1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2019 Google LLC 4 */ 5 6 /* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt 11 12 #include <crypto/skcipher.h> 13 #include <linux/blk-crypto.h> 14 #include <linux/blk-crypto-profile.h> 15 #include <linux/blkdev.h> 16 #include <linux/crypto.h> 17 #include <linux/mempool.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 #include <linux/scatterlist.h> 21 22 #include "blk-cgroup.h" 23 #include "blk-crypto-internal.h" 24 25 static unsigned int num_prealloc_bounce_pg = 32; 26 module_param(num_prealloc_bounce_pg, uint, 0); 27 MODULE_PARM_DESC(num_prealloc_bounce_pg, 28 "Number of preallocated bounce pages for the blk-crypto crypto API fallback"); 29 30 static unsigned int blk_crypto_num_keyslots = 100; 31 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0); 32 MODULE_PARM_DESC(num_keyslots, 33 "Number of keyslots for the blk-crypto crypto API fallback"); 34 35 static unsigned int num_prealloc_fallback_crypt_ctxs = 128; 36 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0); 37 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs, 38 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback"); 39 40 struct bio_fallback_crypt_ctx { 41 struct bio_crypt_ctx crypt_ctx; 42 /* 43 * Copy of the bvec_iter when this bio was submitted. 44 * We only want to en/decrypt the part of the bio as described by the 45 * bvec_iter upon submission because bio might be split before being 46 * resubmitted 47 */ 48 struct bvec_iter crypt_iter; 49 union { 50 struct { 51 struct work_struct work; 52 struct bio *bio; 53 }; 54 struct { 55 void *bi_private_orig; 56 bio_end_io_t *bi_end_io_orig; 57 }; 58 }; 59 }; 60 61 static struct kmem_cache *bio_fallback_crypt_ctx_cache; 62 static mempool_t *bio_fallback_crypt_ctx_pool; 63 64 /* 65 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate 66 * all of a mode's tfms when that mode starts being used. Since each mode may 67 * need all the keyslots at some point, each mode needs its own tfm for each 68 * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to 69 * match the behavior of real inline encryption hardware (which only supports a 70 * single encryption context per keyslot), we only allow one tfm per keyslot to 71 * be used at a time - the rest of the unused tfms have their keys cleared. 72 */ 73 static DEFINE_MUTEX(tfms_init_lock); 74 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX]; 75 76 static struct blk_crypto_fallback_keyslot { 77 enum blk_crypto_mode_num crypto_mode; 78 struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX]; 79 } *blk_crypto_keyslots; 80 81 static struct blk_crypto_profile blk_crypto_fallback_profile; 82 static struct workqueue_struct *blk_crypto_wq; 83 static mempool_t *blk_crypto_bounce_page_pool; 84 static struct bio_set crypto_bio_split; 85 86 /* 87 * This is the key we set when evicting a keyslot. This *should* be the all 0's 88 * key, but AES-XTS rejects that key, so we use some random bytes instead. 89 */ 90 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE]; 91 92 static void blk_crypto_fallback_evict_keyslot(unsigned int slot) 93 { 94 struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot]; 95 enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; 96 int err; 97 98 WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); 99 100 /* Clear the key in the skcipher */ 101 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, 102 blk_crypto_modes[crypto_mode].keysize); 103 WARN_ON(err); 104 slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; 105 } 106 107 static int 108 blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile, 109 const struct blk_crypto_key *key, 110 unsigned int slot) 111 { 112 struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot]; 113 const enum blk_crypto_mode_num crypto_mode = 114 key->crypto_cfg.crypto_mode; 115 int err; 116 117 if (crypto_mode != slotp->crypto_mode && 118 slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) 119 blk_crypto_fallback_evict_keyslot(slot); 120 121 slotp->crypto_mode = crypto_mode; 122 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw, 123 key->size); 124 if (err) { 125 blk_crypto_fallback_evict_keyslot(slot); 126 return err; 127 } 128 return 0; 129 } 130 131 static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile, 132 const struct blk_crypto_key *key, 133 unsigned int slot) 134 { 135 blk_crypto_fallback_evict_keyslot(slot); 136 return 0; 137 } 138 139 static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = { 140 .keyslot_program = blk_crypto_fallback_keyslot_program, 141 .keyslot_evict = blk_crypto_fallback_keyslot_evict, 142 }; 143 144 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio) 145 { 146 struct bio *src_bio = enc_bio->bi_private; 147 int i; 148 149 for (i = 0; i < enc_bio->bi_vcnt; i++) 150 mempool_free(enc_bio->bi_io_vec[i].bv_page, 151 blk_crypto_bounce_page_pool); 152 153 src_bio->bi_status = enc_bio->bi_status; 154 155 bio_put(enc_bio); 156 bio_endio(src_bio); 157 } 158 159 static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src) 160 { 161 struct bvec_iter iter; 162 struct bio_vec bv; 163 struct bio *bio; 164 165 bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src)); 166 if (!bio) 167 return NULL; 168 bio->bi_bdev = bio_src->bi_bdev; 169 if (bio_flagged(bio_src, BIO_REMAPPED)) 170 bio_set_flag(bio, BIO_REMAPPED); 171 bio->bi_opf = bio_src->bi_opf; 172 bio->bi_ioprio = bio_src->bi_ioprio; 173 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 174 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 175 176 bio_for_each_segment(bv, bio_src, iter) 177 bio->bi_io_vec[bio->bi_vcnt++] = bv; 178 179 bio_clone_blkg_association(bio, bio_src); 180 blkcg_bio_issue_init(bio); 181 182 return bio; 183 } 184 185 static bool 186 blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot, 187 struct skcipher_request **ciph_req_ret, 188 struct crypto_wait *wait) 189 { 190 struct skcipher_request *ciph_req; 191 const struct blk_crypto_fallback_keyslot *slotp; 192 int keyslot_idx = blk_crypto_keyslot_index(slot); 193 194 slotp = &blk_crypto_keyslots[keyslot_idx]; 195 ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode], 196 GFP_NOIO); 197 if (!ciph_req) 198 return false; 199 200 skcipher_request_set_callback(ciph_req, 201 CRYPTO_TFM_REQ_MAY_BACKLOG | 202 CRYPTO_TFM_REQ_MAY_SLEEP, 203 crypto_req_done, wait); 204 *ciph_req_ret = ciph_req; 205 206 return true; 207 } 208 209 static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr) 210 { 211 struct bio *bio = *bio_ptr; 212 unsigned int i = 0; 213 unsigned int num_sectors = 0; 214 struct bio_vec bv; 215 struct bvec_iter iter; 216 217 bio_for_each_segment(bv, bio, iter) { 218 num_sectors += bv.bv_len >> SECTOR_SHIFT; 219 if (++i == BIO_MAX_VECS) 220 break; 221 } 222 if (num_sectors < bio_sectors(bio)) { 223 struct bio *split_bio; 224 225 split_bio = bio_split(bio, num_sectors, GFP_NOIO, 226 &crypto_bio_split); 227 if (!split_bio) { 228 bio->bi_status = BLK_STS_RESOURCE; 229 return false; 230 } 231 bio_chain(split_bio, bio); 232 submit_bio_noacct(bio); 233 *bio_ptr = split_bio; 234 } 235 236 return true; 237 } 238 239 union blk_crypto_iv { 240 __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 241 u8 bytes[BLK_CRYPTO_MAX_IV_SIZE]; 242 }; 243 244 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 245 union blk_crypto_iv *iv) 246 { 247 int i; 248 249 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) 250 iv->dun[i] = cpu_to_le64(dun[i]); 251 } 252 253 /* 254 * The crypto API fallback's encryption routine. 255 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API, 256 * and replace *bio_ptr with the bounce bio. May split input bio if it's too 257 * large. Returns true on success. Returns false and sets bio->bi_status on 258 * error. 259 */ 260 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr) 261 { 262 struct bio *src_bio, *enc_bio; 263 struct bio_crypt_ctx *bc; 264 struct blk_crypto_keyslot *slot; 265 int data_unit_size; 266 struct skcipher_request *ciph_req = NULL; 267 DECLARE_CRYPTO_WAIT(wait); 268 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 269 struct scatterlist src, dst; 270 union blk_crypto_iv iv; 271 unsigned int i, j; 272 bool ret = false; 273 blk_status_t blk_st; 274 275 /* Split the bio if it's too big for single page bvec */ 276 if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr)) 277 return false; 278 279 src_bio = *bio_ptr; 280 bc = src_bio->bi_crypt_context; 281 data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; 282 283 /* Allocate bounce bio for encryption */ 284 enc_bio = blk_crypto_fallback_clone_bio(src_bio); 285 if (!enc_bio) { 286 src_bio->bi_status = BLK_STS_RESOURCE; 287 return false; 288 } 289 290 /* 291 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for 292 * this bio's algorithm and key. 293 */ 294 blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile, 295 bc->bc_key, &slot); 296 if (blk_st != BLK_STS_OK) { 297 src_bio->bi_status = blk_st; 298 goto out_put_enc_bio; 299 } 300 301 /* and then allocate an skcipher_request for it */ 302 if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) { 303 src_bio->bi_status = BLK_STS_RESOURCE; 304 goto out_release_keyslot; 305 } 306 307 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); 308 sg_init_table(&src, 1); 309 sg_init_table(&dst, 1); 310 311 skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size, 312 iv.bytes); 313 314 /* Encrypt each page in the bounce bio */ 315 for (i = 0; i < enc_bio->bi_vcnt; i++) { 316 struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i]; 317 struct page *plaintext_page = enc_bvec->bv_page; 318 struct page *ciphertext_page = 319 mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO); 320 321 enc_bvec->bv_page = ciphertext_page; 322 323 if (!ciphertext_page) { 324 src_bio->bi_status = BLK_STS_RESOURCE; 325 goto out_free_bounce_pages; 326 } 327 328 sg_set_page(&src, plaintext_page, data_unit_size, 329 enc_bvec->bv_offset); 330 sg_set_page(&dst, ciphertext_page, data_unit_size, 331 enc_bvec->bv_offset); 332 333 /* Encrypt each data unit in this page */ 334 for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) { 335 blk_crypto_dun_to_iv(curr_dun, &iv); 336 if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req), 337 &wait)) { 338 i++; 339 src_bio->bi_status = BLK_STS_IOERR; 340 goto out_free_bounce_pages; 341 } 342 bio_crypt_dun_increment(curr_dun, 1); 343 src.offset += data_unit_size; 344 dst.offset += data_unit_size; 345 } 346 } 347 348 enc_bio->bi_private = src_bio; 349 enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio; 350 *bio_ptr = enc_bio; 351 ret = true; 352 353 enc_bio = NULL; 354 goto out_free_ciph_req; 355 356 out_free_bounce_pages: 357 while (i > 0) 358 mempool_free(enc_bio->bi_io_vec[--i].bv_page, 359 blk_crypto_bounce_page_pool); 360 out_free_ciph_req: 361 skcipher_request_free(ciph_req); 362 out_release_keyslot: 363 blk_crypto_put_keyslot(slot); 364 out_put_enc_bio: 365 if (enc_bio) 366 bio_put(enc_bio); 367 368 return ret; 369 } 370 371 /* 372 * The crypto API fallback's main decryption routine. 373 * Decrypts input bio in place, and calls bio_endio on the bio. 374 */ 375 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work) 376 { 377 struct bio_fallback_crypt_ctx *f_ctx = 378 container_of(work, struct bio_fallback_crypt_ctx, work); 379 struct bio *bio = f_ctx->bio; 380 struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx; 381 struct blk_crypto_keyslot *slot; 382 struct skcipher_request *ciph_req = NULL; 383 DECLARE_CRYPTO_WAIT(wait); 384 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 385 union blk_crypto_iv iv; 386 struct scatterlist sg; 387 struct bio_vec bv; 388 struct bvec_iter iter; 389 const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; 390 unsigned int i; 391 blk_status_t blk_st; 392 393 /* 394 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for 395 * this bio's algorithm and key. 396 */ 397 blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile, 398 bc->bc_key, &slot); 399 if (blk_st != BLK_STS_OK) { 400 bio->bi_status = blk_st; 401 goto out_no_keyslot; 402 } 403 404 /* and then allocate an skcipher_request for it */ 405 if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) { 406 bio->bi_status = BLK_STS_RESOURCE; 407 goto out; 408 } 409 410 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); 411 sg_init_table(&sg, 1); 412 skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, 413 iv.bytes); 414 415 /* Decrypt each segment in the bio */ 416 __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) { 417 struct page *page = bv.bv_page; 418 419 sg_set_page(&sg, page, data_unit_size, bv.bv_offset); 420 421 /* Decrypt each data unit in the segment */ 422 for (i = 0; i < bv.bv_len; i += data_unit_size) { 423 blk_crypto_dun_to_iv(curr_dun, &iv); 424 if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req), 425 &wait)) { 426 bio->bi_status = BLK_STS_IOERR; 427 goto out; 428 } 429 bio_crypt_dun_increment(curr_dun, 1); 430 sg.offset += data_unit_size; 431 } 432 } 433 434 out: 435 skcipher_request_free(ciph_req); 436 blk_crypto_put_keyslot(slot); 437 out_no_keyslot: 438 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); 439 bio_endio(bio); 440 } 441 442 /** 443 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption 444 * 445 * @bio: the bio to queue 446 * 447 * Restore bi_private and bi_end_io, and queue the bio for decryption into a 448 * workqueue, since this function will be called from an atomic context. 449 */ 450 static void blk_crypto_fallback_decrypt_endio(struct bio *bio) 451 { 452 struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private; 453 454 bio->bi_private = f_ctx->bi_private_orig; 455 bio->bi_end_io = f_ctx->bi_end_io_orig; 456 457 /* If there was an IO error, don't queue for decrypt. */ 458 if (bio->bi_status) { 459 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); 460 bio_endio(bio); 461 return; 462 } 463 464 INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio); 465 f_ctx->bio = bio; 466 queue_work(blk_crypto_wq, &f_ctx->work); 467 } 468 469 /** 470 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption 471 * 472 * @bio_ptr: pointer to the bio to prepare 473 * 474 * If bio is doing a WRITE operation, this splits the bio into two parts if it's 475 * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a 476 * bounce bio for the first part, encrypts it, and updates bio_ptr to point to 477 * the bounce bio. 478 * 479 * For a READ operation, we mark the bio for decryption by using bi_private and 480 * bi_end_io. 481 * 482 * In either case, this function will make the bio look like a regular bio (i.e. 483 * as if no encryption context was ever specified) for the purposes of the rest 484 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not 485 * currently supported together). 486 * 487 * Return: true on success. Sets bio->bi_status and returns false on error. 488 */ 489 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr) 490 { 491 struct bio *bio = *bio_ptr; 492 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 493 struct bio_fallback_crypt_ctx *f_ctx; 494 495 if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) { 496 /* User didn't call blk_crypto_start_using_key() first */ 497 bio->bi_status = BLK_STS_IOERR; 498 return false; 499 } 500 501 if (!__blk_crypto_cfg_supported(&blk_crypto_fallback_profile, 502 &bc->bc_key->crypto_cfg)) { 503 bio->bi_status = BLK_STS_NOTSUPP; 504 return false; 505 } 506 507 if (bio_data_dir(bio) == WRITE) 508 return blk_crypto_fallback_encrypt_bio(bio_ptr); 509 510 /* 511 * bio READ case: Set up a f_ctx in the bio's bi_private and set the 512 * bi_end_io appropriately to trigger decryption when the bio is ended. 513 */ 514 f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO); 515 f_ctx->crypt_ctx = *bc; 516 f_ctx->crypt_iter = bio->bi_iter; 517 f_ctx->bi_private_orig = bio->bi_private; 518 f_ctx->bi_end_io_orig = bio->bi_end_io; 519 bio->bi_private = (void *)f_ctx; 520 bio->bi_end_io = blk_crypto_fallback_decrypt_endio; 521 bio_crypt_free_ctx(bio); 522 523 return true; 524 } 525 526 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) 527 { 528 return __blk_crypto_evict_key(&blk_crypto_fallback_profile, key); 529 } 530 531 static bool blk_crypto_fallback_inited; 532 static int blk_crypto_fallback_init(void) 533 { 534 int i; 535 int err; 536 struct blk_crypto_profile *profile = &blk_crypto_fallback_profile; 537 538 if (blk_crypto_fallback_inited) 539 return 0; 540 541 prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE); 542 543 err = bioset_init(&crypto_bio_split, 64, 0, 0); 544 if (err) 545 goto out; 546 547 err = blk_crypto_profile_init(profile, blk_crypto_num_keyslots); 548 if (err) 549 goto fail_free_bioset; 550 err = -ENOMEM; 551 552 profile->ll_ops = blk_crypto_fallback_ll_ops; 553 profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; 554 555 /* All blk-crypto modes have a crypto API fallback. */ 556 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) 557 profile->modes_supported[i] = 0xFFFFFFFF; 558 profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0; 559 560 blk_crypto_wq = alloc_workqueue("blk_crypto_wq", 561 WQ_UNBOUND | WQ_HIGHPRI | 562 WQ_MEM_RECLAIM, num_online_cpus()); 563 if (!blk_crypto_wq) 564 goto fail_destroy_profile; 565 566 blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, 567 sizeof(blk_crypto_keyslots[0]), 568 GFP_KERNEL); 569 if (!blk_crypto_keyslots) 570 goto fail_free_wq; 571 572 blk_crypto_bounce_page_pool = 573 mempool_create_page_pool(num_prealloc_bounce_pg, 0); 574 if (!blk_crypto_bounce_page_pool) 575 goto fail_free_keyslots; 576 577 bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0); 578 if (!bio_fallback_crypt_ctx_cache) 579 goto fail_free_bounce_page_pool; 580 581 bio_fallback_crypt_ctx_pool = 582 mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs, 583 bio_fallback_crypt_ctx_cache); 584 if (!bio_fallback_crypt_ctx_pool) 585 goto fail_free_crypt_ctx_cache; 586 587 blk_crypto_fallback_inited = true; 588 589 return 0; 590 fail_free_crypt_ctx_cache: 591 kmem_cache_destroy(bio_fallback_crypt_ctx_cache); 592 fail_free_bounce_page_pool: 593 mempool_destroy(blk_crypto_bounce_page_pool); 594 fail_free_keyslots: 595 kfree(blk_crypto_keyslots); 596 fail_free_wq: 597 destroy_workqueue(blk_crypto_wq); 598 fail_destroy_profile: 599 blk_crypto_profile_destroy(profile); 600 fail_free_bioset: 601 bioset_exit(&crypto_bio_split); 602 out: 603 return err; 604 } 605 606 /* 607 * Prepare blk-crypto-fallback for the specified crypto mode. 608 * Returns -ENOPKG if the needed crypto API support is missing. 609 */ 610 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num) 611 { 612 const char *cipher_str = blk_crypto_modes[mode_num].cipher_str; 613 struct blk_crypto_fallback_keyslot *slotp; 614 unsigned int i; 615 int err = 0; 616 617 /* 618 * Fast path 619 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] 620 * for each i are visible before we try to access them. 621 */ 622 if (likely(smp_load_acquire(&tfms_inited[mode_num]))) 623 return 0; 624 625 mutex_lock(&tfms_init_lock); 626 if (tfms_inited[mode_num]) 627 goto out; 628 629 err = blk_crypto_fallback_init(); 630 if (err) 631 goto out; 632 633 for (i = 0; i < blk_crypto_num_keyslots; i++) { 634 slotp = &blk_crypto_keyslots[i]; 635 slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0); 636 if (IS_ERR(slotp->tfms[mode_num])) { 637 err = PTR_ERR(slotp->tfms[mode_num]); 638 if (err == -ENOENT) { 639 pr_warn_once("Missing crypto API support for \"%s\"\n", 640 cipher_str); 641 err = -ENOPKG; 642 } 643 slotp->tfms[mode_num] = NULL; 644 goto out_free_tfms; 645 } 646 647 crypto_skcipher_set_flags(slotp->tfms[mode_num], 648 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 649 } 650 651 /* 652 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] 653 * for each i are visible before we set tfms_inited[mode_num]. 654 */ 655 smp_store_release(&tfms_inited[mode_num], true); 656 goto out; 657 658 out_free_tfms: 659 for (i = 0; i < blk_crypto_num_keyslots; i++) { 660 slotp = &blk_crypto_keyslots[i]; 661 crypto_free_skcipher(slotp->tfms[mode_num]); 662 slotp->tfms[mode_num] = NULL; 663 } 664 out: 665 mutex_unlock(&tfms_init_lock); 666 return err; 667 } 668