1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2019 Google LLC 4 */ 5 6 /* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10 #define pr_fmt(fmt) "blk-crypto: " fmt 11 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <linux/blk-crypto-profile.h> 15 #include <linux/module.h> 16 #include <linux/ratelimit.h> 17 #include <linux/slab.h> 18 19 #include "blk-crypto-internal.h" 20 21 const struct blk_crypto_mode blk_crypto_modes[] = { 22 [BLK_ENCRYPTION_MODE_AES_256_XTS] = { 23 .name = "AES-256-XTS", 24 .cipher_str = "xts(aes)", 25 .keysize = 64, 26 .ivsize = 16, 27 }, 28 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { 29 .name = "AES-128-CBC-ESSIV", 30 .cipher_str = "essiv(cbc(aes),sha256)", 31 .keysize = 16, 32 .ivsize = 16, 33 }, 34 [BLK_ENCRYPTION_MODE_ADIANTUM] = { 35 .name = "Adiantum", 36 .cipher_str = "adiantum(xchacha12,aes)", 37 .keysize = 32, 38 .ivsize = 32, 39 }, 40 [BLK_ENCRYPTION_MODE_SM4_XTS] = { 41 .name = "SM4-XTS", 42 .cipher_str = "xts(sm4)", 43 .keysize = 32, 44 .ivsize = 16, 45 }, 46 }; 47 48 /* 49 * This number needs to be at least (the number of threads doing IO 50 * concurrently) * (maximum recursive depth of a bio), so that we don't 51 * deadlock on crypt_ctx allocations. The default is chosen to be the same 52 * as the default number of post read contexts in both EXT4 and F2FS. 53 */ 54 static int num_prealloc_crypt_ctxs = 128; 55 56 module_param(num_prealloc_crypt_ctxs, int, 0444); 57 MODULE_PARM_DESC(num_prealloc_crypt_ctxs, 58 "Number of bio crypto contexts to preallocate"); 59 60 static struct kmem_cache *bio_crypt_ctx_cache; 61 static mempool_t *bio_crypt_ctx_pool; 62 63 static int __init bio_crypt_ctx_init(void) 64 { 65 size_t i; 66 67 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); 68 if (!bio_crypt_ctx_cache) 69 goto out_no_mem; 70 71 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, 72 bio_crypt_ctx_cache); 73 if (!bio_crypt_ctx_pool) 74 goto out_no_mem; 75 76 /* This is assumed in various places. */ 77 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); 78 79 /* Sanity check that no algorithm exceeds the defined limits. */ 80 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { 81 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); 82 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); 83 } 84 85 return 0; 86 out_no_mem: 87 panic("Failed to allocate mem for bio crypt ctxs\n"); 88 } 89 subsys_initcall(bio_crypt_ctx_init); 90 91 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, 92 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) 93 { 94 struct bio_crypt_ctx *bc; 95 96 /* 97 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so 98 * that the mempool_alloc() can't fail. 99 */ 100 WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM)); 101 102 bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 103 104 bc->bc_key = key; 105 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); 106 107 bio->bi_crypt_context = bc; 108 } 109 110 void __bio_crypt_free_ctx(struct bio *bio) 111 { 112 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); 113 bio->bi_crypt_context = NULL; 114 } 115 116 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) 117 { 118 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 119 if (!dst->bi_crypt_context) 120 return -ENOMEM; 121 *dst->bi_crypt_context = *src->bi_crypt_context; 122 return 0; 123 } 124 125 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */ 126 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 127 unsigned int inc) 128 { 129 int i; 130 131 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 132 dun[i] += inc; 133 /* 134 * If the addition in this limb overflowed, then we need to 135 * carry 1 into the next limb. Else the carry is 0. 136 */ 137 if (dun[i] < inc) 138 inc = 1; 139 else 140 inc = 0; 141 } 142 } 143 144 void __bio_crypt_advance(struct bio *bio, unsigned int bytes) 145 { 146 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 147 148 bio_crypt_dun_increment(bc->bc_dun, 149 bytes >> bc->bc_key->data_unit_size_bits); 150 } 151 152 /* 153 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to 154 * @next_dun, treating the DUNs as multi-limb integers. 155 */ 156 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, 157 unsigned int bytes, 158 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) 159 { 160 int i; 161 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; 162 163 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 164 if (bc->bc_dun[i] + carry != next_dun[i]) 165 return false; 166 /* 167 * If the addition in this limb overflowed, then we need to 168 * carry 1 into the next limb. Else the carry is 0. 169 */ 170 if ((bc->bc_dun[i] + carry) < carry) 171 carry = 1; 172 else 173 carry = 0; 174 } 175 176 /* If the DUN wrapped through 0, don't treat it as contiguous. */ 177 return carry == 0; 178 } 179 180 /* 181 * Checks that two bio crypt contexts are compatible - i.e. that 182 * they are mergeable except for data_unit_num continuity. 183 */ 184 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, 185 struct bio_crypt_ctx *bc2) 186 { 187 if (!bc1) 188 return !bc2; 189 190 return bc2 && bc1->bc_key == bc2->bc_key; 191 } 192 193 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) 194 { 195 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); 196 } 197 198 /* 199 * Checks that two bio crypt contexts are compatible, and also 200 * that their data_unit_nums are continuous (and can hence be merged) 201 * in the order @bc1 followed by @bc2. 202 */ 203 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, 204 struct bio_crypt_ctx *bc2) 205 { 206 if (!bio_crypt_ctx_compatible(bc1, bc2)) 207 return false; 208 209 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); 210 } 211 212 /* Check that all I/O segments are data unit aligned. */ 213 static bool bio_crypt_check_alignment(struct bio *bio) 214 { 215 const unsigned int data_unit_size = 216 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; 217 struct bvec_iter iter; 218 struct bio_vec bv; 219 220 bio_for_each_segment(bv, bio, iter) { 221 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) 222 return false; 223 } 224 225 return true; 226 } 227 228 blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq) 229 { 230 return blk_crypto_get_keyslot(rq->q->crypto_profile, 231 rq->crypt_ctx->bc_key, 232 &rq->crypt_keyslot); 233 } 234 235 void __blk_crypto_rq_put_keyslot(struct request *rq) 236 { 237 blk_crypto_put_keyslot(rq->crypt_keyslot); 238 rq->crypt_keyslot = NULL; 239 } 240 241 void __blk_crypto_free_request(struct request *rq) 242 { 243 /* The keyslot, if one was needed, should have been released earlier. */ 244 if (WARN_ON_ONCE(rq->crypt_keyslot)) 245 __blk_crypto_rq_put_keyslot(rq); 246 247 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); 248 rq->crypt_ctx = NULL; 249 } 250 251 /** 252 * __blk_crypto_bio_prep - Prepare bio for inline encryption 253 * 254 * @bio_ptr: pointer to original bio pointer 255 * 256 * If the bio crypt context provided for the bio is supported by the underlying 257 * device's inline encryption hardware, do nothing. 258 * 259 * Otherwise, try to perform en/decryption for this bio by falling back to the 260 * kernel crypto API. When the crypto API fallback is used for encryption, 261 * blk-crypto may choose to split the bio into 2 - the first one that will 262 * continue to be processed and the second one that will be resubmitted via 263 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents 264 * of the aforementioned "first one", and *bio_ptr will be updated to this 265 * bounce bio. 266 * 267 * Caller must ensure bio has bio_crypt_ctx. 268 * 269 * Return: true on success; false on error (and bio->bi_status will be set 270 * appropriately, and bio_endio() will have been called so bio 271 * submission should abort). 272 */ 273 bool __blk_crypto_bio_prep(struct bio **bio_ptr) 274 { 275 struct bio *bio = *bio_ptr; 276 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; 277 278 /* Error if bio has no data. */ 279 if (WARN_ON_ONCE(!bio_has_data(bio))) { 280 bio->bi_status = BLK_STS_IOERR; 281 goto fail; 282 } 283 284 if (!bio_crypt_check_alignment(bio)) { 285 bio->bi_status = BLK_STS_IOERR; 286 goto fail; 287 } 288 289 /* 290 * Success if device supports the encryption context, or if we succeeded 291 * in falling back to the crypto API. 292 */ 293 if (blk_crypto_config_supported_natively(bio->bi_bdev, 294 &bc_key->crypto_cfg)) 295 return true; 296 if (blk_crypto_fallback_bio_prep(bio_ptr)) 297 return true; 298 fail: 299 bio_endio(*bio_ptr); 300 return false; 301 } 302 303 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, 304 gfp_t gfp_mask) 305 { 306 if (!rq->crypt_ctx) { 307 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 308 if (!rq->crypt_ctx) 309 return -ENOMEM; 310 } 311 *rq->crypt_ctx = *bio->bi_crypt_context; 312 return 0; 313 } 314 315 /** 316 * blk_crypto_init_key() - Prepare a key for use with blk-crypto 317 * @blk_key: Pointer to the blk_crypto_key to initialize. 318 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen 319 * @crypto_mode; see blk_crypto_modes[]. 320 * @crypto_mode: identifier for the encryption algorithm to use 321 * @dun_bytes: number of bytes that will be used to specify the DUN when this 322 * key is used 323 * @data_unit_size: the data unit size to use for en/decryption 324 * 325 * Return: 0 on success, -errno on failure. The caller is responsible for 326 * zeroizing both blk_key and raw_key when done with them. 327 */ 328 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, 329 enum blk_crypto_mode_num crypto_mode, 330 unsigned int dun_bytes, 331 unsigned int data_unit_size) 332 { 333 const struct blk_crypto_mode *mode; 334 335 memset(blk_key, 0, sizeof(*blk_key)); 336 337 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) 338 return -EINVAL; 339 340 mode = &blk_crypto_modes[crypto_mode]; 341 if (mode->keysize == 0) 342 return -EINVAL; 343 344 if (dun_bytes == 0 || dun_bytes > mode->ivsize) 345 return -EINVAL; 346 347 if (!is_power_of_2(data_unit_size)) 348 return -EINVAL; 349 350 blk_key->crypto_cfg.crypto_mode = crypto_mode; 351 blk_key->crypto_cfg.dun_bytes = dun_bytes; 352 blk_key->crypto_cfg.data_unit_size = data_unit_size; 353 blk_key->data_unit_size_bits = ilog2(data_unit_size); 354 blk_key->size = mode->keysize; 355 memcpy(blk_key->raw, raw_key, mode->keysize); 356 357 return 0; 358 } 359 360 bool blk_crypto_config_supported_natively(struct block_device *bdev, 361 const struct blk_crypto_config *cfg) 362 { 363 return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile, 364 cfg); 365 } 366 367 /* 368 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the 369 * block_device it's submitted to supports inline crypto, or the 370 * blk-crypto-fallback is enabled and supports the cfg). 371 */ 372 bool blk_crypto_config_supported(struct block_device *bdev, 373 const struct blk_crypto_config *cfg) 374 { 375 return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || 376 blk_crypto_config_supported_natively(bdev, cfg); 377 } 378 379 /** 380 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device 381 * @bdev: block device to operate on 382 * @key: A key to use on the device 383 * 384 * Upper layers must call this function to ensure that either the hardware 385 * supports the key's crypto settings, or the crypto API fallback has transforms 386 * for the needed mode allocated and ready to go. This function may allocate 387 * an skcipher, and *should not* be called from the data path, since that might 388 * cause a deadlock 389 * 390 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and 391 * blk-crypto-fallback is either disabled or the needed algorithm 392 * is disabled in the crypto API; or another -errno code. 393 */ 394 int blk_crypto_start_using_key(struct block_device *bdev, 395 const struct blk_crypto_key *key) 396 { 397 if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg)) 398 return 0; 399 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); 400 } 401 402 /** 403 * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device 404 * @bdev: a block_device on which I/O using the key may have been done 405 * @key: the key to evict 406 * 407 * For a given block_device, this function removes the given blk_crypto_key from 408 * the keyslot management structures and evicts it from any underlying hardware 409 * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into. 410 * 411 * Upper layers must call this before freeing the blk_crypto_key. It must be 412 * called for every block_device the key may have been used on. The key must no 413 * longer be in use by any I/O when this function is called. 414 * 415 * Context: May sleep. 416 */ 417 void blk_crypto_evict_key(struct block_device *bdev, 418 const struct blk_crypto_key *key) 419 { 420 struct request_queue *q = bdev_get_queue(bdev); 421 int err; 422 423 if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg)) 424 err = __blk_crypto_evict_key(q->crypto_profile, key); 425 else 426 err = blk_crypto_fallback_evict_key(key); 427 /* 428 * An error can only occur here if the key failed to be evicted from a 429 * keyslot (due to a hardware or driver issue) or is allegedly still in 430 * use by I/O (due to a kernel bug). Even in these cases, the key is 431 * still unlinked from the keyslot management structures, and the caller 432 * is allowed and expected to free it right away. There's nothing 433 * callers can do to handle errors, so just log them and return void. 434 */ 435 if (err) 436 pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err); 437 } 438 EXPORT_SYMBOL_GPL(blk_crypto_evict_key); 439