xref: /openbmc/linux/block/blk-crypto-fallback.c (revision 2f8be0e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/blk-crypto.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/keyslot-manager.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/random.h>
21 
22 #include "blk-crypto-internal.h"
23 
24 static unsigned int num_prealloc_bounce_pg = 32;
25 module_param(num_prealloc_bounce_pg, uint, 0);
26 MODULE_PARM_DESC(num_prealloc_bounce_pg,
27 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
28 
29 static unsigned int blk_crypto_num_keyslots = 100;
30 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
31 MODULE_PARM_DESC(num_keyslots,
32 		 "Number of keyslots for the blk-crypto crypto API fallback");
33 
34 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
35 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
36 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
37 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
38 
39 struct bio_fallback_crypt_ctx {
40 	struct bio_crypt_ctx crypt_ctx;
41 	/*
42 	 * Copy of the bvec_iter when this bio was submitted.
43 	 * We only want to en/decrypt the part of the bio as described by the
44 	 * bvec_iter upon submission because bio might be split before being
45 	 * resubmitted
46 	 */
47 	struct bvec_iter crypt_iter;
48 	union {
49 		struct {
50 			struct work_struct work;
51 			struct bio *bio;
52 		};
53 		struct {
54 			void *bi_private_orig;
55 			bio_end_io_t *bi_end_io_orig;
56 		};
57 	};
58 };
59 
60 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
61 static mempool_t *bio_fallback_crypt_ctx_pool;
62 
63 /*
64  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
65  * all of a mode's tfms when that mode starts being used. Since each mode may
66  * need all the keyslots at some point, each mode needs its own tfm for each
67  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
68  * match the behavior of real inline encryption hardware (which only supports a
69  * single encryption context per keyslot), we only allow one tfm per keyslot to
70  * be used at a time - the rest of the unused tfms have their keys cleared.
71  */
72 static DEFINE_MUTEX(tfms_init_lock);
73 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
74 
75 static struct blk_crypto_keyslot {
76 	enum blk_crypto_mode_num crypto_mode;
77 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
78 } *blk_crypto_keyslots;
79 
80 static struct blk_keyslot_manager blk_crypto_ksm;
81 static struct workqueue_struct *blk_crypto_wq;
82 static mempool_t *blk_crypto_bounce_page_pool;
83 
84 /*
85  * This is the key we set when evicting a keyslot. This *should* be the all 0's
86  * key, but AES-XTS rejects that key, so we use some random bytes instead.
87  */
88 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
89 
90 static void blk_crypto_evict_keyslot(unsigned int slot)
91 {
92 	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
93 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
94 	int err;
95 
96 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
97 
98 	/* Clear the key in the skcipher */
99 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
100 				     blk_crypto_modes[crypto_mode].keysize);
101 	WARN_ON(err);
102 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
103 }
104 
105 static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
106 				      const struct blk_crypto_key *key,
107 				      unsigned int slot)
108 {
109 	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
110 	const enum blk_crypto_mode_num crypto_mode =
111 						key->crypto_cfg.crypto_mode;
112 	int err;
113 
114 	if (crypto_mode != slotp->crypto_mode &&
115 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
116 		blk_crypto_evict_keyslot(slot);
117 
118 	slotp->crypto_mode = crypto_mode;
119 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
120 				     key->size);
121 	if (err) {
122 		blk_crypto_evict_keyslot(slot);
123 		return err;
124 	}
125 	return 0;
126 }
127 
128 static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
129 				    const struct blk_crypto_key *key,
130 				    unsigned int slot)
131 {
132 	blk_crypto_evict_keyslot(slot);
133 	return 0;
134 }
135 
136 /*
137  * The crypto API fallback KSM ops - only used for a bio when it specifies a
138  * blk_crypto_key that was not supported by the device's inline encryption
139  * hardware.
140  */
141 static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
142 	.keyslot_program	= blk_crypto_keyslot_program,
143 	.keyslot_evict		= blk_crypto_keyslot_evict,
144 };
145 
146 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
147 {
148 	struct bio *src_bio = enc_bio->bi_private;
149 	int i;
150 
151 	for (i = 0; i < enc_bio->bi_vcnt; i++)
152 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
153 			     blk_crypto_bounce_page_pool);
154 
155 	src_bio->bi_status = enc_bio->bi_status;
156 
157 	bio_put(enc_bio);
158 	bio_endio(src_bio);
159 }
160 
161 static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
162 {
163 	struct bvec_iter iter;
164 	struct bio_vec bv;
165 	struct bio *bio;
166 
167 	bio = bio_alloc_bioset(GFP_NOIO, bio_segments(bio_src), NULL);
168 	if (!bio)
169 		return NULL;
170 	bio->bi_disk		= bio_src->bi_disk;
171 	bio->bi_opf		= bio_src->bi_opf;
172 	bio->bi_ioprio		= bio_src->bi_ioprio;
173 	bio->bi_write_hint	= bio_src->bi_write_hint;
174 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
175 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
176 
177 	bio_for_each_segment(bv, bio_src, iter)
178 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
179 
180 	bio_clone_blkg_association(bio, bio_src);
181 	blkcg_bio_issue_init(bio);
182 
183 	return bio;
184 }
185 
186 static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot,
187 					struct skcipher_request **ciph_req_ret,
188 					struct crypto_wait *wait)
189 {
190 	struct skcipher_request *ciph_req;
191 	const struct blk_crypto_keyslot *slotp;
192 	int keyslot_idx = blk_ksm_get_slot_idx(slot);
193 
194 	slotp = &blk_crypto_keyslots[keyslot_idx];
195 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
196 					  GFP_NOIO);
197 	if (!ciph_req)
198 		return false;
199 
200 	skcipher_request_set_callback(ciph_req,
201 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
202 				      CRYPTO_TFM_REQ_MAY_SLEEP,
203 				      crypto_req_done, wait);
204 	*ciph_req_ret = ciph_req;
205 
206 	return true;
207 }
208 
209 static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
210 {
211 	struct bio *bio = *bio_ptr;
212 	unsigned int i = 0;
213 	unsigned int num_sectors = 0;
214 	struct bio_vec bv;
215 	struct bvec_iter iter;
216 
217 	bio_for_each_segment(bv, bio, iter) {
218 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
219 		if (++i == BIO_MAX_PAGES)
220 			break;
221 	}
222 	if (num_sectors < bio_sectors(bio)) {
223 		struct bio *split_bio;
224 
225 		split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL);
226 		if (!split_bio) {
227 			bio->bi_status = BLK_STS_RESOURCE;
228 			return false;
229 		}
230 		bio_chain(split_bio, bio);
231 		submit_bio_noacct(bio);
232 		*bio_ptr = split_bio;
233 	}
234 
235 	return true;
236 }
237 
238 union blk_crypto_iv {
239 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
240 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
241 };
242 
243 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
244 				 union blk_crypto_iv *iv)
245 {
246 	int i;
247 
248 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
249 		iv->dun[i] = cpu_to_le64(dun[i]);
250 }
251 
252 /*
253  * The crypto API fallback's encryption routine.
254  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
255  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
256  * large. Returns true on success. Returns false and sets bio->bi_status on
257  * error.
258  */
259 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
260 {
261 	struct bio *src_bio, *enc_bio;
262 	struct bio_crypt_ctx *bc;
263 	struct blk_ksm_keyslot *slot;
264 	int data_unit_size;
265 	struct skcipher_request *ciph_req = NULL;
266 	DECLARE_CRYPTO_WAIT(wait);
267 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
268 	struct scatterlist src, dst;
269 	union blk_crypto_iv iv;
270 	unsigned int i, j;
271 	bool ret = false;
272 	blk_status_t blk_st;
273 
274 	/* Split the bio if it's too big for single page bvec */
275 	if (!blk_crypto_split_bio_if_needed(bio_ptr))
276 		return false;
277 
278 	src_bio = *bio_ptr;
279 	bc = src_bio->bi_crypt_context;
280 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
281 
282 	/* Allocate bounce bio for encryption */
283 	enc_bio = blk_crypto_clone_bio(src_bio);
284 	if (!enc_bio) {
285 		src_bio->bi_status = BLK_STS_RESOURCE;
286 		return false;
287 	}
288 
289 	/*
290 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
291 	 * for the algorithm and key specified for this bio.
292 	 */
293 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
294 	if (blk_st != BLK_STS_OK) {
295 		src_bio->bi_status = blk_st;
296 		goto out_put_enc_bio;
297 	}
298 
299 	/* and then allocate an skcipher_request for it */
300 	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
301 		src_bio->bi_status = BLK_STS_RESOURCE;
302 		goto out_release_keyslot;
303 	}
304 
305 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
306 	sg_init_table(&src, 1);
307 	sg_init_table(&dst, 1);
308 
309 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
310 				   iv.bytes);
311 
312 	/* Encrypt each page in the bounce bio */
313 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
314 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
315 		struct page *plaintext_page = enc_bvec->bv_page;
316 		struct page *ciphertext_page =
317 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
318 
319 		enc_bvec->bv_page = ciphertext_page;
320 
321 		if (!ciphertext_page) {
322 			src_bio->bi_status = BLK_STS_RESOURCE;
323 			goto out_free_bounce_pages;
324 		}
325 
326 		sg_set_page(&src, plaintext_page, data_unit_size,
327 			    enc_bvec->bv_offset);
328 		sg_set_page(&dst, ciphertext_page, data_unit_size,
329 			    enc_bvec->bv_offset);
330 
331 		/* Encrypt each data unit in this page */
332 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
333 			blk_crypto_dun_to_iv(curr_dun, &iv);
334 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
335 					    &wait)) {
336 				i++;
337 				src_bio->bi_status = BLK_STS_IOERR;
338 				goto out_free_bounce_pages;
339 			}
340 			bio_crypt_dun_increment(curr_dun, 1);
341 			src.offset += data_unit_size;
342 			dst.offset += data_unit_size;
343 		}
344 	}
345 
346 	enc_bio->bi_private = src_bio;
347 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
348 	*bio_ptr = enc_bio;
349 	ret = true;
350 
351 	enc_bio = NULL;
352 	goto out_free_ciph_req;
353 
354 out_free_bounce_pages:
355 	while (i > 0)
356 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
357 			     blk_crypto_bounce_page_pool);
358 out_free_ciph_req:
359 	skcipher_request_free(ciph_req);
360 out_release_keyslot:
361 	blk_ksm_put_slot(slot);
362 out_put_enc_bio:
363 	if (enc_bio)
364 		bio_put(enc_bio);
365 
366 	return ret;
367 }
368 
369 /*
370  * The crypto API fallback's main decryption routine.
371  * Decrypts input bio in place, and calls bio_endio on the bio.
372  */
373 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
374 {
375 	struct bio_fallback_crypt_ctx *f_ctx =
376 		container_of(work, struct bio_fallback_crypt_ctx, work);
377 	struct bio *bio = f_ctx->bio;
378 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
379 	struct blk_ksm_keyslot *slot;
380 	struct skcipher_request *ciph_req = NULL;
381 	DECLARE_CRYPTO_WAIT(wait);
382 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
383 	union blk_crypto_iv iv;
384 	struct scatterlist sg;
385 	struct bio_vec bv;
386 	struct bvec_iter iter;
387 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
388 	unsigned int i;
389 	blk_status_t blk_st;
390 
391 	/*
392 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
393 	 * for the algorithm and key specified for this bio.
394 	 */
395 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
396 	if (blk_st != BLK_STS_OK) {
397 		bio->bi_status = blk_st;
398 		goto out_no_keyslot;
399 	}
400 
401 	/* and then allocate an skcipher_request for it */
402 	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
403 		bio->bi_status = BLK_STS_RESOURCE;
404 		goto out;
405 	}
406 
407 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
408 	sg_init_table(&sg, 1);
409 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
410 				   iv.bytes);
411 
412 	/* Decrypt each segment in the bio */
413 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
414 		struct page *page = bv.bv_page;
415 
416 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
417 
418 		/* Decrypt each data unit in the segment */
419 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
420 			blk_crypto_dun_to_iv(curr_dun, &iv);
421 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
422 					    &wait)) {
423 				bio->bi_status = BLK_STS_IOERR;
424 				goto out;
425 			}
426 			bio_crypt_dun_increment(curr_dun, 1);
427 			sg.offset += data_unit_size;
428 		}
429 	}
430 
431 out:
432 	skcipher_request_free(ciph_req);
433 	blk_ksm_put_slot(slot);
434 out_no_keyslot:
435 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
436 	bio_endio(bio);
437 }
438 
439 /**
440  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
441  *
442  * @bio: the bio to queue
443  *
444  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
445  * workqueue, since this function will be called from an atomic context.
446  */
447 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
448 {
449 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
450 
451 	bio->bi_private = f_ctx->bi_private_orig;
452 	bio->bi_end_io = f_ctx->bi_end_io_orig;
453 
454 	/* If there was an IO error, don't queue for decrypt. */
455 	if (bio->bi_status) {
456 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
457 		bio_endio(bio);
458 		return;
459 	}
460 
461 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
462 	f_ctx->bio = bio;
463 	queue_work(blk_crypto_wq, &f_ctx->work);
464 }
465 
466 /**
467  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
468  *
469  * @bio_ptr: pointer to the bio to prepare
470  *
471  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
472  * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio
473  * for the first part, encrypts it, and update bio_ptr to point to the bounce
474  * bio.
475  *
476  * For a READ operation, we mark the bio for decryption by using bi_private and
477  * bi_end_io.
478  *
479  * In either case, this function will make the bio look like a regular bio (i.e.
480  * as if no encryption context was ever specified) for the purposes of the rest
481  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
482  * currently supported together).
483  *
484  * Return: true on success. Sets bio->bi_status and returns false on error.
485  */
486 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
487 {
488 	struct bio *bio = *bio_ptr;
489 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
490 	struct bio_fallback_crypt_ctx *f_ctx;
491 
492 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
493 		/* User didn't call blk_crypto_start_using_key() first */
494 		bio->bi_status = BLK_STS_IOERR;
495 		return false;
496 	}
497 
498 	if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
499 					  &bc->bc_key->crypto_cfg)) {
500 		bio->bi_status = BLK_STS_NOTSUPP;
501 		return false;
502 	}
503 
504 	if (bio_data_dir(bio) == WRITE)
505 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
506 
507 	/*
508 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
509 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
510 	 */
511 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
512 	f_ctx->crypt_ctx = *bc;
513 	f_ctx->crypt_iter = bio->bi_iter;
514 	f_ctx->bi_private_orig = bio->bi_private;
515 	f_ctx->bi_end_io_orig = bio->bi_end_io;
516 	bio->bi_private = (void *)f_ctx;
517 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
518 	bio_crypt_free_ctx(bio);
519 
520 	return true;
521 }
522 
523 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
524 {
525 	return blk_ksm_evict_key(&blk_crypto_ksm, key);
526 }
527 
528 static bool blk_crypto_fallback_inited;
529 static int blk_crypto_fallback_init(void)
530 {
531 	int i;
532 	int err;
533 
534 	if (blk_crypto_fallback_inited)
535 		return 0;
536 
537 	prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
538 
539 	err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
540 	if (err)
541 		goto out;
542 	err = -ENOMEM;
543 
544 	blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
545 	blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
546 
547 	/* All blk-crypto modes have a crypto API fallback. */
548 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
549 		blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
550 	blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
551 
552 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
553 					WQ_UNBOUND | WQ_HIGHPRI |
554 					WQ_MEM_RECLAIM, num_online_cpus());
555 	if (!blk_crypto_wq)
556 		goto fail_free_ksm;
557 
558 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
559 				      sizeof(blk_crypto_keyslots[0]),
560 				      GFP_KERNEL);
561 	if (!blk_crypto_keyslots)
562 		goto fail_free_wq;
563 
564 	blk_crypto_bounce_page_pool =
565 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
566 	if (!blk_crypto_bounce_page_pool)
567 		goto fail_free_keyslots;
568 
569 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
570 	if (!bio_fallback_crypt_ctx_cache)
571 		goto fail_free_bounce_page_pool;
572 
573 	bio_fallback_crypt_ctx_pool =
574 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
575 					 bio_fallback_crypt_ctx_cache);
576 	if (!bio_fallback_crypt_ctx_pool)
577 		goto fail_free_crypt_ctx_cache;
578 
579 	blk_crypto_fallback_inited = true;
580 
581 	return 0;
582 fail_free_crypt_ctx_cache:
583 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
584 fail_free_bounce_page_pool:
585 	mempool_destroy(blk_crypto_bounce_page_pool);
586 fail_free_keyslots:
587 	kfree(blk_crypto_keyslots);
588 fail_free_wq:
589 	destroy_workqueue(blk_crypto_wq);
590 fail_free_ksm:
591 	blk_ksm_destroy(&blk_crypto_ksm);
592 out:
593 	return err;
594 }
595 
596 /*
597  * Prepare blk-crypto-fallback for the specified crypto mode.
598  * Returns -ENOPKG if the needed crypto API support is missing.
599  */
600 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
601 {
602 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
603 	struct blk_crypto_keyslot *slotp;
604 	unsigned int i;
605 	int err = 0;
606 
607 	/*
608 	 * Fast path
609 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
610 	 * for each i are visible before we try to access them.
611 	 */
612 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
613 		return 0;
614 
615 	mutex_lock(&tfms_init_lock);
616 	if (tfms_inited[mode_num])
617 		goto out;
618 
619 	err = blk_crypto_fallback_init();
620 	if (err)
621 		goto out;
622 
623 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
624 		slotp = &blk_crypto_keyslots[i];
625 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
626 		if (IS_ERR(slotp->tfms[mode_num])) {
627 			err = PTR_ERR(slotp->tfms[mode_num]);
628 			if (err == -ENOENT) {
629 				pr_warn_once("Missing crypto API support for \"%s\"\n",
630 					     cipher_str);
631 				err = -ENOPKG;
632 			}
633 			slotp->tfms[mode_num] = NULL;
634 			goto out_free_tfms;
635 		}
636 
637 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
638 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
639 	}
640 
641 	/*
642 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
643 	 * for each i are visible before we set tfms_inited[mode_num].
644 	 */
645 	smp_store_release(&tfms_inited[mode_num], true);
646 	goto out;
647 
648 out_free_tfms:
649 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
650 		slotp = &blk_crypto_keyslots[i];
651 		crypto_free_skcipher(slotp->tfms[mode_num]);
652 		slotp->tfms[mode_num] = NULL;
653 	}
654 out:
655 	mutex_unlock(&tfms_init_lock);
656 	return err;
657 }
658