xref: /openbmc/linux/block/blk-crypto.c (revision b8265621)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11 
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/keyslot-manager.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 
18 #include "blk-crypto-internal.h"
19 
20 const struct blk_crypto_mode blk_crypto_modes[] = {
21 	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
22 		.cipher_str = "xts(aes)",
23 		.keysize = 64,
24 		.ivsize = 16,
25 	},
26 	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
27 		.cipher_str = "essiv(cbc(aes),sha256)",
28 		.keysize = 16,
29 		.ivsize = 16,
30 	},
31 	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
32 		.cipher_str = "adiantum(xchacha12,aes)",
33 		.keysize = 32,
34 		.ivsize = 32,
35 	},
36 };
37 
38 /*
39  * This number needs to be at least (the number of threads doing IO
40  * concurrently) * (maximum recursive depth of a bio), so that we don't
41  * deadlock on crypt_ctx allocations. The default is chosen to be the same
42  * as the default number of post read contexts in both EXT4 and F2FS.
43  */
44 static int num_prealloc_crypt_ctxs = 128;
45 
46 module_param(num_prealloc_crypt_ctxs, int, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
48 		"Number of bio crypto contexts to preallocate");
49 
50 static struct kmem_cache *bio_crypt_ctx_cache;
51 static mempool_t *bio_crypt_ctx_pool;
52 
53 static int __init bio_crypt_ctx_init(void)
54 {
55 	size_t i;
56 
57 	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
58 	if (!bio_crypt_ctx_cache)
59 		goto out_no_mem;
60 
61 	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
62 						      bio_crypt_ctx_cache);
63 	if (!bio_crypt_ctx_pool)
64 		goto out_no_mem;
65 
66 	/* This is assumed in various places. */
67 	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
68 
69 	/* Sanity check that no algorithm exceeds the defined limits. */
70 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
71 		BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
72 		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
73 	}
74 
75 	return 0;
76 out_no_mem:
77 	panic("Failed to allocate mem for bio crypt ctxs\n");
78 }
79 subsys_initcall(bio_crypt_ctx_init);
80 
81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
82 		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
83 {
84 	struct bio_crypt_ctx *bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
85 
86 	bc->bc_key = key;
87 	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
88 
89 	bio->bi_crypt_context = bc;
90 }
91 
92 void __bio_crypt_free_ctx(struct bio *bio)
93 {
94 	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
95 	bio->bi_crypt_context = NULL;
96 }
97 
98 void __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
99 {
100 	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
101 	*dst->bi_crypt_context = *src->bi_crypt_context;
102 }
103 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
104 
105 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
106 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
107 			     unsigned int inc)
108 {
109 	int i;
110 
111 	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
112 		dun[i] += inc;
113 		/*
114 		 * If the addition in this limb overflowed, then we need to
115 		 * carry 1 into the next limb. Else the carry is 0.
116 		 */
117 		if (dun[i] < inc)
118 			inc = 1;
119 		else
120 			inc = 0;
121 	}
122 }
123 
124 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
125 {
126 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
127 
128 	bio_crypt_dun_increment(bc->bc_dun,
129 				bytes >> bc->bc_key->data_unit_size_bits);
130 }
131 
132 /*
133  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
134  * @next_dun, treating the DUNs as multi-limb integers.
135  */
136 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
137 				 unsigned int bytes,
138 				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
139 {
140 	int i;
141 	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
142 
143 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
144 		if (bc->bc_dun[i] + carry != next_dun[i])
145 			return false;
146 		/*
147 		 * If the addition in this limb overflowed, then we need to
148 		 * carry 1 into the next limb. Else the carry is 0.
149 		 */
150 		if ((bc->bc_dun[i] + carry) < carry)
151 			carry = 1;
152 		else
153 			carry = 0;
154 	}
155 
156 	/* If the DUN wrapped through 0, don't treat it as contiguous. */
157 	return carry == 0;
158 }
159 
160 /*
161  * Checks that two bio crypt contexts are compatible - i.e. that
162  * they are mergeable except for data_unit_num continuity.
163  */
164 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
165 				     struct bio_crypt_ctx *bc2)
166 {
167 	if (!bc1)
168 		return !bc2;
169 
170 	return bc2 && bc1->bc_key == bc2->bc_key;
171 }
172 
173 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
174 {
175 	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
176 }
177 
178 /*
179  * Checks that two bio crypt contexts are compatible, and also
180  * that their data_unit_nums are continuous (and can hence be merged)
181  * in the order @bc1 followed by @bc2.
182  */
183 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
184 			     struct bio_crypt_ctx *bc2)
185 {
186 	if (!bio_crypt_ctx_compatible(bc1, bc2))
187 		return false;
188 
189 	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
190 }
191 
192 /* Check that all I/O segments are data unit aligned. */
193 static bool bio_crypt_check_alignment(struct bio *bio)
194 {
195 	const unsigned int data_unit_size =
196 		bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
197 	struct bvec_iter iter;
198 	struct bio_vec bv;
199 
200 	bio_for_each_segment(bv, bio, iter) {
201 		if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
202 			return false;
203 	}
204 
205 	return true;
206 }
207 
208 blk_status_t __blk_crypto_init_request(struct request *rq)
209 {
210 	return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
211 					&rq->crypt_keyslot);
212 }
213 
214 /**
215  * __blk_crypto_free_request - Uninitialize the crypto fields of a request.
216  *
217  * @rq: The request whose crypto fields to uninitialize.
218  *
219  * Completely uninitializes the crypto fields of a request. If a keyslot has
220  * been programmed into some inline encryption hardware, that keyslot is
221  * released. The rq->crypt_ctx is also freed.
222  */
223 void __blk_crypto_free_request(struct request *rq)
224 {
225 	blk_ksm_put_slot(rq->crypt_keyslot);
226 	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
227 	blk_crypto_rq_set_defaults(rq);
228 }
229 
230 /**
231  * __blk_crypto_bio_prep - Prepare bio for inline encryption
232  *
233  * @bio_ptr: pointer to original bio pointer
234  *
235  * If the bio crypt context provided for the bio is supported by the underlying
236  * device's inline encryption hardware, do nothing.
237  *
238  * Otherwise, try to perform en/decryption for this bio by falling back to the
239  * kernel crypto API. When the crypto API fallback is used for encryption,
240  * blk-crypto may choose to split the bio into 2 - the first one that will
241  * continue to be processed and the second one that will be resubmitted via
242  * generic_make_request. A bounce bio will be allocated to encrypt the contents
243  * of the aforementioned "first one", and *bio_ptr will be updated to this
244  * bounce bio.
245  *
246  * Caller must ensure bio has bio_crypt_ctx.
247  *
248  * Return: true on success; false on error (and bio->bi_status will be set
249  *	   appropriately, and bio_endio() will have been called so bio
250  *	   submission should abort).
251  */
252 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
253 {
254 	struct bio *bio = *bio_ptr;
255 	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
256 
257 	/* Error if bio has no data. */
258 	if (WARN_ON_ONCE(!bio_has_data(bio))) {
259 		bio->bi_status = BLK_STS_IOERR;
260 		goto fail;
261 	}
262 
263 	if (!bio_crypt_check_alignment(bio)) {
264 		bio->bi_status = BLK_STS_IOERR;
265 		goto fail;
266 	}
267 
268 	/*
269 	 * Success if device supports the encryption context, or if we succeeded
270 	 * in falling back to the crypto API.
271 	 */
272 	if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm,
273 					 &bc_key->crypto_cfg))
274 		return true;
275 
276 	if (blk_crypto_fallback_bio_prep(bio_ptr))
277 		return true;
278 fail:
279 	bio_endio(*bio_ptr);
280 	return false;
281 }
282 
283 /**
284  * __blk_crypto_rq_bio_prep - Prepare a request's crypt_ctx when its first bio
285  *			      is inserted
286  *
287  * @rq: The request to prepare
288  * @bio: The first bio being inserted into the request
289  * @gfp_mask: gfp mask
290  */
291 void __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
292 			      gfp_t gfp_mask)
293 {
294 	if (!rq->crypt_ctx)
295 		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
296 	*rq->crypt_ctx = *bio->bi_crypt_context;
297 }
298 
299 /**
300  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
301  * @blk_key: Pointer to the blk_crypto_key to initialize.
302  * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
303  *	     @crypto_mode; see blk_crypto_modes[].
304  * @crypto_mode: identifier for the encryption algorithm to use
305  * @dun_bytes: number of bytes that will be used to specify the DUN when this
306  *	       key is used
307  * @data_unit_size: the data unit size to use for en/decryption
308  *
309  * Return: 0 on success, -errno on failure.  The caller is responsible for
310  *	   zeroizing both blk_key and raw_key when done with them.
311  */
312 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
313 			enum blk_crypto_mode_num crypto_mode,
314 			unsigned int dun_bytes,
315 			unsigned int data_unit_size)
316 {
317 	const struct blk_crypto_mode *mode;
318 
319 	memset(blk_key, 0, sizeof(*blk_key));
320 
321 	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
322 		return -EINVAL;
323 
324 	mode = &blk_crypto_modes[crypto_mode];
325 	if (mode->keysize == 0)
326 		return -EINVAL;
327 
328 	if (dun_bytes == 0 || dun_bytes > BLK_CRYPTO_MAX_IV_SIZE)
329 		return -EINVAL;
330 
331 	if (!is_power_of_2(data_unit_size))
332 		return -EINVAL;
333 
334 	blk_key->crypto_cfg.crypto_mode = crypto_mode;
335 	blk_key->crypto_cfg.dun_bytes = dun_bytes;
336 	blk_key->crypto_cfg.data_unit_size = data_unit_size;
337 	blk_key->data_unit_size_bits = ilog2(data_unit_size);
338 	blk_key->size = mode->keysize;
339 	memcpy(blk_key->raw, raw_key, mode->keysize);
340 
341 	return 0;
342 }
343 
344 /*
345  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
346  * request queue it's submitted to supports inline crypto, or the
347  * blk-crypto-fallback is enabled and supports the cfg).
348  */
349 bool blk_crypto_config_supported(struct request_queue *q,
350 				 const struct blk_crypto_config *cfg)
351 {
352 	return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
353 	       blk_ksm_crypto_cfg_supported(q->ksm, cfg);
354 }
355 
356 /**
357  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
358  * @key: A key to use on the device
359  * @q: the request queue for the device
360  *
361  * Upper layers must call this function to ensure that either the hardware
362  * supports the key's crypto settings, or the crypto API fallback has transforms
363  * for the needed mode allocated and ready to go. This function may allocate
364  * an skcipher, and *should not* be called from the data path, since that might
365  * cause a deadlock
366  *
367  * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
368  *	   blk-crypto-fallback is either disabled or the needed algorithm
369  *	   is disabled in the crypto API; or another -errno code.
370  */
371 int blk_crypto_start_using_key(const struct blk_crypto_key *key,
372 			       struct request_queue *q)
373 {
374 	if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
375 		return 0;
376 	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
377 }
378 
379 /**
380  * blk_crypto_evict_key() - Evict a key from any inline encryption hardware
381  *			    it may have been programmed into
382  * @q: The request queue who's associated inline encryption hardware this key
383  *     might have been programmed into
384  * @key: The key to evict
385  *
386  * Upper layers (filesystems) must call this function to ensure that a key is
387  * evicted from any hardware that it might have been programmed into.  The key
388  * must not be in use by any in-flight IO when this function is called.
389  *
390  * Return: 0 on success or if key is not present in the q's ksm, -err on error.
391  */
392 int blk_crypto_evict_key(struct request_queue *q,
393 			 const struct blk_crypto_key *key)
394 {
395 	if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
396 		return blk_ksm_evict_key(q->ksm, key);
397 
398 	/*
399 	 * If the request queue's associated inline encryption hardware didn't
400 	 * have support for the key, then the key might have been programmed
401 	 * into the fallback keyslot manager, so try to evict from there.
402 	 */
403 	return blk_crypto_fallback_evict_key(key);
404 }
405