1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2019 Google LLC 4 */ 5 6 /* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10 #define pr_fmt(fmt) "blk-crypto: " fmt 11 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <linux/keyslot-manager.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 18 #include "blk-crypto-internal.h" 19 20 const struct blk_crypto_mode blk_crypto_modes[] = { 21 [BLK_ENCRYPTION_MODE_AES_256_XTS] = { 22 .cipher_str = "xts(aes)", 23 .keysize = 64, 24 .ivsize = 16, 25 }, 26 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { 27 .cipher_str = "essiv(cbc(aes),sha256)", 28 .keysize = 16, 29 .ivsize = 16, 30 }, 31 [BLK_ENCRYPTION_MODE_ADIANTUM] = { 32 .cipher_str = "adiantum(xchacha12,aes)", 33 .keysize = 32, 34 .ivsize = 32, 35 }, 36 }; 37 38 /* 39 * This number needs to be at least (the number of threads doing IO 40 * concurrently) * (maximum recursive depth of a bio), so that we don't 41 * deadlock on crypt_ctx allocations. The default is chosen to be the same 42 * as the default number of post read contexts in both EXT4 and F2FS. 43 */ 44 static int num_prealloc_crypt_ctxs = 128; 45 46 module_param(num_prealloc_crypt_ctxs, int, 0444); 47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs, 48 "Number of bio crypto contexts to preallocate"); 49 50 static struct kmem_cache *bio_crypt_ctx_cache; 51 static mempool_t *bio_crypt_ctx_pool; 52 53 static int __init bio_crypt_ctx_init(void) 54 { 55 size_t i; 56 57 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); 58 if (!bio_crypt_ctx_cache) 59 goto out_no_mem; 60 61 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, 62 bio_crypt_ctx_cache); 63 if (!bio_crypt_ctx_pool) 64 goto out_no_mem; 65 66 /* This is assumed in various places. */ 67 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); 68 69 /* Sanity check that no algorithm exceeds the defined limits. */ 70 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { 71 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); 72 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); 73 } 74 75 return 0; 76 out_no_mem: 77 panic("Failed to allocate mem for bio crypt ctxs\n"); 78 } 79 subsys_initcall(bio_crypt_ctx_init); 80 81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, 82 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) 83 { 84 struct bio_crypt_ctx *bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 85 86 bc->bc_key = key; 87 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); 88 89 bio->bi_crypt_context = bc; 90 } 91 92 void __bio_crypt_free_ctx(struct bio *bio) 93 { 94 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); 95 bio->bi_crypt_context = NULL; 96 } 97 98 void __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) 99 { 100 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 101 *dst->bi_crypt_context = *src->bi_crypt_context; 102 } 103 EXPORT_SYMBOL_GPL(__bio_crypt_clone); 104 105 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */ 106 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 107 unsigned int inc) 108 { 109 int i; 110 111 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 112 dun[i] += inc; 113 /* 114 * If the addition in this limb overflowed, then we need to 115 * carry 1 into the next limb. Else the carry is 0. 116 */ 117 if (dun[i] < inc) 118 inc = 1; 119 else 120 inc = 0; 121 } 122 } 123 124 void __bio_crypt_advance(struct bio *bio, unsigned int bytes) 125 { 126 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 127 128 bio_crypt_dun_increment(bc->bc_dun, 129 bytes >> bc->bc_key->data_unit_size_bits); 130 } 131 132 /* 133 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to 134 * @next_dun, treating the DUNs as multi-limb integers. 135 */ 136 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, 137 unsigned int bytes, 138 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) 139 { 140 int i; 141 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; 142 143 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 144 if (bc->bc_dun[i] + carry != next_dun[i]) 145 return false; 146 /* 147 * If the addition in this limb overflowed, then we need to 148 * carry 1 into the next limb. Else the carry is 0. 149 */ 150 if ((bc->bc_dun[i] + carry) < carry) 151 carry = 1; 152 else 153 carry = 0; 154 } 155 156 /* If the DUN wrapped through 0, don't treat it as contiguous. */ 157 return carry == 0; 158 } 159 160 /* 161 * Checks that two bio crypt contexts are compatible - i.e. that 162 * they are mergeable except for data_unit_num continuity. 163 */ 164 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, 165 struct bio_crypt_ctx *bc2) 166 { 167 if (!bc1) 168 return !bc2; 169 170 return bc2 && bc1->bc_key == bc2->bc_key; 171 } 172 173 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) 174 { 175 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); 176 } 177 178 /* 179 * Checks that two bio crypt contexts are compatible, and also 180 * that their data_unit_nums are continuous (and can hence be merged) 181 * in the order @bc1 followed by @bc2. 182 */ 183 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, 184 struct bio_crypt_ctx *bc2) 185 { 186 if (!bio_crypt_ctx_compatible(bc1, bc2)) 187 return false; 188 189 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); 190 } 191 192 /* Check that all I/O segments are data unit aligned. */ 193 static bool bio_crypt_check_alignment(struct bio *bio) 194 { 195 const unsigned int data_unit_size = 196 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; 197 struct bvec_iter iter; 198 struct bio_vec bv; 199 200 bio_for_each_segment(bv, bio, iter) { 201 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) 202 return false; 203 } 204 205 return true; 206 } 207 208 blk_status_t __blk_crypto_init_request(struct request *rq) 209 { 210 return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key, 211 &rq->crypt_keyslot); 212 } 213 214 /** 215 * __blk_crypto_free_request - Uninitialize the crypto fields of a request. 216 * 217 * @rq: The request whose crypto fields to uninitialize. 218 * 219 * Completely uninitializes the crypto fields of a request. If a keyslot has 220 * been programmed into some inline encryption hardware, that keyslot is 221 * released. The rq->crypt_ctx is also freed. 222 */ 223 void __blk_crypto_free_request(struct request *rq) 224 { 225 blk_ksm_put_slot(rq->crypt_keyslot); 226 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); 227 blk_crypto_rq_set_defaults(rq); 228 } 229 230 /** 231 * __blk_crypto_bio_prep - Prepare bio for inline encryption 232 * 233 * @bio_ptr: pointer to original bio pointer 234 * 235 * If the bio crypt context provided for the bio is supported by the underlying 236 * device's inline encryption hardware, do nothing. 237 * 238 * Otherwise, try to perform en/decryption for this bio by falling back to the 239 * kernel crypto API. When the crypto API fallback is used for encryption, 240 * blk-crypto may choose to split the bio into 2 - the first one that will 241 * continue to be processed and the second one that will be resubmitted via 242 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents 243 * of the aforementioned "first one", and *bio_ptr will be updated to this 244 * bounce bio. 245 * 246 * Caller must ensure bio has bio_crypt_ctx. 247 * 248 * Return: true on success; false on error (and bio->bi_status will be set 249 * appropriately, and bio_endio() will have been called so bio 250 * submission should abort). 251 */ 252 bool __blk_crypto_bio_prep(struct bio **bio_ptr) 253 { 254 struct bio *bio = *bio_ptr; 255 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; 256 257 /* Error if bio has no data. */ 258 if (WARN_ON_ONCE(!bio_has_data(bio))) { 259 bio->bi_status = BLK_STS_IOERR; 260 goto fail; 261 } 262 263 if (!bio_crypt_check_alignment(bio)) { 264 bio->bi_status = BLK_STS_IOERR; 265 goto fail; 266 } 267 268 /* 269 * Success if device supports the encryption context, or if we succeeded 270 * in falling back to the crypto API. 271 */ 272 if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm, 273 &bc_key->crypto_cfg)) 274 return true; 275 276 if (blk_crypto_fallback_bio_prep(bio_ptr)) 277 return true; 278 fail: 279 bio_endio(*bio_ptr); 280 return false; 281 } 282 283 /** 284 * __blk_crypto_rq_bio_prep - Prepare a request's crypt_ctx when its first bio 285 * is inserted 286 * 287 * @rq: The request to prepare 288 * @bio: The first bio being inserted into the request 289 * @gfp_mask: gfp mask 290 */ 291 void __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, 292 gfp_t gfp_mask) 293 { 294 if (!rq->crypt_ctx) 295 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 296 *rq->crypt_ctx = *bio->bi_crypt_context; 297 } 298 299 /** 300 * blk_crypto_init_key() - Prepare a key for use with blk-crypto 301 * @blk_key: Pointer to the blk_crypto_key to initialize. 302 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen 303 * @crypto_mode; see blk_crypto_modes[]. 304 * @crypto_mode: identifier for the encryption algorithm to use 305 * @dun_bytes: number of bytes that will be used to specify the DUN when this 306 * key is used 307 * @data_unit_size: the data unit size to use for en/decryption 308 * 309 * Return: 0 on success, -errno on failure. The caller is responsible for 310 * zeroizing both blk_key and raw_key when done with them. 311 */ 312 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, 313 enum blk_crypto_mode_num crypto_mode, 314 unsigned int dun_bytes, 315 unsigned int data_unit_size) 316 { 317 const struct blk_crypto_mode *mode; 318 319 memset(blk_key, 0, sizeof(*blk_key)); 320 321 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) 322 return -EINVAL; 323 324 mode = &blk_crypto_modes[crypto_mode]; 325 if (mode->keysize == 0) 326 return -EINVAL; 327 328 if (dun_bytes == 0 || dun_bytes > BLK_CRYPTO_MAX_IV_SIZE) 329 return -EINVAL; 330 331 if (!is_power_of_2(data_unit_size)) 332 return -EINVAL; 333 334 blk_key->crypto_cfg.crypto_mode = crypto_mode; 335 blk_key->crypto_cfg.dun_bytes = dun_bytes; 336 blk_key->crypto_cfg.data_unit_size = data_unit_size; 337 blk_key->data_unit_size_bits = ilog2(data_unit_size); 338 blk_key->size = mode->keysize; 339 memcpy(blk_key->raw, raw_key, mode->keysize); 340 341 return 0; 342 } 343 344 /* 345 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the 346 * request queue it's submitted to supports inline crypto, or the 347 * blk-crypto-fallback is enabled and supports the cfg). 348 */ 349 bool blk_crypto_config_supported(struct request_queue *q, 350 const struct blk_crypto_config *cfg) 351 { 352 return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || 353 blk_ksm_crypto_cfg_supported(q->ksm, cfg); 354 } 355 356 /** 357 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device 358 * @key: A key to use on the device 359 * @q: the request queue for the device 360 * 361 * Upper layers must call this function to ensure that either the hardware 362 * supports the key's crypto settings, or the crypto API fallback has transforms 363 * for the needed mode allocated and ready to go. This function may allocate 364 * an skcipher, and *should not* be called from the data path, since that might 365 * cause a deadlock 366 * 367 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and 368 * blk-crypto-fallback is either disabled or the needed algorithm 369 * is disabled in the crypto API; or another -errno code. 370 */ 371 int blk_crypto_start_using_key(const struct blk_crypto_key *key, 372 struct request_queue *q) 373 { 374 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) 375 return 0; 376 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); 377 } 378 379 /** 380 * blk_crypto_evict_key() - Evict a key from any inline encryption hardware 381 * it may have been programmed into 382 * @q: The request queue who's associated inline encryption hardware this key 383 * might have been programmed into 384 * @key: The key to evict 385 * 386 * Upper layers (filesystems) must call this function to ensure that a key is 387 * evicted from any hardware that it might have been programmed into. The key 388 * must not be in use by any in-flight IO when this function is called. 389 * 390 * Return: 0 on success or if key is not present in the q's ksm, -err on error. 391 */ 392 int blk_crypto_evict_key(struct request_queue *q, 393 const struct blk_crypto_key *key) 394 { 395 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) 396 return blk_ksm_evict_key(q->ksm, key); 397 398 /* 399 * If the request queue's associated inline encryption hardware didn't 400 * have support for the key, then the key might have been programmed 401 * into the fallback keyslot manager, so try to evict from there. 402 */ 403 return blk_crypto_fallback_evict_key(key); 404 } 405