xref: /openbmc/linux/block/blk-core.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53 
54 #ifdef CONFIG_DEBUG_FS
55 struct dentry *blk_debugfs_root;
56 #endif
57 
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 	memset(rq, 0, sizeof(*rq));
115 
116 	INIT_LIST_HEAD(&rq->queuelist);
117 	rq->q = q;
118 	rq->__sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->tag = -1;
122 	rq->internal_tag = -1;
123 	rq->start_time_ns = ktime_get_ns();
124 	rq->part = NULL;
125 	refcount_set(&rq->ref, 1);
126 	blk_crypto_rq_set_defaults(rq);
127 }
128 EXPORT_SYMBOL(blk_rq_init);
129 
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 	REQ_OP_NAME(READ),
133 	REQ_OP_NAME(WRITE),
134 	REQ_OP_NAME(FLUSH),
135 	REQ_OP_NAME(DISCARD),
136 	REQ_OP_NAME(SECURE_ERASE),
137 	REQ_OP_NAME(ZONE_RESET),
138 	REQ_OP_NAME(ZONE_RESET_ALL),
139 	REQ_OP_NAME(ZONE_OPEN),
140 	REQ_OP_NAME(ZONE_CLOSE),
141 	REQ_OP_NAME(ZONE_FINISH),
142 	REQ_OP_NAME(ZONE_APPEND),
143 	REQ_OP_NAME(WRITE_SAME),
144 	REQ_OP_NAME(WRITE_ZEROES),
145 	REQ_OP_NAME(SCSI_IN),
146 	REQ_OP_NAME(SCSI_OUT),
147 	REQ_OP_NAME(DRV_IN),
148 	REQ_OP_NAME(DRV_OUT),
149 };
150 #undef REQ_OP_NAME
151 
152 /**
153  * blk_op_str - Return string XXX in the REQ_OP_XXX.
154  * @op: REQ_OP_XXX.
155  *
156  * Description: Centralize block layer function to convert REQ_OP_XXX into
157  * string format. Useful in the debugging and tracing bio or request. For
158  * invalid REQ_OP_XXX it returns string "UNKNOWN".
159  */
160 inline const char *blk_op_str(unsigned int op)
161 {
162 	const char *op_str = "UNKNOWN";
163 
164 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 		op_str = blk_op_name[op];
166 
167 	return op_str;
168 }
169 EXPORT_SYMBOL_GPL(blk_op_str);
170 
171 static const struct {
172 	int		errno;
173 	const char	*name;
174 } blk_errors[] = {
175 	[BLK_STS_OK]		= { 0,		"" },
176 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
177 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
178 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
179 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
180 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
181 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
182 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
183 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
184 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
185 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
186 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
187 
188 	/* device mapper special case, should not leak out: */
189 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
190 
191 	/* everything else not covered above: */
192 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
193 };
194 
195 blk_status_t errno_to_blk_status(int errno)
196 {
197 	int i;
198 
199 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
200 		if (blk_errors[i].errno == errno)
201 			return (__force blk_status_t)i;
202 	}
203 
204 	return BLK_STS_IOERR;
205 }
206 EXPORT_SYMBOL_GPL(errno_to_blk_status);
207 
208 int blk_status_to_errno(blk_status_t status)
209 {
210 	int idx = (__force int)status;
211 
212 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
213 		return -EIO;
214 	return blk_errors[idx].errno;
215 }
216 EXPORT_SYMBOL_GPL(blk_status_to_errno);
217 
218 static void print_req_error(struct request *req, blk_status_t status,
219 		const char *caller)
220 {
221 	int idx = (__force int)status;
222 
223 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 		return;
225 
226 	printk_ratelimited(KERN_ERR
227 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 		"phys_seg %u prio class %u\n",
229 		caller, blk_errors[idx].name,
230 		req->rq_disk ? req->rq_disk->disk_name : "?",
231 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 		req->cmd_flags & ~REQ_OP_MASK,
233 		req->nr_phys_segments,
234 		IOPRIO_PRIO_CLASS(req->ioprio));
235 }
236 
237 static void req_bio_endio(struct request *rq, struct bio *bio,
238 			  unsigned int nbytes, blk_status_t error)
239 {
240 	if (error)
241 		bio->bi_status = error;
242 
243 	if (unlikely(rq->rq_flags & RQF_QUIET))
244 		bio_set_flag(bio, BIO_QUIET);
245 
246 	bio_advance(bio, nbytes);
247 
248 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
249 		/*
250 		 * Partial zone append completions cannot be supported as the
251 		 * BIO fragments may end up not being written sequentially.
252 		 */
253 		if (bio->bi_iter.bi_size)
254 			bio->bi_status = BLK_STS_IOERR;
255 		else
256 			bio->bi_iter.bi_sector = rq->__sector;
257 	}
258 
259 	/* don't actually finish bio if it's part of flush sequence */
260 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
261 		bio_endio(bio);
262 }
263 
264 void blk_dump_rq_flags(struct request *rq, char *msg)
265 {
266 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
267 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
268 		(unsigned long long) rq->cmd_flags);
269 
270 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
271 	       (unsigned long long)blk_rq_pos(rq),
272 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
273 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
274 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
275 }
276 EXPORT_SYMBOL(blk_dump_rq_flags);
277 
278 /**
279  * blk_sync_queue - cancel any pending callbacks on a queue
280  * @q: the queue
281  *
282  * Description:
283  *     The block layer may perform asynchronous callback activity
284  *     on a queue, such as calling the unplug function after a timeout.
285  *     A block device may call blk_sync_queue to ensure that any
286  *     such activity is cancelled, thus allowing it to release resources
287  *     that the callbacks might use. The caller must already have made sure
288  *     that its ->make_request_fn will not re-add plugging prior to calling
289  *     this function.
290  *
291  *     This function does not cancel any asynchronous activity arising
292  *     out of elevator or throttling code. That would require elevator_exit()
293  *     and blkcg_exit_queue() to be called with queue lock initialized.
294  *
295  */
296 void blk_sync_queue(struct request_queue *q)
297 {
298 	del_timer_sync(&q->timeout);
299 	cancel_work_sync(&q->timeout_work);
300 }
301 EXPORT_SYMBOL(blk_sync_queue);
302 
303 /**
304  * blk_set_pm_only - increment pm_only counter
305  * @q: request queue pointer
306  */
307 void blk_set_pm_only(struct request_queue *q)
308 {
309 	atomic_inc(&q->pm_only);
310 }
311 EXPORT_SYMBOL_GPL(blk_set_pm_only);
312 
313 void blk_clear_pm_only(struct request_queue *q)
314 {
315 	int pm_only;
316 
317 	pm_only = atomic_dec_return(&q->pm_only);
318 	WARN_ON_ONCE(pm_only < 0);
319 	if (pm_only == 0)
320 		wake_up_all(&q->mq_freeze_wq);
321 }
322 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
323 
324 void blk_put_queue(struct request_queue *q)
325 {
326 	kobject_put(&q->kobj);
327 }
328 EXPORT_SYMBOL(blk_put_queue);
329 
330 void blk_set_queue_dying(struct request_queue *q)
331 {
332 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
333 
334 	/*
335 	 * When queue DYING flag is set, we need to block new req
336 	 * entering queue, so we call blk_freeze_queue_start() to
337 	 * prevent I/O from crossing blk_queue_enter().
338 	 */
339 	blk_freeze_queue_start(q);
340 
341 	if (queue_is_mq(q))
342 		blk_mq_wake_waiters(q);
343 
344 	/* Make blk_queue_enter() reexamine the DYING flag. */
345 	wake_up_all(&q->mq_freeze_wq);
346 }
347 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
348 
349 /**
350  * blk_cleanup_queue - shutdown a request queue
351  * @q: request queue to shutdown
352  *
353  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
354  * put it.  All future requests will be failed immediately with -ENODEV.
355  */
356 void blk_cleanup_queue(struct request_queue *q)
357 {
358 	WARN_ON_ONCE(blk_queue_registered(q));
359 
360 	/* mark @q DYING, no new request or merges will be allowed afterwards */
361 	blk_set_queue_dying(q);
362 
363 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
364 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
365 
366 	/*
367 	 * Drain all requests queued before DYING marking. Set DEAD flag to
368 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
369 	 * after draining finished.
370 	 */
371 	blk_freeze_queue(q);
372 
373 	rq_qos_exit(q);
374 
375 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
376 
377 	/* for synchronous bio-based driver finish in-flight integrity i/o */
378 	blk_flush_integrity();
379 
380 	/* @q won't process any more request, flush async actions */
381 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
382 	blk_sync_queue(q);
383 
384 	if (queue_is_mq(q))
385 		blk_mq_exit_queue(q);
386 
387 	/*
388 	 * In theory, request pool of sched_tags belongs to request queue.
389 	 * However, the current implementation requires tag_set for freeing
390 	 * requests, so free the pool now.
391 	 *
392 	 * Queue has become frozen, there can't be any in-queue requests, so
393 	 * it is safe to free requests now.
394 	 */
395 	mutex_lock(&q->sysfs_lock);
396 	if (q->elevator)
397 		blk_mq_sched_free_requests(q);
398 	mutex_unlock(&q->sysfs_lock);
399 
400 	percpu_ref_exit(&q->q_usage_counter);
401 
402 	/* @q is and will stay empty, shutdown and put */
403 	blk_put_queue(q);
404 }
405 EXPORT_SYMBOL(blk_cleanup_queue);
406 
407 /**
408  * blk_queue_enter() - try to increase q->q_usage_counter
409  * @q: request queue pointer
410  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
411  */
412 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
413 {
414 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
415 
416 	while (true) {
417 		bool success = false;
418 
419 		rcu_read_lock();
420 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
421 			/*
422 			 * The code that increments the pm_only counter is
423 			 * responsible for ensuring that that counter is
424 			 * globally visible before the queue is unfrozen.
425 			 */
426 			if (pm || !blk_queue_pm_only(q)) {
427 				success = true;
428 			} else {
429 				percpu_ref_put(&q->q_usage_counter);
430 			}
431 		}
432 		rcu_read_unlock();
433 
434 		if (success)
435 			return 0;
436 
437 		if (flags & BLK_MQ_REQ_NOWAIT)
438 			return -EBUSY;
439 
440 		/*
441 		 * read pair of barrier in blk_freeze_queue_start(),
442 		 * we need to order reading __PERCPU_REF_DEAD flag of
443 		 * .q_usage_counter and reading .mq_freeze_depth or
444 		 * queue dying flag, otherwise the following wait may
445 		 * never return if the two reads are reordered.
446 		 */
447 		smp_rmb();
448 
449 		wait_event(q->mq_freeze_wq,
450 			   (!q->mq_freeze_depth &&
451 			    (pm || (blk_pm_request_resume(q),
452 				    !blk_queue_pm_only(q)))) ||
453 			   blk_queue_dying(q));
454 		if (blk_queue_dying(q))
455 			return -ENODEV;
456 	}
457 }
458 
459 static inline int bio_queue_enter(struct bio *bio)
460 {
461 	struct request_queue *q = bio->bi_disk->queue;
462 	bool nowait = bio->bi_opf & REQ_NOWAIT;
463 	int ret;
464 
465 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
466 	if (unlikely(ret)) {
467 		if (nowait && !blk_queue_dying(q))
468 			bio_wouldblock_error(bio);
469 		else
470 			bio_io_error(bio);
471 	}
472 
473 	return ret;
474 }
475 
476 void blk_queue_exit(struct request_queue *q)
477 {
478 	percpu_ref_put(&q->q_usage_counter);
479 }
480 
481 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
482 {
483 	struct request_queue *q =
484 		container_of(ref, struct request_queue, q_usage_counter);
485 
486 	wake_up_all(&q->mq_freeze_wq);
487 }
488 
489 static void blk_rq_timed_out_timer(struct timer_list *t)
490 {
491 	struct request_queue *q = from_timer(q, t, timeout);
492 
493 	kblockd_schedule_work(&q->timeout_work);
494 }
495 
496 static void blk_timeout_work(struct work_struct *work)
497 {
498 }
499 
500 struct request_queue *__blk_alloc_queue(int node_id)
501 {
502 	struct request_queue *q;
503 	int ret;
504 
505 	q = kmem_cache_alloc_node(blk_requestq_cachep,
506 				GFP_KERNEL | __GFP_ZERO, node_id);
507 	if (!q)
508 		return NULL;
509 
510 	q->last_merge = NULL;
511 
512 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
513 	if (q->id < 0)
514 		goto fail_q;
515 
516 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
517 	if (ret)
518 		goto fail_id;
519 
520 	q->backing_dev_info = bdi_alloc(node_id);
521 	if (!q->backing_dev_info)
522 		goto fail_split;
523 
524 	q->stats = blk_alloc_queue_stats();
525 	if (!q->stats)
526 		goto fail_stats;
527 
528 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
529 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
530 	q->node = node_id;
531 
532 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
533 		    laptop_mode_timer_fn, 0);
534 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
535 	INIT_WORK(&q->timeout_work, blk_timeout_work);
536 	INIT_LIST_HEAD(&q->icq_list);
537 #ifdef CONFIG_BLK_CGROUP
538 	INIT_LIST_HEAD(&q->blkg_list);
539 #endif
540 
541 	kobject_init(&q->kobj, &blk_queue_ktype);
542 
543 #ifdef CONFIG_BLK_DEV_IO_TRACE
544 	mutex_init(&q->blk_trace_mutex);
545 #endif
546 	mutex_init(&q->sysfs_lock);
547 	mutex_init(&q->sysfs_dir_lock);
548 	spin_lock_init(&q->queue_lock);
549 
550 	init_waitqueue_head(&q->mq_freeze_wq);
551 	mutex_init(&q->mq_freeze_lock);
552 
553 	/*
554 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
555 	 * See blk_register_queue() for details.
556 	 */
557 	if (percpu_ref_init(&q->q_usage_counter,
558 				blk_queue_usage_counter_release,
559 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
560 		goto fail_bdi;
561 
562 	if (blkcg_init_queue(q))
563 		goto fail_ref;
564 
565 	blk_queue_dma_alignment(q, 511);
566 	blk_set_default_limits(&q->limits);
567 
568 	return q;
569 
570 fail_ref:
571 	percpu_ref_exit(&q->q_usage_counter);
572 fail_bdi:
573 	blk_free_queue_stats(q->stats);
574 fail_stats:
575 	bdi_put(q->backing_dev_info);
576 fail_split:
577 	bioset_exit(&q->bio_split);
578 fail_id:
579 	ida_simple_remove(&blk_queue_ida, q->id);
580 fail_q:
581 	kmem_cache_free(blk_requestq_cachep, q);
582 	return NULL;
583 }
584 
585 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id)
586 {
587 	struct request_queue *q;
588 
589 	if (WARN_ON_ONCE(!make_request))
590 		return NULL;
591 
592 	q = __blk_alloc_queue(node_id);
593 	if (!q)
594 		return NULL;
595 	q->make_request_fn = make_request;
596 	q->nr_requests = BLKDEV_MAX_RQ;
597 	return q;
598 }
599 EXPORT_SYMBOL(blk_alloc_queue);
600 
601 bool blk_get_queue(struct request_queue *q)
602 {
603 	if (likely(!blk_queue_dying(q))) {
604 		__blk_get_queue(q);
605 		return true;
606 	}
607 
608 	return false;
609 }
610 EXPORT_SYMBOL(blk_get_queue);
611 
612 /**
613  * blk_get_request - allocate a request
614  * @q: request queue to allocate a request for
615  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
616  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
617  */
618 struct request *blk_get_request(struct request_queue *q, unsigned int op,
619 				blk_mq_req_flags_t flags)
620 {
621 	struct request *req;
622 
623 	WARN_ON_ONCE(op & REQ_NOWAIT);
624 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
625 
626 	req = blk_mq_alloc_request(q, op, flags);
627 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
628 		q->mq_ops->initialize_rq_fn(req);
629 
630 	return req;
631 }
632 EXPORT_SYMBOL(blk_get_request);
633 
634 void blk_put_request(struct request *req)
635 {
636 	blk_mq_free_request(req);
637 }
638 EXPORT_SYMBOL(blk_put_request);
639 
640 static void blk_account_io_merge_bio(struct request *req)
641 {
642 	if (!blk_do_io_stat(req))
643 		return;
644 
645 	part_stat_lock();
646 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
647 	part_stat_unlock();
648 }
649 
650 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
651 		unsigned int nr_segs)
652 {
653 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
654 
655 	if (!ll_back_merge_fn(req, bio, nr_segs))
656 		return false;
657 
658 	trace_block_bio_backmerge(req->q, req, bio);
659 	rq_qos_merge(req->q, req, bio);
660 
661 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
662 		blk_rq_set_mixed_merge(req);
663 
664 	req->biotail->bi_next = bio;
665 	req->biotail = bio;
666 	req->__data_len += bio->bi_iter.bi_size;
667 
668 	bio_crypt_free_ctx(bio);
669 
670 	blk_account_io_merge_bio(req);
671 	return true;
672 }
673 
674 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
675 		unsigned int nr_segs)
676 {
677 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
678 
679 	if (!ll_front_merge_fn(req, bio, nr_segs))
680 		return false;
681 
682 	trace_block_bio_frontmerge(req->q, req, bio);
683 	rq_qos_merge(req->q, req, bio);
684 
685 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
686 		blk_rq_set_mixed_merge(req);
687 
688 	bio->bi_next = req->bio;
689 	req->bio = bio;
690 
691 	req->__sector = bio->bi_iter.bi_sector;
692 	req->__data_len += bio->bi_iter.bi_size;
693 
694 	bio_crypt_do_front_merge(req, bio);
695 
696 	blk_account_io_merge_bio(req);
697 	return true;
698 }
699 
700 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
701 		struct bio *bio)
702 {
703 	unsigned short segments = blk_rq_nr_discard_segments(req);
704 
705 	if (segments >= queue_max_discard_segments(q))
706 		goto no_merge;
707 	if (blk_rq_sectors(req) + bio_sectors(bio) >
708 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
709 		goto no_merge;
710 
711 	rq_qos_merge(q, req, bio);
712 
713 	req->biotail->bi_next = bio;
714 	req->biotail = bio;
715 	req->__data_len += bio->bi_iter.bi_size;
716 	req->nr_phys_segments = segments + 1;
717 
718 	blk_account_io_merge_bio(req);
719 	return true;
720 no_merge:
721 	req_set_nomerge(q, req);
722 	return false;
723 }
724 
725 /**
726  * blk_attempt_plug_merge - try to merge with %current's plugged list
727  * @q: request_queue new bio is being queued at
728  * @bio: new bio being queued
729  * @nr_segs: number of segments in @bio
730  * @same_queue_rq: pointer to &struct request that gets filled in when
731  * another request associated with @q is found on the plug list
732  * (optional, may be %NULL)
733  *
734  * Determine whether @bio being queued on @q can be merged with a request
735  * on %current's plugged list.  Returns %true if merge was successful,
736  * otherwise %false.
737  *
738  * Plugging coalesces IOs from the same issuer for the same purpose without
739  * going through @q->queue_lock.  As such it's more of an issuing mechanism
740  * than scheduling, and the request, while may have elvpriv data, is not
741  * added on the elevator at this point.  In addition, we don't have
742  * reliable access to the elevator outside queue lock.  Only check basic
743  * merging parameters without querying the elevator.
744  *
745  * Caller must ensure !blk_queue_nomerges(q) beforehand.
746  */
747 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
748 		unsigned int nr_segs, struct request **same_queue_rq)
749 {
750 	struct blk_plug *plug;
751 	struct request *rq;
752 	struct list_head *plug_list;
753 
754 	plug = blk_mq_plug(q, bio);
755 	if (!plug)
756 		return false;
757 
758 	plug_list = &plug->mq_list;
759 
760 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
761 		bool merged = false;
762 
763 		if (rq->q == q && same_queue_rq) {
764 			/*
765 			 * Only blk-mq multiple hardware queues case checks the
766 			 * rq in the same queue, there should be only one such
767 			 * rq in a queue
768 			 **/
769 			*same_queue_rq = rq;
770 		}
771 
772 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
773 			continue;
774 
775 		switch (blk_try_merge(rq, bio)) {
776 		case ELEVATOR_BACK_MERGE:
777 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
778 			break;
779 		case ELEVATOR_FRONT_MERGE:
780 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
781 			break;
782 		case ELEVATOR_DISCARD_MERGE:
783 			merged = bio_attempt_discard_merge(q, rq, bio);
784 			break;
785 		default:
786 			break;
787 		}
788 
789 		if (merged)
790 			return true;
791 	}
792 
793 	return false;
794 }
795 
796 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
797 {
798 	char b[BDEVNAME_SIZE];
799 
800 	printk(KERN_INFO "attempt to access beyond end of device\n");
801 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
802 			bio_devname(bio, b), bio->bi_opf,
803 			(unsigned long long)bio_end_sector(bio),
804 			(long long)maxsector);
805 }
806 
807 #ifdef CONFIG_FAIL_MAKE_REQUEST
808 
809 static DECLARE_FAULT_ATTR(fail_make_request);
810 
811 static int __init setup_fail_make_request(char *str)
812 {
813 	return setup_fault_attr(&fail_make_request, str);
814 }
815 __setup("fail_make_request=", setup_fail_make_request);
816 
817 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
818 {
819 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
820 }
821 
822 static int __init fail_make_request_debugfs(void)
823 {
824 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
825 						NULL, &fail_make_request);
826 
827 	return PTR_ERR_OR_ZERO(dir);
828 }
829 
830 late_initcall(fail_make_request_debugfs);
831 
832 #else /* CONFIG_FAIL_MAKE_REQUEST */
833 
834 static inline bool should_fail_request(struct hd_struct *part,
835 					unsigned int bytes)
836 {
837 	return false;
838 }
839 
840 #endif /* CONFIG_FAIL_MAKE_REQUEST */
841 
842 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
843 {
844 	const int op = bio_op(bio);
845 
846 	if (part->policy && op_is_write(op)) {
847 		char b[BDEVNAME_SIZE];
848 
849 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
850 			return false;
851 
852 		WARN_ONCE(1,
853 		       "generic_make_request: Trying to write "
854 			"to read-only block-device %s (partno %d)\n",
855 			bio_devname(bio, b), part->partno);
856 		/* Older lvm-tools actually trigger this */
857 		return false;
858 	}
859 
860 	return false;
861 }
862 
863 static noinline int should_fail_bio(struct bio *bio)
864 {
865 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
866 		return -EIO;
867 	return 0;
868 }
869 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
870 
871 /*
872  * Check whether this bio extends beyond the end of the device or partition.
873  * This may well happen - the kernel calls bread() without checking the size of
874  * the device, e.g., when mounting a file system.
875  */
876 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
877 {
878 	unsigned int nr_sectors = bio_sectors(bio);
879 
880 	if (nr_sectors && maxsector &&
881 	    (nr_sectors > maxsector ||
882 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
883 		handle_bad_sector(bio, maxsector);
884 		return -EIO;
885 	}
886 	return 0;
887 }
888 
889 /*
890  * Remap block n of partition p to block n+start(p) of the disk.
891  */
892 static inline int blk_partition_remap(struct bio *bio)
893 {
894 	struct hd_struct *p;
895 	int ret = -EIO;
896 
897 	rcu_read_lock();
898 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
899 	if (unlikely(!p))
900 		goto out;
901 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
902 		goto out;
903 	if (unlikely(bio_check_ro(bio, p)))
904 		goto out;
905 
906 	if (bio_sectors(bio)) {
907 		if (bio_check_eod(bio, part_nr_sects_read(p)))
908 			goto out;
909 		bio->bi_iter.bi_sector += p->start_sect;
910 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
911 				      bio->bi_iter.bi_sector - p->start_sect);
912 	}
913 	bio->bi_partno = 0;
914 	ret = 0;
915 out:
916 	rcu_read_unlock();
917 	return ret;
918 }
919 
920 /*
921  * Check write append to a zoned block device.
922  */
923 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
924 						 struct bio *bio)
925 {
926 	sector_t pos = bio->bi_iter.bi_sector;
927 	int nr_sectors = bio_sectors(bio);
928 
929 	/* Only applicable to zoned block devices */
930 	if (!blk_queue_is_zoned(q))
931 		return BLK_STS_NOTSUPP;
932 
933 	/* The bio sector must point to the start of a sequential zone */
934 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
935 	    !blk_queue_zone_is_seq(q, pos))
936 		return BLK_STS_IOERR;
937 
938 	/*
939 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
940 	 * split and could result in non-contiguous sectors being written in
941 	 * different zones.
942 	 */
943 	if (nr_sectors > q->limits.chunk_sectors)
944 		return BLK_STS_IOERR;
945 
946 	/* Make sure the BIO is small enough and will not get split */
947 	if (nr_sectors > q->limits.max_zone_append_sectors)
948 		return BLK_STS_IOERR;
949 
950 	bio->bi_opf |= REQ_NOMERGE;
951 
952 	return BLK_STS_OK;
953 }
954 
955 static noinline_for_stack bool
956 generic_make_request_checks(struct bio *bio)
957 {
958 	struct request_queue *q;
959 	int nr_sectors = bio_sectors(bio);
960 	blk_status_t status = BLK_STS_IOERR;
961 	char b[BDEVNAME_SIZE];
962 
963 	might_sleep();
964 
965 	q = bio->bi_disk->queue;
966 	if (unlikely(!q)) {
967 		printk(KERN_ERR
968 		       "generic_make_request: Trying to access "
969 			"nonexistent block-device %s (%Lu)\n",
970 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
971 		goto end_io;
972 	}
973 
974 	/*
975 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
976 	 * if queue is not a request based queue.
977 	 */
978 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
979 		goto not_supported;
980 
981 	if (should_fail_bio(bio))
982 		goto end_io;
983 
984 	if (bio->bi_partno) {
985 		if (unlikely(blk_partition_remap(bio)))
986 			goto end_io;
987 	} else {
988 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
989 			goto end_io;
990 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
991 			goto end_io;
992 	}
993 
994 	/*
995 	 * Filter flush bio's early so that make_request based
996 	 * drivers without flush support don't have to worry
997 	 * about them.
998 	 */
999 	if (op_is_flush(bio->bi_opf) &&
1000 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1001 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1002 		if (!nr_sectors) {
1003 			status = BLK_STS_OK;
1004 			goto end_io;
1005 		}
1006 	}
1007 
1008 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1009 		bio->bi_opf &= ~REQ_HIPRI;
1010 
1011 	switch (bio_op(bio)) {
1012 	case REQ_OP_DISCARD:
1013 		if (!blk_queue_discard(q))
1014 			goto not_supported;
1015 		break;
1016 	case REQ_OP_SECURE_ERASE:
1017 		if (!blk_queue_secure_erase(q))
1018 			goto not_supported;
1019 		break;
1020 	case REQ_OP_WRITE_SAME:
1021 		if (!q->limits.max_write_same_sectors)
1022 			goto not_supported;
1023 		break;
1024 	case REQ_OP_ZONE_APPEND:
1025 		status = blk_check_zone_append(q, bio);
1026 		if (status != BLK_STS_OK)
1027 			goto end_io;
1028 		break;
1029 	case REQ_OP_ZONE_RESET:
1030 	case REQ_OP_ZONE_OPEN:
1031 	case REQ_OP_ZONE_CLOSE:
1032 	case REQ_OP_ZONE_FINISH:
1033 		if (!blk_queue_is_zoned(q))
1034 			goto not_supported;
1035 		break;
1036 	case REQ_OP_ZONE_RESET_ALL:
1037 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
1038 			goto not_supported;
1039 		break;
1040 	case REQ_OP_WRITE_ZEROES:
1041 		if (!q->limits.max_write_zeroes_sectors)
1042 			goto not_supported;
1043 		break;
1044 	default:
1045 		break;
1046 	}
1047 
1048 	/*
1049 	 * Various block parts want %current->io_context, so allocate it up
1050 	 * front rather than dealing with lots of pain to allocate it only
1051 	 * where needed. This may fail and the block layer knows how to live
1052 	 * with it.
1053 	 */
1054 	if (unlikely(!current->io_context))
1055 		create_task_io_context(current, GFP_ATOMIC, q->node);
1056 
1057 	if (!blkcg_bio_issue_check(q, bio))
1058 		return false;
1059 
1060 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1061 		trace_block_bio_queue(q, bio);
1062 		/* Now that enqueuing has been traced, we need to trace
1063 		 * completion as well.
1064 		 */
1065 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1066 	}
1067 	return true;
1068 
1069 not_supported:
1070 	status = BLK_STS_NOTSUPP;
1071 end_io:
1072 	bio->bi_status = status;
1073 	bio_endio(bio);
1074 	return false;
1075 }
1076 
1077 static blk_qc_t do_make_request(struct bio *bio)
1078 {
1079 	struct request_queue *q = bio->bi_disk->queue;
1080 	blk_qc_t ret = BLK_QC_T_NONE;
1081 
1082 	if (blk_crypto_bio_prep(&bio)) {
1083 		if (!q->make_request_fn)
1084 			return blk_mq_make_request(q, bio);
1085 		ret = q->make_request_fn(q, bio);
1086 	}
1087 	blk_queue_exit(q);
1088 	return ret;
1089 }
1090 
1091 /**
1092  * generic_make_request - re-submit a bio to the block device layer for I/O
1093  * @bio:  The bio describing the location in memory and on the device.
1094  *
1095  * This is a version of submit_bio() that shall only be used for I/O that is
1096  * resubmitted to lower level drivers by stacking block drivers.  All file
1097  * systems and other upper level users of the block layer should use
1098  * submit_bio() instead.
1099  */
1100 blk_qc_t generic_make_request(struct bio *bio)
1101 {
1102 	/*
1103 	 * bio_list_on_stack[0] contains bios submitted by the current
1104 	 * make_request_fn.
1105 	 * bio_list_on_stack[1] contains bios that were submitted before
1106 	 * the current make_request_fn, but that haven't been processed
1107 	 * yet.
1108 	 */
1109 	struct bio_list bio_list_on_stack[2];
1110 	blk_qc_t ret = BLK_QC_T_NONE;
1111 
1112 	if (!generic_make_request_checks(bio))
1113 		goto out;
1114 
1115 	/*
1116 	 * We only want one ->make_request_fn to be active at a time, else
1117 	 * stack usage with stacked devices could be a problem.  So use
1118 	 * current->bio_list to keep a list of requests submited by a
1119 	 * make_request_fn function.  current->bio_list is also used as a
1120 	 * flag to say if generic_make_request is currently active in this
1121 	 * task or not.  If it is NULL, then no make_request is active.  If
1122 	 * it is non-NULL, then a make_request is active, and new requests
1123 	 * should be added at the tail
1124 	 */
1125 	if (current->bio_list) {
1126 		bio_list_add(&current->bio_list[0], bio);
1127 		goto out;
1128 	}
1129 
1130 	/* following loop may be a bit non-obvious, and so deserves some
1131 	 * explanation.
1132 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1133 	 * ensure that) so we have a list with a single bio.
1134 	 * We pretend that we have just taken it off a longer list, so
1135 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1136 	 * thus initialising the bio_list of new bios to be
1137 	 * added.  ->make_request() may indeed add some more bios
1138 	 * through a recursive call to generic_make_request.  If it
1139 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1140 	 * from the top.  In this case we really did just take the bio
1141 	 * of the top of the list (no pretending) and so remove it from
1142 	 * bio_list, and call into ->make_request() again.
1143 	 */
1144 	BUG_ON(bio->bi_next);
1145 	bio_list_init(&bio_list_on_stack[0]);
1146 	current->bio_list = bio_list_on_stack;
1147 	do {
1148 		struct request_queue *q = bio->bi_disk->queue;
1149 
1150 		if (likely(bio_queue_enter(bio) == 0)) {
1151 			struct bio_list lower, same;
1152 
1153 			/* Create a fresh bio_list for all subordinate requests */
1154 			bio_list_on_stack[1] = bio_list_on_stack[0];
1155 			bio_list_init(&bio_list_on_stack[0]);
1156 			ret = do_make_request(bio);
1157 
1158 			/* sort new bios into those for a lower level
1159 			 * and those for the same level
1160 			 */
1161 			bio_list_init(&lower);
1162 			bio_list_init(&same);
1163 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1164 				if (q == bio->bi_disk->queue)
1165 					bio_list_add(&same, bio);
1166 				else
1167 					bio_list_add(&lower, bio);
1168 			/* now assemble so we handle the lowest level first */
1169 			bio_list_merge(&bio_list_on_stack[0], &lower);
1170 			bio_list_merge(&bio_list_on_stack[0], &same);
1171 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1172 		}
1173 		bio = bio_list_pop(&bio_list_on_stack[0]);
1174 	} while (bio);
1175 	current->bio_list = NULL; /* deactivate */
1176 
1177 out:
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL(generic_make_request);
1181 
1182 /**
1183  * direct_make_request - hand a buffer directly to its device driver for I/O
1184  * @bio:  The bio describing the location in memory and on the device.
1185  *
1186  * This function behaves like generic_make_request(), but does not protect
1187  * against recursion.  Must only be used if the called driver is known
1188  * to be blk-mq based.
1189  */
1190 blk_qc_t direct_make_request(struct bio *bio)
1191 {
1192 	struct request_queue *q = bio->bi_disk->queue;
1193 
1194 	if (WARN_ON_ONCE(q->make_request_fn)) {
1195 		bio_io_error(bio);
1196 		return BLK_QC_T_NONE;
1197 	}
1198 	if (!generic_make_request_checks(bio))
1199 		return BLK_QC_T_NONE;
1200 	if (unlikely(bio_queue_enter(bio)))
1201 		return BLK_QC_T_NONE;
1202 	if (!blk_crypto_bio_prep(&bio)) {
1203 		blk_queue_exit(q);
1204 		return BLK_QC_T_NONE;
1205 	}
1206 	return blk_mq_make_request(q, bio);
1207 }
1208 EXPORT_SYMBOL_GPL(direct_make_request);
1209 
1210 /**
1211  * submit_bio - submit a bio to the block device layer for I/O
1212  * @bio: The &struct bio which describes the I/O
1213  *
1214  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1215  * fully set up &struct bio that describes the I/O that needs to be done.  The
1216  * bio will be send to the device described by the bi_disk and bi_partno fields.
1217  *
1218  * The success/failure status of the request, along with notification of
1219  * completion, is delivered asynchronously through the ->bi_end_io() callback
1220  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1221  * been called.
1222  */
1223 blk_qc_t submit_bio(struct bio *bio)
1224 {
1225 	if (blkcg_punt_bio_submit(bio))
1226 		return BLK_QC_T_NONE;
1227 
1228 	/*
1229 	 * If it's a regular read/write or a barrier with data attached,
1230 	 * go through the normal accounting stuff before submission.
1231 	 */
1232 	if (bio_has_data(bio)) {
1233 		unsigned int count;
1234 
1235 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1236 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1237 		else
1238 			count = bio_sectors(bio);
1239 
1240 		if (op_is_write(bio_op(bio))) {
1241 			count_vm_events(PGPGOUT, count);
1242 		} else {
1243 			task_io_account_read(bio->bi_iter.bi_size);
1244 			count_vm_events(PGPGIN, count);
1245 		}
1246 
1247 		if (unlikely(block_dump)) {
1248 			char b[BDEVNAME_SIZE];
1249 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1250 			current->comm, task_pid_nr(current),
1251 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1252 				(unsigned long long)bio->bi_iter.bi_sector,
1253 				bio_devname(bio, b), count);
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * If we're reading data that is part of the userspace workingset, count
1259 	 * submission time as memory stall.  When the device is congested, or
1260 	 * the submitting cgroup IO-throttled, submission can be a significant
1261 	 * part of overall IO time.
1262 	 */
1263 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1264 	    bio_flagged(bio, BIO_WORKINGSET))) {
1265 		unsigned long pflags;
1266 		blk_qc_t ret;
1267 
1268 		psi_memstall_enter(&pflags);
1269 		ret = generic_make_request(bio);
1270 		psi_memstall_leave(&pflags);
1271 
1272 		return ret;
1273 	}
1274 
1275 	return generic_make_request(bio);
1276 }
1277 EXPORT_SYMBOL(submit_bio);
1278 
1279 /**
1280  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1281  *                              for the new queue limits
1282  * @q:  the queue
1283  * @rq: the request being checked
1284  *
1285  * Description:
1286  *    @rq may have been made based on weaker limitations of upper-level queues
1287  *    in request stacking drivers, and it may violate the limitation of @q.
1288  *    Since the block layer and the underlying device driver trust @rq
1289  *    after it is inserted to @q, it should be checked against @q before
1290  *    the insertion using this generic function.
1291  *
1292  *    Request stacking drivers like request-based dm may change the queue
1293  *    limits when retrying requests on other queues. Those requests need
1294  *    to be checked against the new queue limits again during dispatch.
1295  */
1296 static int blk_cloned_rq_check_limits(struct request_queue *q,
1297 				      struct request *rq)
1298 {
1299 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1300 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1301 			__func__, blk_rq_sectors(rq),
1302 			blk_queue_get_max_sectors(q, req_op(rq)));
1303 		return -EIO;
1304 	}
1305 
1306 	/*
1307 	 * queue's settings related to segment counting like q->bounce_pfn
1308 	 * may differ from that of other stacking queues.
1309 	 * Recalculate it to check the request correctly on this queue's
1310 	 * limitation.
1311 	 */
1312 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1313 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1314 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1315 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1316 		return -EIO;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1324  * @q:  the queue to submit the request
1325  * @rq: the request being queued
1326  */
1327 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1328 {
1329 	if (blk_cloned_rq_check_limits(q, rq))
1330 		return BLK_STS_IOERR;
1331 
1332 	if (rq->rq_disk &&
1333 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1334 		return BLK_STS_IOERR;
1335 
1336 	if (blk_crypto_insert_cloned_request(rq))
1337 		return BLK_STS_IOERR;
1338 
1339 	if (blk_queue_io_stat(q))
1340 		blk_account_io_start(rq);
1341 
1342 	/*
1343 	 * Since we have a scheduler attached on the top device,
1344 	 * bypass a potential scheduler on the bottom device for
1345 	 * insert.
1346 	 */
1347 	return blk_mq_request_issue_directly(rq, true);
1348 }
1349 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1350 
1351 /**
1352  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1353  * @rq: request to examine
1354  *
1355  * Description:
1356  *     A request could be merge of IOs which require different failure
1357  *     handling.  This function determines the number of bytes which
1358  *     can be failed from the beginning of the request without
1359  *     crossing into area which need to be retried further.
1360  *
1361  * Return:
1362  *     The number of bytes to fail.
1363  */
1364 unsigned int blk_rq_err_bytes(const struct request *rq)
1365 {
1366 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1367 	unsigned int bytes = 0;
1368 	struct bio *bio;
1369 
1370 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1371 		return blk_rq_bytes(rq);
1372 
1373 	/*
1374 	 * Currently the only 'mixing' which can happen is between
1375 	 * different fastfail types.  We can safely fail portions
1376 	 * which have all the failfast bits that the first one has -
1377 	 * the ones which are at least as eager to fail as the first
1378 	 * one.
1379 	 */
1380 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1381 		if ((bio->bi_opf & ff) != ff)
1382 			break;
1383 		bytes += bio->bi_iter.bi_size;
1384 	}
1385 
1386 	/* this could lead to infinite loop */
1387 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1388 	return bytes;
1389 }
1390 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1391 
1392 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1393 {
1394 	unsigned long stamp;
1395 again:
1396 	stamp = READ_ONCE(part->stamp);
1397 	if (unlikely(stamp != now)) {
1398 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1399 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1400 	}
1401 	if (part->partno) {
1402 		part = &part_to_disk(part)->part0;
1403 		goto again;
1404 	}
1405 }
1406 
1407 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1408 {
1409 	if (req->part && blk_do_io_stat(req)) {
1410 		const int sgrp = op_stat_group(req_op(req));
1411 		struct hd_struct *part;
1412 
1413 		part_stat_lock();
1414 		part = req->part;
1415 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1416 		part_stat_unlock();
1417 	}
1418 }
1419 
1420 void blk_account_io_done(struct request *req, u64 now)
1421 {
1422 	/*
1423 	 * Account IO completion.  flush_rq isn't accounted as a
1424 	 * normal IO on queueing nor completion.  Accounting the
1425 	 * containing request is enough.
1426 	 */
1427 	if (req->part && blk_do_io_stat(req) &&
1428 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1429 		const int sgrp = op_stat_group(req_op(req));
1430 		struct hd_struct *part;
1431 
1432 		part_stat_lock();
1433 		part = req->part;
1434 
1435 		update_io_ticks(part, jiffies, true);
1436 		part_stat_inc(part, ios[sgrp]);
1437 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1438 		part_stat_unlock();
1439 
1440 		hd_struct_put(part);
1441 	}
1442 }
1443 
1444 void blk_account_io_start(struct request *rq)
1445 {
1446 	if (!blk_do_io_stat(rq))
1447 		return;
1448 
1449 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1450 
1451 	part_stat_lock();
1452 	update_io_ticks(rq->part, jiffies, false);
1453 	part_stat_unlock();
1454 }
1455 
1456 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1457 		unsigned int op)
1458 {
1459 	struct hd_struct *part = &disk->part0;
1460 	const int sgrp = op_stat_group(op);
1461 	unsigned long now = READ_ONCE(jiffies);
1462 
1463 	part_stat_lock();
1464 	update_io_ticks(part, now, false);
1465 	part_stat_inc(part, ios[sgrp]);
1466 	part_stat_add(part, sectors[sgrp], sectors);
1467 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1468 	part_stat_unlock();
1469 
1470 	return now;
1471 }
1472 EXPORT_SYMBOL(disk_start_io_acct);
1473 
1474 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1475 		unsigned long start_time)
1476 {
1477 	struct hd_struct *part = &disk->part0;
1478 	const int sgrp = op_stat_group(op);
1479 	unsigned long now = READ_ONCE(jiffies);
1480 	unsigned long duration = now - start_time;
1481 
1482 	part_stat_lock();
1483 	update_io_ticks(part, now, true);
1484 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1485 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1486 	part_stat_unlock();
1487 }
1488 EXPORT_SYMBOL(disk_end_io_acct);
1489 
1490 /*
1491  * Steal bios from a request and add them to a bio list.
1492  * The request must not have been partially completed before.
1493  */
1494 void blk_steal_bios(struct bio_list *list, struct request *rq)
1495 {
1496 	if (rq->bio) {
1497 		if (list->tail)
1498 			list->tail->bi_next = rq->bio;
1499 		else
1500 			list->head = rq->bio;
1501 		list->tail = rq->biotail;
1502 
1503 		rq->bio = NULL;
1504 		rq->biotail = NULL;
1505 	}
1506 
1507 	rq->__data_len = 0;
1508 }
1509 EXPORT_SYMBOL_GPL(blk_steal_bios);
1510 
1511 /**
1512  * blk_update_request - Special helper function for request stacking drivers
1513  * @req:      the request being processed
1514  * @error:    block status code
1515  * @nr_bytes: number of bytes to complete @req
1516  *
1517  * Description:
1518  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1519  *     the request structure even if @req doesn't have leftover.
1520  *     If @req has leftover, sets it up for the next range of segments.
1521  *
1522  *     This special helper function is only for request stacking drivers
1523  *     (e.g. request-based dm) so that they can handle partial completion.
1524  *     Actual device drivers should use blk_mq_end_request instead.
1525  *
1526  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1527  *     %false return from this function.
1528  *
1529  * Note:
1530  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1531  *	blk_rq_bytes() and in blk_update_request().
1532  *
1533  * Return:
1534  *     %false - this request doesn't have any more data
1535  *     %true  - this request has more data
1536  **/
1537 bool blk_update_request(struct request *req, blk_status_t error,
1538 		unsigned int nr_bytes)
1539 {
1540 	int total_bytes;
1541 
1542 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1543 
1544 	if (!req->bio)
1545 		return false;
1546 
1547 #ifdef CONFIG_BLK_DEV_INTEGRITY
1548 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1549 	    error == BLK_STS_OK)
1550 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1551 #endif
1552 
1553 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1554 		     !(req->rq_flags & RQF_QUIET)))
1555 		print_req_error(req, error, __func__);
1556 
1557 	blk_account_io_completion(req, nr_bytes);
1558 
1559 	total_bytes = 0;
1560 	while (req->bio) {
1561 		struct bio *bio = req->bio;
1562 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1563 
1564 		if (bio_bytes == bio->bi_iter.bi_size)
1565 			req->bio = bio->bi_next;
1566 
1567 		/* Completion has already been traced */
1568 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1569 		req_bio_endio(req, bio, bio_bytes, error);
1570 
1571 		total_bytes += bio_bytes;
1572 		nr_bytes -= bio_bytes;
1573 
1574 		if (!nr_bytes)
1575 			break;
1576 	}
1577 
1578 	/*
1579 	 * completely done
1580 	 */
1581 	if (!req->bio) {
1582 		/*
1583 		 * Reset counters so that the request stacking driver
1584 		 * can find how many bytes remain in the request
1585 		 * later.
1586 		 */
1587 		req->__data_len = 0;
1588 		return false;
1589 	}
1590 
1591 	req->__data_len -= total_bytes;
1592 
1593 	/* update sector only for requests with clear definition of sector */
1594 	if (!blk_rq_is_passthrough(req))
1595 		req->__sector += total_bytes >> 9;
1596 
1597 	/* mixed attributes always follow the first bio */
1598 	if (req->rq_flags & RQF_MIXED_MERGE) {
1599 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1600 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1601 	}
1602 
1603 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1604 		/*
1605 		 * If total number of sectors is less than the first segment
1606 		 * size, something has gone terribly wrong.
1607 		 */
1608 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1609 			blk_dump_rq_flags(req, "request botched");
1610 			req->__data_len = blk_rq_cur_bytes(req);
1611 		}
1612 
1613 		/* recalculate the number of segments */
1614 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1615 	}
1616 
1617 	return true;
1618 }
1619 EXPORT_SYMBOL_GPL(blk_update_request);
1620 
1621 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1622 /**
1623  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1624  * @rq: the request to be flushed
1625  *
1626  * Description:
1627  *     Flush all pages in @rq.
1628  */
1629 void rq_flush_dcache_pages(struct request *rq)
1630 {
1631 	struct req_iterator iter;
1632 	struct bio_vec bvec;
1633 
1634 	rq_for_each_segment(bvec, rq, iter)
1635 		flush_dcache_page(bvec.bv_page);
1636 }
1637 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1638 #endif
1639 
1640 /**
1641  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1642  * @q : the queue of the device being checked
1643  *
1644  * Description:
1645  *    Check if underlying low-level drivers of a device are busy.
1646  *    If the drivers want to export their busy state, they must set own
1647  *    exporting function using blk_queue_lld_busy() first.
1648  *
1649  *    Basically, this function is used only by request stacking drivers
1650  *    to stop dispatching requests to underlying devices when underlying
1651  *    devices are busy.  This behavior helps more I/O merging on the queue
1652  *    of the request stacking driver and prevents I/O throughput regression
1653  *    on burst I/O load.
1654  *
1655  * Return:
1656  *    0 - Not busy (The request stacking driver should dispatch request)
1657  *    1 - Busy (The request stacking driver should stop dispatching request)
1658  */
1659 int blk_lld_busy(struct request_queue *q)
1660 {
1661 	if (queue_is_mq(q) && q->mq_ops->busy)
1662 		return q->mq_ops->busy(q);
1663 
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(blk_lld_busy);
1667 
1668 /**
1669  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1670  * @rq: the clone request to be cleaned up
1671  *
1672  * Description:
1673  *     Free all bios in @rq for a cloned request.
1674  */
1675 void blk_rq_unprep_clone(struct request *rq)
1676 {
1677 	struct bio *bio;
1678 
1679 	while ((bio = rq->bio) != NULL) {
1680 		rq->bio = bio->bi_next;
1681 
1682 		bio_put(bio);
1683 	}
1684 }
1685 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1686 
1687 /**
1688  * blk_rq_prep_clone - Helper function to setup clone request
1689  * @rq: the request to be setup
1690  * @rq_src: original request to be cloned
1691  * @bs: bio_set that bios for clone are allocated from
1692  * @gfp_mask: memory allocation mask for bio
1693  * @bio_ctr: setup function to be called for each clone bio.
1694  *           Returns %0 for success, non %0 for failure.
1695  * @data: private data to be passed to @bio_ctr
1696  *
1697  * Description:
1698  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1699  *     Also, pages which the original bios are pointing to are not copied
1700  *     and the cloned bios just point same pages.
1701  *     So cloned bios must be completed before original bios, which means
1702  *     the caller must complete @rq before @rq_src.
1703  */
1704 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1705 		      struct bio_set *bs, gfp_t gfp_mask,
1706 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1707 		      void *data)
1708 {
1709 	struct bio *bio, *bio_src;
1710 
1711 	if (!bs)
1712 		bs = &fs_bio_set;
1713 
1714 	__rq_for_each_bio(bio_src, rq_src) {
1715 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1716 		if (!bio)
1717 			goto free_and_out;
1718 
1719 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1720 			goto free_and_out;
1721 
1722 		if (rq->bio) {
1723 			rq->biotail->bi_next = bio;
1724 			rq->biotail = bio;
1725 		} else
1726 			rq->bio = rq->biotail = bio;
1727 	}
1728 
1729 	/* Copy attributes of the original request to the clone request. */
1730 	rq->__sector = blk_rq_pos(rq_src);
1731 	rq->__data_len = blk_rq_bytes(rq_src);
1732 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1733 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1734 		rq->special_vec = rq_src->special_vec;
1735 	}
1736 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1737 	rq->ioprio = rq_src->ioprio;
1738 
1739 	if (rq->bio)
1740 		blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask);
1741 
1742 	return 0;
1743 
1744 free_and_out:
1745 	if (bio)
1746 		bio_put(bio);
1747 	blk_rq_unprep_clone(rq);
1748 
1749 	return -ENOMEM;
1750 }
1751 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1752 
1753 int kblockd_schedule_work(struct work_struct *work)
1754 {
1755 	return queue_work(kblockd_workqueue, work);
1756 }
1757 EXPORT_SYMBOL(kblockd_schedule_work);
1758 
1759 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1760 				unsigned long delay)
1761 {
1762 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1763 }
1764 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1765 
1766 /**
1767  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1768  * @plug:	The &struct blk_plug that needs to be initialized
1769  *
1770  * Description:
1771  *   blk_start_plug() indicates to the block layer an intent by the caller
1772  *   to submit multiple I/O requests in a batch.  The block layer may use
1773  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1774  *   is called.  However, the block layer may choose to submit requests
1775  *   before a call to blk_finish_plug() if the number of queued I/Os
1776  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1777  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1778  *   the task schedules (see below).
1779  *
1780  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1781  *   pending I/O should the task end up blocking between blk_start_plug() and
1782  *   blk_finish_plug(). This is important from a performance perspective, but
1783  *   also ensures that we don't deadlock. For instance, if the task is blocking
1784  *   for a memory allocation, memory reclaim could end up wanting to free a
1785  *   page belonging to that request that is currently residing in our private
1786  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1787  *   this kind of deadlock.
1788  */
1789 void blk_start_plug(struct blk_plug *plug)
1790 {
1791 	struct task_struct *tsk = current;
1792 
1793 	/*
1794 	 * If this is a nested plug, don't actually assign it.
1795 	 */
1796 	if (tsk->plug)
1797 		return;
1798 
1799 	INIT_LIST_HEAD(&plug->mq_list);
1800 	INIT_LIST_HEAD(&plug->cb_list);
1801 	plug->rq_count = 0;
1802 	plug->multiple_queues = false;
1803 
1804 	/*
1805 	 * Store ordering should not be needed here, since a potential
1806 	 * preempt will imply a full memory barrier
1807 	 */
1808 	tsk->plug = plug;
1809 }
1810 EXPORT_SYMBOL(blk_start_plug);
1811 
1812 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1813 {
1814 	LIST_HEAD(callbacks);
1815 
1816 	while (!list_empty(&plug->cb_list)) {
1817 		list_splice_init(&plug->cb_list, &callbacks);
1818 
1819 		while (!list_empty(&callbacks)) {
1820 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1821 							  struct blk_plug_cb,
1822 							  list);
1823 			list_del(&cb->list);
1824 			cb->callback(cb, from_schedule);
1825 		}
1826 	}
1827 }
1828 
1829 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1830 				      int size)
1831 {
1832 	struct blk_plug *plug = current->plug;
1833 	struct blk_plug_cb *cb;
1834 
1835 	if (!plug)
1836 		return NULL;
1837 
1838 	list_for_each_entry(cb, &plug->cb_list, list)
1839 		if (cb->callback == unplug && cb->data == data)
1840 			return cb;
1841 
1842 	/* Not currently on the callback list */
1843 	BUG_ON(size < sizeof(*cb));
1844 	cb = kzalloc(size, GFP_ATOMIC);
1845 	if (cb) {
1846 		cb->data = data;
1847 		cb->callback = unplug;
1848 		list_add(&cb->list, &plug->cb_list);
1849 	}
1850 	return cb;
1851 }
1852 EXPORT_SYMBOL(blk_check_plugged);
1853 
1854 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1855 {
1856 	flush_plug_callbacks(plug, from_schedule);
1857 
1858 	if (!list_empty(&plug->mq_list))
1859 		blk_mq_flush_plug_list(plug, from_schedule);
1860 }
1861 
1862 /**
1863  * blk_finish_plug - mark the end of a batch of submitted I/O
1864  * @plug:	The &struct blk_plug passed to blk_start_plug()
1865  *
1866  * Description:
1867  * Indicate that a batch of I/O submissions is complete.  This function
1868  * must be paired with an initial call to blk_start_plug().  The intent
1869  * is to allow the block layer to optimize I/O submission.  See the
1870  * documentation for blk_start_plug() for more information.
1871  */
1872 void blk_finish_plug(struct blk_plug *plug)
1873 {
1874 	if (plug != current->plug)
1875 		return;
1876 	blk_flush_plug_list(plug, false);
1877 
1878 	current->plug = NULL;
1879 }
1880 EXPORT_SYMBOL(blk_finish_plug);
1881 
1882 void blk_io_schedule(void)
1883 {
1884 	/* Prevent hang_check timer from firing at us during very long I/O */
1885 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1886 
1887 	if (timeout)
1888 		io_schedule_timeout(timeout);
1889 	else
1890 		io_schedule();
1891 }
1892 EXPORT_SYMBOL_GPL(blk_io_schedule);
1893 
1894 int __init blk_dev_init(void)
1895 {
1896 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1897 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1898 			sizeof_field(struct request, cmd_flags));
1899 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1900 			sizeof_field(struct bio, bi_opf));
1901 
1902 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1903 	kblockd_workqueue = alloc_workqueue("kblockd",
1904 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1905 	if (!kblockd_workqueue)
1906 		panic("Failed to create kblockd\n");
1907 
1908 	blk_requestq_cachep = kmem_cache_create("request_queue",
1909 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1910 
1911 #ifdef CONFIG_DEBUG_FS
1912 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1913 #endif
1914 
1915 	return 0;
1916 }
1917