1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2019 Google LLC 4 */ 5 6 /* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10 #define pr_fmt(fmt) "blk-crypto: " fmt 11 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <linux/keyslot-manager.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 18 #include "blk-crypto-internal.h" 19 20 const struct blk_crypto_mode blk_crypto_modes[] = { 21 [BLK_ENCRYPTION_MODE_AES_256_XTS] = { 22 .cipher_str = "xts(aes)", 23 .keysize = 64, 24 .ivsize = 16, 25 }, 26 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { 27 .cipher_str = "essiv(cbc(aes),sha256)", 28 .keysize = 16, 29 .ivsize = 16, 30 }, 31 [BLK_ENCRYPTION_MODE_ADIANTUM] = { 32 .cipher_str = "adiantum(xchacha12,aes)", 33 .keysize = 32, 34 .ivsize = 32, 35 }, 36 }; 37 38 /* 39 * This number needs to be at least (the number of threads doing IO 40 * concurrently) * (maximum recursive depth of a bio), so that we don't 41 * deadlock on crypt_ctx allocations. The default is chosen to be the same 42 * as the default number of post read contexts in both EXT4 and F2FS. 43 */ 44 static int num_prealloc_crypt_ctxs = 128; 45 46 module_param(num_prealloc_crypt_ctxs, int, 0444); 47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs, 48 "Number of bio crypto contexts to preallocate"); 49 50 static struct kmem_cache *bio_crypt_ctx_cache; 51 static mempool_t *bio_crypt_ctx_pool; 52 53 static int __init bio_crypt_ctx_init(void) 54 { 55 size_t i; 56 57 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); 58 if (!bio_crypt_ctx_cache) 59 goto out_no_mem; 60 61 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, 62 bio_crypt_ctx_cache); 63 if (!bio_crypt_ctx_pool) 64 goto out_no_mem; 65 66 /* This is assumed in various places. */ 67 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); 68 69 /* Sanity check that no algorithm exceeds the defined limits. */ 70 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { 71 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); 72 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); 73 } 74 75 return 0; 76 out_no_mem: 77 panic("Failed to allocate mem for bio crypt ctxs\n"); 78 } 79 subsys_initcall(bio_crypt_ctx_init); 80 81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, 82 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) 83 { 84 struct bio_crypt_ctx *bc; 85 86 /* 87 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so 88 * that the mempool_alloc() can't fail. 89 */ 90 WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM)); 91 92 bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 93 94 bc->bc_key = key; 95 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); 96 97 bio->bi_crypt_context = bc; 98 } 99 100 void __bio_crypt_free_ctx(struct bio *bio) 101 { 102 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); 103 bio->bi_crypt_context = NULL; 104 } 105 106 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) 107 { 108 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 109 if (!dst->bi_crypt_context) 110 return -ENOMEM; 111 *dst->bi_crypt_context = *src->bi_crypt_context; 112 return 0; 113 } 114 EXPORT_SYMBOL_GPL(__bio_crypt_clone); 115 116 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */ 117 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 118 unsigned int inc) 119 { 120 int i; 121 122 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 123 dun[i] += inc; 124 /* 125 * If the addition in this limb overflowed, then we need to 126 * carry 1 into the next limb. Else the carry is 0. 127 */ 128 if (dun[i] < inc) 129 inc = 1; 130 else 131 inc = 0; 132 } 133 } 134 135 void __bio_crypt_advance(struct bio *bio, unsigned int bytes) 136 { 137 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 138 139 bio_crypt_dun_increment(bc->bc_dun, 140 bytes >> bc->bc_key->data_unit_size_bits); 141 } 142 143 /* 144 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to 145 * @next_dun, treating the DUNs as multi-limb integers. 146 */ 147 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, 148 unsigned int bytes, 149 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) 150 { 151 int i; 152 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; 153 154 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 155 if (bc->bc_dun[i] + carry != next_dun[i]) 156 return false; 157 /* 158 * If the addition in this limb overflowed, then we need to 159 * carry 1 into the next limb. Else the carry is 0. 160 */ 161 if ((bc->bc_dun[i] + carry) < carry) 162 carry = 1; 163 else 164 carry = 0; 165 } 166 167 /* If the DUN wrapped through 0, don't treat it as contiguous. */ 168 return carry == 0; 169 } 170 171 /* 172 * Checks that two bio crypt contexts are compatible - i.e. that 173 * they are mergeable except for data_unit_num continuity. 174 */ 175 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, 176 struct bio_crypt_ctx *bc2) 177 { 178 if (!bc1) 179 return !bc2; 180 181 return bc2 && bc1->bc_key == bc2->bc_key; 182 } 183 184 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) 185 { 186 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); 187 } 188 189 /* 190 * Checks that two bio crypt contexts are compatible, and also 191 * that their data_unit_nums are continuous (and can hence be merged) 192 * in the order @bc1 followed by @bc2. 193 */ 194 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, 195 struct bio_crypt_ctx *bc2) 196 { 197 if (!bio_crypt_ctx_compatible(bc1, bc2)) 198 return false; 199 200 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); 201 } 202 203 /* Check that all I/O segments are data unit aligned. */ 204 static bool bio_crypt_check_alignment(struct bio *bio) 205 { 206 const unsigned int data_unit_size = 207 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; 208 struct bvec_iter iter; 209 struct bio_vec bv; 210 211 bio_for_each_segment(bv, bio, iter) { 212 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) 213 return false; 214 } 215 216 return true; 217 } 218 219 blk_status_t __blk_crypto_init_request(struct request *rq) 220 { 221 return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key, 222 &rq->crypt_keyslot); 223 } 224 225 /** 226 * __blk_crypto_free_request - Uninitialize the crypto fields of a request. 227 * 228 * @rq: The request whose crypto fields to uninitialize. 229 * 230 * Completely uninitializes the crypto fields of a request. If a keyslot has 231 * been programmed into some inline encryption hardware, that keyslot is 232 * released. The rq->crypt_ctx is also freed. 233 */ 234 void __blk_crypto_free_request(struct request *rq) 235 { 236 blk_ksm_put_slot(rq->crypt_keyslot); 237 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); 238 blk_crypto_rq_set_defaults(rq); 239 } 240 241 /** 242 * __blk_crypto_bio_prep - Prepare bio for inline encryption 243 * 244 * @bio_ptr: pointer to original bio pointer 245 * 246 * If the bio crypt context provided for the bio is supported by the underlying 247 * device's inline encryption hardware, do nothing. 248 * 249 * Otherwise, try to perform en/decryption for this bio by falling back to the 250 * kernel crypto API. When the crypto API fallback is used for encryption, 251 * blk-crypto may choose to split the bio into 2 - the first one that will 252 * continue to be processed and the second one that will be resubmitted via 253 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents 254 * of the aforementioned "first one", and *bio_ptr will be updated to this 255 * bounce bio. 256 * 257 * Caller must ensure bio has bio_crypt_ctx. 258 * 259 * Return: true on success; false on error (and bio->bi_status will be set 260 * appropriately, and bio_endio() will have been called so bio 261 * submission should abort). 262 */ 263 bool __blk_crypto_bio_prep(struct bio **bio_ptr) 264 { 265 struct bio *bio = *bio_ptr; 266 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; 267 268 /* Error if bio has no data. */ 269 if (WARN_ON_ONCE(!bio_has_data(bio))) { 270 bio->bi_status = BLK_STS_IOERR; 271 goto fail; 272 } 273 274 if (!bio_crypt_check_alignment(bio)) { 275 bio->bi_status = BLK_STS_IOERR; 276 goto fail; 277 } 278 279 /* 280 * Success if device supports the encryption context, or if we succeeded 281 * in falling back to the crypto API. 282 */ 283 if (blk_ksm_crypto_cfg_supported(bio->bi_bdev->bd_disk->queue->ksm, 284 &bc_key->crypto_cfg)) 285 return true; 286 287 if (blk_crypto_fallback_bio_prep(bio_ptr)) 288 return true; 289 fail: 290 bio_endio(*bio_ptr); 291 return false; 292 } 293 294 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, 295 gfp_t gfp_mask) 296 { 297 if (!rq->crypt_ctx) { 298 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 299 if (!rq->crypt_ctx) 300 return -ENOMEM; 301 } 302 *rq->crypt_ctx = *bio->bi_crypt_context; 303 return 0; 304 } 305 306 /** 307 * blk_crypto_init_key() - Prepare a key for use with blk-crypto 308 * @blk_key: Pointer to the blk_crypto_key to initialize. 309 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen 310 * @crypto_mode; see blk_crypto_modes[]. 311 * @crypto_mode: identifier for the encryption algorithm to use 312 * @dun_bytes: number of bytes that will be used to specify the DUN when this 313 * key is used 314 * @data_unit_size: the data unit size to use for en/decryption 315 * 316 * Return: 0 on success, -errno on failure. The caller is responsible for 317 * zeroizing both blk_key and raw_key when done with them. 318 */ 319 int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, 320 enum blk_crypto_mode_num crypto_mode, 321 unsigned int dun_bytes, 322 unsigned int data_unit_size) 323 { 324 const struct blk_crypto_mode *mode; 325 326 memset(blk_key, 0, sizeof(*blk_key)); 327 328 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) 329 return -EINVAL; 330 331 mode = &blk_crypto_modes[crypto_mode]; 332 if (mode->keysize == 0) 333 return -EINVAL; 334 335 if (dun_bytes == 0 || dun_bytes > mode->ivsize) 336 return -EINVAL; 337 338 if (!is_power_of_2(data_unit_size)) 339 return -EINVAL; 340 341 blk_key->crypto_cfg.crypto_mode = crypto_mode; 342 blk_key->crypto_cfg.dun_bytes = dun_bytes; 343 blk_key->crypto_cfg.data_unit_size = data_unit_size; 344 blk_key->data_unit_size_bits = ilog2(data_unit_size); 345 blk_key->size = mode->keysize; 346 memcpy(blk_key->raw, raw_key, mode->keysize); 347 348 return 0; 349 } 350 351 /* 352 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the 353 * request queue it's submitted to supports inline crypto, or the 354 * blk-crypto-fallback is enabled and supports the cfg). 355 */ 356 bool blk_crypto_config_supported(struct request_queue *q, 357 const struct blk_crypto_config *cfg) 358 { 359 return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || 360 blk_ksm_crypto_cfg_supported(q->ksm, cfg); 361 } 362 363 /** 364 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device 365 * @key: A key to use on the device 366 * @q: the request queue for the device 367 * 368 * Upper layers must call this function to ensure that either the hardware 369 * supports the key's crypto settings, or the crypto API fallback has transforms 370 * for the needed mode allocated and ready to go. This function may allocate 371 * an skcipher, and *should not* be called from the data path, since that might 372 * cause a deadlock 373 * 374 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and 375 * blk-crypto-fallback is either disabled or the needed algorithm 376 * is disabled in the crypto API; or another -errno code. 377 */ 378 int blk_crypto_start_using_key(const struct blk_crypto_key *key, 379 struct request_queue *q) 380 { 381 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) 382 return 0; 383 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); 384 } 385 386 /** 387 * blk_crypto_evict_key() - Evict a key from any inline encryption hardware 388 * it may have been programmed into 389 * @q: The request queue who's associated inline encryption hardware this key 390 * might have been programmed into 391 * @key: The key to evict 392 * 393 * Upper layers (filesystems) must call this function to ensure that a key is 394 * evicted from any hardware that it might have been programmed into. The key 395 * must not be in use by any in-flight IO when this function is called. 396 * 397 * Return: 0 on success or if key is not present in the q's ksm, -err on error. 398 */ 399 int blk_crypto_evict_key(struct request_queue *q, 400 const struct blk_crypto_key *key) 401 { 402 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) 403 return blk_ksm_evict_key(q->ksm, key); 404 405 /* 406 * If the request queue's associated inline encryption hardware didn't 407 * have support for the key, then the key might have been programmed 408 * into the fallback keyslot manager, so try to evict from there. 409 */ 410 return blk_crypto_fallback_evict_key(key); 411 } 412 EXPORT_SYMBOL_GPL(blk_crypto_evict_key); 413