xref: /openbmc/linux/block/blk-crypto.c (revision b737eecd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11 
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/keyslot-manager.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 
18 #include "blk-crypto-internal.h"
19 
20 const struct blk_crypto_mode blk_crypto_modes[] = {
21 	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
22 		.cipher_str = "xts(aes)",
23 		.keysize = 64,
24 		.ivsize = 16,
25 	},
26 	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
27 		.cipher_str = "essiv(cbc(aes),sha256)",
28 		.keysize = 16,
29 		.ivsize = 16,
30 	},
31 	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
32 		.cipher_str = "adiantum(xchacha12,aes)",
33 		.keysize = 32,
34 		.ivsize = 32,
35 	},
36 };
37 
38 /*
39  * This number needs to be at least (the number of threads doing IO
40  * concurrently) * (maximum recursive depth of a bio), so that we don't
41  * deadlock on crypt_ctx allocations. The default is chosen to be the same
42  * as the default number of post read contexts in both EXT4 and F2FS.
43  */
44 static int num_prealloc_crypt_ctxs = 128;
45 
46 module_param(num_prealloc_crypt_ctxs, int, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
48 		"Number of bio crypto contexts to preallocate");
49 
50 static struct kmem_cache *bio_crypt_ctx_cache;
51 static mempool_t *bio_crypt_ctx_pool;
52 
53 static int __init bio_crypt_ctx_init(void)
54 {
55 	size_t i;
56 
57 	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
58 	if (!bio_crypt_ctx_cache)
59 		goto out_no_mem;
60 
61 	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
62 						      bio_crypt_ctx_cache);
63 	if (!bio_crypt_ctx_pool)
64 		goto out_no_mem;
65 
66 	/* This is assumed in various places. */
67 	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
68 
69 	/* Sanity check that no algorithm exceeds the defined limits. */
70 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
71 		BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
72 		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
73 	}
74 
75 	return 0;
76 out_no_mem:
77 	panic("Failed to allocate mem for bio crypt ctxs\n");
78 }
79 subsys_initcall(bio_crypt_ctx_init);
80 
81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
82 		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
83 {
84 	struct bio_crypt_ctx *bc;
85 
86 	/*
87 	 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
88 	 * that the mempool_alloc() can't fail.
89 	 */
90 	WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
91 
92 	bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
93 
94 	bc->bc_key = key;
95 	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
96 
97 	bio->bi_crypt_context = bc;
98 }
99 
100 void __bio_crypt_free_ctx(struct bio *bio)
101 {
102 	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
103 	bio->bi_crypt_context = NULL;
104 }
105 
106 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
107 {
108 	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
109 	if (!dst->bi_crypt_context)
110 		return -ENOMEM;
111 	*dst->bi_crypt_context = *src->bi_crypt_context;
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
115 
116 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
117 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
118 			     unsigned int inc)
119 {
120 	int i;
121 
122 	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
123 		dun[i] += inc;
124 		/*
125 		 * If the addition in this limb overflowed, then we need to
126 		 * carry 1 into the next limb. Else the carry is 0.
127 		 */
128 		if (dun[i] < inc)
129 			inc = 1;
130 		else
131 			inc = 0;
132 	}
133 }
134 
135 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
136 {
137 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
138 
139 	bio_crypt_dun_increment(bc->bc_dun,
140 				bytes >> bc->bc_key->data_unit_size_bits);
141 }
142 
143 /*
144  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
145  * @next_dun, treating the DUNs as multi-limb integers.
146  */
147 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
148 				 unsigned int bytes,
149 				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
150 {
151 	int i;
152 	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
153 
154 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
155 		if (bc->bc_dun[i] + carry != next_dun[i])
156 			return false;
157 		/*
158 		 * If the addition in this limb overflowed, then we need to
159 		 * carry 1 into the next limb. Else the carry is 0.
160 		 */
161 		if ((bc->bc_dun[i] + carry) < carry)
162 			carry = 1;
163 		else
164 			carry = 0;
165 	}
166 
167 	/* If the DUN wrapped through 0, don't treat it as contiguous. */
168 	return carry == 0;
169 }
170 
171 /*
172  * Checks that two bio crypt contexts are compatible - i.e. that
173  * they are mergeable except for data_unit_num continuity.
174  */
175 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
176 				     struct bio_crypt_ctx *bc2)
177 {
178 	if (!bc1)
179 		return !bc2;
180 
181 	return bc2 && bc1->bc_key == bc2->bc_key;
182 }
183 
184 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
185 {
186 	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
187 }
188 
189 /*
190  * Checks that two bio crypt contexts are compatible, and also
191  * that their data_unit_nums are continuous (and can hence be merged)
192  * in the order @bc1 followed by @bc2.
193  */
194 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
195 			     struct bio_crypt_ctx *bc2)
196 {
197 	if (!bio_crypt_ctx_compatible(bc1, bc2))
198 		return false;
199 
200 	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
201 }
202 
203 /* Check that all I/O segments are data unit aligned. */
204 static bool bio_crypt_check_alignment(struct bio *bio)
205 {
206 	const unsigned int data_unit_size =
207 		bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
208 	struct bvec_iter iter;
209 	struct bio_vec bv;
210 
211 	bio_for_each_segment(bv, bio, iter) {
212 		if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
213 			return false;
214 	}
215 
216 	return true;
217 }
218 
219 blk_status_t __blk_crypto_init_request(struct request *rq)
220 {
221 	return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
222 					&rq->crypt_keyslot);
223 }
224 
225 /**
226  * __blk_crypto_free_request - Uninitialize the crypto fields of a request.
227  *
228  * @rq: The request whose crypto fields to uninitialize.
229  *
230  * Completely uninitializes the crypto fields of a request. If a keyslot has
231  * been programmed into some inline encryption hardware, that keyslot is
232  * released. The rq->crypt_ctx is also freed.
233  */
234 void __blk_crypto_free_request(struct request *rq)
235 {
236 	blk_ksm_put_slot(rq->crypt_keyslot);
237 	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
238 	blk_crypto_rq_set_defaults(rq);
239 }
240 
241 /**
242  * __blk_crypto_bio_prep - Prepare bio for inline encryption
243  *
244  * @bio_ptr: pointer to original bio pointer
245  *
246  * If the bio crypt context provided for the bio is supported by the underlying
247  * device's inline encryption hardware, do nothing.
248  *
249  * Otherwise, try to perform en/decryption for this bio by falling back to the
250  * kernel crypto API. When the crypto API fallback is used for encryption,
251  * blk-crypto may choose to split the bio into 2 - the first one that will
252  * continue to be processed and the second one that will be resubmitted via
253  * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
254  * of the aforementioned "first one", and *bio_ptr will be updated to this
255  * bounce bio.
256  *
257  * Caller must ensure bio has bio_crypt_ctx.
258  *
259  * Return: true on success; false on error (and bio->bi_status will be set
260  *	   appropriately, and bio_endio() will have been called so bio
261  *	   submission should abort).
262  */
263 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
264 {
265 	struct bio *bio = *bio_ptr;
266 	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
267 
268 	/* Error if bio has no data. */
269 	if (WARN_ON_ONCE(!bio_has_data(bio))) {
270 		bio->bi_status = BLK_STS_IOERR;
271 		goto fail;
272 	}
273 
274 	if (!bio_crypt_check_alignment(bio)) {
275 		bio->bi_status = BLK_STS_IOERR;
276 		goto fail;
277 	}
278 
279 	/*
280 	 * Success if device supports the encryption context, or if we succeeded
281 	 * in falling back to the crypto API.
282 	 */
283 	if (blk_ksm_crypto_cfg_supported(bio->bi_bdev->bd_disk->queue->ksm,
284 					 &bc_key->crypto_cfg))
285 		return true;
286 
287 	if (blk_crypto_fallback_bio_prep(bio_ptr))
288 		return true;
289 fail:
290 	bio_endio(*bio_ptr);
291 	return false;
292 }
293 
294 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
295 			     gfp_t gfp_mask)
296 {
297 	if (!rq->crypt_ctx) {
298 		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
299 		if (!rq->crypt_ctx)
300 			return -ENOMEM;
301 	}
302 	*rq->crypt_ctx = *bio->bi_crypt_context;
303 	return 0;
304 }
305 
306 /**
307  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
308  * @blk_key: Pointer to the blk_crypto_key to initialize.
309  * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
310  *	     @crypto_mode; see blk_crypto_modes[].
311  * @crypto_mode: identifier for the encryption algorithm to use
312  * @dun_bytes: number of bytes that will be used to specify the DUN when this
313  *	       key is used
314  * @data_unit_size: the data unit size to use for en/decryption
315  *
316  * Return: 0 on success, -errno on failure.  The caller is responsible for
317  *	   zeroizing both blk_key and raw_key when done with them.
318  */
319 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
320 			enum blk_crypto_mode_num crypto_mode,
321 			unsigned int dun_bytes,
322 			unsigned int data_unit_size)
323 {
324 	const struct blk_crypto_mode *mode;
325 
326 	memset(blk_key, 0, sizeof(*blk_key));
327 
328 	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
329 		return -EINVAL;
330 
331 	mode = &blk_crypto_modes[crypto_mode];
332 	if (mode->keysize == 0)
333 		return -EINVAL;
334 
335 	if (dun_bytes == 0 || dun_bytes > BLK_CRYPTO_MAX_IV_SIZE)
336 		return -EINVAL;
337 
338 	if (!is_power_of_2(data_unit_size))
339 		return -EINVAL;
340 
341 	blk_key->crypto_cfg.crypto_mode = crypto_mode;
342 	blk_key->crypto_cfg.dun_bytes = dun_bytes;
343 	blk_key->crypto_cfg.data_unit_size = data_unit_size;
344 	blk_key->data_unit_size_bits = ilog2(data_unit_size);
345 	blk_key->size = mode->keysize;
346 	memcpy(blk_key->raw, raw_key, mode->keysize);
347 
348 	return 0;
349 }
350 
351 /*
352  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
353  * request queue it's submitted to supports inline crypto, or the
354  * blk-crypto-fallback is enabled and supports the cfg).
355  */
356 bool blk_crypto_config_supported(struct request_queue *q,
357 				 const struct blk_crypto_config *cfg)
358 {
359 	return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
360 	       blk_ksm_crypto_cfg_supported(q->ksm, cfg);
361 }
362 
363 /**
364  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
365  * @key: A key to use on the device
366  * @q: the request queue for the device
367  *
368  * Upper layers must call this function to ensure that either the hardware
369  * supports the key's crypto settings, or the crypto API fallback has transforms
370  * for the needed mode allocated and ready to go. This function may allocate
371  * an skcipher, and *should not* be called from the data path, since that might
372  * cause a deadlock
373  *
374  * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
375  *	   blk-crypto-fallback is either disabled or the needed algorithm
376  *	   is disabled in the crypto API; or another -errno code.
377  */
378 int blk_crypto_start_using_key(const struct blk_crypto_key *key,
379 			       struct request_queue *q)
380 {
381 	if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
382 		return 0;
383 	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
384 }
385 
386 /**
387  * blk_crypto_evict_key() - Evict a key from any inline encryption hardware
388  *			    it may have been programmed into
389  * @q: The request queue who's associated inline encryption hardware this key
390  *     might have been programmed into
391  * @key: The key to evict
392  *
393  * Upper layers (filesystems) must call this function to ensure that a key is
394  * evicted from any hardware that it might have been programmed into.  The key
395  * must not be in use by any in-flight IO when this function is called.
396  *
397  * Return: 0 on success or if key is not present in the q's ksm, -err on error.
398  */
399 int blk_crypto_evict_key(struct request_queue *q,
400 			 const struct blk_crypto_key *key)
401 {
402 	if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
403 		return blk_ksm_evict_key(q->ksm, key);
404 
405 	/*
406 	 * If the request queue's associated inline encryption hardware didn't
407 	 * have support for the key, then the key might have been programmed
408 	 * into the fallback keyslot manager, so try to evict from there.
409 	 */
410 	return blk_crypto_fallback_evict_key(key);
411 }
412 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
413