1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static void req_bio_endio(struct request *rq, struct bio *bio, 133 unsigned int nbytes, int error) 134 { 135 if (error) 136 bio->bi_error = error; 137 138 if (unlikely(rq->rq_flags & RQF_QUIET)) 139 bio_set_flag(bio, BIO_QUIET); 140 141 bio_advance(bio, nbytes); 142 143 /* don't actually finish bio if it's part of flush sequence */ 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 145 bio_endio(bio); 146 } 147 148 void blk_dump_rq_flags(struct request *rq, char *msg) 149 { 150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 151 rq->rq_disk ? rq->rq_disk->disk_name : "?", 152 (unsigned long long) rq->cmd_flags); 153 154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 155 (unsigned long long)blk_rq_pos(rq), 156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 157 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 158 rq->bio, rq->biotail, blk_rq_bytes(rq)); 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue_async - asynchronously restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue_async() will clear the stop flag on the queue, and 196 * ensure that the request_fn for the queue is run from an async 197 * context. 198 **/ 199 void blk_start_queue_async(struct request_queue *q) 200 { 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 202 blk_run_queue_async(q); 203 } 204 EXPORT_SYMBOL(blk_start_queue_async); 205 206 /** 207 * blk_start_queue - restart a previously stopped queue 208 * @q: The &struct request_queue in question 209 * 210 * Description: 211 * blk_start_queue() will clear the stop flag on the queue, and call 212 * the request_fn for the queue if it was in a stopped state when 213 * entered. Also see blk_stop_queue(). Queue lock must be held. 214 **/ 215 void blk_start_queue(struct request_queue *q) 216 { 217 WARN_ON(!irqs_disabled()); 218 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 220 __blk_run_queue(q); 221 } 222 EXPORT_SYMBOL(blk_start_queue); 223 224 /** 225 * blk_stop_queue - stop a queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * The Linux block layer assumes that a block driver will consume all 230 * entries on the request queue when the request_fn strategy is called. 231 * Often this will not happen, because of hardware limitations (queue 232 * depth settings). If a device driver gets a 'queue full' response, 233 * or if it simply chooses not to queue more I/O at one point, it can 234 * call this function to prevent the request_fn from being called until 235 * the driver has signalled it's ready to go again. This happens by calling 236 * blk_start_queue() to restart queue operations. Queue lock must be held. 237 **/ 238 void blk_stop_queue(struct request_queue *q) 239 { 240 cancel_delayed_work(&q->delay_work); 241 queue_flag_set(QUEUE_FLAG_STOPPED, q); 242 } 243 EXPORT_SYMBOL(blk_stop_queue); 244 245 /** 246 * blk_sync_queue - cancel any pending callbacks on a queue 247 * @q: the queue 248 * 249 * Description: 250 * The block layer may perform asynchronous callback activity 251 * on a queue, such as calling the unplug function after a timeout. 252 * A block device may call blk_sync_queue to ensure that any 253 * such activity is cancelled, thus allowing it to release resources 254 * that the callbacks might use. The caller must already have made sure 255 * that its ->make_request_fn will not re-add plugging prior to calling 256 * this function. 257 * 258 * This function does not cancel any asynchronous activity arising 259 * out of elevator or throttling code. That would require elevator_exit() 260 * and blkcg_exit_queue() to be called with queue lock initialized. 261 * 262 */ 263 void blk_sync_queue(struct request_queue *q) 264 { 265 del_timer_sync(&q->timeout); 266 267 if (q->mq_ops) { 268 struct blk_mq_hw_ctx *hctx; 269 int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) { 272 cancel_work_sync(&hctx->run_work); 273 cancel_delayed_work_sync(&hctx->delay_work); 274 } 275 } else { 276 cancel_delayed_work_sync(&q->delay_work); 277 } 278 } 279 EXPORT_SYMBOL(blk_sync_queue); 280 281 /** 282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 283 * @q: The queue to run 284 * 285 * Description: 286 * Invoke request handling on a queue if there are any pending requests. 287 * May be used to restart request handling after a request has completed. 288 * This variant runs the queue whether or not the queue has been 289 * stopped. Must be called with the queue lock held and interrupts 290 * disabled. See also @blk_run_queue. 291 */ 292 inline void __blk_run_queue_uncond(struct request_queue *q) 293 { 294 if (unlikely(blk_queue_dead(q))) 295 return; 296 297 /* 298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 299 * the queue lock internally. As a result multiple threads may be 300 * running such a request function concurrently. Keep track of the 301 * number of active request_fn invocations such that blk_drain_queue() 302 * can wait until all these request_fn calls have finished. 303 */ 304 q->request_fn_active++; 305 q->request_fn(q); 306 q->request_fn_active--; 307 } 308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 309 310 /** 311 * __blk_run_queue - run a single device queue 312 * @q: The queue to run 313 * 314 * Description: 315 * See @blk_run_queue. This variant must be called with the queue lock 316 * held and interrupts disabled. 317 */ 318 void __blk_run_queue(struct request_queue *q) 319 { 320 if (unlikely(blk_queue_stopped(q))) 321 return; 322 323 __blk_run_queue_uncond(q); 324 } 325 EXPORT_SYMBOL(__blk_run_queue); 326 327 /** 328 * blk_run_queue_async - run a single device queue in workqueue context 329 * @q: The queue to run 330 * 331 * Description: 332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 333 * of us. The caller must hold the queue lock. 334 */ 335 void blk_run_queue_async(struct request_queue *q) 336 { 337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 339 } 340 EXPORT_SYMBOL(blk_run_queue_async); 341 342 /** 343 * blk_run_queue - run a single device queue 344 * @q: The queue to run 345 * 346 * Description: 347 * Invoke request handling on this queue, if it has pending work to do. 348 * May be used to restart queueing when a request has completed. 349 */ 350 void blk_run_queue(struct request_queue *q) 351 { 352 unsigned long flags; 353 354 spin_lock_irqsave(q->queue_lock, flags); 355 __blk_run_queue(q); 356 spin_unlock_irqrestore(q->queue_lock, flags); 357 } 358 EXPORT_SYMBOL(blk_run_queue); 359 360 void blk_put_queue(struct request_queue *q) 361 { 362 kobject_put(&q->kobj); 363 } 364 EXPORT_SYMBOL(blk_put_queue); 365 366 /** 367 * __blk_drain_queue - drain requests from request_queue 368 * @q: queue to drain 369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 370 * 371 * Drain requests from @q. If @drain_all is set, all requests are drained. 372 * If not, only ELVPRIV requests are drained. The caller is responsible 373 * for ensuring that no new requests which need to be drained are queued. 374 */ 375 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 376 __releases(q->queue_lock) 377 __acquires(q->queue_lock) 378 { 379 int i; 380 381 lockdep_assert_held(q->queue_lock); 382 383 while (true) { 384 bool drain = false; 385 386 /* 387 * The caller might be trying to drain @q before its 388 * elevator is initialized. 389 */ 390 if (q->elevator) 391 elv_drain_elevator(q); 392 393 blkcg_drain_queue(q); 394 395 /* 396 * This function might be called on a queue which failed 397 * driver init after queue creation or is not yet fully 398 * active yet. Some drivers (e.g. fd and loop) get unhappy 399 * in such cases. Kick queue iff dispatch queue has 400 * something on it and @q has request_fn set. 401 */ 402 if (!list_empty(&q->queue_head) && q->request_fn) 403 __blk_run_queue(q); 404 405 drain |= q->nr_rqs_elvpriv; 406 drain |= q->request_fn_active; 407 408 /* 409 * Unfortunately, requests are queued at and tracked from 410 * multiple places and there's no single counter which can 411 * be drained. Check all the queues and counters. 412 */ 413 if (drain_all) { 414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 415 drain |= !list_empty(&q->queue_head); 416 for (i = 0; i < 2; i++) { 417 drain |= q->nr_rqs[i]; 418 drain |= q->in_flight[i]; 419 if (fq) 420 drain |= !list_empty(&fq->flush_queue[i]); 421 } 422 } 423 424 if (!drain) 425 break; 426 427 spin_unlock_irq(q->queue_lock); 428 429 msleep(10); 430 431 spin_lock_irq(q->queue_lock); 432 } 433 434 /* 435 * With queue marked dead, any woken up waiter will fail the 436 * allocation path, so the wakeup chaining is lost and we're 437 * left with hung waiters. We need to wake up those waiters. 438 */ 439 if (q->request_fn) { 440 struct request_list *rl; 441 442 blk_queue_for_each_rl(rl, q) 443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 444 wake_up_all(&rl->wait[i]); 445 } 446 } 447 448 /** 449 * blk_queue_bypass_start - enter queue bypass mode 450 * @q: queue of interest 451 * 452 * In bypass mode, only the dispatch FIFO queue of @q is used. This 453 * function makes @q enter bypass mode and drains all requests which were 454 * throttled or issued before. On return, it's guaranteed that no request 455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 456 * inside queue or RCU read lock. 457 */ 458 void blk_queue_bypass_start(struct request_queue *q) 459 { 460 spin_lock_irq(q->queue_lock); 461 q->bypass_depth++; 462 queue_flag_set(QUEUE_FLAG_BYPASS, q); 463 spin_unlock_irq(q->queue_lock); 464 465 /* 466 * Queues start drained. Skip actual draining till init is 467 * complete. This avoids lenghty delays during queue init which 468 * can happen many times during boot. 469 */ 470 if (blk_queue_init_done(q)) { 471 spin_lock_irq(q->queue_lock); 472 __blk_drain_queue(q, false); 473 spin_unlock_irq(q->queue_lock); 474 475 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 476 synchronize_rcu(); 477 } 478 } 479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 480 481 /** 482 * blk_queue_bypass_end - leave queue bypass mode 483 * @q: queue of interest 484 * 485 * Leave bypass mode and restore the normal queueing behavior. 486 */ 487 void blk_queue_bypass_end(struct request_queue *q) 488 { 489 spin_lock_irq(q->queue_lock); 490 if (!--q->bypass_depth) 491 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 492 WARN_ON_ONCE(q->bypass_depth < 0); 493 spin_unlock_irq(q->queue_lock); 494 } 495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 496 497 void blk_set_queue_dying(struct request_queue *q) 498 { 499 spin_lock_irq(q->queue_lock); 500 queue_flag_set(QUEUE_FLAG_DYING, q); 501 spin_unlock_irq(q->queue_lock); 502 503 if (q->mq_ops) 504 blk_mq_wake_waiters(q); 505 else { 506 struct request_list *rl; 507 508 spin_lock_irq(q->queue_lock); 509 blk_queue_for_each_rl(rl, q) { 510 if (rl->rq_pool) { 511 wake_up(&rl->wait[BLK_RW_SYNC]); 512 wake_up(&rl->wait[BLK_RW_ASYNC]); 513 } 514 } 515 spin_unlock_irq(q->queue_lock); 516 } 517 } 518 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 519 520 /** 521 * blk_cleanup_queue - shutdown a request queue 522 * @q: request queue to shutdown 523 * 524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 525 * put it. All future requests will be failed immediately with -ENODEV. 526 */ 527 void blk_cleanup_queue(struct request_queue *q) 528 { 529 spinlock_t *lock = q->queue_lock; 530 531 /* mark @q DYING, no new request or merges will be allowed afterwards */ 532 mutex_lock(&q->sysfs_lock); 533 blk_set_queue_dying(q); 534 spin_lock_irq(lock); 535 536 /* 537 * A dying queue is permanently in bypass mode till released. Note 538 * that, unlike blk_queue_bypass_start(), we aren't performing 539 * synchronize_rcu() after entering bypass mode to avoid the delay 540 * as some drivers create and destroy a lot of queues while 541 * probing. This is still safe because blk_release_queue() will be 542 * called only after the queue refcnt drops to zero and nothing, 543 * RCU or not, would be traversing the queue by then. 544 */ 545 q->bypass_depth++; 546 queue_flag_set(QUEUE_FLAG_BYPASS, q); 547 548 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 550 queue_flag_set(QUEUE_FLAG_DYING, q); 551 spin_unlock_irq(lock); 552 mutex_unlock(&q->sysfs_lock); 553 554 /* 555 * Drain all requests queued before DYING marking. Set DEAD flag to 556 * prevent that q->request_fn() gets invoked after draining finished. 557 */ 558 blk_freeze_queue(q); 559 spin_lock_irq(lock); 560 if (!q->mq_ops) 561 __blk_drain_queue(q, true); 562 queue_flag_set(QUEUE_FLAG_DEAD, q); 563 spin_unlock_irq(lock); 564 565 /* for synchronous bio-based driver finish in-flight integrity i/o */ 566 blk_flush_integrity(); 567 568 /* @q won't process any more request, flush async actions */ 569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 570 blk_sync_queue(q); 571 572 if (q->mq_ops) 573 blk_mq_free_queue(q); 574 percpu_ref_exit(&q->q_usage_counter); 575 576 spin_lock_irq(lock); 577 if (q->queue_lock != &q->__queue_lock) 578 q->queue_lock = &q->__queue_lock; 579 spin_unlock_irq(lock); 580 581 /* @q is and will stay empty, shutdown and put */ 582 blk_put_queue(q); 583 } 584 EXPORT_SYMBOL(blk_cleanup_queue); 585 586 /* Allocate memory local to the request queue */ 587 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 588 { 589 struct request_queue *q = data; 590 591 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 592 } 593 594 static void free_request_simple(void *element, void *data) 595 { 596 kmem_cache_free(request_cachep, element); 597 } 598 599 static void *alloc_request_size(gfp_t gfp_mask, void *data) 600 { 601 struct request_queue *q = data; 602 struct request *rq; 603 604 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 605 q->node); 606 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 607 kfree(rq); 608 rq = NULL; 609 } 610 return rq; 611 } 612 613 static void free_request_size(void *element, void *data) 614 { 615 struct request_queue *q = data; 616 617 if (q->exit_rq_fn) 618 q->exit_rq_fn(q, element); 619 kfree(element); 620 } 621 622 int blk_init_rl(struct request_list *rl, struct request_queue *q, 623 gfp_t gfp_mask) 624 { 625 if (unlikely(rl->rq_pool)) 626 return 0; 627 628 rl->q = q; 629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 633 634 if (q->cmd_size) { 635 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 636 alloc_request_size, free_request_size, 637 q, gfp_mask, q->node); 638 } else { 639 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 640 alloc_request_simple, free_request_simple, 641 q, gfp_mask, q->node); 642 } 643 if (!rl->rq_pool) 644 return -ENOMEM; 645 646 return 0; 647 } 648 649 void blk_exit_rl(struct request_list *rl) 650 { 651 if (rl->rq_pool) 652 mempool_destroy(rl->rq_pool); 653 } 654 655 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 656 { 657 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 658 } 659 EXPORT_SYMBOL(blk_alloc_queue); 660 661 int blk_queue_enter(struct request_queue *q, bool nowait) 662 { 663 while (true) { 664 int ret; 665 666 if (percpu_ref_tryget_live(&q->q_usage_counter)) 667 return 0; 668 669 if (nowait) 670 return -EBUSY; 671 672 ret = wait_event_interruptible(q->mq_freeze_wq, 673 !atomic_read(&q->mq_freeze_depth) || 674 blk_queue_dying(q)); 675 if (blk_queue_dying(q)) 676 return -ENODEV; 677 if (ret) 678 return ret; 679 } 680 } 681 682 void blk_queue_exit(struct request_queue *q) 683 { 684 percpu_ref_put(&q->q_usage_counter); 685 } 686 687 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 688 { 689 struct request_queue *q = 690 container_of(ref, struct request_queue, q_usage_counter); 691 692 wake_up_all(&q->mq_freeze_wq); 693 } 694 695 static void blk_rq_timed_out_timer(unsigned long data) 696 { 697 struct request_queue *q = (struct request_queue *)data; 698 699 kblockd_schedule_work(&q->timeout_work); 700 } 701 702 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 703 { 704 struct request_queue *q; 705 706 q = kmem_cache_alloc_node(blk_requestq_cachep, 707 gfp_mask | __GFP_ZERO, node_id); 708 if (!q) 709 return NULL; 710 711 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 712 if (q->id < 0) 713 goto fail_q; 714 715 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 716 if (!q->bio_split) 717 goto fail_id; 718 719 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 720 if (!q->backing_dev_info) 721 goto fail_split; 722 723 q->backing_dev_info->ra_pages = 724 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 725 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 726 q->backing_dev_info->name = "block"; 727 q->node = node_id; 728 729 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 730 laptop_mode_timer_fn, (unsigned long) q); 731 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 732 INIT_LIST_HEAD(&q->queue_head); 733 INIT_LIST_HEAD(&q->timeout_list); 734 INIT_LIST_HEAD(&q->icq_list); 735 #ifdef CONFIG_BLK_CGROUP 736 INIT_LIST_HEAD(&q->blkg_list); 737 #endif 738 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 739 740 kobject_init(&q->kobj, &blk_queue_ktype); 741 742 mutex_init(&q->sysfs_lock); 743 spin_lock_init(&q->__queue_lock); 744 745 /* 746 * By default initialize queue_lock to internal lock and driver can 747 * override it later if need be. 748 */ 749 q->queue_lock = &q->__queue_lock; 750 751 /* 752 * A queue starts its life with bypass turned on to avoid 753 * unnecessary bypass on/off overhead and nasty surprises during 754 * init. The initial bypass will be finished when the queue is 755 * registered by blk_register_queue(). 756 */ 757 q->bypass_depth = 1; 758 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 759 760 init_waitqueue_head(&q->mq_freeze_wq); 761 762 /* 763 * Init percpu_ref in atomic mode so that it's faster to shutdown. 764 * See blk_register_queue() for details. 765 */ 766 if (percpu_ref_init(&q->q_usage_counter, 767 blk_queue_usage_counter_release, 768 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 769 goto fail_bdi; 770 771 if (blkcg_init_queue(q)) 772 goto fail_ref; 773 774 return q; 775 776 fail_ref: 777 percpu_ref_exit(&q->q_usage_counter); 778 fail_bdi: 779 bdi_put(q->backing_dev_info); 780 fail_split: 781 bioset_free(q->bio_split); 782 fail_id: 783 ida_simple_remove(&blk_queue_ida, q->id); 784 fail_q: 785 kmem_cache_free(blk_requestq_cachep, q); 786 return NULL; 787 } 788 EXPORT_SYMBOL(blk_alloc_queue_node); 789 790 /** 791 * blk_init_queue - prepare a request queue for use with a block device 792 * @rfn: The function to be called to process requests that have been 793 * placed on the queue. 794 * @lock: Request queue spin lock 795 * 796 * Description: 797 * If a block device wishes to use the standard request handling procedures, 798 * which sorts requests and coalesces adjacent requests, then it must 799 * call blk_init_queue(). The function @rfn will be called when there 800 * are requests on the queue that need to be processed. If the device 801 * supports plugging, then @rfn may not be called immediately when requests 802 * are available on the queue, but may be called at some time later instead. 803 * Plugged queues are generally unplugged when a buffer belonging to one 804 * of the requests on the queue is needed, or due to memory pressure. 805 * 806 * @rfn is not required, or even expected, to remove all requests off the 807 * queue, but only as many as it can handle at a time. If it does leave 808 * requests on the queue, it is responsible for arranging that the requests 809 * get dealt with eventually. 810 * 811 * The queue spin lock must be held while manipulating the requests on the 812 * request queue; this lock will be taken also from interrupt context, so irq 813 * disabling is needed for it. 814 * 815 * Function returns a pointer to the initialized request queue, or %NULL if 816 * it didn't succeed. 817 * 818 * Note: 819 * blk_init_queue() must be paired with a blk_cleanup_queue() call 820 * when the block device is deactivated (such as at module unload). 821 **/ 822 823 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 824 { 825 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 826 } 827 EXPORT_SYMBOL(blk_init_queue); 828 829 struct request_queue * 830 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 831 { 832 struct request_queue *q; 833 834 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 835 if (!q) 836 return NULL; 837 838 q->request_fn = rfn; 839 if (lock) 840 q->queue_lock = lock; 841 if (blk_init_allocated_queue(q) < 0) { 842 blk_cleanup_queue(q); 843 return NULL; 844 } 845 846 return q; 847 } 848 EXPORT_SYMBOL(blk_init_queue_node); 849 850 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 851 852 853 int blk_init_allocated_queue(struct request_queue *q) 854 { 855 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 856 if (!q->fq) 857 return -ENOMEM; 858 859 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 860 goto out_free_flush_queue; 861 862 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 863 goto out_exit_flush_rq; 864 865 INIT_WORK(&q->timeout_work, blk_timeout_work); 866 q->queue_flags |= QUEUE_FLAG_DEFAULT; 867 868 /* 869 * This also sets hw/phys segments, boundary and size 870 */ 871 blk_queue_make_request(q, blk_queue_bio); 872 873 q->sg_reserved_size = INT_MAX; 874 875 /* Protect q->elevator from elevator_change */ 876 mutex_lock(&q->sysfs_lock); 877 878 /* init elevator */ 879 if (elevator_init(q, NULL)) { 880 mutex_unlock(&q->sysfs_lock); 881 goto out_exit_flush_rq; 882 } 883 884 mutex_unlock(&q->sysfs_lock); 885 return 0; 886 887 out_exit_flush_rq: 888 if (q->exit_rq_fn) 889 q->exit_rq_fn(q, q->fq->flush_rq); 890 out_free_flush_queue: 891 blk_free_flush_queue(q->fq); 892 wbt_exit(q); 893 return -ENOMEM; 894 } 895 EXPORT_SYMBOL(blk_init_allocated_queue); 896 897 bool blk_get_queue(struct request_queue *q) 898 { 899 if (likely(!blk_queue_dying(q))) { 900 __blk_get_queue(q); 901 return true; 902 } 903 904 return false; 905 } 906 EXPORT_SYMBOL(blk_get_queue); 907 908 static inline void blk_free_request(struct request_list *rl, struct request *rq) 909 { 910 if (rq->rq_flags & RQF_ELVPRIV) { 911 elv_put_request(rl->q, rq); 912 if (rq->elv.icq) 913 put_io_context(rq->elv.icq->ioc); 914 } 915 916 mempool_free(rq, rl->rq_pool); 917 } 918 919 /* 920 * ioc_batching returns true if the ioc is a valid batching request and 921 * should be given priority access to a request. 922 */ 923 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 924 { 925 if (!ioc) 926 return 0; 927 928 /* 929 * Make sure the process is able to allocate at least 1 request 930 * even if the batch times out, otherwise we could theoretically 931 * lose wakeups. 932 */ 933 return ioc->nr_batch_requests == q->nr_batching || 934 (ioc->nr_batch_requests > 0 935 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 936 } 937 938 /* 939 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 940 * will cause the process to be a "batcher" on all queues in the system. This 941 * is the behaviour we want though - once it gets a wakeup it should be given 942 * a nice run. 943 */ 944 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 945 { 946 if (!ioc || ioc_batching(q, ioc)) 947 return; 948 949 ioc->nr_batch_requests = q->nr_batching; 950 ioc->last_waited = jiffies; 951 } 952 953 static void __freed_request(struct request_list *rl, int sync) 954 { 955 struct request_queue *q = rl->q; 956 957 if (rl->count[sync] < queue_congestion_off_threshold(q)) 958 blk_clear_congested(rl, sync); 959 960 if (rl->count[sync] + 1 <= q->nr_requests) { 961 if (waitqueue_active(&rl->wait[sync])) 962 wake_up(&rl->wait[sync]); 963 964 blk_clear_rl_full(rl, sync); 965 } 966 } 967 968 /* 969 * A request has just been released. Account for it, update the full and 970 * congestion status, wake up any waiters. Called under q->queue_lock. 971 */ 972 static void freed_request(struct request_list *rl, bool sync, 973 req_flags_t rq_flags) 974 { 975 struct request_queue *q = rl->q; 976 977 q->nr_rqs[sync]--; 978 rl->count[sync]--; 979 if (rq_flags & RQF_ELVPRIV) 980 q->nr_rqs_elvpriv--; 981 982 __freed_request(rl, sync); 983 984 if (unlikely(rl->starved[sync ^ 1])) 985 __freed_request(rl, sync ^ 1); 986 } 987 988 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 989 { 990 struct request_list *rl; 991 int on_thresh, off_thresh; 992 993 spin_lock_irq(q->queue_lock); 994 q->nr_requests = nr; 995 blk_queue_congestion_threshold(q); 996 on_thresh = queue_congestion_on_threshold(q); 997 off_thresh = queue_congestion_off_threshold(q); 998 999 blk_queue_for_each_rl(rl, q) { 1000 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1001 blk_set_congested(rl, BLK_RW_SYNC); 1002 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1003 blk_clear_congested(rl, BLK_RW_SYNC); 1004 1005 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1006 blk_set_congested(rl, BLK_RW_ASYNC); 1007 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1008 blk_clear_congested(rl, BLK_RW_ASYNC); 1009 1010 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1011 blk_set_rl_full(rl, BLK_RW_SYNC); 1012 } else { 1013 blk_clear_rl_full(rl, BLK_RW_SYNC); 1014 wake_up(&rl->wait[BLK_RW_SYNC]); 1015 } 1016 1017 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1018 blk_set_rl_full(rl, BLK_RW_ASYNC); 1019 } else { 1020 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1021 wake_up(&rl->wait[BLK_RW_ASYNC]); 1022 } 1023 } 1024 1025 spin_unlock_irq(q->queue_lock); 1026 return 0; 1027 } 1028 1029 /** 1030 * __get_request - get a free request 1031 * @rl: request list to allocate from 1032 * @op: operation and flags 1033 * @bio: bio to allocate request for (can be %NULL) 1034 * @gfp_mask: allocation mask 1035 * 1036 * Get a free request from @q. This function may fail under memory 1037 * pressure or if @q is dead. 1038 * 1039 * Must be called with @q->queue_lock held and, 1040 * Returns ERR_PTR on failure, with @q->queue_lock held. 1041 * Returns request pointer on success, with @q->queue_lock *not held*. 1042 */ 1043 static struct request *__get_request(struct request_list *rl, unsigned int op, 1044 struct bio *bio, gfp_t gfp_mask) 1045 { 1046 struct request_queue *q = rl->q; 1047 struct request *rq; 1048 struct elevator_type *et = q->elevator->type; 1049 struct io_context *ioc = rq_ioc(bio); 1050 struct io_cq *icq = NULL; 1051 const bool is_sync = op_is_sync(op); 1052 int may_queue; 1053 req_flags_t rq_flags = RQF_ALLOCED; 1054 1055 if (unlikely(blk_queue_dying(q))) 1056 return ERR_PTR(-ENODEV); 1057 1058 may_queue = elv_may_queue(q, op); 1059 if (may_queue == ELV_MQUEUE_NO) 1060 goto rq_starved; 1061 1062 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1063 if (rl->count[is_sync]+1 >= q->nr_requests) { 1064 /* 1065 * The queue will fill after this allocation, so set 1066 * it as full, and mark this process as "batching". 1067 * This process will be allowed to complete a batch of 1068 * requests, others will be blocked. 1069 */ 1070 if (!blk_rl_full(rl, is_sync)) { 1071 ioc_set_batching(q, ioc); 1072 blk_set_rl_full(rl, is_sync); 1073 } else { 1074 if (may_queue != ELV_MQUEUE_MUST 1075 && !ioc_batching(q, ioc)) { 1076 /* 1077 * The queue is full and the allocating 1078 * process is not a "batcher", and not 1079 * exempted by the IO scheduler 1080 */ 1081 return ERR_PTR(-ENOMEM); 1082 } 1083 } 1084 } 1085 blk_set_congested(rl, is_sync); 1086 } 1087 1088 /* 1089 * Only allow batching queuers to allocate up to 50% over the defined 1090 * limit of requests, otherwise we could have thousands of requests 1091 * allocated with any setting of ->nr_requests 1092 */ 1093 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1094 return ERR_PTR(-ENOMEM); 1095 1096 q->nr_rqs[is_sync]++; 1097 rl->count[is_sync]++; 1098 rl->starved[is_sync] = 0; 1099 1100 /* 1101 * Decide whether the new request will be managed by elevator. If 1102 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1103 * prevent the current elevator from being destroyed until the new 1104 * request is freed. This guarantees icq's won't be destroyed and 1105 * makes creating new ones safe. 1106 * 1107 * Flush requests do not use the elevator so skip initialization. 1108 * This allows a request to share the flush and elevator data. 1109 * 1110 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1111 * it will be created after releasing queue_lock. 1112 */ 1113 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1114 rq_flags |= RQF_ELVPRIV; 1115 q->nr_rqs_elvpriv++; 1116 if (et->icq_cache && ioc) 1117 icq = ioc_lookup_icq(ioc, q); 1118 } 1119 1120 if (blk_queue_io_stat(q)) 1121 rq_flags |= RQF_IO_STAT; 1122 spin_unlock_irq(q->queue_lock); 1123 1124 /* allocate and init request */ 1125 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1126 if (!rq) 1127 goto fail_alloc; 1128 1129 blk_rq_init(q, rq); 1130 blk_rq_set_rl(rq, rl); 1131 blk_rq_set_prio(rq, ioc); 1132 rq->cmd_flags = op; 1133 rq->rq_flags = rq_flags; 1134 1135 /* init elvpriv */ 1136 if (rq_flags & RQF_ELVPRIV) { 1137 if (unlikely(et->icq_cache && !icq)) { 1138 if (ioc) 1139 icq = ioc_create_icq(ioc, q, gfp_mask); 1140 if (!icq) 1141 goto fail_elvpriv; 1142 } 1143 1144 rq->elv.icq = icq; 1145 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1146 goto fail_elvpriv; 1147 1148 /* @rq->elv.icq holds io_context until @rq is freed */ 1149 if (icq) 1150 get_io_context(icq->ioc); 1151 } 1152 out: 1153 /* 1154 * ioc may be NULL here, and ioc_batching will be false. That's 1155 * OK, if the queue is under the request limit then requests need 1156 * not count toward the nr_batch_requests limit. There will always 1157 * be some limit enforced by BLK_BATCH_TIME. 1158 */ 1159 if (ioc_batching(q, ioc)) 1160 ioc->nr_batch_requests--; 1161 1162 trace_block_getrq(q, bio, op); 1163 return rq; 1164 1165 fail_elvpriv: 1166 /* 1167 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1168 * and may fail indefinitely under memory pressure and thus 1169 * shouldn't stall IO. Treat this request as !elvpriv. This will 1170 * disturb iosched and blkcg but weird is bettern than dead. 1171 */ 1172 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1173 __func__, dev_name(q->backing_dev_info->dev)); 1174 1175 rq->rq_flags &= ~RQF_ELVPRIV; 1176 rq->elv.icq = NULL; 1177 1178 spin_lock_irq(q->queue_lock); 1179 q->nr_rqs_elvpriv--; 1180 spin_unlock_irq(q->queue_lock); 1181 goto out; 1182 1183 fail_alloc: 1184 /* 1185 * Allocation failed presumably due to memory. Undo anything we 1186 * might have messed up. 1187 * 1188 * Allocating task should really be put onto the front of the wait 1189 * queue, but this is pretty rare. 1190 */ 1191 spin_lock_irq(q->queue_lock); 1192 freed_request(rl, is_sync, rq_flags); 1193 1194 /* 1195 * in the very unlikely event that allocation failed and no 1196 * requests for this direction was pending, mark us starved so that 1197 * freeing of a request in the other direction will notice 1198 * us. another possible fix would be to split the rq mempool into 1199 * READ and WRITE 1200 */ 1201 rq_starved: 1202 if (unlikely(rl->count[is_sync] == 0)) 1203 rl->starved[is_sync] = 1; 1204 return ERR_PTR(-ENOMEM); 1205 } 1206 1207 /** 1208 * get_request - get a free request 1209 * @q: request_queue to allocate request from 1210 * @op: operation and flags 1211 * @bio: bio to allocate request for (can be %NULL) 1212 * @gfp_mask: allocation mask 1213 * 1214 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1215 * this function keeps retrying under memory pressure and fails iff @q is dead. 1216 * 1217 * Must be called with @q->queue_lock held and, 1218 * Returns ERR_PTR on failure, with @q->queue_lock held. 1219 * Returns request pointer on success, with @q->queue_lock *not held*. 1220 */ 1221 static struct request *get_request(struct request_queue *q, unsigned int op, 1222 struct bio *bio, gfp_t gfp_mask) 1223 { 1224 const bool is_sync = op_is_sync(op); 1225 DEFINE_WAIT(wait); 1226 struct request_list *rl; 1227 struct request *rq; 1228 1229 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1230 retry: 1231 rq = __get_request(rl, op, bio, gfp_mask); 1232 if (!IS_ERR(rq)) 1233 return rq; 1234 1235 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1236 blk_put_rl(rl); 1237 return rq; 1238 } 1239 1240 /* wait on @rl and retry */ 1241 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1242 TASK_UNINTERRUPTIBLE); 1243 1244 trace_block_sleeprq(q, bio, op); 1245 1246 spin_unlock_irq(q->queue_lock); 1247 io_schedule(); 1248 1249 /* 1250 * After sleeping, we become a "batching" process and will be able 1251 * to allocate at least one request, and up to a big batch of them 1252 * for a small period time. See ioc_batching, ioc_set_batching 1253 */ 1254 ioc_set_batching(q, current->io_context); 1255 1256 spin_lock_irq(q->queue_lock); 1257 finish_wait(&rl->wait[is_sync], &wait); 1258 1259 goto retry; 1260 } 1261 1262 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1263 gfp_t gfp_mask) 1264 { 1265 struct request *rq; 1266 1267 /* create ioc upfront */ 1268 create_io_context(gfp_mask, q->node); 1269 1270 spin_lock_irq(q->queue_lock); 1271 rq = get_request(q, rw, NULL, gfp_mask); 1272 if (IS_ERR(rq)) { 1273 spin_unlock_irq(q->queue_lock); 1274 return rq; 1275 } 1276 1277 /* q->queue_lock is unlocked at this point */ 1278 rq->__data_len = 0; 1279 rq->__sector = (sector_t) -1; 1280 rq->bio = rq->biotail = NULL; 1281 return rq; 1282 } 1283 1284 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1285 { 1286 if (q->mq_ops) 1287 return blk_mq_alloc_request(q, rw, 1288 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1289 0 : BLK_MQ_REQ_NOWAIT); 1290 else 1291 return blk_old_get_request(q, rw, gfp_mask); 1292 } 1293 EXPORT_SYMBOL(blk_get_request); 1294 1295 /** 1296 * blk_requeue_request - put a request back on queue 1297 * @q: request queue where request should be inserted 1298 * @rq: request to be inserted 1299 * 1300 * Description: 1301 * Drivers often keep queueing requests until the hardware cannot accept 1302 * more, when that condition happens we need to put the request back 1303 * on the queue. Must be called with queue lock held. 1304 */ 1305 void blk_requeue_request(struct request_queue *q, struct request *rq) 1306 { 1307 blk_delete_timer(rq); 1308 blk_clear_rq_complete(rq); 1309 trace_block_rq_requeue(q, rq); 1310 wbt_requeue(q->rq_wb, &rq->issue_stat); 1311 1312 if (rq->rq_flags & RQF_QUEUED) 1313 blk_queue_end_tag(q, rq); 1314 1315 BUG_ON(blk_queued_rq(rq)); 1316 1317 elv_requeue_request(q, rq); 1318 } 1319 EXPORT_SYMBOL(blk_requeue_request); 1320 1321 static void add_acct_request(struct request_queue *q, struct request *rq, 1322 int where) 1323 { 1324 blk_account_io_start(rq, true); 1325 __elv_add_request(q, rq, where); 1326 } 1327 1328 static void part_round_stats_single(int cpu, struct hd_struct *part, 1329 unsigned long now) 1330 { 1331 int inflight; 1332 1333 if (now == part->stamp) 1334 return; 1335 1336 inflight = part_in_flight(part); 1337 if (inflight) { 1338 __part_stat_add(cpu, part, time_in_queue, 1339 inflight * (now - part->stamp)); 1340 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1341 } 1342 part->stamp = now; 1343 } 1344 1345 /** 1346 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1347 * @cpu: cpu number for stats access 1348 * @part: target partition 1349 * 1350 * The average IO queue length and utilisation statistics are maintained 1351 * by observing the current state of the queue length and the amount of 1352 * time it has been in this state for. 1353 * 1354 * Normally, that accounting is done on IO completion, but that can result 1355 * in more than a second's worth of IO being accounted for within any one 1356 * second, leading to >100% utilisation. To deal with that, we call this 1357 * function to do a round-off before returning the results when reading 1358 * /proc/diskstats. This accounts immediately for all queue usage up to 1359 * the current jiffies and restarts the counters again. 1360 */ 1361 void part_round_stats(int cpu, struct hd_struct *part) 1362 { 1363 unsigned long now = jiffies; 1364 1365 if (part->partno) 1366 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1367 part_round_stats_single(cpu, part, now); 1368 } 1369 EXPORT_SYMBOL_GPL(part_round_stats); 1370 1371 #ifdef CONFIG_PM 1372 static void blk_pm_put_request(struct request *rq) 1373 { 1374 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1375 pm_runtime_mark_last_busy(rq->q->dev); 1376 } 1377 #else 1378 static inline void blk_pm_put_request(struct request *rq) {} 1379 #endif 1380 1381 /* 1382 * queue lock must be held 1383 */ 1384 void __blk_put_request(struct request_queue *q, struct request *req) 1385 { 1386 req_flags_t rq_flags = req->rq_flags; 1387 1388 if (unlikely(!q)) 1389 return; 1390 1391 if (q->mq_ops) { 1392 blk_mq_free_request(req); 1393 return; 1394 } 1395 1396 blk_pm_put_request(req); 1397 1398 elv_completed_request(q, req); 1399 1400 /* this is a bio leak */ 1401 WARN_ON(req->bio != NULL); 1402 1403 wbt_done(q->rq_wb, &req->issue_stat); 1404 1405 /* 1406 * Request may not have originated from ll_rw_blk. if not, 1407 * it didn't come out of our reserved rq pools 1408 */ 1409 if (rq_flags & RQF_ALLOCED) { 1410 struct request_list *rl = blk_rq_rl(req); 1411 bool sync = op_is_sync(req->cmd_flags); 1412 1413 BUG_ON(!list_empty(&req->queuelist)); 1414 BUG_ON(ELV_ON_HASH(req)); 1415 1416 blk_free_request(rl, req); 1417 freed_request(rl, sync, rq_flags); 1418 blk_put_rl(rl); 1419 } 1420 } 1421 EXPORT_SYMBOL_GPL(__blk_put_request); 1422 1423 void blk_put_request(struct request *req) 1424 { 1425 struct request_queue *q = req->q; 1426 1427 if (q->mq_ops) 1428 blk_mq_free_request(req); 1429 else { 1430 unsigned long flags; 1431 1432 spin_lock_irqsave(q->queue_lock, flags); 1433 __blk_put_request(q, req); 1434 spin_unlock_irqrestore(q->queue_lock, flags); 1435 } 1436 } 1437 EXPORT_SYMBOL(blk_put_request); 1438 1439 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1440 struct bio *bio) 1441 { 1442 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1443 1444 if (!ll_back_merge_fn(q, req, bio)) 1445 return false; 1446 1447 trace_block_bio_backmerge(q, req, bio); 1448 1449 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1450 blk_rq_set_mixed_merge(req); 1451 1452 req->biotail->bi_next = bio; 1453 req->biotail = bio; 1454 req->__data_len += bio->bi_iter.bi_size; 1455 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1456 1457 blk_account_io_start(req, false); 1458 return true; 1459 } 1460 1461 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1462 struct bio *bio) 1463 { 1464 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1465 1466 if (!ll_front_merge_fn(q, req, bio)) 1467 return false; 1468 1469 trace_block_bio_frontmerge(q, req, bio); 1470 1471 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1472 blk_rq_set_mixed_merge(req); 1473 1474 bio->bi_next = req->bio; 1475 req->bio = bio; 1476 1477 req->__sector = bio->bi_iter.bi_sector; 1478 req->__data_len += bio->bi_iter.bi_size; 1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1480 1481 blk_account_io_start(req, false); 1482 return true; 1483 } 1484 1485 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1486 struct bio *bio) 1487 { 1488 unsigned short segments = blk_rq_nr_discard_segments(req); 1489 1490 if (segments >= queue_max_discard_segments(q)) 1491 goto no_merge; 1492 if (blk_rq_sectors(req) + bio_sectors(bio) > 1493 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1494 goto no_merge; 1495 1496 req->biotail->bi_next = bio; 1497 req->biotail = bio; 1498 req->__data_len += bio->bi_iter.bi_size; 1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1500 req->nr_phys_segments = segments + 1; 1501 1502 blk_account_io_start(req, false); 1503 return true; 1504 no_merge: 1505 req_set_nomerge(q, req); 1506 return false; 1507 } 1508 1509 /** 1510 * blk_attempt_plug_merge - try to merge with %current's plugged list 1511 * @q: request_queue new bio is being queued at 1512 * @bio: new bio being queued 1513 * @request_count: out parameter for number of traversed plugged requests 1514 * @same_queue_rq: pointer to &struct request that gets filled in when 1515 * another request associated with @q is found on the plug list 1516 * (optional, may be %NULL) 1517 * 1518 * Determine whether @bio being queued on @q can be merged with a request 1519 * on %current's plugged list. Returns %true if merge was successful, 1520 * otherwise %false. 1521 * 1522 * Plugging coalesces IOs from the same issuer for the same purpose without 1523 * going through @q->queue_lock. As such it's more of an issuing mechanism 1524 * than scheduling, and the request, while may have elvpriv data, is not 1525 * added on the elevator at this point. In addition, we don't have 1526 * reliable access to the elevator outside queue lock. Only check basic 1527 * merging parameters without querying the elevator. 1528 * 1529 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1530 */ 1531 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1532 unsigned int *request_count, 1533 struct request **same_queue_rq) 1534 { 1535 struct blk_plug *plug; 1536 struct request *rq; 1537 struct list_head *plug_list; 1538 1539 plug = current->plug; 1540 if (!plug) 1541 return false; 1542 *request_count = 0; 1543 1544 if (q->mq_ops) 1545 plug_list = &plug->mq_list; 1546 else 1547 plug_list = &plug->list; 1548 1549 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1550 bool merged = false; 1551 1552 if (rq->q == q) { 1553 (*request_count)++; 1554 /* 1555 * Only blk-mq multiple hardware queues case checks the 1556 * rq in the same queue, there should be only one such 1557 * rq in a queue 1558 **/ 1559 if (same_queue_rq) 1560 *same_queue_rq = rq; 1561 } 1562 1563 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1564 continue; 1565 1566 switch (blk_try_merge(rq, bio)) { 1567 case ELEVATOR_BACK_MERGE: 1568 merged = bio_attempt_back_merge(q, rq, bio); 1569 break; 1570 case ELEVATOR_FRONT_MERGE: 1571 merged = bio_attempt_front_merge(q, rq, bio); 1572 break; 1573 case ELEVATOR_DISCARD_MERGE: 1574 merged = bio_attempt_discard_merge(q, rq, bio); 1575 break; 1576 default: 1577 break; 1578 } 1579 1580 if (merged) 1581 return true; 1582 } 1583 1584 return false; 1585 } 1586 1587 unsigned int blk_plug_queued_count(struct request_queue *q) 1588 { 1589 struct blk_plug *plug; 1590 struct request *rq; 1591 struct list_head *plug_list; 1592 unsigned int ret = 0; 1593 1594 plug = current->plug; 1595 if (!plug) 1596 goto out; 1597 1598 if (q->mq_ops) 1599 plug_list = &plug->mq_list; 1600 else 1601 plug_list = &plug->list; 1602 1603 list_for_each_entry(rq, plug_list, queuelist) { 1604 if (rq->q == q) 1605 ret++; 1606 } 1607 out: 1608 return ret; 1609 } 1610 1611 void init_request_from_bio(struct request *req, struct bio *bio) 1612 { 1613 if (bio->bi_opf & REQ_RAHEAD) 1614 req->cmd_flags |= REQ_FAILFAST_MASK; 1615 1616 req->errors = 0; 1617 req->__sector = bio->bi_iter.bi_sector; 1618 if (ioprio_valid(bio_prio(bio))) 1619 req->ioprio = bio_prio(bio); 1620 blk_rq_bio_prep(req->q, req, bio); 1621 } 1622 1623 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1624 { 1625 struct blk_plug *plug; 1626 int where = ELEVATOR_INSERT_SORT; 1627 struct request *req, *free; 1628 unsigned int request_count = 0; 1629 unsigned int wb_acct; 1630 1631 /* 1632 * low level driver can indicate that it wants pages above a 1633 * certain limit bounced to low memory (ie for highmem, or even 1634 * ISA dma in theory) 1635 */ 1636 blk_queue_bounce(q, &bio); 1637 1638 blk_queue_split(q, &bio, q->bio_split); 1639 1640 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1641 bio->bi_error = -EIO; 1642 bio_endio(bio); 1643 return BLK_QC_T_NONE; 1644 } 1645 1646 if (op_is_flush(bio->bi_opf)) { 1647 spin_lock_irq(q->queue_lock); 1648 where = ELEVATOR_INSERT_FLUSH; 1649 goto get_rq; 1650 } 1651 1652 /* 1653 * Check if we can merge with the plugged list before grabbing 1654 * any locks. 1655 */ 1656 if (!blk_queue_nomerges(q)) { 1657 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1658 return BLK_QC_T_NONE; 1659 } else 1660 request_count = blk_plug_queued_count(q); 1661 1662 spin_lock_irq(q->queue_lock); 1663 1664 switch (elv_merge(q, &req, bio)) { 1665 case ELEVATOR_BACK_MERGE: 1666 if (!bio_attempt_back_merge(q, req, bio)) 1667 break; 1668 elv_bio_merged(q, req, bio); 1669 free = attempt_back_merge(q, req); 1670 if (free) 1671 __blk_put_request(q, free); 1672 else 1673 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1674 goto out_unlock; 1675 case ELEVATOR_FRONT_MERGE: 1676 if (!bio_attempt_front_merge(q, req, bio)) 1677 break; 1678 elv_bio_merged(q, req, bio); 1679 free = attempt_front_merge(q, req); 1680 if (free) 1681 __blk_put_request(q, free); 1682 else 1683 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1684 goto out_unlock; 1685 default: 1686 break; 1687 } 1688 1689 get_rq: 1690 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1691 1692 /* 1693 * Grab a free request. This is might sleep but can not fail. 1694 * Returns with the queue unlocked. 1695 */ 1696 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1697 if (IS_ERR(req)) { 1698 __wbt_done(q->rq_wb, wb_acct); 1699 bio->bi_error = PTR_ERR(req); 1700 bio_endio(bio); 1701 goto out_unlock; 1702 } 1703 1704 wbt_track(&req->issue_stat, wb_acct); 1705 1706 /* 1707 * After dropping the lock and possibly sleeping here, our request 1708 * may now be mergeable after it had proven unmergeable (above). 1709 * We don't worry about that case for efficiency. It won't happen 1710 * often, and the elevators are able to handle it. 1711 */ 1712 init_request_from_bio(req, bio); 1713 1714 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1715 req->cpu = raw_smp_processor_id(); 1716 1717 plug = current->plug; 1718 if (plug) { 1719 /* 1720 * If this is the first request added after a plug, fire 1721 * of a plug trace. 1722 * 1723 * @request_count may become stale because of schedule 1724 * out, so check plug list again. 1725 */ 1726 if (!request_count || list_empty(&plug->list)) 1727 trace_block_plug(q); 1728 else { 1729 struct request *last = list_entry_rq(plug->list.prev); 1730 if (request_count >= BLK_MAX_REQUEST_COUNT || 1731 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1732 blk_flush_plug_list(plug, false); 1733 trace_block_plug(q); 1734 } 1735 } 1736 list_add_tail(&req->queuelist, &plug->list); 1737 blk_account_io_start(req, true); 1738 } else { 1739 spin_lock_irq(q->queue_lock); 1740 add_acct_request(q, req, where); 1741 __blk_run_queue(q); 1742 out_unlock: 1743 spin_unlock_irq(q->queue_lock); 1744 } 1745 1746 return BLK_QC_T_NONE; 1747 } 1748 1749 /* 1750 * If bio->bi_dev is a partition, remap the location 1751 */ 1752 static inline void blk_partition_remap(struct bio *bio) 1753 { 1754 struct block_device *bdev = bio->bi_bdev; 1755 1756 /* 1757 * Zone reset does not include bi_size so bio_sectors() is always 0. 1758 * Include a test for the reset op code and perform the remap if needed. 1759 */ 1760 if (bdev != bdev->bd_contains && 1761 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1762 struct hd_struct *p = bdev->bd_part; 1763 1764 bio->bi_iter.bi_sector += p->start_sect; 1765 bio->bi_bdev = bdev->bd_contains; 1766 1767 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1768 bdev->bd_dev, 1769 bio->bi_iter.bi_sector - p->start_sect); 1770 } 1771 } 1772 1773 static void handle_bad_sector(struct bio *bio) 1774 { 1775 char b[BDEVNAME_SIZE]; 1776 1777 printk(KERN_INFO "attempt to access beyond end of device\n"); 1778 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1779 bdevname(bio->bi_bdev, b), 1780 bio->bi_opf, 1781 (unsigned long long)bio_end_sector(bio), 1782 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1783 } 1784 1785 #ifdef CONFIG_FAIL_MAKE_REQUEST 1786 1787 static DECLARE_FAULT_ATTR(fail_make_request); 1788 1789 static int __init setup_fail_make_request(char *str) 1790 { 1791 return setup_fault_attr(&fail_make_request, str); 1792 } 1793 __setup("fail_make_request=", setup_fail_make_request); 1794 1795 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1796 { 1797 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1798 } 1799 1800 static int __init fail_make_request_debugfs(void) 1801 { 1802 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1803 NULL, &fail_make_request); 1804 1805 return PTR_ERR_OR_ZERO(dir); 1806 } 1807 1808 late_initcall(fail_make_request_debugfs); 1809 1810 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1811 1812 static inline bool should_fail_request(struct hd_struct *part, 1813 unsigned int bytes) 1814 { 1815 return false; 1816 } 1817 1818 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1819 1820 /* 1821 * Check whether this bio extends beyond the end of the device. 1822 */ 1823 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1824 { 1825 sector_t maxsector; 1826 1827 if (!nr_sectors) 1828 return 0; 1829 1830 /* Test device or partition size, when known. */ 1831 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1832 if (maxsector) { 1833 sector_t sector = bio->bi_iter.bi_sector; 1834 1835 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1836 /* 1837 * This may well happen - the kernel calls bread() 1838 * without checking the size of the device, e.g., when 1839 * mounting a device. 1840 */ 1841 handle_bad_sector(bio); 1842 return 1; 1843 } 1844 } 1845 1846 return 0; 1847 } 1848 1849 static noinline_for_stack bool 1850 generic_make_request_checks(struct bio *bio) 1851 { 1852 struct request_queue *q; 1853 int nr_sectors = bio_sectors(bio); 1854 int err = -EIO; 1855 char b[BDEVNAME_SIZE]; 1856 struct hd_struct *part; 1857 1858 might_sleep(); 1859 1860 if (bio_check_eod(bio, nr_sectors)) 1861 goto end_io; 1862 1863 q = bdev_get_queue(bio->bi_bdev); 1864 if (unlikely(!q)) { 1865 printk(KERN_ERR 1866 "generic_make_request: Trying to access " 1867 "nonexistent block-device %s (%Lu)\n", 1868 bdevname(bio->bi_bdev, b), 1869 (long long) bio->bi_iter.bi_sector); 1870 goto end_io; 1871 } 1872 1873 part = bio->bi_bdev->bd_part; 1874 if (should_fail_request(part, bio->bi_iter.bi_size) || 1875 should_fail_request(&part_to_disk(part)->part0, 1876 bio->bi_iter.bi_size)) 1877 goto end_io; 1878 1879 /* 1880 * If this device has partitions, remap block n 1881 * of partition p to block n+start(p) of the disk. 1882 */ 1883 blk_partition_remap(bio); 1884 1885 if (bio_check_eod(bio, nr_sectors)) 1886 goto end_io; 1887 1888 /* 1889 * Filter flush bio's early so that make_request based 1890 * drivers without flush support don't have to worry 1891 * about them. 1892 */ 1893 if (op_is_flush(bio->bi_opf) && 1894 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1895 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1896 if (!nr_sectors) { 1897 err = 0; 1898 goto end_io; 1899 } 1900 } 1901 1902 switch (bio_op(bio)) { 1903 case REQ_OP_DISCARD: 1904 if (!blk_queue_discard(q)) 1905 goto not_supported; 1906 break; 1907 case REQ_OP_SECURE_ERASE: 1908 if (!blk_queue_secure_erase(q)) 1909 goto not_supported; 1910 break; 1911 case REQ_OP_WRITE_SAME: 1912 if (!bdev_write_same(bio->bi_bdev)) 1913 goto not_supported; 1914 break; 1915 case REQ_OP_ZONE_REPORT: 1916 case REQ_OP_ZONE_RESET: 1917 if (!bdev_is_zoned(bio->bi_bdev)) 1918 goto not_supported; 1919 break; 1920 case REQ_OP_WRITE_ZEROES: 1921 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 1922 goto not_supported; 1923 break; 1924 default: 1925 break; 1926 } 1927 1928 /* 1929 * Various block parts want %current->io_context and lazy ioc 1930 * allocation ends up trading a lot of pain for a small amount of 1931 * memory. Just allocate it upfront. This may fail and block 1932 * layer knows how to live with it. 1933 */ 1934 create_io_context(GFP_ATOMIC, q->node); 1935 1936 if (!blkcg_bio_issue_check(q, bio)) 1937 return false; 1938 1939 trace_block_bio_queue(q, bio); 1940 return true; 1941 1942 not_supported: 1943 err = -EOPNOTSUPP; 1944 end_io: 1945 bio->bi_error = err; 1946 bio_endio(bio); 1947 return false; 1948 } 1949 1950 /** 1951 * generic_make_request - hand a buffer to its device driver for I/O 1952 * @bio: The bio describing the location in memory and on the device. 1953 * 1954 * generic_make_request() is used to make I/O requests of block 1955 * devices. It is passed a &struct bio, which describes the I/O that needs 1956 * to be done. 1957 * 1958 * generic_make_request() does not return any status. The 1959 * success/failure status of the request, along with notification of 1960 * completion, is delivered asynchronously through the bio->bi_end_io 1961 * function described (one day) else where. 1962 * 1963 * The caller of generic_make_request must make sure that bi_io_vec 1964 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1965 * set to describe the device address, and the 1966 * bi_end_io and optionally bi_private are set to describe how 1967 * completion notification should be signaled. 1968 * 1969 * generic_make_request and the drivers it calls may use bi_next if this 1970 * bio happens to be merged with someone else, and may resubmit the bio to 1971 * a lower device by calling into generic_make_request recursively, which 1972 * means the bio should NOT be touched after the call to ->make_request_fn. 1973 */ 1974 blk_qc_t generic_make_request(struct bio *bio) 1975 { 1976 /* 1977 * bio_list_on_stack[0] contains bios submitted by the current 1978 * make_request_fn. 1979 * bio_list_on_stack[1] contains bios that were submitted before 1980 * the current make_request_fn, but that haven't been processed 1981 * yet. 1982 */ 1983 struct bio_list bio_list_on_stack[2]; 1984 blk_qc_t ret = BLK_QC_T_NONE; 1985 1986 if (!generic_make_request_checks(bio)) 1987 goto out; 1988 1989 /* 1990 * We only want one ->make_request_fn to be active at a time, else 1991 * stack usage with stacked devices could be a problem. So use 1992 * current->bio_list to keep a list of requests submited by a 1993 * make_request_fn function. current->bio_list is also used as a 1994 * flag to say if generic_make_request is currently active in this 1995 * task or not. If it is NULL, then no make_request is active. If 1996 * it is non-NULL, then a make_request is active, and new requests 1997 * should be added at the tail 1998 */ 1999 if (current->bio_list) { 2000 bio_list_add(¤t->bio_list[0], bio); 2001 goto out; 2002 } 2003 2004 /* following loop may be a bit non-obvious, and so deserves some 2005 * explanation. 2006 * Before entering the loop, bio->bi_next is NULL (as all callers 2007 * ensure that) so we have a list with a single bio. 2008 * We pretend that we have just taken it off a longer list, so 2009 * we assign bio_list to a pointer to the bio_list_on_stack, 2010 * thus initialising the bio_list of new bios to be 2011 * added. ->make_request() may indeed add some more bios 2012 * through a recursive call to generic_make_request. If it 2013 * did, we find a non-NULL value in bio_list and re-enter the loop 2014 * from the top. In this case we really did just take the bio 2015 * of the top of the list (no pretending) and so remove it from 2016 * bio_list, and call into ->make_request() again. 2017 */ 2018 BUG_ON(bio->bi_next); 2019 bio_list_init(&bio_list_on_stack[0]); 2020 current->bio_list = bio_list_on_stack; 2021 do { 2022 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2023 2024 if (likely(blk_queue_enter(q, false) == 0)) { 2025 struct bio_list lower, same; 2026 2027 /* Create a fresh bio_list for all subordinate requests */ 2028 bio_list_on_stack[1] = bio_list_on_stack[0]; 2029 bio_list_init(&bio_list_on_stack[0]); 2030 ret = q->make_request_fn(q, bio); 2031 2032 blk_queue_exit(q); 2033 2034 /* sort new bios into those for a lower level 2035 * and those for the same level 2036 */ 2037 bio_list_init(&lower); 2038 bio_list_init(&same); 2039 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2040 if (q == bdev_get_queue(bio->bi_bdev)) 2041 bio_list_add(&same, bio); 2042 else 2043 bio_list_add(&lower, bio); 2044 /* now assemble so we handle the lowest level first */ 2045 bio_list_merge(&bio_list_on_stack[0], &lower); 2046 bio_list_merge(&bio_list_on_stack[0], &same); 2047 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2048 } else { 2049 bio_io_error(bio); 2050 } 2051 bio = bio_list_pop(&bio_list_on_stack[0]); 2052 } while (bio); 2053 current->bio_list = NULL; /* deactivate */ 2054 2055 out: 2056 return ret; 2057 } 2058 EXPORT_SYMBOL(generic_make_request); 2059 2060 /** 2061 * submit_bio - submit a bio to the block device layer for I/O 2062 * @bio: The &struct bio which describes the I/O 2063 * 2064 * submit_bio() is very similar in purpose to generic_make_request(), and 2065 * uses that function to do most of the work. Both are fairly rough 2066 * interfaces; @bio must be presetup and ready for I/O. 2067 * 2068 */ 2069 blk_qc_t submit_bio(struct bio *bio) 2070 { 2071 /* 2072 * If it's a regular read/write or a barrier with data attached, 2073 * go through the normal accounting stuff before submission. 2074 */ 2075 if (bio_has_data(bio)) { 2076 unsigned int count; 2077 2078 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2079 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2080 else 2081 count = bio_sectors(bio); 2082 2083 if (op_is_write(bio_op(bio))) { 2084 count_vm_events(PGPGOUT, count); 2085 } else { 2086 task_io_account_read(bio->bi_iter.bi_size); 2087 count_vm_events(PGPGIN, count); 2088 } 2089 2090 if (unlikely(block_dump)) { 2091 char b[BDEVNAME_SIZE]; 2092 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2093 current->comm, task_pid_nr(current), 2094 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2095 (unsigned long long)bio->bi_iter.bi_sector, 2096 bdevname(bio->bi_bdev, b), 2097 count); 2098 } 2099 } 2100 2101 return generic_make_request(bio); 2102 } 2103 EXPORT_SYMBOL(submit_bio); 2104 2105 /** 2106 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2107 * for new the queue limits 2108 * @q: the queue 2109 * @rq: the request being checked 2110 * 2111 * Description: 2112 * @rq may have been made based on weaker limitations of upper-level queues 2113 * in request stacking drivers, and it may violate the limitation of @q. 2114 * Since the block layer and the underlying device driver trust @rq 2115 * after it is inserted to @q, it should be checked against @q before 2116 * the insertion using this generic function. 2117 * 2118 * Request stacking drivers like request-based dm may change the queue 2119 * limits when retrying requests on other queues. Those requests need 2120 * to be checked against the new queue limits again during dispatch. 2121 */ 2122 static int blk_cloned_rq_check_limits(struct request_queue *q, 2123 struct request *rq) 2124 { 2125 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2126 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2127 return -EIO; 2128 } 2129 2130 /* 2131 * queue's settings related to segment counting like q->bounce_pfn 2132 * may differ from that of other stacking queues. 2133 * Recalculate it to check the request correctly on this queue's 2134 * limitation. 2135 */ 2136 blk_recalc_rq_segments(rq); 2137 if (rq->nr_phys_segments > queue_max_segments(q)) { 2138 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2139 return -EIO; 2140 } 2141 2142 return 0; 2143 } 2144 2145 /** 2146 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2147 * @q: the queue to submit the request 2148 * @rq: the request being queued 2149 */ 2150 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2151 { 2152 unsigned long flags; 2153 int where = ELEVATOR_INSERT_BACK; 2154 2155 if (blk_cloned_rq_check_limits(q, rq)) 2156 return -EIO; 2157 2158 if (rq->rq_disk && 2159 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2160 return -EIO; 2161 2162 if (q->mq_ops) { 2163 if (blk_queue_io_stat(q)) 2164 blk_account_io_start(rq, true); 2165 blk_mq_sched_insert_request(rq, false, true, false, false); 2166 return 0; 2167 } 2168 2169 spin_lock_irqsave(q->queue_lock, flags); 2170 if (unlikely(blk_queue_dying(q))) { 2171 spin_unlock_irqrestore(q->queue_lock, flags); 2172 return -ENODEV; 2173 } 2174 2175 /* 2176 * Submitting request must be dequeued before calling this function 2177 * because it will be linked to another request_queue 2178 */ 2179 BUG_ON(blk_queued_rq(rq)); 2180 2181 if (op_is_flush(rq->cmd_flags)) 2182 where = ELEVATOR_INSERT_FLUSH; 2183 2184 add_acct_request(q, rq, where); 2185 if (where == ELEVATOR_INSERT_FLUSH) 2186 __blk_run_queue(q); 2187 spin_unlock_irqrestore(q->queue_lock, flags); 2188 2189 return 0; 2190 } 2191 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2192 2193 /** 2194 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2195 * @rq: request to examine 2196 * 2197 * Description: 2198 * A request could be merge of IOs which require different failure 2199 * handling. This function determines the number of bytes which 2200 * can be failed from the beginning of the request without 2201 * crossing into area which need to be retried further. 2202 * 2203 * Return: 2204 * The number of bytes to fail. 2205 * 2206 * Context: 2207 * queue_lock must be held. 2208 */ 2209 unsigned int blk_rq_err_bytes(const struct request *rq) 2210 { 2211 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2212 unsigned int bytes = 0; 2213 struct bio *bio; 2214 2215 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2216 return blk_rq_bytes(rq); 2217 2218 /* 2219 * Currently the only 'mixing' which can happen is between 2220 * different fastfail types. We can safely fail portions 2221 * which have all the failfast bits that the first one has - 2222 * the ones which are at least as eager to fail as the first 2223 * one. 2224 */ 2225 for (bio = rq->bio; bio; bio = bio->bi_next) { 2226 if ((bio->bi_opf & ff) != ff) 2227 break; 2228 bytes += bio->bi_iter.bi_size; 2229 } 2230 2231 /* this could lead to infinite loop */ 2232 BUG_ON(blk_rq_bytes(rq) && !bytes); 2233 return bytes; 2234 } 2235 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2236 2237 void blk_account_io_completion(struct request *req, unsigned int bytes) 2238 { 2239 if (blk_do_io_stat(req)) { 2240 const int rw = rq_data_dir(req); 2241 struct hd_struct *part; 2242 int cpu; 2243 2244 cpu = part_stat_lock(); 2245 part = req->part; 2246 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2247 part_stat_unlock(); 2248 } 2249 } 2250 2251 void blk_account_io_done(struct request *req) 2252 { 2253 /* 2254 * Account IO completion. flush_rq isn't accounted as a 2255 * normal IO on queueing nor completion. Accounting the 2256 * containing request is enough. 2257 */ 2258 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2259 unsigned long duration = jiffies - req->start_time; 2260 const int rw = rq_data_dir(req); 2261 struct hd_struct *part; 2262 int cpu; 2263 2264 cpu = part_stat_lock(); 2265 part = req->part; 2266 2267 part_stat_inc(cpu, part, ios[rw]); 2268 part_stat_add(cpu, part, ticks[rw], duration); 2269 part_round_stats(cpu, part); 2270 part_dec_in_flight(part, rw); 2271 2272 hd_struct_put(part); 2273 part_stat_unlock(); 2274 } 2275 } 2276 2277 #ifdef CONFIG_PM 2278 /* 2279 * Don't process normal requests when queue is suspended 2280 * or in the process of suspending/resuming 2281 */ 2282 static struct request *blk_pm_peek_request(struct request_queue *q, 2283 struct request *rq) 2284 { 2285 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2286 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2287 return NULL; 2288 else 2289 return rq; 2290 } 2291 #else 2292 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2293 struct request *rq) 2294 { 2295 return rq; 2296 } 2297 #endif 2298 2299 void blk_account_io_start(struct request *rq, bool new_io) 2300 { 2301 struct hd_struct *part; 2302 int rw = rq_data_dir(rq); 2303 int cpu; 2304 2305 if (!blk_do_io_stat(rq)) 2306 return; 2307 2308 cpu = part_stat_lock(); 2309 2310 if (!new_io) { 2311 part = rq->part; 2312 part_stat_inc(cpu, part, merges[rw]); 2313 } else { 2314 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2315 if (!hd_struct_try_get(part)) { 2316 /* 2317 * The partition is already being removed, 2318 * the request will be accounted on the disk only 2319 * 2320 * We take a reference on disk->part0 although that 2321 * partition will never be deleted, so we can treat 2322 * it as any other partition. 2323 */ 2324 part = &rq->rq_disk->part0; 2325 hd_struct_get(part); 2326 } 2327 part_round_stats(cpu, part); 2328 part_inc_in_flight(part, rw); 2329 rq->part = part; 2330 } 2331 2332 part_stat_unlock(); 2333 } 2334 2335 /** 2336 * blk_peek_request - peek at the top of a request queue 2337 * @q: request queue to peek at 2338 * 2339 * Description: 2340 * Return the request at the top of @q. The returned request 2341 * should be started using blk_start_request() before LLD starts 2342 * processing it. 2343 * 2344 * Return: 2345 * Pointer to the request at the top of @q if available. Null 2346 * otherwise. 2347 * 2348 * Context: 2349 * queue_lock must be held. 2350 */ 2351 struct request *blk_peek_request(struct request_queue *q) 2352 { 2353 struct request *rq; 2354 int ret; 2355 2356 while ((rq = __elv_next_request(q)) != NULL) { 2357 2358 rq = blk_pm_peek_request(q, rq); 2359 if (!rq) 2360 break; 2361 2362 if (!(rq->rq_flags & RQF_STARTED)) { 2363 /* 2364 * This is the first time the device driver 2365 * sees this request (possibly after 2366 * requeueing). Notify IO scheduler. 2367 */ 2368 if (rq->rq_flags & RQF_SORTED) 2369 elv_activate_rq(q, rq); 2370 2371 /* 2372 * just mark as started even if we don't start 2373 * it, a request that has been delayed should 2374 * not be passed by new incoming requests 2375 */ 2376 rq->rq_flags |= RQF_STARTED; 2377 trace_block_rq_issue(q, rq); 2378 } 2379 2380 if (!q->boundary_rq || q->boundary_rq == rq) { 2381 q->end_sector = rq_end_sector(rq); 2382 q->boundary_rq = NULL; 2383 } 2384 2385 if (rq->rq_flags & RQF_DONTPREP) 2386 break; 2387 2388 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2389 /* 2390 * make sure space for the drain appears we 2391 * know we can do this because max_hw_segments 2392 * has been adjusted to be one fewer than the 2393 * device can handle 2394 */ 2395 rq->nr_phys_segments++; 2396 } 2397 2398 if (!q->prep_rq_fn) 2399 break; 2400 2401 ret = q->prep_rq_fn(q, rq); 2402 if (ret == BLKPREP_OK) { 2403 break; 2404 } else if (ret == BLKPREP_DEFER) { 2405 /* 2406 * the request may have been (partially) prepped. 2407 * we need to keep this request in the front to 2408 * avoid resource deadlock. RQF_STARTED will 2409 * prevent other fs requests from passing this one. 2410 */ 2411 if (q->dma_drain_size && blk_rq_bytes(rq) && 2412 !(rq->rq_flags & RQF_DONTPREP)) { 2413 /* 2414 * remove the space for the drain we added 2415 * so that we don't add it again 2416 */ 2417 --rq->nr_phys_segments; 2418 } 2419 2420 rq = NULL; 2421 break; 2422 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2423 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2424 2425 rq->rq_flags |= RQF_QUIET; 2426 /* 2427 * Mark this request as started so we don't trigger 2428 * any debug logic in the end I/O path. 2429 */ 2430 blk_start_request(rq); 2431 __blk_end_request_all(rq, err); 2432 } else { 2433 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2434 break; 2435 } 2436 } 2437 2438 return rq; 2439 } 2440 EXPORT_SYMBOL(blk_peek_request); 2441 2442 void blk_dequeue_request(struct request *rq) 2443 { 2444 struct request_queue *q = rq->q; 2445 2446 BUG_ON(list_empty(&rq->queuelist)); 2447 BUG_ON(ELV_ON_HASH(rq)); 2448 2449 list_del_init(&rq->queuelist); 2450 2451 /* 2452 * the time frame between a request being removed from the lists 2453 * and to it is freed is accounted as io that is in progress at 2454 * the driver side. 2455 */ 2456 if (blk_account_rq(rq)) { 2457 q->in_flight[rq_is_sync(rq)]++; 2458 set_io_start_time_ns(rq); 2459 } 2460 } 2461 2462 /** 2463 * blk_start_request - start request processing on the driver 2464 * @req: request to dequeue 2465 * 2466 * Description: 2467 * Dequeue @req and start timeout timer on it. This hands off the 2468 * request to the driver. 2469 * 2470 * Block internal functions which don't want to start timer should 2471 * call blk_dequeue_request(). 2472 * 2473 * Context: 2474 * queue_lock must be held. 2475 */ 2476 void blk_start_request(struct request *req) 2477 { 2478 blk_dequeue_request(req); 2479 2480 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2481 blk_stat_set_issue_time(&req->issue_stat); 2482 req->rq_flags |= RQF_STATS; 2483 wbt_issue(req->q->rq_wb, &req->issue_stat); 2484 } 2485 2486 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2487 blk_add_timer(req); 2488 } 2489 EXPORT_SYMBOL(blk_start_request); 2490 2491 /** 2492 * blk_fetch_request - fetch a request from a request queue 2493 * @q: request queue to fetch a request from 2494 * 2495 * Description: 2496 * Return the request at the top of @q. The request is started on 2497 * return and LLD can start processing it immediately. 2498 * 2499 * Return: 2500 * Pointer to the request at the top of @q if available. Null 2501 * otherwise. 2502 * 2503 * Context: 2504 * queue_lock must be held. 2505 */ 2506 struct request *blk_fetch_request(struct request_queue *q) 2507 { 2508 struct request *rq; 2509 2510 rq = blk_peek_request(q); 2511 if (rq) 2512 blk_start_request(rq); 2513 return rq; 2514 } 2515 EXPORT_SYMBOL(blk_fetch_request); 2516 2517 /** 2518 * blk_update_request - Special helper function for request stacking drivers 2519 * @req: the request being processed 2520 * @error: %0 for success, < %0 for error 2521 * @nr_bytes: number of bytes to complete @req 2522 * 2523 * Description: 2524 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2525 * the request structure even if @req doesn't have leftover. 2526 * If @req has leftover, sets it up for the next range of segments. 2527 * 2528 * This special helper function is only for request stacking drivers 2529 * (e.g. request-based dm) so that they can handle partial completion. 2530 * Actual device drivers should use blk_end_request instead. 2531 * 2532 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2533 * %false return from this function. 2534 * 2535 * Return: 2536 * %false - this request doesn't have any more data 2537 * %true - this request has more data 2538 **/ 2539 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2540 { 2541 int total_bytes; 2542 2543 trace_block_rq_complete(req->q, req, nr_bytes); 2544 2545 if (!req->bio) 2546 return false; 2547 2548 /* 2549 * For fs requests, rq is just carrier of independent bio's 2550 * and each partial completion should be handled separately. 2551 * Reset per-request error on each partial completion. 2552 * 2553 * TODO: tj: This is too subtle. It would be better to let 2554 * low level drivers do what they see fit. 2555 */ 2556 if (!blk_rq_is_passthrough(req)) 2557 req->errors = 0; 2558 2559 if (error && !blk_rq_is_passthrough(req) && 2560 !(req->rq_flags & RQF_QUIET)) { 2561 char *error_type; 2562 2563 switch (error) { 2564 case -ENOLINK: 2565 error_type = "recoverable transport"; 2566 break; 2567 case -EREMOTEIO: 2568 error_type = "critical target"; 2569 break; 2570 case -EBADE: 2571 error_type = "critical nexus"; 2572 break; 2573 case -ETIMEDOUT: 2574 error_type = "timeout"; 2575 break; 2576 case -ENOSPC: 2577 error_type = "critical space allocation"; 2578 break; 2579 case -ENODATA: 2580 error_type = "critical medium"; 2581 break; 2582 case -EIO: 2583 default: 2584 error_type = "I/O"; 2585 break; 2586 } 2587 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2588 __func__, error_type, req->rq_disk ? 2589 req->rq_disk->disk_name : "?", 2590 (unsigned long long)blk_rq_pos(req)); 2591 2592 } 2593 2594 blk_account_io_completion(req, nr_bytes); 2595 2596 total_bytes = 0; 2597 while (req->bio) { 2598 struct bio *bio = req->bio; 2599 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2600 2601 if (bio_bytes == bio->bi_iter.bi_size) 2602 req->bio = bio->bi_next; 2603 2604 req_bio_endio(req, bio, bio_bytes, error); 2605 2606 total_bytes += bio_bytes; 2607 nr_bytes -= bio_bytes; 2608 2609 if (!nr_bytes) 2610 break; 2611 } 2612 2613 /* 2614 * completely done 2615 */ 2616 if (!req->bio) { 2617 /* 2618 * Reset counters so that the request stacking driver 2619 * can find how many bytes remain in the request 2620 * later. 2621 */ 2622 req->__data_len = 0; 2623 return false; 2624 } 2625 2626 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD); 2627 2628 req->__data_len -= total_bytes; 2629 2630 /* update sector only for requests with clear definition of sector */ 2631 if (!blk_rq_is_passthrough(req)) 2632 req->__sector += total_bytes >> 9; 2633 2634 /* mixed attributes always follow the first bio */ 2635 if (req->rq_flags & RQF_MIXED_MERGE) { 2636 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2637 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2638 } 2639 2640 /* 2641 * If total number of sectors is less than the first segment 2642 * size, something has gone terribly wrong. 2643 */ 2644 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2645 blk_dump_rq_flags(req, "request botched"); 2646 req->__data_len = blk_rq_cur_bytes(req); 2647 } 2648 2649 /* recalculate the number of segments */ 2650 blk_recalc_rq_segments(req); 2651 2652 return true; 2653 } 2654 EXPORT_SYMBOL_GPL(blk_update_request); 2655 2656 static bool blk_update_bidi_request(struct request *rq, int error, 2657 unsigned int nr_bytes, 2658 unsigned int bidi_bytes) 2659 { 2660 if (blk_update_request(rq, error, nr_bytes)) 2661 return true; 2662 2663 /* Bidi request must be completed as a whole */ 2664 if (unlikely(blk_bidi_rq(rq)) && 2665 blk_update_request(rq->next_rq, error, bidi_bytes)) 2666 return true; 2667 2668 if (blk_queue_add_random(rq->q)) 2669 add_disk_randomness(rq->rq_disk); 2670 2671 return false; 2672 } 2673 2674 /** 2675 * blk_unprep_request - unprepare a request 2676 * @req: the request 2677 * 2678 * This function makes a request ready for complete resubmission (or 2679 * completion). It happens only after all error handling is complete, 2680 * so represents the appropriate moment to deallocate any resources 2681 * that were allocated to the request in the prep_rq_fn. The queue 2682 * lock is held when calling this. 2683 */ 2684 void blk_unprep_request(struct request *req) 2685 { 2686 struct request_queue *q = req->q; 2687 2688 req->rq_flags &= ~RQF_DONTPREP; 2689 if (q->unprep_rq_fn) 2690 q->unprep_rq_fn(q, req); 2691 } 2692 EXPORT_SYMBOL_GPL(blk_unprep_request); 2693 2694 /* 2695 * queue lock must be held 2696 */ 2697 void blk_finish_request(struct request *req, int error) 2698 { 2699 struct request_queue *q = req->q; 2700 2701 if (req->rq_flags & RQF_STATS) 2702 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req); 2703 2704 if (req->rq_flags & RQF_QUEUED) 2705 blk_queue_end_tag(q, req); 2706 2707 BUG_ON(blk_queued_rq(req)); 2708 2709 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2710 laptop_io_completion(req->q->backing_dev_info); 2711 2712 blk_delete_timer(req); 2713 2714 if (req->rq_flags & RQF_DONTPREP) 2715 blk_unprep_request(req); 2716 2717 blk_account_io_done(req); 2718 2719 if (req->end_io) { 2720 wbt_done(req->q->rq_wb, &req->issue_stat); 2721 req->end_io(req, error); 2722 } else { 2723 if (blk_bidi_rq(req)) 2724 __blk_put_request(req->next_rq->q, req->next_rq); 2725 2726 __blk_put_request(q, req); 2727 } 2728 } 2729 EXPORT_SYMBOL(blk_finish_request); 2730 2731 /** 2732 * blk_end_bidi_request - Complete a bidi request 2733 * @rq: the request to complete 2734 * @error: %0 for success, < %0 for error 2735 * @nr_bytes: number of bytes to complete @rq 2736 * @bidi_bytes: number of bytes to complete @rq->next_rq 2737 * 2738 * Description: 2739 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2740 * Drivers that supports bidi can safely call this member for any 2741 * type of request, bidi or uni. In the later case @bidi_bytes is 2742 * just ignored. 2743 * 2744 * Return: 2745 * %false - we are done with this request 2746 * %true - still buffers pending for this request 2747 **/ 2748 static bool blk_end_bidi_request(struct request *rq, int error, 2749 unsigned int nr_bytes, unsigned int bidi_bytes) 2750 { 2751 struct request_queue *q = rq->q; 2752 unsigned long flags; 2753 2754 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2755 return true; 2756 2757 spin_lock_irqsave(q->queue_lock, flags); 2758 blk_finish_request(rq, error); 2759 spin_unlock_irqrestore(q->queue_lock, flags); 2760 2761 return false; 2762 } 2763 2764 /** 2765 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2766 * @rq: the request to complete 2767 * @error: %0 for success, < %0 for error 2768 * @nr_bytes: number of bytes to complete @rq 2769 * @bidi_bytes: number of bytes to complete @rq->next_rq 2770 * 2771 * Description: 2772 * Identical to blk_end_bidi_request() except that queue lock is 2773 * assumed to be locked on entry and remains so on return. 2774 * 2775 * Return: 2776 * %false - we are done with this request 2777 * %true - still buffers pending for this request 2778 **/ 2779 bool __blk_end_bidi_request(struct request *rq, int error, 2780 unsigned int nr_bytes, unsigned int bidi_bytes) 2781 { 2782 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2783 return true; 2784 2785 blk_finish_request(rq, error); 2786 2787 return false; 2788 } 2789 2790 /** 2791 * blk_end_request - Helper function for drivers to complete the request. 2792 * @rq: the request being processed 2793 * @error: %0 for success, < %0 for error 2794 * @nr_bytes: number of bytes to complete 2795 * 2796 * Description: 2797 * Ends I/O on a number of bytes attached to @rq. 2798 * If @rq has leftover, sets it up for the next range of segments. 2799 * 2800 * Return: 2801 * %false - we are done with this request 2802 * %true - still buffers pending for this request 2803 **/ 2804 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2805 { 2806 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2807 } 2808 EXPORT_SYMBOL(blk_end_request); 2809 2810 /** 2811 * blk_end_request_all - Helper function for drives to finish the request. 2812 * @rq: the request to finish 2813 * @error: %0 for success, < %0 for error 2814 * 2815 * Description: 2816 * Completely finish @rq. 2817 */ 2818 void blk_end_request_all(struct request *rq, int error) 2819 { 2820 bool pending; 2821 unsigned int bidi_bytes = 0; 2822 2823 if (unlikely(blk_bidi_rq(rq))) 2824 bidi_bytes = blk_rq_bytes(rq->next_rq); 2825 2826 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2827 BUG_ON(pending); 2828 } 2829 EXPORT_SYMBOL(blk_end_request_all); 2830 2831 /** 2832 * blk_end_request_cur - Helper function to finish the current request chunk. 2833 * @rq: the request to finish the current chunk for 2834 * @error: %0 for success, < %0 for error 2835 * 2836 * Description: 2837 * Complete the current consecutively mapped chunk from @rq. 2838 * 2839 * Return: 2840 * %false - we are done with this request 2841 * %true - still buffers pending for this request 2842 */ 2843 bool blk_end_request_cur(struct request *rq, int error) 2844 { 2845 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2846 } 2847 EXPORT_SYMBOL(blk_end_request_cur); 2848 2849 /** 2850 * blk_end_request_err - Finish a request till the next failure boundary. 2851 * @rq: the request to finish till the next failure boundary for 2852 * @error: must be negative errno 2853 * 2854 * Description: 2855 * Complete @rq till the next failure boundary. 2856 * 2857 * Return: 2858 * %false - we are done with this request 2859 * %true - still buffers pending for this request 2860 */ 2861 bool blk_end_request_err(struct request *rq, int error) 2862 { 2863 WARN_ON(error >= 0); 2864 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2865 } 2866 EXPORT_SYMBOL_GPL(blk_end_request_err); 2867 2868 /** 2869 * __blk_end_request - Helper function for drivers to complete the request. 2870 * @rq: the request being processed 2871 * @error: %0 for success, < %0 for error 2872 * @nr_bytes: number of bytes to complete 2873 * 2874 * Description: 2875 * Must be called with queue lock held unlike blk_end_request(). 2876 * 2877 * Return: 2878 * %false - we are done with this request 2879 * %true - still buffers pending for this request 2880 **/ 2881 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2882 { 2883 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2884 } 2885 EXPORT_SYMBOL(__blk_end_request); 2886 2887 /** 2888 * __blk_end_request_all - Helper function for drives to finish the request. 2889 * @rq: the request to finish 2890 * @error: %0 for success, < %0 for error 2891 * 2892 * Description: 2893 * Completely finish @rq. Must be called with queue lock held. 2894 */ 2895 void __blk_end_request_all(struct request *rq, int error) 2896 { 2897 bool pending; 2898 unsigned int bidi_bytes = 0; 2899 2900 if (unlikely(blk_bidi_rq(rq))) 2901 bidi_bytes = blk_rq_bytes(rq->next_rq); 2902 2903 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2904 BUG_ON(pending); 2905 } 2906 EXPORT_SYMBOL(__blk_end_request_all); 2907 2908 /** 2909 * __blk_end_request_cur - Helper function to finish the current request chunk. 2910 * @rq: the request to finish the current chunk for 2911 * @error: %0 for success, < %0 for error 2912 * 2913 * Description: 2914 * Complete the current consecutively mapped chunk from @rq. Must 2915 * be called with queue lock held. 2916 * 2917 * Return: 2918 * %false - we are done with this request 2919 * %true - still buffers pending for this request 2920 */ 2921 bool __blk_end_request_cur(struct request *rq, int error) 2922 { 2923 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2924 } 2925 EXPORT_SYMBOL(__blk_end_request_cur); 2926 2927 /** 2928 * __blk_end_request_err - Finish a request till the next failure boundary. 2929 * @rq: the request to finish till the next failure boundary for 2930 * @error: must be negative errno 2931 * 2932 * Description: 2933 * Complete @rq till the next failure boundary. Must be called 2934 * with queue lock held. 2935 * 2936 * Return: 2937 * %false - we are done with this request 2938 * %true - still buffers pending for this request 2939 */ 2940 bool __blk_end_request_err(struct request *rq, int error) 2941 { 2942 WARN_ON(error >= 0); 2943 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2944 } 2945 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2946 2947 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2948 struct bio *bio) 2949 { 2950 if (bio_has_data(bio)) 2951 rq->nr_phys_segments = bio_phys_segments(q, bio); 2952 2953 rq->__data_len = bio->bi_iter.bi_size; 2954 rq->bio = rq->biotail = bio; 2955 2956 if (bio->bi_bdev) 2957 rq->rq_disk = bio->bi_bdev->bd_disk; 2958 } 2959 2960 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2961 /** 2962 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2963 * @rq: the request to be flushed 2964 * 2965 * Description: 2966 * Flush all pages in @rq. 2967 */ 2968 void rq_flush_dcache_pages(struct request *rq) 2969 { 2970 struct req_iterator iter; 2971 struct bio_vec bvec; 2972 2973 rq_for_each_segment(bvec, rq, iter) 2974 flush_dcache_page(bvec.bv_page); 2975 } 2976 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2977 #endif 2978 2979 /** 2980 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2981 * @q : the queue of the device being checked 2982 * 2983 * Description: 2984 * Check if underlying low-level drivers of a device are busy. 2985 * If the drivers want to export their busy state, they must set own 2986 * exporting function using blk_queue_lld_busy() first. 2987 * 2988 * Basically, this function is used only by request stacking drivers 2989 * to stop dispatching requests to underlying devices when underlying 2990 * devices are busy. This behavior helps more I/O merging on the queue 2991 * of the request stacking driver and prevents I/O throughput regression 2992 * on burst I/O load. 2993 * 2994 * Return: 2995 * 0 - Not busy (The request stacking driver should dispatch request) 2996 * 1 - Busy (The request stacking driver should stop dispatching request) 2997 */ 2998 int blk_lld_busy(struct request_queue *q) 2999 { 3000 if (q->lld_busy_fn) 3001 return q->lld_busy_fn(q); 3002 3003 return 0; 3004 } 3005 EXPORT_SYMBOL_GPL(blk_lld_busy); 3006 3007 /** 3008 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3009 * @rq: the clone request to be cleaned up 3010 * 3011 * Description: 3012 * Free all bios in @rq for a cloned request. 3013 */ 3014 void blk_rq_unprep_clone(struct request *rq) 3015 { 3016 struct bio *bio; 3017 3018 while ((bio = rq->bio) != NULL) { 3019 rq->bio = bio->bi_next; 3020 3021 bio_put(bio); 3022 } 3023 } 3024 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3025 3026 /* 3027 * Copy attributes of the original request to the clone request. 3028 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3029 */ 3030 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3031 { 3032 dst->cpu = src->cpu; 3033 dst->__sector = blk_rq_pos(src); 3034 dst->__data_len = blk_rq_bytes(src); 3035 dst->nr_phys_segments = src->nr_phys_segments; 3036 dst->ioprio = src->ioprio; 3037 dst->extra_len = src->extra_len; 3038 } 3039 3040 /** 3041 * blk_rq_prep_clone - Helper function to setup clone request 3042 * @rq: the request to be setup 3043 * @rq_src: original request to be cloned 3044 * @bs: bio_set that bios for clone are allocated from 3045 * @gfp_mask: memory allocation mask for bio 3046 * @bio_ctr: setup function to be called for each clone bio. 3047 * Returns %0 for success, non %0 for failure. 3048 * @data: private data to be passed to @bio_ctr 3049 * 3050 * Description: 3051 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3052 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3053 * are not copied, and copying such parts is the caller's responsibility. 3054 * Also, pages which the original bios are pointing to are not copied 3055 * and the cloned bios just point same pages. 3056 * So cloned bios must be completed before original bios, which means 3057 * the caller must complete @rq before @rq_src. 3058 */ 3059 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3060 struct bio_set *bs, gfp_t gfp_mask, 3061 int (*bio_ctr)(struct bio *, struct bio *, void *), 3062 void *data) 3063 { 3064 struct bio *bio, *bio_src; 3065 3066 if (!bs) 3067 bs = fs_bio_set; 3068 3069 __rq_for_each_bio(bio_src, rq_src) { 3070 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3071 if (!bio) 3072 goto free_and_out; 3073 3074 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3075 goto free_and_out; 3076 3077 if (rq->bio) { 3078 rq->biotail->bi_next = bio; 3079 rq->biotail = bio; 3080 } else 3081 rq->bio = rq->biotail = bio; 3082 } 3083 3084 __blk_rq_prep_clone(rq, rq_src); 3085 3086 return 0; 3087 3088 free_and_out: 3089 if (bio) 3090 bio_put(bio); 3091 blk_rq_unprep_clone(rq); 3092 3093 return -ENOMEM; 3094 } 3095 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3096 3097 int kblockd_schedule_work(struct work_struct *work) 3098 { 3099 return queue_work(kblockd_workqueue, work); 3100 } 3101 EXPORT_SYMBOL(kblockd_schedule_work); 3102 3103 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3104 { 3105 return queue_work_on(cpu, kblockd_workqueue, work); 3106 } 3107 EXPORT_SYMBOL(kblockd_schedule_work_on); 3108 3109 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3110 unsigned long delay) 3111 { 3112 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3113 } 3114 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3115 3116 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3117 unsigned long delay) 3118 { 3119 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3120 } 3121 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3122 3123 /** 3124 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3125 * @plug: The &struct blk_plug that needs to be initialized 3126 * 3127 * Description: 3128 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3129 * pending I/O should the task end up blocking between blk_start_plug() and 3130 * blk_finish_plug(). This is important from a performance perspective, but 3131 * also ensures that we don't deadlock. For instance, if the task is blocking 3132 * for a memory allocation, memory reclaim could end up wanting to free a 3133 * page belonging to that request that is currently residing in our private 3134 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3135 * this kind of deadlock. 3136 */ 3137 void blk_start_plug(struct blk_plug *plug) 3138 { 3139 struct task_struct *tsk = current; 3140 3141 /* 3142 * If this is a nested plug, don't actually assign it. 3143 */ 3144 if (tsk->plug) 3145 return; 3146 3147 INIT_LIST_HEAD(&plug->list); 3148 INIT_LIST_HEAD(&plug->mq_list); 3149 INIT_LIST_HEAD(&plug->cb_list); 3150 /* 3151 * Store ordering should not be needed here, since a potential 3152 * preempt will imply a full memory barrier 3153 */ 3154 tsk->plug = plug; 3155 } 3156 EXPORT_SYMBOL(blk_start_plug); 3157 3158 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3159 { 3160 struct request *rqa = container_of(a, struct request, queuelist); 3161 struct request *rqb = container_of(b, struct request, queuelist); 3162 3163 return !(rqa->q < rqb->q || 3164 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3165 } 3166 3167 /* 3168 * If 'from_schedule' is true, then postpone the dispatch of requests 3169 * until a safe kblockd context. We due this to avoid accidental big 3170 * additional stack usage in driver dispatch, in places where the originally 3171 * plugger did not intend it. 3172 */ 3173 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3174 bool from_schedule) 3175 __releases(q->queue_lock) 3176 { 3177 trace_block_unplug(q, depth, !from_schedule); 3178 3179 if (from_schedule) 3180 blk_run_queue_async(q); 3181 else 3182 __blk_run_queue(q); 3183 spin_unlock(q->queue_lock); 3184 } 3185 3186 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3187 { 3188 LIST_HEAD(callbacks); 3189 3190 while (!list_empty(&plug->cb_list)) { 3191 list_splice_init(&plug->cb_list, &callbacks); 3192 3193 while (!list_empty(&callbacks)) { 3194 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3195 struct blk_plug_cb, 3196 list); 3197 list_del(&cb->list); 3198 cb->callback(cb, from_schedule); 3199 } 3200 } 3201 } 3202 3203 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3204 int size) 3205 { 3206 struct blk_plug *plug = current->plug; 3207 struct blk_plug_cb *cb; 3208 3209 if (!plug) 3210 return NULL; 3211 3212 list_for_each_entry(cb, &plug->cb_list, list) 3213 if (cb->callback == unplug && cb->data == data) 3214 return cb; 3215 3216 /* Not currently on the callback list */ 3217 BUG_ON(size < sizeof(*cb)); 3218 cb = kzalloc(size, GFP_ATOMIC); 3219 if (cb) { 3220 cb->data = data; 3221 cb->callback = unplug; 3222 list_add(&cb->list, &plug->cb_list); 3223 } 3224 return cb; 3225 } 3226 EXPORT_SYMBOL(blk_check_plugged); 3227 3228 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3229 { 3230 struct request_queue *q; 3231 unsigned long flags; 3232 struct request *rq; 3233 LIST_HEAD(list); 3234 unsigned int depth; 3235 3236 flush_plug_callbacks(plug, from_schedule); 3237 3238 if (!list_empty(&plug->mq_list)) 3239 blk_mq_flush_plug_list(plug, from_schedule); 3240 3241 if (list_empty(&plug->list)) 3242 return; 3243 3244 list_splice_init(&plug->list, &list); 3245 3246 list_sort(NULL, &list, plug_rq_cmp); 3247 3248 q = NULL; 3249 depth = 0; 3250 3251 /* 3252 * Save and disable interrupts here, to avoid doing it for every 3253 * queue lock we have to take. 3254 */ 3255 local_irq_save(flags); 3256 while (!list_empty(&list)) { 3257 rq = list_entry_rq(list.next); 3258 list_del_init(&rq->queuelist); 3259 BUG_ON(!rq->q); 3260 if (rq->q != q) { 3261 /* 3262 * This drops the queue lock 3263 */ 3264 if (q) 3265 queue_unplugged(q, depth, from_schedule); 3266 q = rq->q; 3267 depth = 0; 3268 spin_lock(q->queue_lock); 3269 } 3270 3271 /* 3272 * Short-circuit if @q is dead 3273 */ 3274 if (unlikely(blk_queue_dying(q))) { 3275 __blk_end_request_all(rq, -ENODEV); 3276 continue; 3277 } 3278 3279 /* 3280 * rq is already accounted, so use raw insert 3281 */ 3282 if (op_is_flush(rq->cmd_flags)) 3283 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3284 else 3285 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3286 3287 depth++; 3288 } 3289 3290 /* 3291 * This drops the queue lock 3292 */ 3293 if (q) 3294 queue_unplugged(q, depth, from_schedule); 3295 3296 local_irq_restore(flags); 3297 } 3298 3299 void blk_finish_plug(struct blk_plug *plug) 3300 { 3301 if (plug != current->plug) 3302 return; 3303 blk_flush_plug_list(plug, false); 3304 3305 current->plug = NULL; 3306 } 3307 EXPORT_SYMBOL(blk_finish_plug); 3308 3309 #ifdef CONFIG_PM 3310 /** 3311 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3312 * @q: the queue of the device 3313 * @dev: the device the queue belongs to 3314 * 3315 * Description: 3316 * Initialize runtime-PM-related fields for @q and start auto suspend for 3317 * @dev. Drivers that want to take advantage of request-based runtime PM 3318 * should call this function after @dev has been initialized, and its 3319 * request queue @q has been allocated, and runtime PM for it can not happen 3320 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3321 * cases, driver should call this function before any I/O has taken place. 3322 * 3323 * This function takes care of setting up using auto suspend for the device, 3324 * the autosuspend delay is set to -1 to make runtime suspend impossible 3325 * until an updated value is either set by user or by driver. Drivers do 3326 * not need to touch other autosuspend settings. 3327 * 3328 * The block layer runtime PM is request based, so only works for drivers 3329 * that use request as their IO unit instead of those directly use bio's. 3330 */ 3331 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3332 { 3333 q->dev = dev; 3334 q->rpm_status = RPM_ACTIVE; 3335 pm_runtime_set_autosuspend_delay(q->dev, -1); 3336 pm_runtime_use_autosuspend(q->dev); 3337 } 3338 EXPORT_SYMBOL(blk_pm_runtime_init); 3339 3340 /** 3341 * blk_pre_runtime_suspend - Pre runtime suspend check 3342 * @q: the queue of the device 3343 * 3344 * Description: 3345 * This function will check if runtime suspend is allowed for the device 3346 * by examining if there are any requests pending in the queue. If there 3347 * are requests pending, the device can not be runtime suspended; otherwise, 3348 * the queue's status will be updated to SUSPENDING and the driver can 3349 * proceed to suspend the device. 3350 * 3351 * For the not allowed case, we mark last busy for the device so that 3352 * runtime PM core will try to autosuspend it some time later. 3353 * 3354 * This function should be called near the start of the device's 3355 * runtime_suspend callback. 3356 * 3357 * Return: 3358 * 0 - OK to runtime suspend the device 3359 * -EBUSY - Device should not be runtime suspended 3360 */ 3361 int blk_pre_runtime_suspend(struct request_queue *q) 3362 { 3363 int ret = 0; 3364 3365 if (!q->dev) 3366 return ret; 3367 3368 spin_lock_irq(q->queue_lock); 3369 if (q->nr_pending) { 3370 ret = -EBUSY; 3371 pm_runtime_mark_last_busy(q->dev); 3372 } else { 3373 q->rpm_status = RPM_SUSPENDING; 3374 } 3375 spin_unlock_irq(q->queue_lock); 3376 return ret; 3377 } 3378 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3379 3380 /** 3381 * blk_post_runtime_suspend - Post runtime suspend processing 3382 * @q: the queue of the device 3383 * @err: return value of the device's runtime_suspend function 3384 * 3385 * Description: 3386 * Update the queue's runtime status according to the return value of the 3387 * device's runtime suspend function and mark last busy for the device so 3388 * that PM core will try to auto suspend the device at a later time. 3389 * 3390 * This function should be called near the end of the device's 3391 * runtime_suspend callback. 3392 */ 3393 void blk_post_runtime_suspend(struct request_queue *q, int err) 3394 { 3395 if (!q->dev) 3396 return; 3397 3398 spin_lock_irq(q->queue_lock); 3399 if (!err) { 3400 q->rpm_status = RPM_SUSPENDED; 3401 } else { 3402 q->rpm_status = RPM_ACTIVE; 3403 pm_runtime_mark_last_busy(q->dev); 3404 } 3405 spin_unlock_irq(q->queue_lock); 3406 } 3407 EXPORT_SYMBOL(blk_post_runtime_suspend); 3408 3409 /** 3410 * blk_pre_runtime_resume - Pre runtime resume processing 3411 * @q: the queue of the device 3412 * 3413 * Description: 3414 * Update the queue's runtime status to RESUMING in preparation for the 3415 * runtime resume of the device. 3416 * 3417 * This function should be called near the start of the device's 3418 * runtime_resume callback. 3419 */ 3420 void blk_pre_runtime_resume(struct request_queue *q) 3421 { 3422 if (!q->dev) 3423 return; 3424 3425 spin_lock_irq(q->queue_lock); 3426 q->rpm_status = RPM_RESUMING; 3427 spin_unlock_irq(q->queue_lock); 3428 } 3429 EXPORT_SYMBOL(blk_pre_runtime_resume); 3430 3431 /** 3432 * blk_post_runtime_resume - Post runtime resume processing 3433 * @q: the queue of the device 3434 * @err: return value of the device's runtime_resume function 3435 * 3436 * Description: 3437 * Update the queue's runtime status according to the return value of the 3438 * device's runtime_resume function. If it is successfully resumed, process 3439 * the requests that are queued into the device's queue when it is resuming 3440 * and then mark last busy and initiate autosuspend for it. 3441 * 3442 * This function should be called near the end of the device's 3443 * runtime_resume callback. 3444 */ 3445 void blk_post_runtime_resume(struct request_queue *q, int err) 3446 { 3447 if (!q->dev) 3448 return; 3449 3450 spin_lock_irq(q->queue_lock); 3451 if (!err) { 3452 q->rpm_status = RPM_ACTIVE; 3453 __blk_run_queue(q); 3454 pm_runtime_mark_last_busy(q->dev); 3455 pm_request_autosuspend(q->dev); 3456 } else { 3457 q->rpm_status = RPM_SUSPENDED; 3458 } 3459 spin_unlock_irq(q->queue_lock); 3460 } 3461 EXPORT_SYMBOL(blk_post_runtime_resume); 3462 3463 /** 3464 * blk_set_runtime_active - Force runtime status of the queue to be active 3465 * @q: the queue of the device 3466 * 3467 * If the device is left runtime suspended during system suspend the resume 3468 * hook typically resumes the device and corrects runtime status 3469 * accordingly. However, that does not affect the queue runtime PM status 3470 * which is still "suspended". This prevents processing requests from the 3471 * queue. 3472 * 3473 * This function can be used in driver's resume hook to correct queue 3474 * runtime PM status and re-enable peeking requests from the queue. It 3475 * should be called before first request is added to the queue. 3476 */ 3477 void blk_set_runtime_active(struct request_queue *q) 3478 { 3479 spin_lock_irq(q->queue_lock); 3480 q->rpm_status = RPM_ACTIVE; 3481 pm_runtime_mark_last_busy(q->dev); 3482 pm_request_autosuspend(q->dev); 3483 spin_unlock_irq(q->queue_lock); 3484 } 3485 EXPORT_SYMBOL(blk_set_runtime_active); 3486 #endif 3487 3488 int __init blk_dev_init(void) 3489 { 3490 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3491 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3492 FIELD_SIZEOF(struct request, cmd_flags)); 3493 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3494 FIELD_SIZEOF(struct bio, bi_opf)); 3495 3496 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3497 kblockd_workqueue = alloc_workqueue("kblockd", 3498 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3499 if (!kblockd_workqueue) 3500 panic("Failed to create kblockd\n"); 3501 3502 request_cachep = kmem_cache_create("blkdev_requests", 3503 sizeof(struct request), 0, SLAB_PANIC, NULL); 3504 3505 blk_requestq_cachep = kmem_cache_create("request_queue", 3506 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3507 3508 #ifdef CONFIG_DEBUG_FS 3509 blk_debugfs_root = debugfs_create_dir("block", NULL); 3510 #endif 3511 3512 return 0; 3513 } 3514