xref: /openbmc/linux/block/blk-core.c (revision fd589a8f)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33 
34 #include "blk.h"
35 
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
38 
39 static int __make_request(struct request_queue *q, struct bio *bio);
40 
41 /*
42  * For the allocated request tables
43  */
44 static struct kmem_cache *request_cachep;
45 
46 /*
47  * For queue allocation
48  */
49 struct kmem_cache *blk_requestq_cachep;
50 
51 /*
52  * Controlling structure to kblockd
53  */
54 static struct workqueue_struct *kblockd_workqueue;
55 
56 static void drive_stat_acct(struct request *rq, int new_io)
57 {
58 	struct hd_struct *part;
59 	int rw = rq_data_dir(rq);
60 	int cpu;
61 
62 	if (!blk_do_io_stat(rq))
63 		return;
64 
65 	cpu = part_stat_lock();
66 	part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
67 
68 	if (!new_io)
69 		part_stat_inc(cpu, part, merges[rw]);
70 	else {
71 		part_round_stats(cpu, part);
72 		part_inc_in_flight(part, rw);
73 	}
74 
75 	part_stat_unlock();
76 }
77 
78 void blk_queue_congestion_threshold(struct request_queue *q)
79 {
80 	int nr;
81 
82 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 	if (nr > q->nr_requests)
84 		nr = q->nr_requests;
85 	q->nr_congestion_on = nr;
86 
87 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 	if (nr < 1)
89 		nr = 1;
90 	q->nr_congestion_off = nr;
91 }
92 
93 /**
94  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95  * @bdev:	device
96  *
97  * Locates the passed device's request queue and returns the address of its
98  * backing_dev_info
99  *
100  * Will return NULL if the request queue cannot be located.
101  */
102 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103 {
104 	struct backing_dev_info *ret = NULL;
105 	struct request_queue *q = bdev_get_queue(bdev);
106 
107 	if (q)
108 		ret = &q->backing_dev_info;
109 	return ret;
110 }
111 EXPORT_SYMBOL(blk_get_backing_dev_info);
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->cmd = rq->__cmd;
125 	rq->cmd_len = BLK_MAX_CDB;
126 	rq->tag = -1;
127 	rq->ref_count = 1;
128 	rq->start_time = jiffies;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 			  unsigned int nbytes, int error)
134 {
135 	struct request_queue *q = rq->q;
136 
137 	if (&q->bar_rq != rq) {
138 		if (error)
139 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 			error = -EIO;
142 
143 		if (unlikely(nbytes > bio->bi_size)) {
144 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 			       __func__, nbytes, bio->bi_size);
146 			nbytes = bio->bi_size;
147 		}
148 
149 		if (unlikely(rq->cmd_flags & REQ_QUIET))
150 			set_bit(BIO_QUIET, &bio->bi_flags);
151 
152 		bio->bi_size -= nbytes;
153 		bio->bi_sector += (nbytes >> 9);
154 
155 		if (bio_integrity(bio))
156 			bio_integrity_advance(bio, nbytes);
157 
158 		if (bio->bi_size == 0)
159 			bio_endio(bio, error);
160 	} else {
161 
162 		/*
163 		 * Okay, this is the barrier request in progress, just
164 		 * record the error;
165 		 */
166 		if (error && !q->orderr)
167 			q->orderr = error;
168 	}
169 }
170 
171 void blk_dump_rq_flags(struct request *rq, char *msg)
172 {
173 	int bit;
174 
175 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 		rq->cmd_flags);
178 
179 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
180 	       (unsigned long long)blk_rq_pos(rq),
181 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
182 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
183 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
184 
185 	if (blk_pc_request(rq)) {
186 		printk(KERN_INFO "  cdb: ");
187 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 			printk("%02x ", rq->cmd[bit]);
189 		printk("\n");
190 	}
191 }
192 EXPORT_SYMBOL(blk_dump_rq_flags);
193 
194 /*
195  * "plug" the device if there are no outstanding requests: this will
196  * force the transfer to start only after we have put all the requests
197  * on the list.
198  *
199  * This is called with interrupts off and no requests on the queue and
200  * with the queue lock held.
201  */
202 void blk_plug_device(struct request_queue *q)
203 {
204 	WARN_ON(!irqs_disabled());
205 
206 	/*
207 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 	 * which will restart the queueing
209 	 */
210 	if (blk_queue_stopped(q))
211 		return;
212 
213 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 		trace_block_plug(q);
216 	}
217 }
218 EXPORT_SYMBOL(blk_plug_device);
219 
220 /**
221  * blk_plug_device_unlocked - plug a device without queue lock held
222  * @q:    The &struct request_queue to plug
223  *
224  * Description:
225  *   Like @blk_plug_device(), but grabs the queue lock and disables
226  *   interrupts.
227  **/
228 void blk_plug_device_unlocked(struct request_queue *q)
229 {
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(q->queue_lock, flags);
233 	blk_plug_device(q);
234 	spin_unlock_irqrestore(q->queue_lock, flags);
235 }
236 EXPORT_SYMBOL(blk_plug_device_unlocked);
237 
238 /*
239  * remove the queue from the plugged list, if present. called with
240  * queue lock held and interrupts disabled.
241  */
242 int blk_remove_plug(struct request_queue *q)
243 {
244 	WARN_ON(!irqs_disabled());
245 
246 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 		return 0;
248 
249 	del_timer(&q->unplug_timer);
250 	return 1;
251 }
252 EXPORT_SYMBOL(blk_remove_plug);
253 
254 /*
255  * remove the plug and let it rip..
256  */
257 void __generic_unplug_device(struct request_queue *q)
258 {
259 	if (unlikely(blk_queue_stopped(q)))
260 		return;
261 	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
262 		return;
263 
264 	q->request_fn(q);
265 }
266 
267 /**
268  * generic_unplug_device - fire a request queue
269  * @q:    The &struct request_queue in question
270  *
271  * Description:
272  *   Linux uses plugging to build bigger requests queues before letting
273  *   the device have at them. If a queue is plugged, the I/O scheduler
274  *   is still adding and merging requests on the queue. Once the queue
275  *   gets unplugged, the request_fn defined for the queue is invoked and
276  *   transfers started.
277  **/
278 void generic_unplug_device(struct request_queue *q)
279 {
280 	if (blk_queue_plugged(q)) {
281 		spin_lock_irq(q->queue_lock);
282 		__generic_unplug_device(q);
283 		spin_unlock_irq(q->queue_lock);
284 	}
285 }
286 EXPORT_SYMBOL(generic_unplug_device);
287 
288 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 				   struct page *page)
290 {
291 	struct request_queue *q = bdi->unplug_io_data;
292 
293 	blk_unplug(q);
294 }
295 
296 void blk_unplug_work(struct work_struct *work)
297 {
298 	struct request_queue *q =
299 		container_of(work, struct request_queue, unplug_work);
300 
301 	trace_block_unplug_io(q);
302 	q->unplug_fn(q);
303 }
304 
305 void blk_unplug_timeout(unsigned long data)
306 {
307 	struct request_queue *q = (struct request_queue *)data;
308 
309 	trace_block_unplug_timer(q);
310 	kblockd_schedule_work(q, &q->unplug_work);
311 }
312 
313 void blk_unplug(struct request_queue *q)
314 {
315 	/*
316 	 * devices don't necessarily have an ->unplug_fn defined
317 	 */
318 	if (q->unplug_fn) {
319 		trace_block_unplug_io(q);
320 		q->unplug_fn(q);
321 	}
322 }
323 EXPORT_SYMBOL(blk_unplug);
324 
325 /**
326  * blk_start_queue - restart a previously stopped queue
327  * @q:    The &struct request_queue in question
328  *
329  * Description:
330  *   blk_start_queue() will clear the stop flag on the queue, and call
331  *   the request_fn for the queue if it was in a stopped state when
332  *   entered. Also see blk_stop_queue(). Queue lock must be held.
333  **/
334 void blk_start_queue(struct request_queue *q)
335 {
336 	WARN_ON(!irqs_disabled());
337 
338 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339 	__blk_run_queue(q);
340 }
341 EXPORT_SYMBOL(blk_start_queue);
342 
343 /**
344  * blk_stop_queue - stop a queue
345  * @q:    The &struct request_queue in question
346  *
347  * Description:
348  *   The Linux block layer assumes that a block driver will consume all
349  *   entries on the request queue when the request_fn strategy is called.
350  *   Often this will not happen, because of hardware limitations (queue
351  *   depth settings). If a device driver gets a 'queue full' response,
352  *   or if it simply chooses not to queue more I/O at one point, it can
353  *   call this function to prevent the request_fn from being called until
354  *   the driver has signalled it's ready to go again. This happens by calling
355  *   blk_start_queue() to restart queue operations. Queue lock must be held.
356  **/
357 void blk_stop_queue(struct request_queue *q)
358 {
359 	blk_remove_plug(q);
360 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
361 }
362 EXPORT_SYMBOL(blk_stop_queue);
363 
364 /**
365  * blk_sync_queue - cancel any pending callbacks on a queue
366  * @q: the queue
367  *
368  * Description:
369  *     The block layer may perform asynchronous callback activity
370  *     on a queue, such as calling the unplug function after a timeout.
371  *     A block device may call blk_sync_queue to ensure that any
372  *     such activity is cancelled, thus allowing it to release resources
373  *     that the callbacks might use. The caller must already have made sure
374  *     that its ->make_request_fn will not re-add plugging prior to calling
375  *     this function.
376  *
377  */
378 void blk_sync_queue(struct request_queue *q)
379 {
380 	del_timer_sync(&q->unplug_timer);
381 	del_timer_sync(&q->timeout);
382 	cancel_work_sync(&q->unplug_work);
383 }
384 EXPORT_SYMBOL(blk_sync_queue);
385 
386 /**
387  * __blk_run_queue - run a single device queue
388  * @q:	The queue to run
389  *
390  * Description:
391  *    See @blk_run_queue. This variant must be called with the queue lock
392  *    held and interrupts disabled.
393  *
394  */
395 void __blk_run_queue(struct request_queue *q)
396 {
397 	blk_remove_plug(q);
398 
399 	if (unlikely(blk_queue_stopped(q)))
400 		return;
401 
402 	if (elv_queue_empty(q))
403 		return;
404 
405 	/*
406 	 * Only recurse once to avoid overrunning the stack, let the unplug
407 	 * handling reinvoke the handler shortly if we already got there.
408 	 */
409 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 		q->request_fn(q);
411 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 	} else {
413 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 		kblockd_schedule_work(q, &q->unplug_work);
415 	}
416 }
417 EXPORT_SYMBOL(__blk_run_queue);
418 
419 /**
420  * blk_run_queue - run a single device queue
421  * @q: The queue to run
422  *
423  * Description:
424  *    Invoke request handling on this queue, if it has pending work to do.
425  *    May be used to restart queueing when a request has completed.
426  */
427 void blk_run_queue(struct request_queue *q)
428 {
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(q->queue_lock, flags);
432 	__blk_run_queue(q);
433 	spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436 
437 void blk_put_queue(struct request_queue *q)
438 {
439 	kobject_put(&q->kobj);
440 }
441 
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 	/*
445 	 * We know we have process context here, so we can be a little
446 	 * cautious and ensure that pending block actions on this device
447 	 * are done before moving on. Going into this function, we should
448 	 * not have processes doing IO to this device.
449 	 */
450 	blk_sync_queue(q);
451 
452 	mutex_lock(&q->sysfs_lock);
453 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
454 	mutex_unlock(&q->sysfs_lock);
455 
456 	if (q->elevator)
457 		elevator_exit(q->elevator);
458 
459 	blk_put_queue(q);
460 }
461 EXPORT_SYMBOL(blk_cleanup_queue);
462 
463 static int blk_init_free_list(struct request_queue *q)
464 {
465 	struct request_list *rl = &q->rq;
466 
467 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
469 	rl->elvpriv = 0;
470 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
472 
473 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 				mempool_free_slab, request_cachep, q->node);
475 
476 	if (!rl->rq_pool)
477 		return -ENOMEM;
478 
479 	return 0;
480 }
481 
482 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
483 {
484 	return blk_alloc_queue_node(gfp_mask, -1);
485 }
486 EXPORT_SYMBOL(blk_alloc_queue);
487 
488 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
489 {
490 	struct request_queue *q;
491 	int err;
492 
493 	q = kmem_cache_alloc_node(blk_requestq_cachep,
494 				gfp_mask | __GFP_ZERO, node_id);
495 	if (!q)
496 		return NULL;
497 
498 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 	q->backing_dev_info.unplug_io_data = q;
500 	q->backing_dev_info.ra_pages =
501 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 	q->backing_dev_info.state = 0;
503 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
504 	q->backing_dev_info.name = "block";
505 
506 	err = bdi_init(&q->backing_dev_info);
507 	if (err) {
508 		kmem_cache_free(blk_requestq_cachep, q);
509 		return NULL;
510 	}
511 
512 	init_timer(&q->unplug_timer);
513 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
514 	INIT_LIST_HEAD(&q->timeout_list);
515 	INIT_WORK(&q->unplug_work, blk_unplug_work);
516 
517 	kobject_init(&q->kobj, &blk_queue_ktype);
518 
519 	mutex_init(&q->sysfs_lock);
520 	spin_lock_init(&q->__queue_lock);
521 
522 	return q;
523 }
524 EXPORT_SYMBOL(blk_alloc_queue_node);
525 
526 /**
527  * blk_init_queue  - prepare a request queue for use with a block device
528  * @rfn:  The function to be called to process requests that have been
529  *        placed on the queue.
530  * @lock: Request queue spin lock
531  *
532  * Description:
533  *    If a block device wishes to use the standard request handling procedures,
534  *    which sorts requests and coalesces adjacent requests, then it must
535  *    call blk_init_queue().  The function @rfn will be called when there
536  *    are requests on the queue that need to be processed.  If the device
537  *    supports plugging, then @rfn may not be called immediately when requests
538  *    are available on the queue, but may be called at some time later instead.
539  *    Plugged queues are generally unplugged when a buffer belonging to one
540  *    of the requests on the queue is needed, or due to memory pressure.
541  *
542  *    @rfn is not required, or even expected, to remove all requests off the
543  *    queue, but only as many as it can handle at a time.  If it does leave
544  *    requests on the queue, it is responsible for arranging that the requests
545  *    get dealt with eventually.
546  *
547  *    The queue spin lock must be held while manipulating the requests on the
548  *    request queue; this lock will be taken also from interrupt context, so irq
549  *    disabling is needed for it.
550  *
551  *    Function returns a pointer to the initialized request queue, or %NULL if
552  *    it didn't succeed.
553  *
554  * Note:
555  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
556  *    when the block device is deactivated (such as at module unload).
557  **/
558 
559 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
560 {
561 	return blk_init_queue_node(rfn, lock, -1);
562 }
563 EXPORT_SYMBOL(blk_init_queue);
564 
565 struct request_queue *
566 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
567 {
568 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
569 
570 	if (!q)
571 		return NULL;
572 
573 	q->node = node_id;
574 	if (blk_init_free_list(q)) {
575 		kmem_cache_free(blk_requestq_cachep, q);
576 		return NULL;
577 	}
578 
579 	q->request_fn		= rfn;
580 	q->prep_rq_fn		= NULL;
581 	q->unplug_fn		= generic_unplug_device;
582 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
583 	q->queue_lock		= lock;
584 
585 	/*
586 	 * This also sets hw/phys segments, boundary and size
587 	 */
588 	blk_queue_make_request(q, __make_request);
589 
590 	q->sg_reserved_size = INT_MAX;
591 
592 	/*
593 	 * all done
594 	 */
595 	if (!elevator_init(q, NULL)) {
596 		blk_queue_congestion_threshold(q);
597 		return q;
598 	}
599 
600 	blk_put_queue(q);
601 	return NULL;
602 }
603 EXPORT_SYMBOL(blk_init_queue_node);
604 
605 int blk_get_queue(struct request_queue *q)
606 {
607 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
608 		kobject_get(&q->kobj);
609 		return 0;
610 	}
611 
612 	return 1;
613 }
614 
615 static inline void blk_free_request(struct request_queue *q, struct request *rq)
616 {
617 	if (rq->cmd_flags & REQ_ELVPRIV)
618 		elv_put_request(q, rq);
619 	mempool_free(rq, q->rq.rq_pool);
620 }
621 
622 static struct request *
623 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
624 {
625 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
626 
627 	if (!rq)
628 		return NULL;
629 
630 	blk_rq_init(q, rq);
631 
632 	rq->cmd_flags = flags | REQ_ALLOCED;
633 
634 	if (priv) {
635 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
636 			mempool_free(rq, q->rq.rq_pool);
637 			return NULL;
638 		}
639 		rq->cmd_flags |= REQ_ELVPRIV;
640 	}
641 
642 	return rq;
643 }
644 
645 /*
646  * ioc_batching returns true if the ioc is a valid batching request and
647  * should be given priority access to a request.
648  */
649 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
650 {
651 	if (!ioc)
652 		return 0;
653 
654 	/*
655 	 * Make sure the process is able to allocate at least 1 request
656 	 * even if the batch times out, otherwise we could theoretically
657 	 * lose wakeups.
658 	 */
659 	return ioc->nr_batch_requests == q->nr_batching ||
660 		(ioc->nr_batch_requests > 0
661 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
662 }
663 
664 /*
665  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
666  * will cause the process to be a "batcher" on all queues in the system. This
667  * is the behaviour we want though - once it gets a wakeup it should be given
668  * a nice run.
669  */
670 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
671 {
672 	if (!ioc || ioc_batching(q, ioc))
673 		return;
674 
675 	ioc->nr_batch_requests = q->nr_batching;
676 	ioc->last_waited = jiffies;
677 }
678 
679 static void __freed_request(struct request_queue *q, int sync)
680 {
681 	struct request_list *rl = &q->rq;
682 
683 	if (rl->count[sync] < queue_congestion_off_threshold(q))
684 		blk_clear_queue_congested(q, sync);
685 
686 	if (rl->count[sync] + 1 <= q->nr_requests) {
687 		if (waitqueue_active(&rl->wait[sync]))
688 			wake_up(&rl->wait[sync]);
689 
690 		blk_clear_queue_full(q, sync);
691 	}
692 }
693 
694 /*
695  * A request has just been released.  Account for it, update the full and
696  * congestion status, wake up any waiters.   Called under q->queue_lock.
697  */
698 static void freed_request(struct request_queue *q, int sync, int priv)
699 {
700 	struct request_list *rl = &q->rq;
701 
702 	rl->count[sync]--;
703 	if (priv)
704 		rl->elvpriv--;
705 
706 	__freed_request(q, sync);
707 
708 	if (unlikely(rl->starved[sync ^ 1]))
709 		__freed_request(q, sync ^ 1);
710 }
711 
712 /*
713  * Get a free request, queue_lock must be held.
714  * Returns NULL on failure, with queue_lock held.
715  * Returns !NULL on success, with queue_lock *not held*.
716  */
717 static struct request *get_request(struct request_queue *q, int rw_flags,
718 				   struct bio *bio, gfp_t gfp_mask)
719 {
720 	struct request *rq = NULL;
721 	struct request_list *rl = &q->rq;
722 	struct io_context *ioc = NULL;
723 	const bool is_sync = rw_is_sync(rw_flags) != 0;
724 	int may_queue, priv;
725 
726 	may_queue = elv_may_queue(q, rw_flags);
727 	if (may_queue == ELV_MQUEUE_NO)
728 		goto rq_starved;
729 
730 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
731 		if (rl->count[is_sync]+1 >= q->nr_requests) {
732 			ioc = current_io_context(GFP_ATOMIC, q->node);
733 			/*
734 			 * The queue will fill after this allocation, so set
735 			 * it as full, and mark this process as "batching".
736 			 * This process will be allowed to complete a batch of
737 			 * requests, others will be blocked.
738 			 */
739 			if (!blk_queue_full(q, is_sync)) {
740 				ioc_set_batching(q, ioc);
741 				blk_set_queue_full(q, is_sync);
742 			} else {
743 				if (may_queue != ELV_MQUEUE_MUST
744 						&& !ioc_batching(q, ioc)) {
745 					/*
746 					 * The queue is full and the allocating
747 					 * process is not a "batcher", and not
748 					 * exempted by the IO scheduler
749 					 */
750 					goto out;
751 				}
752 			}
753 		}
754 		blk_set_queue_congested(q, is_sync);
755 	}
756 
757 	/*
758 	 * Only allow batching queuers to allocate up to 50% over the defined
759 	 * limit of requests, otherwise we could have thousands of requests
760 	 * allocated with any setting of ->nr_requests
761 	 */
762 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
763 		goto out;
764 
765 	rl->count[is_sync]++;
766 	rl->starved[is_sync] = 0;
767 
768 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
769 	if (priv)
770 		rl->elvpriv++;
771 
772 	if (blk_queue_io_stat(q))
773 		rw_flags |= REQ_IO_STAT;
774 	spin_unlock_irq(q->queue_lock);
775 
776 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
777 	if (unlikely(!rq)) {
778 		/*
779 		 * Allocation failed presumably due to memory. Undo anything
780 		 * we might have messed up.
781 		 *
782 		 * Allocating task should really be put onto the front of the
783 		 * wait queue, but this is pretty rare.
784 		 */
785 		spin_lock_irq(q->queue_lock);
786 		freed_request(q, is_sync, priv);
787 
788 		/*
789 		 * in the very unlikely event that allocation failed and no
790 		 * requests for this direction was pending, mark us starved
791 		 * so that freeing of a request in the other direction will
792 		 * notice us. another possible fix would be to split the
793 		 * rq mempool into READ and WRITE
794 		 */
795 rq_starved:
796 		if (unlikely(rl->count[is_sync] == 0))
797 			rl->starved[is_sync] = 1;
798 
799 		goto out;
800 	}
801 
802 	/*
803 	 * ioc may be NULL here, and ioc_batching will be false. That's
804 	 * OK, if the queue is under the request limit then requests need
805 	 * not count toward the nr_batch_requests limit. There will always
806 	 * be some limit enforced by BLK_BATCH_TIME.
807 	 */
808 	if (ioc_batching(q, ioc))
809 		ioc->nr_batch_requests--;
810 
811 	trace_block_getrq(q, bio, rw_flags & 1);
812 out:
813 	return rq;
814 }
815 
816 /*
817  * No available requests for this queue, unplug the device and wait for some
818  * requests to become available.
819  *
820  * Called with q->queue_lock held, and returns with it unlocked.
821  */
822 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
823 					struct bio *bio)
824 {
825 	const bool is_sync = rw_is_sync(rw_flags) != 0;
826 	struct request *rq;
827 
828 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
829 	while (!rq) {
830 		DEFINE_WAIT(wait);
831 		struct io_context *ioc;
832 		struct request_list *rl = &q->rq;
833 
834 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
835 				TASK_UNINTERRUPTIBLE);
836 
837 		trace_block_sleeprq(q, bio, rw_flags & 1);
838 
839 		__generic_unplug_device(q);
840 		spin_unlock_irq(q->queue_lock);
841 		io_schedule();
842 
843 		/*
844 		 * After sleeping, we become a "batching" process and
845 		 * will be able to allocate at least one request, and
846 		 * up to a big batch of them for a small period time.
847 		 * See ioc_batching, ioc_set_batching
848 		 */
849 		ioc = current_io_context(GFP_NOIO, q->node);
850 		ioc_set_batching(q, ioc);
851 
852 		spin_lock_irq(q->queue_lock);
853 		finish_wait(&rl->wait[is_sync], &wait);
854 
855 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
856 	};
857 
858 	return rq;
859 }
860 
861 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
862 {
863 	struct request *rq;
864 
865 	BUG_ON(rw != READ && rw != WRITE);
866 
867 	spin_lock_irq(q->queue_lock);
868 	if (gfp_mask & __GFP_WAIT) {
869 		rq = get_request_wait(q, rw, NULL);
870 	} else {
871 		rq = get_request(q, rw, NULL, gfp_mask);
872 		if (!rq)
873 			spin_unlock_irq(q->queue_lock);
874 	}
875 	/* q->queue_lock is unlocked at this point */
876 
877 	return rq;
878 }
879 EXPORT_SYMBOL(blk_get_request);
880 
881 /**
882  * blk_make_request - given a bio, allocate a corresponding struct request.
883  * @q: target request queue
884  * @bio:  The bio describing the memory mappings that will be submitted for IO.
885  *        It may be a chained-bio properly constructed by block/bio layer.
886  * @gfp_mask: gfp flags to be used for memory allocation
887  *
888  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
889  * type commands. Where the struct request needs to be farther initialized by
890  * the caller. It is passed a &struct bio, which describes the memory info of
891  * the I/O transfer.
892  *
893  * The caller of blk_make_request must make sure that bi_io_vec
894  * are set to describe the memory buffers. That bio_data_dir() will return
895  * the needed direction of the request. (And all bio's in the passed bio-chain
896  * are properly set accordingly)
897  *
898  * If called under none-sleepable conditions, mapped bio buffers must not
899  * need bouncing, by calling the appropriate masked or flagged allocator,
900  * suitable for the target device. Otherwise the call to blk_queue_bounce will
901  * BUG.
902  *
903  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
904  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
905  * anything but the first bio in the chain. Otherwise you risk waiting for IO
906  * completion of a bio that hasn't been submitted yet, thus resulting in a
907  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
908  * of bio_alloc(), as that avoids the mempool deadlock.
909  * If possible a big IO should be split into smaller parts when allocation
910  * fails. Partial allocation should not be an error, or you risk a live-lock.
911  */
912 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
913 				 gfp_t gfp_mask)
914 {
915 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
916 
917 	if (unlikely(!rq))
918 		return ERR_PTR(-ENOMEM);
919 
920 	for_each_bio(bio) {
921 		struct bio *bounce_bio = bio;
922 		int ret;
923 
924 		blk_queue_bounce(q, &bounce_bio);
925 		ret = blk_rq_append_bio(q, rq, bounce_bio);
926 		if (unlikely(ret)) {
927 			blk_put_request(rq);
928 			return ERR_PTR(ret);
929 		}
930 	}
931 
932 	return rq;
933 }
934 EXPORT_SYMBOL(blk_make_request);
935 
936 /**
937  * blk_requeue_request - put a request back on queue
938  * @q:		request queue where request should be inserted
939  * @rq:		request to be inserted
940  *
941  * Description:
942  *    Drivers often keep queueing requests until the hardware cannot accept
943  *    more, when that condition happens we need to put the request back
944  *    on the queue. Must be called with queue lock held.
945  */
946 void blk_requeue_request(struct request_queue *q, struct request *rq)
947 {
948 	blk_delete_timer(rq);
949 	blk_clear_rq_complete(rq);
950 	trace_block_rq_requeue(q, rq);
951 
952 	if (blk_rq_tagged(rq))
953 		blk_queue_end_tag(q, rq);
954 
955 	BUG_ON(blk_queued_rq(rq));
956 
957 	elv_requeue_request(q, rq);
958 }
959 EXPORT_SYMBOL(blk_requeue_request);
960 
961 /**
962  * blk_insert_request - insert a special request into a request queue
963  * @q:		request queue where request should be inserted
964  * @rq:		request to be inserted
965  * @at_head:	insert request at head or tail of queue
966  * @data:	private data
967  *
968  * Description:
969  *    Many block devices need to execute commands asynchronously, so they don't
970  *    block the whole kernel from preemption during request execution.  This is
971  *    accomplished normally by inserting aritficial requests tagged as
972  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
973  *    be scheduled for actual execution by the request queue.
974  *
975  *    We have the option of inserting the head or the tail of the queue.
976  *    Typically we use the tail for new ioctls and so forth.  We use the head
977  *    of the queue for things like a QUEUE_FULL message from a device, or a
978  *    host that is unable to accept a particular command.
979  */
980 void blk_insert_request(struct request_queue *q, struct request *rq,
981 			int at_head, void *data)
982 {
983 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
984 	unsigned long flags;
985 
986 	/*
987 	 * tell I/O scheduler that this isn't a regular read/write (ie it
988 	 * must not attempt merges on this) and that it acts as a soft
989 	 * barrier
990 	 */
991 	rq->cmd_type = REQ_TYPE_SPECIAL;
992 
993 	rq->special = data;
994 
995 	spin_lock_irqsave(q->queue_lock, flags);
996 
997 	/*
998 	 * If command is tagged, release the tag
999 	 */
1000 	if (blk_rq_tagged(rq))
1001 		blk_queue_end_tag(q, rq);
1002 
1003 	drive_stat_acct(rq, 1);
1004 	__elv_add_request(q, rq, where, 0);
1005 	__blk_run_queue(q);
1006 	spin_unlock_irqrestore(q->queue_lock, flags);
1007 }
1008 EXPORT_SYMBOL(blk_insert_request);
1009 
1010 /*
1011  * add-request adds a request to the linked list.
1012  * queue lock is held and interrupts disabled, as we muck with the
1013  * request queue list.
1014  */
1015 static inline void add_request(struct request_queue *q, struct request *req)
1016 {
1017 	drive_stat_acct(req, 1);
1018 
1019 	/*
1020 	 * elevator indicated where it wants this request to be
1021 	 * inserted at elevator_merge time
1022 	 */
1023 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1024 }
1025 
1026 static void part_round_stats_single(int cpu, struct hd_struct *part,
1027 				    unsigned long now)
1028 {
1029 	if (now == part->stamp)
1030 		return;
1031 
1032 	if (part->in_flight) {
1033 		__part_stat_add(cpu, part, time_in_queue,
1034 				part_in_flight(part) * (now - part->stamp));
1035 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1036 	}
1037 	part->stamp = now;
1038 }
1039 
1040 /**
1041  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1042  * @cpu: cpu number for stats access
1043  * @part: target partition
1044  *
1045  * The average IO queue length and utilisation statistics are maintained
1046  * by observing the current state of the queue length and the amount of
1047  * time it has been in this state for.
1048  *
1049  * Normally, that accounting is done on IO completion, but that can result
1050  * in more than a second's worth of IO being accounted for within any one
1051  * second, leading to >100% utilisation.  To deal with that, we call this
1052  * function to do a round-off before returning the results when reading
1053  * /proc/diskstats.  This accounts immediately for all queue usage up to
1054  * the current jiffies and restarts the counters again.
1055  */
1056 void part_round_stats(int cpu, struct hd_struct *part)
1057 {
1058 	unsigned long now = jiffies;
1059 
1060 	if (part->partno)
1061 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1062 	part_round_stats_single(cpu, part, now);
1063 }
1064 EXPORT_SYMBOL_GPL(part_round_stats);
1065 
1066 /*
1067  * queue lock must be held
1068  */
1069 void __blk_put_request(struct request_queue *q, struct request *req)
1070 {
1071 	if (unlikely(!q))
1072 		return;
1073 	if (unlikely(--req->ref_count))
1074 		return;
1075 
1076 	elv_completed_request(q, req);
1077 
1078 	/* this is a bio leak */
1079 	WARN_ON(req->bio != NULL);
1080 
1081 	/*
1082 	 * Request may not have originated from ll_rw_blk. if not,
1083 	 * it didn't come out of our reserved rq pools
1084 	 */
1085 	if (req->cmd_flags & REQ_ALLOCED) {
1086 		int is_sync = rq_is_sync(req) != 0;
1087 		int priv = req->cmd_flags & REQ_ELVPRIV;
1088 
1089 		BUG_ON(!list_empty(&req->queuelist));
1090 		BUG_ON(!hlist_unhashed(&req->hash));
1091 
1092 		blk_free_request(q, req);
1093 		freed_request(q, is_sync, priv);
1094 	}
1095 }
1096 EXPORT_SYMBOL_GPL(__blk_put_request);
1097 
1098 void blk_put_request(struct request *req)
1099 {
1100 	unsigned long flags;
1101 	struct request_queue *q = req->q;
1102 
1103 	spin_lock_irqsave(q->queue_lock, flags);
1104 	__blk_put_request(q, req);
1105 	spin_unlock_irqrestore(q->queue_lock, flags);
1106 }
1107 EXPORT_SYMBOL(blk_put_request);
1108 
1109 void init_request_from_bio(struct request *req, struct bio *bio)
1110 {
1111 	req->cpu = bio->bi_comp_cpu;
1112 	req->cmd_type = REQ_TYPE_FS;
1113 
1114 	/*
1115 	 * Inherit FAILFAST from bio (for read-ahead, and explicit
1116 	 * FAILFAST).  FAILFAST flags are identical for req and bio.
1117 	 */
1118 	if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1119 		req->cmd_flags |= REQ_FAILFAST_MASK;
1120 	else
1121 		req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1122 
1123 	if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1124 		req->cmd_flags |= REQ_DISCARD;
1125 		if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1126 			req->cmd_flags |= REQ_SOFTBARRIER;
1127 		req->q->prepare_discard_fn(req->q, req);
1128 	} else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1129 		req->cmd_flags |= REQ_HARDBARRIER;
1130 
1131 	if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1132 		req->cmd_flags |= REQ_RW_SYNC;
1133 	if (bio_rw_flagged(bio, BIO_RW_META))
1134 		req->cmd_flags |= REQ_RW_META;
1135 	if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1136 		req->cmd_flags |= REQ_NOIDLE;
1137 
1138 	req->errors = 0;
1139 	req->__sector = bio->bi_sector;
1140 	req->ioprio = bio_prio(bio);
1141 	blk_rq_bio_prep(req->q, req, bio);
1142 }
1143 
1144 /*
1145  * Only disabling plugging for non-rotational devices if it does tagging
1146  * as well, otherwise we do need the proper merging
1147  */
1148 static inline bool queue_should_plug(struct request_queue *q)
1149 {
1150 	return !(blk_queue_nonrot(q) && blk_queue_queuing(q));
1151 }
1152 
1153 static int __make_request(struct request_queue *q, struct bio *bio)
1154 {
1155 	struct request *req;
1156 	int el_ret;
1157 	unsigned int bytes = bio->bi_size;
1158 	const unsigned short prio = bio_prio(bio);
1159 	const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1160 	const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1161 	const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1162 	int rw_flags;
1163 
1164 	if (bio_rw_flagged(bio, BIO_RW_BARRIER) && bio_has_data(bio) &&
1165 	    (q->next_ordered == QUEUE_ORDERED_NONE)) {
1166 		bio_endio(bio, -EOPNOTSUPP);
1167 		return 0;
1168 	}
1169 	/*
1170 	 * low level driver can indicate that it wants pages above a
1171 	 * certain limit bounced to low memory (ie for highmem, or even
1172 	 * ISA dma in theory)
1173 	 */
1174 	blk_queue_bounce(q, &bio);
1175 
1176 	spin_lock_irq(q->queue_lock);
1177 
1178 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1179 		goto get_rq;
1180 
1181 	el_ret = elv_merge(q, &req, bio);
1182 	switch (el_ret) {
1183 	case ELEVATOR_BACK_MERGE:
1184 		BUG_ON(!rq_mergeable(req));
1185 
1186 		if (!ll_back_merge_fn(q, req, bio))
1187 			break;
1188 
1189 		trace_block_bio_backmerge(q, bio);
1190 
1191 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1192 			blk_rq_set_mixed_merge(req);
1193 
1194 		req->biotail->bi_next = bio;
1195 		req->biotail = bio;
1196 		req->__data_len += bytes;
1197 		req->ioprio = ioprio_best(req->ioprio, prio);
1198 		if (!blk_rq_cpu_valid(req))
1199 			req->cpu = bio->bi_comp_cpu;
1200 		drive_stat_acct(req, 0);
1201 		if (!attempt_back_merge(q, req))
1202 			elv_merged_request(q, req, el_ret);
1203 		goto out;
1204 
1205 	case ELEVATOR_FRONT_MERGE:
1206 		BUG_ON(!rq_mergeable(req));
1207 
1208 		if (!ll_front_merge_fn(q, req, bio))
1209 			break;
1210 
1211 		trace_block_bio_frontmerge(q, bio);
1212 
1213 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1214 			blk_rq_set_mixed_merge(req);
1215 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
1216 			req->cmd_flags |= ff;
1217 		}
1218 
1219 		bio->bi_next = req->bio;
1220 		req->bio = bio;
1221 
1222 		/*
1223 		 * may not be valid. if the low level driver said
1224 		 * it didn't need a bounce buffer then it better
1225 		 * not touch req->buffer either...
1226 		 */
1227 		req->buffer = bio_data(bio);
1228 		req->__sector = bio->bi_sector;
1229 		req->__data_len += bytes;
1230 		req->ioprio = ioprio_best(req->ioprio, prio);
1231 		if (!blk_rq_cpu_valid(req))
1232 			req->cpu = bio->bi_comp_cpu;
1233 		drive_stat_acct(req, 0);
1234 		if (!attempt_front_merge(q, req))
1235 			elv_merged_request(q, req, el_ret);
1236 		goto out;
1237 
1238 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1239 	default:
1240 		;
1241 	}
1242 
1243 get_rq:
1244 	/*
1245 	 * This sync check and mask will be re-done in init_request_from_bio(),
1246 	 * but we need to set it earlier to expose the sync flag to the
1247 	 * rq allocator and io schedulers.
1248 	 */
1249 	rw_flags = bio_data_dir(bio);
1250 	if (sync)
1251 		rw_flags |= REQ_RW_SYNC;
1252 
1253 	/*
1254 	 * Grab a free request. This is might sleep but can not fail.
1255 	 * Returns with the queue unlocked.
1256 	 */
1257 	req = get_request_wait(q, rw_flags, bio);
1258 
1259 	/*
1260 	 * After dropping the lock and possibly sleeping here, our request
1261 	 * may now be mergeable after it had proven unmergeable (above).
1262 	 * We don't worry about that case for efficiency. It won't happen
1263 	 * often, and the elevators are able to handle it.
1264 	 */
1265 	init_request_from_bio(req, bio);
1266 
1267 	spin_lock_irq(q->queue_lock);
1268 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1269 	    bio_flagged(bio, BIO_CPU_AFFINE))
1270 		req->cpu = blk_cpu_to_group(smp_processor_id());
1271 	if (queue_should_plug(q) && elv_queue_empty(q))
1272 		blk_plug_device(q);
1273 	add_request(q, req);
1274 out:
1275 	if (unplug || !queue_should_plug(q))
1276 		__generic_unplug_device(q);
1277 	spin_unlock_irq(q->queue_lock);
1278 	return 0;
1279 }
1280 
1281 /*
1282  * If bio->bi_dev is a partition, remap the location
1283  */
1284 static inline void blk_partition_remap(struct bio *bio)
1285 {
1286 	struct block_device *bdev = bio->bi_bdev;
1287 
1288 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1289 		struct hd_struct *p = bdev->bd_part;
1290 
1291 		bio->bi_sector += p->start_sect;
1292 		bio->bi_bdev = bdev->bd_contains;
1293 
1294 		trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1295 				    bdev->bd_dev,
1296 				    bio->bi_sector - p->start_sect);
1297 	}
1298 }
1299 
1300 static void handle_bad_sector(struct bio *bio)
1301 {
1302 	char b[BDEVNAME_SIZE];
1303 
1304 	printk(KERN_INFO "attempt to access beyond end of device\n");
1305 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1306 			bdevname(bio->bi_bdev, b),
1307 			bio->bi_rw,
1308 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1309 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1310 
1311 	set_bit(BIO_EOF, &bio->bi_flags);
1312 }
1313 
1314 #ifdef CONFIG_FAIL_MAKE_REQUEST
1315 
1316 static DECLARE_FAULT_ATTR(fail_make_request);
1317 
1318 static int __init setup_fail_make_request(char *str)
1319 {
1320 	return setup_fault_attr(&fail_make_request, str);
1321 }
1322 __setup("fail_make_request=", setup_fail_make_request);
1323 
1324 static int should_fail_request(struct bio *bio)
1325 {
1326 	struct hd_struct *part = bio->bi_bdev->bd_part;
1327 
1328 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1329 		return should_fail(&fail_make_request, bio->bi_size);
1330 
1331 	return 0;
1332 }
1333 
1334 static int __init fail_make_request_debugfs(void)
1335 {
1336 	return init_fault_attr_dentries(&fail_make_request,
1337 					"fail_make_request");
1338 }
1339 
1340 late_initcall(fail_make_request_debugfs);
1341 
1342 #else /* CONFIG_FAIL_MAKE_REQUEST */
1343 
1344 static inline int should_fail_request(struct bio *bio)
1345 {
1346 	return 0;
1347 }
1348 
1349 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1350 
1351 /*
1352  * Check whether this bio extends beyond the end of the device.
1353  */
1354 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1355 {
1356 	sector_t maxsector;
1357 
1358 	if (!nr_sectors)
1359 		return 0;
1360 
1361 	/* Test device or partition size, when known. */
1362 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1363 	if (maxsector) {
1364 		sector_t sector = bio->bi_sector;
1365 
1366 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1367 			/*
1368 			 * This may well happen - the kernel calls bread()
1369 			 * without checking the size of the device, e.g., when
1370 			 * mounting a device.
1371 			 */
1372 			handle_bad_sector(bio);
1373 			return 1;
1374 		}
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * generic_make_request - hand a buffer to its device driver for I/O
1382  * @bio:  The bio describing the location in memory and on the device.
1383  *
1384  * generic_make_request() is used to make I/O requests of block
1385  * devices. It is passed a &struct bio, which describes the I/O that needs
1386  * to be done.
1387  *
1388  * generic_make_request() does not return any status.  The
1389  * success/failure status of the request, along with notification of
1390  * completion, is delivered asynchronously through the bio->bi_end_io
1391  * function described (one day) else where.
1392  *
1393  * The caller of generic_make_request must make sure that bi_io_vec
1394  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1395  * set to describe the device address, and the
1396  * bi_end_io and optionally bi_private are set to describe how
1397  * completion notification should be signaled.
1398  *
1399  * generic_make_request and the drivers it calls may use bi_next if this
1400  * bio happens to be merged with someone else, and may change bi_dev and
1401  * bi_sector for remaps as it sees fit.  So the values of these fields
1402  * should NOT be depended on after the call to generic_make_request.
1403  */
1404 static inline void __generic_make_request(struct bio *bio)
1405 {
1406 	struct request_queue *q;
1407 	sector_t old_sector;
1408 	int ret, nr_sectors = bio_sectors(bio);
1409 	dev_t old_dev;
1410 	int err = -EIO;
1411 
1412 	might_sleep();
1413 
1414 	if (bio_check_eod(bio, nr_sectors))
1415 		goto end_io;
1416 
1417 	/*
1418 	 * Resolve the mapping until finished. (drivers are
1419 	 * still free to implement/resolve their own stacking
1420 	 * by explicitly returning 0)
1421 	 *
1422 	 * NOTE: we don't repeat the blk_size check for each new device.
1423 	 * Stacking drivers are expected to know what they are doing.
1424 	 */
1425 	old_sector = -1;
1426 	old_dev = 0;
1427 	do {
1428 		char b[BDEVNAME_SIZE];
1429 
1430 		q = bdev_get_queue(bio->bi_bdev);
1431 		if (unlikely(!q)) {
1432 			printk(KERN_ERR
1433 			       "generic_make_request: Trying to access "
1434 				"nonexistent block-device %s (%Lu)\n",
1435 				bdevname(bio->bi_bdev, b),
1436 				(long long) bio->bi_sector);
1437 			goto end_io;
1438 		}
1439 
1440 		if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1441 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1442 			       bdevname(bio->bi_bdev, b),
1443 			       bio_sectors(bio),
1444 			       queue_max_hw_sectors(q));
1445 			goto end_io;
1446 		}
1447 
1448 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1449 			goto end_io;
1450 
1451 		if (should_fail_request(bio))
1452 			goto end_io;
1453 
1454 		/*
1455 		 * If this device has partitions, remap block n
1456 		 * of partition p to block n+start(p) of the disk.
1457 		 */
1458 		blk_partition_remap(bio);
1459 
1460 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1461 			goto end_io;
1462 
1463 		if (old_sector != -1)
1464 			trace_block_remap(q, bio, old_dev, old_sector);
1465 
1466 		old_sector = bio->bi_sector;
1467 		old_dev = bio->bi_bdev->bd_dev;
1468 
1469 		if (bio_check_eod(bio, nr_sectors))
1470 			goto end_io;
1471 
1472 		if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1473 		    !q->prepare_discard_fn) {
1474 			err = -EOPNOTSUPP;
1475 			goto end_io;
1476 		}
1477 
1478 		trace_block_bio_queue(q, bio);
1479 
1480 		ret = q->make_request_fn(q, bio);
1481 	} while (ret);
1482 
1483 	return;
1484 
1485 end_io:
1486 	bio_endio(bio, err);
1487 }
1488 
1489 /*
1490  * We only want one ->make_request_fn to be active at a time,
1491  * else stack usage with stacked devices could be a problem.
1492  * So use current->bio_{list,tail} to keep a list of requests
1493  * submited by a make_request_fn function.
1494  * current->bio_tail is also used as a flag to say if
1495  * generic_make_request is currently active in this task or not.
1496  * If it is NULL, then no make_request is active.  If it is non-NULL,
1497  * then a make_request is active, and new requests should be added
1498  * at the tail
1499  */
1500 void generic_make_request(struct bio *bio)
1501 {
1502 	if (current->bio_tail) {
1503 		/* make_request is active */
1504 		*(current->bio_tail) = bio;
1505 		bio->bi_next = NULL;
1506 		current->bio_tail = &bio->bi_next;
1507 		return;
1508 	}
1509 	/* following loop may be a bit non-obvious, and so deserves some
1510 	 * explanation.
1511 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1512 	 * ensure that) so we have a list with a single bio.
1513 	 * We pretend that we have just taken it off a longer list, so
1514 	 * we assign bio_list to the next (which is NULL) and bio_tail
1515 	 * to &bio_list, thus initialising the bio_list of new bios to be
1516 	 * added.  __generic_make_request may indeed add some more bios
1517 	 * through a recursive call to generic_make_request.  If it
1518 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1519 	 * from the top.  In this case we really did just take the bio
1520 	 * of the top of the list (no pretending) and so fixup bio_list and
1521 	 * bio_tail or bi_next, and call into __generic_make_request again.
1522 	 *
1523 	 * The loop was structured like this to make only one call to
1524 	 * __generic_make_request (which is important as it is large and
1525 	 * inlined) and to keep the structure simple.
1526 	 */
1527 	BUG_ON(bio->bi_next);
1528 	do {
1529 		current->bio_list = bio->bi_next;
1530 		if (bio->bi_next == NULL)
1531 			current->bio_tail = &current->bio_list;
1532 		else
1533 			bio->bi_next = NULL;
1534 		__generic_make_request(bio);
1535 		bio = current->bio_list;
1536 	} while (bio);
1537 	current->bio_tail = NULL; /* deactivate */
1538 }
1539 EXPORT_SYMBOL(generic_make_request);
1540 
1541 /**
1542  * submit_bio - submit a bio to the block device layer for I/O
1543  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1544  * @bio: The &struct bio which describes the I/O
1545  *
1546  * submit_bio() is very similar in purpose to generic_make_request(), and
1547  * uses that function to do most of the work. Both are fairly rough
1548  * interfaces; @bio must be presetup and ready for I/O.
1549  *
1550  */
1551 void submit_bio(int rw, struct bio *bio)
1552 {
1553 	int count = bio_sectors(bio);
1554 
1555 	bio->bi_rw |= rw;
1556 
1557 	/*
1558 	 * If it's a regular read/write or a barrier with data attached,
1559 	 * go through the normal accounting stuff before submission.
1560 	 */
1561 	if (bio_has_data(bio)) {
1562 		if (rw & WRITE) {
1563 			count_vm_events(PGPGOUT, count);
1564 		} else {
1565 			task_io_account_read(bio->bi_size);
1566 			count_vm_events(PGPGIN, count);
1567 		}
1568 
1569 		if (unlikely(block_dump)) {
1570 			char b[BDEVNAME_SIZE];
1571 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1572 			current->comm, task_pid_nr(current),
1573 				(rw & WRITE) ? "WRITE" : "READ",
1574 				(unsigned long long)bio->bi_sector,
1575 				bdevname(bio->bi_bdev, b));
1576 		}
1577 	}
1578 
1579 	generic_make_request(bio);
1580 }
1581 EXPORT_SYMBOL(submit_bio);
1582 
1583 /**
1584  * blk_rq_check_limits - Helper function to check a request for the queue limit
1585  * @q:  the queue
1586  * @rq: the request being checked
1587  *
1588  * Description:
1589  *    @rq may have been made based on weaker limitations of upper-level queues
1590  *    in request stacking drivers, and it may violate the limitation of @q.
1591  *    Since the block layer and the underlying device driver trust @rq
1592  *    after it is inserted to @q, it should be checked against @q before
1593  *    the insertion using this generic function.
1594  *
1595  *    This function should also be useful for request stacking drivers
1596  *    in some cases below, so export this fuction.
1597  *    Request stacking drivers like request-based dm may change the queue
1598  *    limits while requests are in the queue (e.g. dm's table swapping).
1599  *    Such request stacking drivers should check those requests agaist
1600  *    the new queue limits again when they dispatch those requests,
1601  *    although such checkings are also done against the old queue limits
1602  *    when submitting requests.
1603  */
1604 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1605 {
1606 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1607 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1608 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1609 		return -EIO;
1610 	}
1611 
1612 	/*
1613 	 * queue's settings related to segment counting like q->bounce_pfn
1614 	 * may differ from that of other stacking queues.
1615 	 * Recalculate it to check the request correctly on this queue's
1616 	 * limitation.
1617 	 */
1618 	blk_recalc_rq_segments(rq);
1619 	if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1620 	    rq->nr_phys_segments > queue_max_hw_segments(q)) {
1621 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1622 		return -EIO;
1623 	}
1624 
1625 	return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1628 
1629 /**
1630  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1631  * @q:  the queue to submit the request
1632  * @rq: the request being queued
1633  */
1634 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1635 {
1636 	unsigned long flags;
1637 
1638 	if (blk_rq_check_limits(q, rq))
1639 		return -EIO;
1640 
1641 #ifdef CONFIG_FAIL_MAKE_REQUEST
1642 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1643 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1644 		return -EIO;
1645 #endif
1646 
1647 	spin_lock_irqsave(q->queue_lock, flags);
1648 
1649 	/*
1650 	 * Submitting request must be dequeued before calling this function
1651 	 * because it will be linked to another request_queue
1652 	 */
1653 	BUG_ON(blk_queued_rq(rq));
1654 
1655 	drive_stat_acct(rq, 1);
1656 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1657 
1658 	spin_unlock_irqrestore(q->queue_lock, flags);
1659 
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1663 
1664 /**
1665  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1666  * @rq: request to examine
1667  *
1668  * Description:
1669  *     A request could be merge of IOs which require different failure
1670  *     handling.  This function determines the number of bytes which
1671  *     can be failed from the beginning of the request without
1672  *     crossing into area which need to be retried further.
1673  *
1674  * Return:
1675  *     The number of bytes to fail.
1676  *
1677  * Context:
1678  *     queue_lock must be held.
1679  */
1680 unsigned int blk_rq_err_bytes(const struct request *rq)
1681 {
1682 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1683 	unsigned int bytes = 0;
1684 	struct bio *bio;
1685 
1686 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1687 		return blk_rq_bytes(rq);
1688 
1689 	/*
1690 	 * Currently the only 'mixing' which can happen is between
1691 	 * different fastfail types.  We can safely fail portions
1692 	 * which have all the failfast bits that the first one has -
1693 	 * the ones which are at least as eager to fail as the first
1694 	 * one.
1695 	 */
1696 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1697 		if ((bio->bi_rw & ff) != ff)
1698 			break;
1699 		bytes += bio->bi_size;
1700 	}
1701 
1702 	/* this could lead to infinite loop */
1703 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1704 	return bytes;
1705 }
1706 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1707 
1708 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1709 {
1710 	if (blk_do_io_stat(req)) {
1711 		const int rw = rq_data_dir(req);
1712 		struct hd_struct *part;
1713 		int cpu;
1714 
1715 		cpu = part_stat_lock();
1716 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1717 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1718 		part_stat_unlock();
1719 	}
1720 }
1721 
1722 static void blk_account_io_done(struct request *req)
1723 {
1724 	/*
1725 	 * Account IO completion.  bar_rq isn't accounted as a normal
1726 	 * IO on queueing nor completion.  Accounting the containing
1727 	 * request is enough.
1728 	 */
1729 	if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1730 		unsigned long duration = jiffies - req->start_time;
1731 		const int rw = rq_data_dir(req);
1732 		struct hd_struct *part;
1733 		int cpu;
1734 
1735 		cpu = part_stat_lock();
1736 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1737 
1738 		part_stat_inc(cpu, part, ios[rw]);
1739 		part_stat_add(cpu, part, ticks[rw], duration);
1740 		part_round_stats(cpu, part);
1741 		part_dec_in_flight(part, rw);
1742 
1743 		part_stat_unlock();
1744 	}
1745 }
1746 
1747 /**
1748  * blk_peek_request - peek at the top of a request queue
1749  * @q: request queue to peek at
1750  *
1751  * Description:
1752  *     Return the request at the top of @q.  The returned request
1753  *     should be started using blk_start_request() before LLD starts
1754  *     processing it.
1755  *
1756  * Return:
1757  *     Pointer to the request at the top of @q if available.  Null
1758  *     otherwise.
1759  *
1760  * Context:
1761  *     queue_lock must be held.
1762  */
1763 struct request *blk_peek_request(struct request_queue *q)
1764 {
1765 	struct request *rq;
1766 	int ret;
1767 
1768 	while ((rq = __elv_next_request(q)) != NULL) {
1769 		if (!(rq->cmd_flags & REQ_STARTED)) {
1770 			/*
1771 			 * This is the first time the device driver
1772 			 * sees this request (possibly after
1773 			 * requeueing).  Notify IO scheduler.
1774 			 */
1775 			if (blk_sorted_rq(rq))
1776 				elv_activate_rq(q, rq);
1777 
1778 			/*
1779 			 * just mark as started even if we don't start
1780 			 * it, a request that has been delayed should
1781 			 * not be passed by new incoming requests
1782 			 */
1783 			rq->cmd_flags |= REQ_STARTED;
1784 			trace_block_rq_issue(q, rq);
1785 		}
1786 
1787 		if (!q->boundary_rq || q->boundary_rq == rq) {
1788 			q->end_sector = rq_end_sector(rq);
1789 			q->boundary_rq = NULL;
1790 		}
1791 
1792 		if (rq->cmd_flags & REQ_DONTPREP)
1793 			break;
1794 
1795 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1796 			/*
1797 			 * make sure space for the drain appears we
1798 			 * know we can do this because max_hw_segments
1799 			 * has been adjusted to be one fewer than the
1800 			 * device can handle
1801 			 */
1802 			rq->nr_phys_segments++;
1803 		}
1804 
1805 		if (!q->prep_rq_fn)
1806 			break;
1807 
1808 		ret = q->prep_rq_fn(q, rq);
1809 		if (ret == BLKPREP_OK) {
1810 			break;
1811 		} else if (ret == BLKPREP_DEFER) {
1812 			/*
1813 			 * the request may have been (partially) prepped.
1814 			 * we need to keep this request in the front to
1815 			 * avoid resource deadlock.  REQ_STARTED will
1816 			 * prevent other fs requests from passing this one.
1817 			 */
1818 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1819 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1820 				/*
1821 				 * remove the space for the drain we added
1822 				 * so that we don't add it again
1823 				 */
1824 				--rq->nr_phys_segments;
1825 			}
1826 
1827 			rq = NULL;
1828 			break;
1829 		} else if (ret == BLKPREP_KILL) {
1830 			rq->cmd_flags |= REQ_QUIET;
1831 			/*
1832 			 * Mark this request as started so we don't trigger
1833 			 * any debug logic in the end I/O path.
1834 			 */
1835 			blk_start_request(rq);
1836 			__blk_end_request_all(rq, -EIO);
1837 		} else {
1838 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1839 			break;
1840 		}
1841 	}
1842 
1843 	return rq;
1844 }
1845 EXPORT_SYMBOL(blk_peek_request);
1846 
1847 void blk_dequeue_request(struct request *rq)
1848 {
1849 	struct request_queue *q = rq->q;
1850 
1851 	BUG_ON(list_empty(&rq->queuelist));
1852 	BUG_ON(ELV_ON_HASH(rq));
1853 
1854 	list_del_init(&rq->queuelist);
1855 
1856 	/*
1857 	 * the time frame between a request being removed from the lists
1858 	 * and to it is freed is accounted as io that is in progress at
1859 	 * the driver side.
1860 	 */
1861 	if (blk_account_rq(rq)) {
1862 		q->in_flight[rq_is_sync(rq)]++;
1863 		/*
1864 		 * Mark this device as supporting hardware queuing, if
1865 		 * we have more IOs in flight than 4.
1866 		 */
1867 		if (!blk_queue_queuing(q) && queue_in_flight(q) > 4)
1868 			set_bit(QUEUE_FLAG_CQ, &q->queue_flags);
1869 	}
1870 }
1871 
1872 /**
1873  * blk_start_request - start request processing on the driver
1874  * @req: request to dequeue
1875  *
1876  * Description:
1877  *     Dequeue @req and start timeout timer on it.  This hands off the
1878  *     request to the driver.
1879  *
1880  *     Block internal functions which don't want to start timer should
1881  *     call blk_dequeue_request().
1882  *
1883  * Context:
1884  *     queue_lock must be held.
1885  */
1886 void blk_start_request(struct request *req)
1887 {
1888 	blk_dequeue_request(req);
1889 
1890 	/*
1891 	 * We are now handing the request to the hardware, initialize
1892 	 * resid_len to full count and add the timeout handler.
1893 	 */
1894 	req->resid_len = blk_rq_bytes(req);
1895 	if (unlikely(blk_bidi_rq(req)))
1896 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1897 
1898 	blk_add_timer(req);
1899 }
1900 EXPORT_SYMBOL(blk_start_request);
1901 
1902 /**
1903  * blk_fetch_request - fetch a request from a request queue
1904  * @q: request queue to fetch a request from
1905  *
1906  * Description:
1907  *     Return the request at the top of @q.  The request is started on
1908  *     return and LLD can start processing it immediately.
1909  *
1910  * Return:
1911  *     Pointer to the request at the top of @q if available.  Null
1912  *     otherwise.
1913  *
1914  * Context:
1915  *     queue_lock must be held.
1916  */
1917 struct request *blk_fetch_request(struct request_queue *q)
1918 {
1919 	struct request *rq;
1920 
1921 	rq = blk_peek_request(q);
1922 	if (rq)
1923 		blk_start_request(rq);
1924 	return rq;
1925 }
1926 EXPORT_SYMBOL(blk_fetch_request);
1927 
1928 /**
1929  * blk_update_request - Special helper function for request stacking drivers
1930  * @req:      the request being processed
1931  * @error:    %0 for success, < %0 for error
1932  * @nr_bytes: number of bytes to complete @req
1933  *
1934  * Description:
1935  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1936  *     the request structure even if @req doesn't have leftover.
1937  *     If @req has leftover, sets it up for the next range of segments.
1938  *
1939  *     This special helper function is only for request stacking drivers
1940  *     (e.g. request-based dm) so that they can handle partial completion.
1941  *     Actual device drivers should use blk_end_request instead.
1942  *
1943  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1944  *     %false return from this function.
1945  *
1946  * Return:
1947  *     %false - this request doesn't have any more data
1948  *     %true  - this request has more data
1949  **/
1950 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1951 {
1952 	int total_bytes, bio_nbytes, next_idx = 0;
1953 	struct bio *bio;
1954 
1955 	if (!req->bio)
1956 		return false;
1957 
1958 	trace_block_rq_complete(req->q, req);
1959 
1960 	/*
1961 	 * For fs requests, rq is just carrier of independent bio's
1962 	 * and each partial completion should be handled separately.
1963 	 * Reset per-request error on each partial completion.
1964 	 *
1965 	 * TODO: tj: This is too subtle.  It would be better to let
1966 	 * low level drivers do what they see fit.
1967 	 */
1968 	if (blk_fs_request(req))
1969 		req->errors = 0;
1970 
1971 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1972 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1973 				req->rq_disk ? req->rq_disk->disk_name : "?",
1974 				(unsigned long long)blk_rq_pos(req));
1975 	}
1976 
1977 	blk_account_io_completion(req, nr_bytes);
1978 
1979 	total_bytes = bio_nbytes = 0;
1980 	while ((bio = req->bio) != NULL) {
1981 		int nbytes;
1982 
1983 		if (nr_bytes >= bio->bi_size) {
1984 			req->bio = bio->bi_next;
1985 			nbytes = bio->bi_size;
1986 			req_bio_endio(req, bio, nbytes, error);
1987 			next_idx = 0;
1988 			bio_nbytes = 0;
1989 		} else {
1990 			int idx = bio->bi_idx + next_idx;
1991 
1992 			if (unlikely(idx >= bio->bi_vcnt)) {
1993 				blk_dump_rq_flags(req, "__end_that");
1994 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1995 				       __func__, idx, bio->bi_vcnt);
1996 				break;
1997 			}
1998 
1999 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2000 			BIO_BUG_ON(nbytes > bio->bi_size);
2001 
2002 			/*
2003 			 * not a complete bvec done
2004 			 */
2005 			if (unlikely(nbytes > nr_bytes)) {
2006 				bio_nbytes += nr_bytes;
2007 				total_bytes += nr_bytes;
2008 				break;
2009 			}
2010 
2011 			/*
2012 			 * advance to the next vector
2013 			 */
2014 			next_idx++;
2015 			bio_nbytes += nbytes;
2016 		}
2017 
2018 		total_bytes += nbytes;
2019 		nr_bytes -= nbytes;
2020 
2021 		bio = req->bio;
2022 		if (bio) {
2023 			/*
2024 			 * end more in this run, or just return 'not-done'
2025 			 */
2026 			if (unlikely(nr_bytes <= 0))
2027 				break;
2028 		}
2029 	}
2030 
2031 	/*
2032 	 * completely done
2033 	 */
2034 	if (!req->bio) {
2035 		/*
2036 		 * Reset counters so that the request stacking driver
2037 		 * can find how many bytes remain in the request
2038 		 * later.
2039 		 */
2040 		req->__data_len = 0;
2041 		return false;
2042 	}
2043 
2044 	/*
2045 	 * if the request wasn't completed, update state
2046 	 */
2047 	if (bio_nbytes) {
2048 		req_bio_endio(req, bio, bio_nbytes, error);
2049 		bio->bi_idx += next_idx;
2050 		bio_iovec(bio)->bv_offset += nr_bytes;
2051 		bio_iovec(bio)->bv_len -= nr_bytes;
2052 	}
2053 
2054 	req->__data_len -= total_bytes;
2055 	req->buffer = bio_data(req->bio);
2056 
2057 	/* update sector only for requests with clear definition of sector */
2058 	if (blk_fs_request(req) || blk_discard_rq(req))
2059 		req->__sector += total_bytes >> 9;
2060 
2061 	/* mixed attributes always follow the first bio */
2062 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2063 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2064 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2065 	}
2066 
2067 	/*
2068 	 * If total number of sectors is less than the first segment
2069 	 * size, something has gone terribly wrong.
2070 	 */
2071 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2072 		printk(KERN_ERR "blk: request botched\n");
2073 		req->__data_len = blk_rq_cur_bytes(req);
2074 	}
2075 
2076 	/* recalculate the number of segments */
2077 	blk_recalc_rq_segments(req);
2078 
2079 	return true;
2080 }
2081 EXPORT_SYMBOL_GPL(blk_update_request);
2082 
2083 static bool blk_update_bidi_request(struct request *rq, int error,
2084 				    unsigned int nr_bytes,
2085 				    unsigned int bidi_bytes)
2086 {
2087 	if (blk_update_request(rq, error, nr_bytes))
2088 		return true;
2089 
2090 	/* Bidi request must be completed as a whole */
2091 	if (unlikely(blk_bidi_rq(rq)) &&
2092 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2093 		return true;
2094 
2095 	add_disk_randomness(rq->rq_disk);
2096 
2097 	return false;
2098 }
2099 
2100 /*
2101  * queue lock must be held
2102  */
2103 static void blk_finish_request(struct request *req, int error)
2104 {
2105 	if (blk_rq_tagged(req))
2106 		blk_queue_end_tag(req->q, req);
2107 
2108 	BUG_ON(blk_queued_rq(req));
2109 
2110 	if (unlikely(laptop_mode) && blk_fs_request(req))
2111 		laptop_io_completion();
2112 
2113 	blk_delete_timer(req);
2114 
2115 	blk_account_io_done(req);
2116 
2117 	if (req->end_io)
2118 		req->end_io(req, error);
2119 	else {
2120 		if (blk_bidi_rq(req))
2121 			__blk_put_request(req->next_rq->q, req->next_rq);
2122 
2123 		__blk_put_request(req->q, req);
2124 	}
2125 }
2126 
2127 /**
2128  * blk_end_bidi_request - Complete a bidi request
2129  * @rq:         the request to complete
2130  * @error:      %0 for success, < %0 for error
2131  * @nr_bytes:   number of bytes to complete @rq
2132  * @bidi_bytes: number of bytes to complete @rq->next_rq
2133  *
2134  * Description:
2135  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2136  *     Drivers that supports bidi can safely call this member for any
2137  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2138  *     just ignored.
2139  *
2140  * Return:
2141  *     %false - we are done with this request
2142  *     %true  - still buffers pending for this request
2143  **/
2144 static bool blk_end_bidi_request(struct request *rq, int error,
2145 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2146 {
2147 	struct request_queue *q = rq->q;
2148 	unsigned long flags;
2149 
2150 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2151 		return true;
2152 
2153 	spin_lock_irqsave(q->queue_lock, flags);
2154 	blk_finish_request(rq, error);
2155 	spin_unlock_irqrestore(q->queue_lock, flags);
2156 
2157 	return false;
2158 }
2159 
2160 /**
2161  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2162  * @rq:         the request to complete
2163  * @error:      %0 for success, < %0 for error
2164  * @nr_bytes:   number of bytes to complete @rq
2165  * @bidi_bytes: number of bytes to complete @rq->next_rq
2166  *
2167  * Description:
2168  *     Identical to blk_end_bidi_request() except that queue lock is
2169  *     assumed to be locked on entry and remains so on return.
2170  *
2171  * Return:
2172  *     %false - we are done with this request
2173  *     %true  - still buffers pending for this request
2174  **/
2175 static bool __blk_end_bidi_request(struct request *rq, int error,
2176 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2177 {
2178 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2179 		return true;
2180 
2181 	blk_finish_request(rq, error);
2182 
2183 	return false;
2184 }
2185 
2186 /**
2187  * blk_end_request - Helper function for drivers to complete the request.
2188  * @rq:       the request being processed
2189  * @error:    %0 for success, < %0 for error
2190  * @nr_bytes: number of bytes to complete
2191  *
2192  * Description:
2193  *     Ends I/O on a number of bytes attached to @rq.
2194  *     If @rq has leftover, sets it up for the next range of segments.
2195  *
2196  * Return:
2197  *     %false - we are done with this request
2198  *     %true  - still buffers pending for this request
2199  **/
2200 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2201 {
2202 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2203 }
2204 EXPORT_SYMBOL(blk_end_request);
2205 
2206 /**
2207  * blk_end_request_all - Helper function for drives to finish the request.
2208  * @rq: the request to finish
2209  * @error: %0 for success, < %0 for error
2210  *
2211  * Description:
2212  *     Completely finish @rq.
2213  */
2214 void blk_end_request_all(struct request *rq, int error)
2215 {
2216 	bool pending;
2217 	unsigned int bidi_bytes = 0;
2218 
2219 	if (unlikely(blk_bidi_rq(rq)))
2220 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2221 
2222 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2223 	BUG_ON(pending);
2224 }
2225 EXPORT_SYMBOL(blk_end_request_all);
2226 
2227 /**
2228  * blk_end_request_cur - Helper function to finish the current request chunk.
2229  * @rq: the request to finish the current chunk for
2230  * @error: %0 for success, < %0 for error
2231  *
2232  * Description:
2233  *     Complete the current consecutively mapped chunk from @rq.
2234  *
2235  * Return:
2236  *     %false - we are done with this request
2237  *     %true  - still buffers pending for this request
2238  */
2239 bool blk_end_request_cur(struct request *rq, int error)
2240 {
2241 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2242 }
2243 EXPORT_SYMBOL(blk_end_request_cur);
2244 
2245 /**
2246  * blk_end_request_err - Finish a request till the next failure boundary.
2247  * @rq: the request to finish till the next failure boundary for
2248  * @error: must be negative errno
2249  *
2250  * Description:
2251  *     Complete @rq till the next failure boundary.
2252  *
2253  * Return:
2254  *     %false - we are done with this request
2255  *     %true  - still buffers pending for this request
2256  */
2257 bool blk_end_request_err(struct request *rq, int error)
2258 {
2259 	WARN_ON(error >= 0);
2260 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2261 }
2262 EXPORT_SYMBOL_GPL(blk_end_request_err);
2263 
2264 /**
2265  * __blk_end_request - Helper function for drivers to complete the request.
2266  * @rq:       the request being processed
2267  * @error:    %0 for success, < %0 for error
2268  * @nr_bytes: number of bytes to complete
2269  *
2270  * Description:
2271  *     Must be called with queue lock held unlike blk_end_request().
2272  *
2273  * Return:
2274  *     %false - we are done with this request
2275  *     %true  - still buffers pending for this request
2276  **/
2277 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2278 {
2279 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2280 }
2281 EXPORT_SYMBOL(__blk_end_request);
2282 
2283 /**
2284  * __blk_end_request_all - Helper function for drives to finish the request.
2285  * @rq: the request to finish
2286  * @error: %0 for success, < %0 for error
2287  *
2288  * Description:
2289  *     Completely finish @rq.  Must be called with queue lock held.
2290  */
2291 void __blk_end_request_all(struct request *rq, int error)
2292 {
2293 	bool pending;
2294 	unsigned int bidi_bytes = 0;
2295 
2296 	if (unlikely(blk_bidi_rq(rq)))
2297 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2298 
2299 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2300 	BUG_ON(pending);
2301 }
2302 EXPORT_SYMBOL(__blk_end_request_all);
2303 
2304 /**
2305  * __blk_end_request_cur - Helper function to finish the current request chunk.
2306  * @rq: the request to finish the current chunk for
2307  * @error: %0 for success, < %0 for error
2308  *
2309  * Description:
2310  *     Complete the current consecutively mapped chunk from @rq.  Must
2311  *     be called with queue lock held.
2312  *
2313  * Return:
2314  *     %false - we are done with this request
2315  *     %true  - still buffers pending for this request
2316  */
2317 bool __blk_end_request_cur(struct request *rq, int error)
2318 {
2319 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2320 }
2321 EXPORT_SYMBOL(__blk_end_request_cur);
2322 
2323 /**
2324  * __blk_end_request_err - Finish a request till the next failure boundary.
2325  * @rq: the request to finish till the next failure boundary for
2326  * @error: must be negative errno
2327  *
2328  * Description:
2329  *     Complete @rq till the next failure boundary.  Must be called
2330  *     with queue lock held.
2331  *
2332  * Return:
2333  *     %false - we are done with this request
2334  *     %true  - still buffers pending for this request
2335  */
2336 bool __blk_end_request_err(struct request *rq, int error)
2337 {
2338 	WARN_ON(error >= 0);
2339 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2340 }
2341 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2342 
2343 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2344 		     struct bio *bio)
2345 {
2346 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2347 	rq->cmd_flags |= bio->bi_rw & REQ_RW;
2348 
2349 	if (bio_has_data(bio)) {
2350 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2351 		rq->buffer = bio_data(bio);
2352 	}
2353 	rq->__data_len = bio->bi_size;
2354 	rq->bio = rq->biotail = bio;
2355 
2356 	if (bio->bi_bdev)
2357 		rq->rq_disk = bio->bi_bdev->bd_disk;
2358 }
2359 
2360 /**
2361  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2362  * @q : the queue of the device being checked
2363  *
2364  * Description:
2365  *    Check if underlying low-level drivers of a device are busy.
2366  *    If the drivers want to export their busy state, they must set own
2367  *    exporting function using blk_queue_lld_busy() first.
2368  *
2369  *    Basically, this function is used only by request stacking drivers
2370  *    to stop dispatching requests to underlying devices when underlying
2371  *    devices are busy.  This behavior helps more I/O merging on the queue
2372  *    of the request stacking driver and prevents I/O throughput regression
2373  *    on burst I/O load.
2374  *
2375  * Return:
2376  *    0 - Not busy (The request stacking driver should dispatch request)
2377  *    1 - Busy (The request stacking driver should stop dispatching request)
2378  */
2379 int blk_lld_busy(struct request_queue *q)
2380 {
2381 	if (q->lld_busy_fn)
2382 		return q->lld_busy_fn(q);
2383 
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(blk_lld_busy);
2387 
2388 /**
2389  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2390  * @rq: the clone request to be cleaned up
2391  *
2392  * Description:
2393  *     Free all bios in @rq for a cloned request.
2394  */
2395 void blk_rq_unprep_clone(struct request *rq)
2396 {
2397 	struct bio *bio;
2398 
2399 	while ((bio = rq->bio) != NULL) {
2400 		rq->bio = bio->bi_next;
2401 
2402 		bio_put(bio);
2403 	}
2404 }
2405 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2406 
2407 /*
2408  * Copy attributes of the original request to the clone request.
2409  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2410  */
2411 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2412 {
2413 	dst->cpu = src->cpu;
2414 	dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2415 	dst->cmd_type = src->cmd_type;
2416 	dst->__sector = blk_rq_pos(src);
2417 	dst->__data_len = blk_rq_bytes(src);
2418 	dst->nr_phys_segments = src->nr_phys_segments;
2419 	dst->ioprio = src->ioprio;
2420 	dst->extra_len = src->extra_len;
2421 }
2422 
2423 /**
2424  * blk_rq_prep_clone - Helper function to setup clone request
2425  * @rq: the request to be setup
2426  * @rq_src: original request to be cloned
2427  * @bs: bio_set that bios for clone are allocated from
2428  * @gfp_mask: memory allocation mask for bio
2429  * @bio_ctr: setup function to be called for each clone bio.
2430  *           Returns %0 for success, non %0 for failure.
2431  * @data: private data to be passed to @bio_ctr
2432  *
2433  * Description:
2434  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2435  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2436  *     are not copied, and copying such parts is the caller's responsibility.
2437  *     Also, pages which the original bios are pointing to are not copied
2438  *     and the cloned bios just point same pages.
2439  *     So cloned bios must be completed before original bios, which means
2440  *     the caller must complete @rq before @rq_src.
2441  */
2442 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2443 		      struct bio_set *bs, gfp_t gfp_mask,
2444 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2445 		      void *data)
2446 {
2447 	struct bio *bio, *bio_src;
2448 
2449 	if (!bs)
2450 		bs = fs_bio_set;
2451 
2452 	blk_rq_init(NULL, rq);
2453 
2454 	__rq_for_each_bio(bio_src, rq_src) {
2455 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2456 		if (!bio)
2457 			goto free_and_out;
2458 
2459 		__bio_clone(bio, bio_src);
2460 
2461 		if (bio_integrity(bio_src) &&
2462 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2463 			goto free_and_out;
2464 
2465 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2466 			goto free_and_out;
2467 
2468 		if (rq->bio) {
2469 			rq->biotail->bi_next = bio;
2470 			rq->biotail = bio;
2471 		} else
2472 			rq->bio = rq->biotail = bio;
2473 	}
2474 
2475 	__blk_rq_prep_clone(rq, rq_src);
2476 
2477 	return 0;
2478 
2479 free_and_out:
2480 	if (bio)
2481 		bio_free(bio, bs);
2482 	blk_rq_unprep_clone(rq);
2483 
2484 	return -ENOMEM;
2485 }
2486 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2487 
2488 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2489 {
2490 	return queue_work(kblockd_workqueue, work);
2491 }
2492 EXPORT_SYMBOL(kblockd_schedule_work);
2493 
2494 int __init blk_dev_init(void)
2495 {
2496 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2497 			sizeof(((struct request *)0)->cmd_flags));
2498 
2499 	kblockd_workqueue = create_workqueue("kblockd");
2500 	if (!kblockd_workqueue)
2501 		panic("Failed to create kblockd\n");
2502 
2503 	request_cachep = kmem_cache_create("blkdev_requests",
2504 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2505 
2506 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2507 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2508 
2509 	return 0;
2510 }
2511 
2512