int rq_sz = sizeof(struct request); 476 477 fq = kzalloc_node(sizeof(*fq), flags, node); 478 if (!fq) 479 goto fail; 480 481 spin_lock_init(&fq->mq_flush_lock); 482 483 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 484 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 485 if (!fq->flush_rq) 486 goto fail_rq; 487 488 INIT_LIST_HEAD(&fq->flush_queue[0]); 489 INIT_LIST_HEAD(&fq->flush_queue[1]); 490 INIT_LIST_HEAD(&fq->flush_data_in_flight); 491 492 return fq; 493 494 fail_rq: 495 kfree(fq); 496 fail: 497 return NULL; 498 } 499 500 void blk_free_flush_queue(struct blk_flush_queue *fq) 501 { 502 /* bio based request queue hasn't flush queue */ 503 if (!fq) 504 return; 505 506 kfree(fq->flush_rq); 507 kfree(fq); 508 } 509 510 /* 511 * Allow driver to set its own lock class to fq->mq_flush_lock for 512 * avoiding lockdep complaint. 513 * 514 * flush_end_io() may be called recursively from some driver, such as 515 * nvme-loop, so lockdep may complain 'possible recursive locking' because 516 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 517 * key. We need to assign different lock class for these driver's 518 * fq->mq_flush_lock for avoiding the lockdep warning. 519 * 520 * Use dynamically allocated lock class key for each 'blk_flush_queue' 521 * instance is over-kill, and more worse it introduces horrible boot delay 522 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 523 * is called for each hctx release. SCSI probing may synchronously create and 524 * destroy lots of MQ request_queues for non-existent devices, and some robot 525 * test kernel always enable lockdep option. It is observed that more than half 526 * an hour is taken during SCSI MQ probe with per-fq lock class. 527 */ 528 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 529 struct lock_class_key *key) 530 { 531 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 532 } 533 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 534