xref: /openbmc/linux/block/blk-crypto-fallback.c (revision ac73d4bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-crypto.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21 
22 #include "blk-cgroup.h"
23 #include "blk-crypto-internal.h"
24 
25 static unsigned int num_prealloc_bounce_pg = 32;
26 module_param(num_prealloc_bounce_pg, uint, 0);
27 MODULE_PARM_DESC(num_prealloc_bounce_pg,
28 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29 
30 static unsigned int blk_crypto_num_keyslots = 100;
31 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32 MODULE_PARM_DESC(num_keyslots,
33 		 "Number of keyslots for the blk-crypto crypto API fallback");
34 
35 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39 
40 struct bio_fallback_crypt_ctx {
41 	struct bio_crypt_ctx crypt_ctx;
42 	/*
43 	 * Copy of the bvec_iter when this bio was submitted.
44 	 * We only want to en/decrypt the part of the bio as described by the
45 	 * bvec_iter upon submission because bio might be split before being
46 	 * resubmitted
47 	 */
48 	struct bvec_iter crypt_iter;
49 	union {
50 		struct {
51 			struct work_struct work;
52 			struct bio *bio;
53 		};
54 		struct {
55 			void *bi_private_orig;
56 			bio_end_io_t *bi_end_io_orig;
57 		};
58 	};
59 };
60 
61 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62 static mempool_t *bio_fallback_crypt_ctx_pool;
63 
64 /*
65  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66  * all of a mode's tfms when that mode starts being used. Since each mode may
67  * need all the keyslots at some point, each mode needs its own tfm for each
68  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69  * match the behavior of real inline encryption hardware (which only supports a
70  * single encryption context per keyslot), we only allow one tfm per keyslot to
71  * be used at a time - the rest of the unused tfms have their keys cleared.
72  */
73 static DEFINE_MUTEX(tfms_init_lock);
74 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75 
76 static struct blk_crypto_fallback_keyslot {
77 	enum blk_crypto_mode_num crypto_mode;
78 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79 } *blk_crypto_keyslots;
80 
81 static struct blk_crypto_profile blk_crypto_fallback_profile;
82 static struct workqueue_struct *blk_crypto_wq;
83 static mempool_t *blk_crypto_bounce_page_pool;
84 static struct bio_set crypto_bio_split;
85 
86 /*
87  * This is the key we set when evicting a keyslot. This *should* be the all 0's
88  * key, but AES-XTS rejects that key, so we use some random bytes instead.
89  */
90 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
91 
92 static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93 {
94 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96 	int err;
97 
98 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99 
100 	/* Clear the key in the skcipher */
101 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102 				     blk_crypto_modes[crypto_mode].keysize);
103 	WARN_ON(err);
104 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105 }
106 
107 static int
108 blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109 				    const struct blk_crypto_key *key,
110 				    unsigned int slot)
111 {
112 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113 	const enum blk_crypto_mode_num crypto_mode =
114 						key->crypto_cfg.crypto_mode;
115 	int err;
116 
117 	if (crypto_mode != slotp->crypto_mode &&
118 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119 		blk_crypto_fallback_evict_keyslot(slot);
120 
121 	slotp->crypto_mode = crypto_mode;
122 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123 				     key->size);
124 	if (err) {
125 		blk_crypto_fallback_evict_keyslot(slot);
126 		return err;
127 	}
128 	return 0;
129 }
130 
131 static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132 					     const struct blk_crypto_key *key,
133 					     unsigned int slot)
134 {
135 	blk_crypto_fallback_evict_keyslot(slot);
136 	return 0;
137 }
138 
139 static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140 	.keyslot_program        = blk_crypto_fallback_keyslot_program,
141 	.keyslot_evict          = blk_crypto_fallback_keyslot_evict,
142 };
143 
144 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145 {
146 	struct bio *src_bio = enc_bio->bi_private;
147 	int i;
148 
149 	for (i = 0; i < enc_bio->bi_vcnt; i++)
150 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
151 			     blk_crypto_bounce_page_pool);
152 
153 	src_bio->bi_status = enc_bio->bi_status;
154 
155 	bio_uninit(enc_bio);
156 	kfree(enc_bio);
157 	bio_endio(src_bio);
158 }
159 
160 static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161 {
162 	unsigned int nr_segs = bio_segments(bio_src);
163 	struct bvec_iter iter;
164 	struct bio_vec bv;
165 	struct bio *bio;
166 
167 	bio = bio_kmalloc(nr_segs, GFP_NOIO);
168 	if (!bio)
169 		return NULL;
170 	bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171 		 bio_src->bi_opf);
172 	if (bio_flagged(bio_src, BIO_REMAPPED))
173 		bio_set_flag(bio, BIO_REMAPPED);
174 	bio->bi_ioprio		= bio_src->bi_ioprio;
175 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
176 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
177 
178 	bio_for_each_segment(bv, bio_src, iter)
179 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
180 
181 	bio_clone_blkg_association(bio, bio_src);
182 
183 	return bio;
184 }
185 
186 static bool
187 blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
188 				     struct skcipher_request **ciph_req_ret,
189 				     struct crypto_wait *wait)
190 {
191 	struct skcipher_request *ciph_req;
192 	const struct blk_crypto_fallback_keyslot *slotp;
193 	int keyslot_idx = blk_crypto_keyslot_index(slot);
194 
195 	slotp = &blk_crypto_keyslots[keyslot_idx];
196 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
197 					  GFP_NOIO);
198 	if (!ciph_req)
199 		return false;
200 
201 	skcipher_request_set_callback(ciph_req,
202 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
203 				      CRYPTO_TFM_REQ_MAY_SLEEP,
204 				      crypto_req_done, wait);
205 	*ciph_req_ret = ciph_req;
206 
207 	return true;
208 }
209 
210 static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
211 {
212 	struct bio *bio = *bio_ptr;
213 	unsigned int i = 0;
214 	unsigned int num_sectors = 0;
215 	struct bio_vec bv;
216 	struct bvec_iter iter;
217 
218 	bio_for_each_segment(bv, bio, iter) {
219 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
220 		if (++i == BIO_MAX_VECS)
221 			break;
222 	}
223 	if (num_sectors < bio_sectors(bio)) {
224 		struct bio *split_bio;
225 
226 		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
227 				      &crypto_bio_split);
228 		if (!split_bio) {
229 			bio->bi_status = BLK_STS_RESOURCE;
230 			return false;
231 		}
232 		bio_chain(split_bio, bio);
233 		submit_bio_noacct(bio);
234 		*bio_ptr = split_bio;
235 	}
236 
237 	return true;
238 }
239 
240 union blk_crypto_iv {
241 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
242 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
243 };
244 
245 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
246 				 union blk_crypto_iv *iv)
247 {
248 	int i;
249 
250 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
251 		iv->dun[i] = cpu_to_le64(dun[i]);
252 }
253 
254 /*
255  * The crypto API fallback's encryption routine.
256  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
257  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
258  * large. Returns true on success. Returns false and sets bio->bi_status on
259  * error.
260  */
261 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
262 {
263 	struct bio *src_bio, *enc_bio;
264 	struct bio_crypt_ctx *bc;
265 	struct blk_crypto_keyslot *slot;
266 	int data_unit_size;
267 	struct skcipher_request *ciph_req = NULL;
268 	DECLARE_CRYPTO_WAIT(wait);
269 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
270 	struct scatterlist src, dst;
271 	union blk_crypto_iv iv;
272 	unsigned int i, j;
273 	bool ret = false;
274 	blk_status_t blk_st;
275 
276 	/* Split the bio if it's too big for single page bvec */
277 	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
278 		return false;
279 
280 	src_bio = *bio_ptr;
281 	bc = src_bio->bi_crypt_context;
282 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
283 
284 	/* Allocate bounce bio for encryption */
285 	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
286 	if (!enc_bio) {
287 		src_bio->bi_status = BLK_STS_RESOURCE;
288 		return false;
289 	}
290 
291 	/*
292 	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
293 	 * this bio's algorithm and key.
294 	 */
295 	blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile,
296 					bc->bc_key, &slot);
297 	if (blk_st != BLK_STS_OK) {
298 		src_bio->bi_status = blk_st;
299 		goto out_put_enc_bio;
300 	}
301 
302 	/* and then allocate an skcipher_request for it */
303 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
304 		src_bio->bi_status = BLK_STS_RESOURCE;
305 		goto out_release_keyslot;
306 	}
307 
308 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
309 	sg_init_table(&src, 1);
310 	sg_init_table(&dst, 1);
311 
312 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
313 				   iv.bytes);
314 
315 	/* Encrypt each page in the bounce bio */
316 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
317 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
318 		struct page *plaintext_page = enc_bvec->bv_page;
319 		struct page *ciphertext_page =
320 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
321 
322 		enc_bvec->bv_page = ciphertext_page;
323 
324 		if (!ciphertext_page) {
325 			src_bio->bi_status = BLK_STS_RESOURCE;
326 			goto out_free_bounce_pages;
327 		}
328 
329 		sg_set_page(&src, plaintext_page, data_unit_size,
330 			    enc_bvec->bv_offset);
331 		sg_set_page(&dst, ciphertext_page, data_unit_size,
332 			    enc_bvec->bv_offset);
333 
334 		/* Encrypt each data unit in this page */
335 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
336 			blk_crypto_dun_to_iv(curr_dun, &iv);
337 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
338 					    &wait)) {
339 				i++;
340 				src_bio->bi_status = BLK_STS_IOERR;
341 				goto out_free_bounce_pages;
342 			}
343 			bio_crypt_dun_increment(curr_dun, 1);
344 			src.offset += data_unit_size;
345 			dst.offset += data_unit_size;
346 		}
347 	}
348 
349 	enc_bio->bi_private = src_bio;
350 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
351 	*bio_ptr = enc_bio;
352 	ret = true;
353 
354 	enc_bio = NULL;
355 	goto out_free_ciph_req;
356 
357 out_free_bounce_pages:
358 	while (i > 0)
359 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
360 			     blk_crypto_bounce_page_pool);
361 out_free_ciph_req:
362 	skcipher_request_free(ciph_req);
363 out_release_keyslot:
364 	blk_crypto_put_keyslot(slot);
365 out_put_enc_bio:
366 	if (enc_bio)
367 		bio_uninit(enc_bio);
368 	kfree(enc_bio);
369 	return ret;
370 }
371 
372 /*
373  * The crypto API fallback's main decryption routine.
374  * Decrypts input bio in place, and calls bio_endio on the bio.
375  */
376 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
377 {
378 	struct bio_fallback_crypt_ctx *f_ctx =
379 		container_of(work, struct bio_fallback_crypt_ctx, work);
380 	struct bio *bio = f_ctx->bio;
381 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
382 	struct blk_crypto_keyslot *slot;
383 	struct skcipher_request *ciph_req = NULL;
384 	DECLARE_CRYPTO_WAIT(wait);
385 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
386 	union blk_crypto_iv iv;
387 	struct scatterlist sg;
388 	struct bio_vec bv;
389 	struct bvec_iter iter;
390 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
391 	unsigned int i;
392 	blk_status_t blk_st;
393 
394 	/*
395 	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
396 	 * this bio's algorithm and key.
397 	 */
398 	blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile,
399 					bc->bc_key, &slot);
400 	if (blk_st != BLK_STS_OK) {
401 		bio->bi_status = blk_st;
402 		goto out_no_keyslot;
403 	}
404 
405 	/* and then allocate an skcipher_request for it */
406 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
407 		bio->bi_status = BLK_STS_RESOURCE;
408 		goto out;
409 	}
410 
411 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
412 	sg_init_table(&sg, 1);
413 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
414 				   iv.bytes);
415 
416 	/* Decrypt each segment in the bio */
417 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
418 		struct page *page = bv.bv_page;
419 
420 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
421 
422 		/* Decrypt each data unit in the segment */
423 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
424 			blk_crypto_dun_to_iv(curr_dun, &iv);
425 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
426 					    &wait)) {
427 				bio->bi_status = BLK_STS_IOERR;
428 				goto out;
429 			}
430 			bio_crypt_dun_increment(curr_dun, 1);
431 			sg.offset += data_unit_size;
432 		}
433 	}
434 
435 out:
436 	skcipher_request_free(ciph_req);
437 	blk_crypto_put_keyslot(slot);
438 out_no_keyslot:
439 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
440 	bio_endio(bio);
441 }
442 
443 /**
444  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
445  *
446  * @bio: the bio to queue
447  *
448  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
449  * workqueue, since this function will be called from an atomic context.
450  */
451 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
452 {
453 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
454 
455 	bio->bi_private = f_ctx->bi_private_orig;
456 	bio->bi_end_io = f_ctx->bi_end_io_orig;
457 
458 	/* If there was an IO error, don't queue for decrypt. */
459 	if (bio->bi_status) {
460 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
461 		bio_endio(bio);
462 		return;
463 	}
464 
465 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
466 	f_ctx->bio = bio;
467 	queue_work(blk_crypto_wq, &f_ctx->work);
468 }
469 
470 /**
471  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
472  *
473  * @bio_ptr: pointer to the bio to prepare
474  *
475  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
476  * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
477  * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
478  * the bounce bio.
479  *
480  * For a READ operation, we mark the bio for decryption by using bi_private and
481  * bi_end_io.
482  *
483  * In either case, this function will make the bio look like a regular bio (i.e.
484  * as if no encryption context was ever specified) for the purposes of the rest
485  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
486  * currently supported together).
487  *
488  * Return: true on success. Sets bio->bi_status and returns false on error.
489  */
490 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
491 {
492 	struct bio *bio = *bio_ptr;
493 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
494 	struct bio_fallback_crypt_ctx *f_ctx;
495 
496 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
497 		/* User didn't call blk_crypto_start_using_key() first */
498 		bio->bi_status = BLK_STS_IOERR;
499 		return false;
500 	}
501 
502 	if (!__blk_crypto_cfg_supported(&blk_crypto_fallback_profile,
503 					&bc->bc_key->crypto_cfg)) {
504 		bio->bi_status = BLK_STS_NOTSUPP;
505 		return false;
506 	}
507 
508 	if (bio_data_dir(bio) == WRITE)
509 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
510 
511 	/*
512 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
513 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
514 	 */
515 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
516 	f_ctx->crypt_ctx = *bc;
517 	f_ctx->crypt_iter = bio->bi_iter;
518 	f_ctx->bi_private_orig = bio->bi_private;
519 	f_ctx->bi_end_io_orig = bio->bi_end_io;
520 	bio->bi_private = (void *)f_ctx;
521 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
522 	bio_crypt_free_ctx(bio);
523 
524 	return true;
525 }
526 
527 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
528 {
529 	return __blk_crypto_evict_key(&blk_crypto_fallback_profile, key);
530 }
531 
532 static bool blk_crypto_fallback_inited;
533 static int blk_crypto_fallback_init(void)
534 {
535 	int i;
536 	int err;
537 	struct blk_crypto_profile *profile = &blk_crypto_fallback_profile;
538 
539 	if (blk_crypto_fallback_inited)
540 		return 0;
541 
542 	get_random_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
543 
544 	err = bioset_init(&crypto_bio_split, 64, 0, 0);
545 	if (err)
546 		goto out;
547 
548 	err = blk_crypto_profile_init(profile, blk_crypto_num_keyslots);
549 	if (err)
550 		goto fail_free_bioset;
551 	err = -ENOMEM;
552 
553 	profile->ll_ops = blk_crypto_fallback_ll_ops;
554 	profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
555 
556 	/* All blk-crypto modes have a crypto API fallback. */
557 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
558 		profile->modes_supported[i] = 0xFFFFFFFF;
559 	profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
560 
561 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
562 					WQ_UNBOUND | WQ_HIGHPRI |
563 					WQ_MEM_RECLAIM, num_online_cpus());
564 	if (!blk_crypto_wq)
565 		goto fail_destroy_profile;
566 
567 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
568 				      sizeof(blk_crypto_keyslots[0]),
569 				      GFP_KERNEL);
570 	if (!blk_crypto_keyslots)
571 		goto fail_free_wq;
572 
573 	blk_crypto_bounce_page_pool =
574 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
575 	if (!blk_crypto_bounce_page_pool)
576 		goto fail_free_keyslots;
577 
578 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
579 	if (!bio_fallback_crypt_ctx_cache)
580 		goto fail_free_bounce_page_pool;
581 
582 	bio_fallback_crypt_ctx_pool =
583 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
584 					 bio_fallback_crypt_ctx_cache);
585 	if (!bio_fallback_crypt_ctx_pool)
586 		goto fail_free_crypt_ctx_cache;
587 
588 	blk_crypto_fallback_inited = true;
589 
590 	return 0;
591 fail_free_crypt_ctx_cache:
592 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
593 fail_free_bounce_page_pool:
594 	mempool_destroy(blk_crypto_bounce_page_pool);
595 fail_free_keyslots:
596 	kfree(blk_crypto_keyslots);
597 fail_free_wq:
598 	destroy_workqueue(blk_crypto_wq);
599 fail_destroy_profile:
600 	blk_crypto_profile_destroy(profile);
601 fail_free_bioset:
602 	bioset_exit(&crypto_bio_split);
603 out:
604 	return err;
605 }
606 
607 /*
608  * Prepare blk-crypto-fallback for the specified crypto mode.
609  * Returns -ENOPKG if the needed crypto API support is missing.
610  */
611 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
612 {
613 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
614 	struct blk_crypto_fallback_keyslot *slotp;
615 	unsigned int i;
616 	int err = 0;
617 
618 	/*
619 	 * Fast path
620 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
621 	 * for each i are visible before we try to access them.
622 	 */
623 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
624 		return 0;
625 
626 	mutex_lock(&tfms_init_lock);
627 	if (tfms_inited[mode_num])
628 		goto out;
629 
630 	err = blk_crypto_fallback_init();
631 	if (err)
632 		goto out;
633 
634 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
635 		slotp = &blk_crypto_keyslots[i];
636 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
637 		if (IS_ERR(slotp->tfms[mode_num])) {
638 			err = PTR_ERR(slotp->tfms[mode_num]);
639 			if (err == -ENOENT) {
640 				pr_warn_once("Missing crypto API support for \"%s\"\n",
641 					     cipher_str);
642 				err = -ENOPKG;
643 			}
644 			slotp->tfms[mode_num] = NULL;
645 			goto out_free_tfms;
646 		}
647 
648 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
649 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
650 	}
651 
652 	/*
653 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
654 	 * for each i are visible before we set tfms_inited[mode_num].
655 	 */
656 	smp_store_release(&tfms_inited[mode_num], true);
657 	goto out;
658 
659 out_free_tfms:
660 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
661 		slotp = &blk_crypto_keyslots[i];
662 		crypto_free_skcipher(slotp->tfms[mode_num]);
663 		slotp->tfms[mode_num] = NULL;
664 	}
665 out:
666 	mutex_unlock(&tfms_init_lock);
667 	return err;
668 }
669