1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 #include <linux/delay.h> 32 #include <linux/ratelimit.h> 33 #include <linux/pm_runtime.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/block.h> 37 38 #include "blk.h" 39 #include "blk-cgroup.h" 40 41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 45 46 DEFINE_IDA(blk_queue_ida); 47 48 /* 49 * For the allocated request tables 50 */ 51 static struct kmem_cache *request_cachep; 52 53 /* 54 * For queue allocation 55 */ 56 struct kmem_cache *blk_requestq_cachep; 57 58 /* 59 * Controlling structure to kblockd 60 */ 61 static struct workqueue_struct *kblockd_workqueue; 62 63 static void drive_stat_acct(struct request *rq, int new_io) 64 { 65 struct hd_struct *part; 66 int rw = rq_data_dir(rq); 67 int cpu; 68 69 if (!blk_do_io_stat(rq)) 70 return; 71 72 cpu = part_stat_lock(); 73 74 if (!new_io) { 75 part = rq->part; 76 part_stat_inc(cpu, part, merges[rw]); 77 } else { 78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 79 if (!hd_struct_try_get(part)) { 80 /* 81 * The partition is already being removed, 82 * the request will be accounted on the disk only 83 * 84 * We take a reference on disk->part0 although that 85 * partition will never be deleted, so we can treat 86 * it as any other partition. 87 */ 88 part = &rq->rq_disk->part0; 89 hd_struct_get(part); 90 } 91 part_round_stats(cpu, part); 92 part_inc_in_flight(part, rw); 93 rq->part = part; 94 } 95 96 part_stat_unlock(); 97 } 98 99 void blk_queue_congestion_threshold(struct request_queue *q) 100 { 101 int nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) + 1; 104 if (nr > q->nr_requests) 105 nr = q->nr_requests; 106 q->nr_congestion_on = nr; 107 108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 109 if (nr < 1) 110 nr = 1; 111 q->nr_congestion_off = nr; 112 } 113 114 /** 115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 116 * @bdev: device 117 * 118 * Locates the passed device's request queue and returns the address of its 119 * backing_dev_info 120 * 121 * Will return NULL if the request queue cannot be located. 122 */ 123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 124 { 125 struct backing_dev_info *ret = NULL; 126 struct request_queue *q = bdev_get_queue(bdev); 127 128 if (q) 129 ret = &q->backing_dev_info; 130 return ret; 131 } 132 EXPORT_SYMBOL(blk_get_backing_dev_info); 133 134 void blk_rq_init(struct request_queue *q, struct request *rq) 135 { 136 memset(rq, 0, sizeof(*rq)); 137 138 INIT_LIST_HEAD(&rq->queuelist); 139 INIT_LIST_HEAD(&rq->timeout_list); 140 rq->cpu = -1; 141 rq->q = q; 142 rq->__sector = (sector_t) -1; 143 INIT_HLIST_NODE(&rq->hash); 144 RB_CLEAR_NODE(&rq->rb_node); 145 rq->cmd = rq->__cmd; 146 rq->cmd_len = BLK_MAX_CDB; 147 rq->tag = -1; 148 rq->ref_count = 1; 149 rq->start_time = jiffies; 150 set_start_time_ns(rq); 151 rq->part = NULL; 152 } 153 EXPORT_SYMBOL(blk_rq_init); 154 155 static void req_bio_endio(struct request *rq, struct bio *bio, 156 unsigned int nbytes, int error) 157 { 158 if (error) 159 clear_bit(BIO_UPTODATE, &bio->bi_flags); 160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 161 error = -EIO; 162 163 if (unlikely(rq->cmd_flags & REQ_QUIET)) 164 set_bit(BIO_QUIET, &bio->bi_flags); 165 166 bio_advance(bio, nbytes); 167 168 /* don't actually finish bio if it's part of flush sequence */ 169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 170 bio_endio(bio, error); 171 } 172 173 void blk_dump_rq_flags(struct request *rq, char *msg) 174 { 175 int bit; 176 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 179 rq->cmd_flags); 180 181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 182 (unsigned long long)blk_rq_pos(rq), 183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 186 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 188 printk(KERN_INFO " cdb: "); 189 for (bit = 0; bit < BLK_MAX_CDB; bit++) 190 printk("%02x ", rq->cmd[bit]); 191 printk("\n"); 192 } 193 } 194 EXPORT_SYMBOL(blk_dump_rq_flags); 195 196 static void blk_delay_work(struct work_struct *work) 197 { 198 struct request_queue *q; 199 200 q = container_of(work, struct request_queue, delay_work.work); 201 spin_lock_irq(q->queue_lock); 202 __blk_run_queue(q); 203 spin_unlock_irq(q->queue_lock); 204 } 205 206 /** 207 * blk_delay_queue - restart queueing after defined interval 208 * @q: The &struct request_queue in question 209 * @msecs: Delay in msecs 210 * 211 * Description: 212 * Sometimes queueing needs to be postponed for a little while, to allow 213 * resources to come back. This function will make sure that queueing is 214 * restarted around the specified time. Queue lock must be held. 215 */ 216 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 217 { 218 if (likely(!blk_queue_dead(q))) 219 queue_delayed_work(kblockd_workqueue, &q->delay_work, 220 msecs_to_jiffies(msecs)); 221 } 222 EXPORT_SYMBOL(blk_delay_queue); 223 224 /** 225 * blk_start_queue - restart a previously stopped queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * blk_start_queue() will clear the stop flag on the queue, and call 230 * the request_fn for the queue if it was in a stopped state when 231 * entered. Also see blk_stop_queue(). Queue lock must be held. 232 **/ 233 void blk_start_queue(struct request_queue *q) 234 { 235 WARN_ON(!irqs_disabled()); 236 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 238 __blk_run_queue(q); 239 } 240 EXPORT_SYMBOL(blk_start_queue); 241 242 /** 243 * blk_stop_queue - stop a queue 244 * @q: The &struct request_queue in question 245 * 246 * Description: 247 * The Linux block layer assumes that a block driver will consume all 248 * entries on the request queue when the request_fn strategy is called. 249 * Often this will not happen, because of hardware limitations (queue 250 * depth settings). If a device driver gets a 'queue full' response, 251 * or if it simply chooses not to queue more I/O at one point, it can 252 * call this function to prevent the request_fn from being called until 253 * the driver has signalled it's ready to go again. This happens by calling 254 * blk_start_queue() to restart queue operations. Queue lock must be held. 255 **/ 256 void blk_stop_queue(struct request_queue *q) 257 { 258 cancel_delayed_work(&q->delay_work); 259 queue_flag_set(QUEUE_FLAG_STOPPED, q); 260 } 261 EXPORT_SYMBOL(blk_stop_queue); 262 263 /** 264 * blk_sync_queue - cancel any pending callbacks on a queue 265 * @q: the queue 266 * 267 * Description: 268 * The block layer may perform asynchronous callback activity 269 * on a queue, such as calling the unplug function after a timeout. 270 * A block device may call blk_sync_queue to ensure that any 271 * such activity is cancelled, thus allowing it to release resources 272 * that the callbacks might use. The caller must already have made sure 273 * that its ->make_request_fn will not re-add plugging prior to calling 274 * this function. 275 * 276 * This function does not cancel any asynchronous activity arising 277 * out of elevator or throttling code. That would require elevaotor_exit() 278 * and blkcg_exit_queue() to be called with queue lock initialized. 279 * 280 */ 281 void blk_sync_queue(struct request_queue *q) 282 { 283 del_timer_sync(&q->timeout); 284 cancel_delayed_work_sync(&q->delay_work); 285 } 286 EXPORT_SYMBOL(blk_sync_queue); 287 288 /** 289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 290 * @q: The queue to run 291 * 292 * Description: 293 * Invoke request handling on a queue if there are any pending requests. 294 * May be used to restart request handling after a request has completed. 295 * This variant runs the queue whether or not the queue has been 296 * stopped. Must be called with the queue lock held and interrupts 297 * disabled. See also @blk_run_queue. 298 */ 299 inline void __blk_run_queue_uncond(struct request_queue *q) 300 { 301 if (unlikely(blk_queue_dead(q))) 302 return; 303 304 /* 305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 306 * the queue lock internally. As a result multiple threads may be 307 * running such a request function concurrently. Keep track of the 308 * number of active request_fn invocations such that blk_drain_queue() 309 * can wait until all these request_fn calls have finished. 310 */ 311 q->request_fn_active++; 312 q->request_fn(q); 313 q->request_fn_active--; 314 } 315 316 /** 317 * __blk_run_queue - run a single device queue 318 * @q: The queue to run 319 * 320 * Description: 321 * See @blk_run_queue. This variant must be called with the queue lock 322 * held and interrupts disabled. 323 */ 324 void __blk_run_queue(struct request_queue *q) 325 { 326 if (unlikely(blk_queue_stopped(q))) 327 return; 328 329 __blk_run_queue_uncond(q); 330 } 331 EXPORT_SYMBOL(__blk_run_queue); 332 333 /** 334 * blk_run_queue_async - run a single device queue in workqueue context 335 * @q: The queue to run 336 * 337 * Description: 338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 339 * of us. The caller must hold the queue lock. 340 */ 341 void blk_run_queue_async(struct request_queue *q) 342 { 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 345 } 346 EXPORT_SYMBOL(blk_run_queue_async); 347 348 /** 349 * blk_run_queue - run a single device queue 350 * @q: The queue to run 351 * 352 * Description: 353 * Invoke request handling on this queue, if it has pending work to do. 354 * May be used to restart queueing when a request has completed. 355 */ 356 void blk_run_queue(struct request_queue *q) 357 { 358 unsigned long flags; 359 360 spin_lock_irqsave(q->queue_lock, flags); 361 __blk_run_queue(q); 362 spin_unlock_irqrestore(q->queue_lock, flags); 363 } 364 EXPORT_SYMBOL(blk_run_queue); 365 366 void blk_put_queue(struct request_queue *q) 367 { 368 kobject_put(&q->kobj); 369 } 370 EXPORT_SYMBOL(blk_put_queue); 371 372 /** 373 * __blk_drain_queue - drain requests from request_queue 374 * @q: queue to drain 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 376 * 377 * Drain requests from @q. If @drain_all is set, all requests are drained. 378 * If not, only ELVPRIV requests are drained. The caller is responsible 379 * for ensuring that no new requests which need to be drained are queued. 380 */ 381 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 382 __releases(q->queue_lock) 383 __acquires(q->queue_lock) 384 { 385 int i; 386 387 lockdep_assert_held(q->queue_lock); 388 389 while (true) { 390 bool drain = false; 391 392 /* 393 * The caller might be trying to drain @q before its 394 * elevator is initialized. 395 */ 396 if (q->elevator) 397 elv_drain_elevator(q); 398 399 blkcg_drain_queue(q); 400 401 /* 402 * This function might be called on a queue which failed 403 * driver init after queue creation or is not yet fully 404 * active yet. Some drivers (e.g. fd and loop) get unhappy 405 * in such cases. Kick queue iff dispatch queue has 406 * something on it and @q has request_fn set. 407 */ 408 if (!list_empty(&q->queue_head) && q->request_fn) 409 __blk_run_queue(q); 410 411 drain |= q->nr_rqs_elvpriv; 412 drain |= q->request_fn_active; 413 414 /* 415 * Unfortunately, requests are queued at and tracked from 416 * multiple places and there's no single counter which can 417 * be drained. Check all the queues and counters. 418 */ 419 if (drain_all) { 420 drain |= !list_empty(&q->queue_head); 421 for (i = 0; i < 2; i++) { 422 drain |= q->nr_rqs[i]; 423 drain |= q->in_flight[i]; 424 drain |= !list_empty(&q->flush_queue[i]); 425 } 426 } 427 428 if (!drain) 429 break; 430 431 spin_unlock_irq(q->queue_lock); 432 433 msleep(10); 434 435 spin_lock_irq(q->queue_lock); 436 } 437 438 /* 439 * With queue marked dead, any woken up waiter will fail the 440 * allocation path, so the wakeup chaining is lost and we're 441 * left with hung waiters. We need to wake up those waiters. 442 */ 443 if (q->request_fn) { 444 struct request_list *rl; 445 446 blk_queue_for_each_rl(rl, q) 447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 448 wake_up_all(&rl->wait[i]); 449 } 450 } 451 452 /** 453 * blk_queue_bypass_start - enter queue bypass mode 454 * @q: queue of interest 455 * 456 * In bypass mode, only the dispatch FIFO queue of @q is used. This 457 * function makes @q enter bypass mode and drains all requests which were 458 * throttled or issued before. On return, it's guaranteed that no request 459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 460 * inside queue or RCU read lock. 461 */ 462 void blk_queue_bypass_start(struct request_queue *q) 463 { 464 bool drain; 465 466 spin_lock_irq(q->queue_lock); 467 drain = !q->bypass_depth++; 468 queue_flag_set(QUEUE_FLAG_BYPASS, q); 469 spin_unlock_irq(q->queue_lock); 470 471 if (drain) { 472 spin_lock_irq(q->queue_lock); 473 __blk_drain_queue(q, false); 474 spin_unlock_irq(q->queue_lock); 475 476 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 477 synchronize_rcu(); 478 } 479 } 480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 481 482 /** 483 * blk_queue_bypass_end - leave queue bypass mode 484 * @q: queue of interest 485 * 486 * Leave bypass mode and restore the normal queueing behavior. 487 */ 488 void blk_queue_bypass_end(struct request_queue *q) 489 { 490 spin_lock_irq(q->queue_lock); 491 if (!--q->bypass_depth) 492 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 493 WARN_ON_ONCE(q->bypass_depth < 0); 494 spin_unlock_irq(q->queue_lock); 495 } 496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 497 498 /** 499 * blk_cleanup_queue - shutdown a request queue 500 * @q: request queue to shutdown 501 * 502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 503 * put it. All future requests will be failed immediately with -ENODEV. 504 */ 505 void blk_cleanup_queue(struct request_queue *q) 506 { 507 spinlock_t *lock = q->queue_lock; 508 509 /* mark @q DYING, no new request or merges will be allowed afterwards */ 510 mutex_lock(&q->sysfs_lock); 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 512 spin_lock_irq(lock); 513 514 /* 515 * A dying queue is permanently in bypass mode till released. Note 516 * that, unlike blk_queue_bypass_start(), we aren't performing 517 * synchronize_rcu() after entering bypass mode to avoid the delay 518 * as some drivers create and destroy a lot of queues while 519 * probing. This is still safe because blk_release_queue() will be 520 * called only after the queue refcnt drops to zero and nothing, 521 * RCU or not, would be traversing the queue by then. 522 */ 523 q->bypass_depth++; 524 queue_flag_set(QUEUE_FLAG_BYPASS, q); 525 526 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 528 queue_flag_set(QUEUE_FLAG_DYING, q); 529 spin_unlock_irq(lock); 530 mutex_unlock(&q->sysfs_lock); 531 532 /* 533 * Drain all requests queued before DYING marking. Set DEAD flag to 534 * prevent that q->request_fn() gets invoked after draining finished. 535 */ 536 spin_lock_irq(lock); 537 __blk_drain_queue(q, true); 538 queue_flag_set(QUEUE_FLAG_DEAD, q); 539 spin_unlock_irq(lock); 540 541 /* @q won't process any more request, flush async actions */ 542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 543 blk_sync_queue(q); 544 545 spin_lock_irq(lock); 546 if (q->queue_lock != &q->__queue_lock) 547 q->queue_lock = &q->__queue_lock; 548 spin_unlock_irq(lock); 549 550 /* @q is and will stay empty, shutdown and put */ 551 blk_put_queue(q); 552 } 553 EXPORT_SYMBOL(blk_cleanup_queue); 554 555 int blk_init_rl(struct request_list *rl, struct request_queue *q, 556 gfp_t gfp_mask) 557 { 558 if (unlikely(rl->rq_pool)) 559 return 0; 560 561 rl->q = q; 562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 566 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 568 mempool_free_slab, request_cachep, 569 gfp_mask, q->node); 570 if (!rl->rq_pool) 571 return -ENOMEM; 572 573 return 0; 574 } 575 576 void blk_exit_rl(struct request_list *rl) 577 { 578 if (rl->rq_pool) 579 mempool_destroy(rl->rq_pool); 580 } 581 582 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 583 { 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 585 } 586 EXPORT_SYMBOL(blk_alloc_queue); 587 588 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 589 { 590 struct request_queue *q; 591 int err; 592 593 q = kmem_cache_alloc_node(blk_requestq_cachep, 594 gfp_mask | __GFP_ZERO, node_id); 595 if (!q) 596 return NULL; 597 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 599 if (q->id < 0) 600 goto fail_q; 601 602 q->backing_dev_info.ra_pages = 603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 604 q->backing_dev_info.state = 0; 605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 606 q->backing_dev_info.name = "block"; 607 q->node = node_id; 608 609 err = bdi_init(&q->backing_dev_info); 610 if (err) 611 goto fail_id; 612 613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 614 laptop_mode_timer_fn, (unsigned long) q); 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 616 INIT_LIST_HEAD(&q->queue_head); 617 INIT_LIST_HEAD(&q->timeout_list); 618 INIT_LIST_HEAD(&q->icq_list); 619 #ifdef CONFIG_BLK_CGROUP 620 INIT_LIST_HEAD(&q->blkg_list); 621 #endif 622 INIT_LIST_HEAD(&q->flush_queue[0]); 623 INIT_LIST_HEAD(&q->flush_queue[1]); 624 INIT_LIST_HEAD(&q->flush_data_in_flight); 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 626 627 kobject_init(&q->kobj, &blk_queue_ktype); 628 629 mutex_init(&q->sysfs_lock); 630 spin_lock_init(&q->__queue_lock); 631 632 /* 633 * By default initialize queue_lock to internal lock and driver can 634 * override it later if need be. 635 */ 636 q->queue_lock = &q->__queue_lock; 637 638 /* 639 * A queue starts its life with bypass turned on to avoid 640 * unnecessary bypass on/off overhead and nasty surprises during 641 * init. The initial bypass will be finished when the queue is 642 * registered by blk_register_queue(). 643 */ 644 q->bypass_depth = 1; 645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 646 647 if (blkcg_init_queue(q)) 648 goto fail_id; 649 650 return q; 651 652 fail_id: 653 ida_simple_remove(&blk_queue_ida, q->id); 654 fail_q: 655 kmem_cache_free(blk_requestq_cachep, q); 656 return NULL; 657 } 658 EXPORT_SYMBOL(blk_alloc_queue_node); 659 660 /** 661 * blk_init_queue - prepare a request queue for use with a block device 662 * @rfn: The function to be called to process requests that have been 663 * placed on the queue. 664 * @lock: Request queue spin lock 665 * 666 * Description: 667 * If a block device wishes to use the standard request handling procedures, 668 * which sorts requests and coalesces adjacent requests, then it must 669 * call blk_init_queue(). The function @rfn will be called when there 670 * are requests on the queue that need to be processed. If the device 671 * supports plugging, then @rfn may not be called immediately when requests 672 * are available on the queue, but may be called at some time later instead. 673 * Plugged queues are generally unplugged when a buffer belonging to one 674 * of the requests on the queue is needed, or due to memory pressure. 675 * 676 * @rfn is not required, or even expected, to remove all requests off the 677 * queue, but only as many as it can handle at a time. If it does leave 678 * requests on the queue, it is responsible for arranging that the requests 679 * get dealt with eventually. 680 * 681 * The queue spin lock must be held while manipulating the requests on the 682 * request queue; this lock will be taken also from interrupt context, so irq 683 * disabling is needed for it. 684 * 685 * Function returns a pointer to the initialized request queue, or %NULL if 686 * it didn't succeed. 687 * 688 * Note: 689 * blk_init_queue() must be paired with a blk_cleanup_queue() call 690 * when the block device is deactivated (such as at module unload). 691 **/ 692 693 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 694 { 695 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 696 } 697 EXPORT_SYMBOL(blk_init_queue); 698 699 struct request_queue * 700 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 701 { 702 struct request_queue *uninit_q, *q; 703 704 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 705 if (!uninit_q) 706 return NULL; 707 708 q = blk_init_allocated_queue(uninit_q, rfn, lock); 709 if (!q) 710 blk_cleanup_queue(uninit_q); 711 712 return q; 713 } 714 EXPORT_SYMBOL(blk_init_queue_node); 715 716 struct request_queue * 717 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 718 spinlock_t *lock) 719 { 720 if (!q) 721 return NULL; 722 723 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 724 return NULL; 725 726 q->request_fn = rfn; 727 q->prep_rq_fn = NULL; 728 q->unprep_rq_fn = NULL; 729 q->queue_flags |= QUEUE_FLAG_DEFAULT; 730 731 /* Override internal queue lock with supplied lock pointer */ 732 if (lock) 733 q->queue_lock = lock; 734 735 /* 736 * This also sets hw/phys segments, boundary and size 737 */ 738 blk_queue_make_request(q, blk_queue_bio); 739 740 q->sg_reserved_size = INT_MAX; 741 742 /* init elevator */ 743 if (elevator_init(q, NULL)) 744 return NULL; 745 return q; 746 } 747 EXPORT_SYMBOL(blk_init_allocated_queue); 748 749 bool blk_get_queue(struct request_queue *q) 750 { 751 if (likely(!blk_queue_dying(q))) { 752 __blk_get_queue(q); 753 return true; 754 } 755 756 return false; 757 } 758 EXPORT_SYMBOL(blk_get_queue); 759 760 static inline void blk_free_request(struct request_list *rl, struct request *rq) 761 { 762 if (rq->cmd_flags & REQ_ELVPRIV) { 763 elv_put_request(rl->q, rq); 764 if (rq->elv.icq) 765 put_io_context(rq->elv.icq->ioc); 766 } 767 768 mempool_free(rq, rl->rq_pool); 769 } 770 771 /* 772 * ioc_batching returns true if the ioc is a valid batching request and 773 * should be given priority access to a request. 774 */ 775 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 776 { 777 if (!ioc) 778 return 0; 779 780 /* 781 * Make sure the process is able to allocate at least 1 request 782 * even if the batch times out, otherwise we could theoretically 783 * lose wakeups. 784 */ 785 return ioc->nr_batch_requests == q->nr_batching || 786 (ioc->nr_batch_requests > 0 787 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 788 } 789 790 /* 791 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 792 * will cause the process to be a "batcher" on all queues in the system. This 793 * is the behaviour we want though - once it gets a wakeup it should be given 794 * a nice run. 795 */ 796 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 797 { 798 if (!ioc || ioc_batching(q, ioc)) 799 return; 800 801 ioc->nr_batch_requests = q->nr_batching; 802 ioc->last_waited = jiffies; 803 } 804 805 static void __freed_request(struct request_list *rl, int sync) 806 { 807 struct request_queue *q = rl->q; 808 809 /* 810 * bdi isn't aware of blkcg yet. As all async IOs end up root 811 * blkcg anyway, just use root blkcg state. 812 */ 813 if (rl == &q->root_rl && 814 rl->count[sync] < queue_congestion_off_threshold(q)) 815 blk_clear_queue_congested(q, sync); 816 817 if (rl->count[sync] + 1 <= q->nr_requests) { 818 if (waitqueue_active(&rl->wait[sync])) 819 wake_up(&rl->wait[sync]); 820 821 blk_clear_rl_full(rl, sync); 822 } 823 } 824 825 /* 826 * A request has just been released. Account for it, update the full and 827 * congestion status, wake up any waiters. Called under q->queue_lock. 828 */ 829 static void freed_request(struct request_list *rl, unsigned int flags) 830 { 831 struct request_queue *q = rl->q; 832 int sync = rw_is_sync(flags); 833 834 q->nr_rqs[sync]--; 835 rl->count[sync]--; 836 if (flags & REQ_ELVPRIV) 837 q->nr_rqs_elvpriv--; 838 839 __freed_request(rl, sync); 840 841 if (unlikely(rl->starved[sync ^ 1])) 842 __freed_request(rl, sync ^ 1); 843 } 844 845 /* 846 * Determine if elevator data should be initialized when allocating the 847 * request associated with @bio. 848 */ 849 static bool blk_rq_should_init_elevator(struct bio *bio) 850 { 851 if (!bio) 852 return true; 853 854 /* 855 * Flush requests do not use the elevator so skip initialization. 856 * This allows a request to share the flush and elevator data. 857 */ 858 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 859 return false; 860 861 return true; 862 } 863 864 /** 865 * rq_ioc - determine io_context for request allocation 866 * @bio: request being allocated is for this bio (can be %NULL) 867 * 868 * Determine io_context to use for request allocation for @bio. May return 869 * %NULL if %current->io_context doesn't exist. 870 */ 871 static struct io_context *rq_ioc(struct bio *bio) 872 { 873 #ifdef CONFIG_BLK_CGROUP 874 if (bio && bio->bi_ioc) 875 return bio->bi_ioc; 876 #endif 877 return current->io_context; 878 } 879 880 /** 881 * __get_request - get a free request 882 * @rl: request list to allocate from 883 * @rw_flags: RW and SYNC flags 884 * @bio: bio to allocate request for (can be %NULL) 885 * @gfp_mask: allocation mask 886 * 887 * Get a free request from @q. This function may fail under memory 888 * pressure or if @q is dead. 889 * 890 * Must be callled with @q->queue_lock held and, 891 * Returns %NULL on failure, with @q->queue_lock held. 892 * Returns !%NULL on success, with @q->queue_lock *not held*. 893 */ 894 static struct request *__get_request(struct request_list *rl, int rw_flags, 895 struct bio *bio, gfp_t gfp_mask) 896 { 897 struct request_queue *q = rl->q; 898 struct request *rq; 899 struct elevator_type *et = q->elevator->type; 900 struct io_context *ioc = rq_ioc(bio); 901 struct io_cq *icq = NULL; 902 const bool is_sync = rw_is_sync(rw_flags) != 0; 903 int may_queue; 904 905 if (unlikely(blk_queue_dying(q))) 906 return NULL; 907 908 may_queue = elv_may_queue(q, rw_flags); 909 if (may_queue == ELV_MQUEUE_NO) 910 goto rq_starved; 911 912 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 913 if (rl->count[is_sync]+1 >= q->nr_requests) { 914 /* 915 * The queue will fill after this allocation, so set 916 * it as full, and mark this process as "batching". 917 * This process will be allowed to complete a batch of 918 * requests, others will be blocked. 919 */ 920 if (!blk_rl_full(rl, is_sync)) { 921 ioc_set_batching(q, ioc); 922 blk_set_rl_full(rl, is_sync); 923 } else { 924 if (may_queue != ELV_MQUEUE_MUST 925 && !ioc_batching(q, ioc)) { 926 /* 927 * The queue is full and the allocating 928 * process is not a "batcher", and not 929 * exempted by the IO scheduler 930 */ 931 return NULL; 932 } 933 } 934 } 935 /* 936 * bdi isn't aware of blkcg yet. As all async IOs end up 937 * root blkcg anyway, just use root blkcg state. 938 */ 939 if (rl == &q->root_rl) 940 blk_set_queue_congested(q, is_sync); 941 } 942 943 /* 944 * Only allow batching queuers to allocate up to 50% over the defined 945 * limit of requests, otherwise we could have thousands of requests 946 * allocated with any setting of ->nr_requests 947 */ 948 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 949 return NULL; 950 951 q->nr_rqs[is_sync]++; 952 rl->count[is_sync]++; 953 rl->starved[is_sync] = 0; 954 955 /* 956 * Decide whether the new request will be managed by elevator. If 957 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 958 * prevent the current elevator from being destroyed until the new 959 * request is freed. This guarantees icq's won't be destroyed and 960 * makes creating new ones safe. 961 * 962 * Also, lookup icq while holding queue_lock. If it doesn't exist, 963 * it will be created after releasing queue_lock. 964 */ 965 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 966 rw_flags |= REQ_ELVPRIV; 967 q->nr_rqs_elvpriv++; 968 if (et->icq_cache && ioc) 969 icq = ioc_lookup_icq(ioc, q); 970 } 971 972 if (blk_queue_io_stat(q)) 973 rw_flags |= REQ_IO_STAT; 974 spin_unlock_irq(q->queue_lock); 975 976 /* allocate and init request */ 977 rq = mempool_alloc(rl->rq_pool, gfp_mask); 978 if (!rq) 979 goto fail_alloc; 980 981 blk_rq_init(q, rq); 982 blk_rq_set_rl(rq, rl); 983 rq->cmd_flags = rw_flags | REQ_ALLOCED; 984 985 /* init elvpriv */ 986 if (rw_flags & REQ_ELVPRIV) { 987 if (unlikely(et->icq_cache && !icq)) { 988 if (ioc) 989 icq = ioc_create_icq(ioc, q, gfp_mask); 990 if (!icq) 991 goto fail_elvpriv; 992 } 993 994 rq->elv.icq = icq; 995 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 996 goto fail_elvpriv; 997 998 /* @rq->elv.icq holds io_context until @rq is freed */ 999 if (icq) 1000 get_io_context(icq->ioc); 1001 } 1002 out: 1003 /* 1004 * ioc may be NULL here, and ioc_batching will be false. That's 1005 * OK, if the queue is under the request limit then requests need 1006 * not count toward the nr_batch_requests limit. There will always 1007 * be some limit enforced by BLK_BATCH_TIME. 1008 */ 1009 if (ioc_batching(q, ioc)) 1010 ioc->nr_batch_requests--; 1011 1012 trace_block_getrq(q, bio, rw_flags & 1); 1013 return rq; 1014 1015 fail_elvpriv: 1016 /* 1017 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1018 * and may fail indefinitely under memory pressure and thus 1019 * shouldn't stall IO. Treat this request as !elvpriv. This will 1020 * disturb iosched and blkcg but weird is bettern than dead. 1021 */ 1022 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1023 dev_name(q->backing_dev_info.dev)); 1024 1025 rq->cmd_flags &= ~REQ_ELVPRIV; 1026 rq->elv.icq = NULL; 1027 1028 spin_lock_irq(q->queue_lock); 1029 q->nr_rqs_elvpriv--; 1030 spin_unlock_irq(q->queue_lock); 1031 goto out; 1032 1033 fail_alloc: 1034 /* 1035 * Allocation failed presumably due to memory. Undo anything we 1036 * might have messed up. 1037 * 1038 * Allocating task should really be put onto the front of the wait 1039 * queue, but this is pretty rare. 1040 */ 1041 spin_lock_irq(q->queue_lock); 1042 freed_request(rl, rw_flags); 1043 1044 /* 1045 * in the very unlikely event that allocation failed and no 1046 * requests for this direction was pending, mark us starved so that 1047 * freeing of a request in the other direction will notice 1048 * us. another possible fix would be to split the rq mempool into 1049 * READ and WRITE 1050 */ 1051 rq_starved: 1052 if (unlikely(rl->count[is_sync] == 0)) 1053 rl->starved[is_sync] = 1; 1054 return NULL; 1055 } 1056 1057 /** 1058 * get_request - get a free request 1059 * @q: request_queue to allocate request from 1060 * @rw_flags: RW and SYNC flags 1061 * @bio: bio to allocate request for (can be %NULL) 1062 * @gfp_mask: allocation mask 1063 * 1064 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1065 * function keeps retrying under memory pressure and fails iff @q is dead. 1066 * 1067 * Must be callled with @q->queue_lock held and, 1068 * Returns %NULL on failure, with @q->queue_lock held. 1069 * Returns !%NULL on success, with @q->queue_lock *not held*. 1070 */ 1071 static struct request *get_request(struct request_queue *q, int rw_flags, 1072 struct bio *bio, gfp_t gfp_mask) 1073 { 1074 const bool is_sync = rw_is_sync(rw_flags) != 0; 1075 DEFINE_WAIT(wait); 1076 struct request_list *rl; 1077 struct request *rq; 1078 1079 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1080 retry: 1081 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1082 if (rq) 1083 return rq; 1084 1085 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1086 blk_put_rl(rl); 1087 return NULL; 1088 } 1089 1090 /* wait on @rl and retry */ 1091 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1092 TASK_UNINTERRUPTIBLE); 1093 1094 trace_block_sleeprq(q, bio, rw_flags & 1); 1095 1096 spin_unlock_irq(q->queue_lock); 1097 io_schedule(); 1098 1099 /* 1100 * After sleeping, we become a "batching" process and will be able 1101 * to allocate at least one request, and up to a big batch of them 1102 * for a small period time. See ioc_batching, ioc_set_batching 1103 */ 1104 ioc_set_batching(q, current->io_context); 1105 1106 spin_lock_irq(q->queue_lock); 1107 finish_wait(&rl->wait[is_sync], &wait); 1108 1109 goto retry; 1110 } 1111 1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1113 { 1114 struct request *rq; 1115 1116 BUG_ON(rw != READ && rw != WRITE); 1117 1118 /* create ioc upfront */ 1119 create_io_context(gfp_mask, q->node); 1120 1121 spin_lock_irq(q->queue_lock); 1122 rq = get_request(q, rw, NULL, gfp_mask); 1123 if (!rq) 1124 spin_unlock_irq(q->queue_lock); 1125 /* q->queue_lock is unlocked at this point */ 1126 1127 return rq; 1128 } 1129 EXPORT_SYMBOL(blk_get_request); 1130 1131 /** 1132 * blk_make_request - given a bio, allocate a corresponding struct request. 1133 * @q: target request queue 1134 * @bio: The bio describing the memory mappings that will be submitted for IO. 1135 * It may be a chained-bio properly constructed by block/bio layer. 1136 * @gfp_mask: gfp flags to be used for memory allocation 1137 * 1138 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1139 * type commands. Where the struct request needs to be farther initialized by 1140 * the caller. It is passed a &struct bio, which describes the memory info of 1141 * the I/O transfer. 1142 * 1143 * The caller of blk_make_request must make sure that bi_io_vec 1144 * are set to describe the memory buffers. That bio_data_dir() will return 1145 * the needed direction of the request. (And all bio's in the passed bio-chain 1146 * are properly set accordingly) 1147 * 1148 * If called under none-sleepable conditions, mapped bio buffers must not 1149 * need bouncing, by calling the appropriate masked or flagged allocator, 1150 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1151 * BUG. 1152 * 1153 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1154 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1155 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1156 * completion of a bio that hasn't been submitted yet, thus resulting in a 1157 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1158 * of bio_alloc(), as that avoids the mempool deadlock. 1159 * If possible a big IO should be split into smaller parts when allocation 1160 * fails. Partial allocation should not be an error, or you risk a live-lock. 1161 */ 1162 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1163 gfp_t gfp_mask) 1164 { 1165 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1166 1167 if (unlikely(!rq)) 1168 return ERR_PTR(-ENOMEM); 1169 1170 for_each_bio(bio) { 1171 struct bio *bounce_bio = bio; 1172 int ret; 1173 1174 blk_queue_bounce(q, &bounce_bio); 1175 ret = blk_rq_append_bio(q, rq, bounce_bio); 1176 if (unlikely(ret)) { 1177 blk_put_request(rq); 1178 return ERR_PTR(ret); 1179 } 1180 } 1181 1182 return rq; 1183 } 1184 EXPORT_SYMBOL(blk_make_request); 1185 1186 /** 1187 * blk_requeue_request - put a request back on queue 1188 * @q: request queue where request should be inserted 1189 * @rq: request to be inserted 1190 * 1191 * Description: 1192 * Drivers often keep queueing requests until the hardware cannot accept 1193 * more, when that condition happens we need to put the request back 1194 * on the queue. Must be called with queue lock held. 1195 */ 1196 void blk_requeue_request(struct request_queue *q, struct request *rq) 1197 { 1198 blk_delete_timer(rq); 1199 blk_clear_rq_complete(rq); 1200 trace_block_rq_requeue(q, rq); 1201 1202 if (blk_rq_tagged(rq)) 1203 blk_queue_end_tag(q, rq); 1204 1205 BUG_ON(blk_queued_rq(rq)); 1206 1207 elv_requeue_request(q, rq); 1208 } 1209 EXPORT_SYMBOL(blk_requeue_request); 1210 1211 static void add_acct_request(struct request_queue *q, struct request *rq, 1212 int where) 1213 { 1214 drive_stat_acct(rq, 1); 1215 __elv_add_request(q, rq, where); 1216 } 1217 1218 static void part_round_stats_single(int cpu, struct hd_struct *part, 1219 unsigned long now) 1220 { 1221 if (now == part->stamp) 1222 return; 1223 1224 if (part_in_flight(part)) { 1225 __part_stat_add(cpu, part, time_in_queue, 1226 part_in_flight(part) * (now - part->stamp)); 1227 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1228 } 1229 part->stamp = now; 1230 } 1231 1232 /** 1233 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1234 * @cpu: cpu number for stats access 1235 * @part: target partition 1236 * 1237 * The average IO queue length and utilisation statistics are maintained 1238 * by observing the current state of the queue length and the amount of 1239 * time it has been in this state for. 1240 * 1241 * Normally, that accounting is done on IO completion, but that can result 1242 * in more than a second's worth of IO being accounted for within any one 1243 * second, leading to >100% utilisation. To deal with that, we call this 1244 * function to do a round-off before returning the results when reading 1245 * /proc/diskstats. This accounts immediately for all queue usage up to 1246 * the current jiffies and restarts the counters again. 1247 */ 1248 void part_round_stats(int cpu, struct hd_struct *part) 1249 { 1250 unsigned long now = jiffies; 1251 1252 if (part->partno) 1253 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1254 part_round_stats_single(cpu, part, now); 1255 } 1256 EXPORT_SYMBOL_GPL(part_round_stats); 1257 1258 #ifdef CONFIG_PM_RUNTIME 1259 static void blk_pm_put_request(struct request *rq) 1260 { 1261 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1262 pm_runtime_mark_last_busy(rq->q->dev); 1263 } 1264 #else 1265 static inline void blk_pm_put_request(struct request *rq) {} 1266 #endif 1267 1268 /* 1269 * queue lock must be held 1270 */ 1271 void __blk_put_request(struct request_queue *q, struct request *req) 1272 { 1273 if (unlikely(!q)) 1274 return; 1275 if (unlikely(--req->ref_count)) 1276 return; 1277 1278 blk_pm_put_request(req); 1279 1280 elv_completed_request(q, req); 1281 1282 /* this is a bio leak */ 1283 WARN_ON(req->bio != NULL); 1284 1285 /* 1286 * Request may not have originated from ll_rw_blk. if not, 1287 * it didn't come out of our reserved rq pools 1288 */ 1289 if (req->cmd_flags & REQ_ALLOCED) { 1290 unsigned int flags = req->cmd_flags; 1291 struct request_list *rl = blk_rq_rl(req); 1292 1293 BUG_ON(!list_empty(&req->queuelist)); 1294 BUG_ON(!hlist_unhashed(&req->hash)); 1295 1296 blk_free_request(rl, req); 1297 freed_request(rl, flags); 1298 blk_put_rl(rl); 1299 } 1300 } 1301 EXPORT_SYMBOL_GPL(__blk_put_request); 1302 1303 void blk_put_request(struct request *req) 1304 { 1305 unsigned long flags; 1306 struct request_queue *q = req->q; 1307 1308 spin_lock_irqsave(q->queue_lock, flags); 1309 __blk_put_request(q, req); 1310 spin_unlock_irqrestore(q->queue_lock, flags); 1311 } 1312 EXPORT_SYMBOL(blk_put_request); 1313 1314 /** 1315 * blk_add_request_payload - add a payload to a request 1316 * @rq: request to update 1317 * @page: page backing the payload 1318 * @len: length of the payload. 1319 * 1320 * This allows to later add a payload to an already submitted request by 1321 * a block driver. The driver needs to take care of freeing the payload 1322 * itself. 1323 * 1324 * Note that this is a quite horrible hack and nothing but handling of 1325 * discard requests should ever use it. 1326 */ 1327 void blk_add_request_payload(struct request *rq, struct page *page, 1328 unsigned int len) 1329 { 1330 struct bio *bio = rq->bio; 1331 1332 bio->bi_io_vec->bv_page = page; 1333 bio->bi_io_vec->bv_offset = 0; 1334 bio->bi_io_vec->bv_len = len; 1335 1336 bio->bi_size = len; 1337 bio->bi_vcnt = 1; 1338 bio->bi_phys_segments = 1; 1339 1340 rq->__data_len = rq->resid_len = len; 1341 rq->nr_phys_segments = 1; 1342 rq->buffer = bio_data(bio); 1343 } 1344 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1345 1346 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1347 struct bio *bio) 1348 { 1349 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1350 1351 if (!ll_back_merge_fn(q, req, bio)) 1352 return false; 1353 1354 trace_block_bio_backmerge(q, req, bio); 1355 1356 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1357 blk_rq_set_mixed_merge(req); 1358 1359 req->biotail->bi_next = bio; 1360 req->biotail = bio; 1361 req->__data_len += bio->bi_size; 1362 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1363 1364 drive_stat_acct(req, 0); 1365 return true; 1366 } 1367 1368 static bool bio_attempt_front_merge(struct request_queue *q, 1369 struct request *req, struct bio *bio) 1370 { 1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1372 1373 if (!ll_front_merge_fn(q, req, bio)) 1374 return false; 1375 1376 trace_block_bio_frontmerge(q, req, bio); 1377 1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1379 blk_rq_set_mixed_merge(req); 1380 1381 bio->bi_next = req->bio; 1382 req->bio = bio; 1383 1384 /* 1385 * may not be valid. if the low level driver said 1386 * it didn't need a bounce buffer then it better 1387 * not touch req->buffer either... 1388 */ 1389 req->buffer = bio_data(bio); 1390 req->__sector = bio->bi_sector; 1391 req->__data_len += bio->bi_size; 1392 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1393 1394 drive_stat_acct(req, 0); 1395 return true; 1396 } 1397 1398 /** 1399 * attempt_plug_merge - try to merge with %current's plugged list 1400 * @q: request_queue new bio is being queued at 1401 * @bio: new bio being queued 1402 * @request_count: out parameter for number of traversed plugged requests 1403 * 1404 * Determine whether @bio being queued on @q can be merged with a request 1405 * on %current's plugged list. Returns %true if merge was successful, 1406 * otherwise %false. 1407 * 1408 * Plugging coalesces IOs from the same issuer for the same purpose without 1409 * going through @q->queue_lock. As such it's more of an issuing mechanism 1410 * than scheduling, and the request, while may have elvpriv data, is not 1411 * added on the elevator at this point. In addition, we don't have 1412 * reliable access to the elevator outside queue lock. Only check basic 1413 * merging parameters without querying the elevator. 1414 */ 1415 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio, 1416 unsigned int *request_count) 1417 { 1418 struct blk_plug *plug; 1419 struct request *rq; 1420 bool ret = false; 1421 1422 plug = current->plug; 1423 if (!plug) 1424 goto out; 1425 *request_count = 0; 1426 1427 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1428 int el_ret; 1429 1430 if (rq->q == q) 1431 (*request_count)++; 1432 1433 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1434 continue; 1435 1436 el_ret = blk_try_merge(rq, bio); 1437 if (el_ret == ELEVATOR_BACK_MERGE) { 1438 ret = bio_attempt_back_merge(q, rq, bio); 1439 if (ret) 1440 break; 1441 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1442 ret = bio_attempt_front_merge(q, rq, bio); 1443 if (ret) 1444 break; 1445 } 1446 } 1447 out: 1448 return ret; 1449 } 1450 1451 void init_request_from_bio(struct request *req, struct bio *bio) 1452 { 1453 req->cmd_type = REQ_TYPE_FS; 1454 1455 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1456 if (bio->bi_rw & REQ_RAHEAD) 1457 req->cmd_flags |= REQ_FAILFAST_MASK; 1458 1459 req->errors = 0; 1460 req->__sector = bio->bi_sector; 1461 req->ioprio = bio_prio(bio); 1462 blk_rq_bio_prep(req->q, req, bio); 1463 } 1464 1465 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1466 { 1467 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1468 struct blk_plug *plug; 1469 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1470 struct request *req; 1471 unsigned int request_count = 0; 1472 1473 /* 1474 * low level driver can indicate that it wants pages above a 1475 * certain limit bounced to low memory (ie for highmem, or even 1476 * ISA dma in theory) 1477 */ 1478 blk_queue_bounce(q, &bio); 1479 1480 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1481 bio_endio(bio, -EIO); 1482 return; 1483 } 1484 1485 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1486 spin_lock_irq(q->queue_lock); 1487 where = ELEVATOR_INSERT_FLUSH; 1488 goto get_rq; 1489 } 1490 1491 /* 1492 * Check if we can merge with the plugged list before grabbing 1493 * any locks. 1494 */ 1495 if (attempt_plug_merge(q, bio, &request_count)) 1496 return; 1497 1498 spin_lock_irq(q->queue_lock); 1499 1500 el_ret = elv_merge(q, &req, bio); 1501 if (el_ret == ELEVATOR_BACK_MERGE) { 1502 if (bio_attempt_back_merge(q, req, bio)) { 1503 elv_bio_merged(q, req, bio); 1504 if (!attempt_back_merge(q, req)) 1505 elv_merged_request(q, req, el_ret); 1506 goto out_unlock; 1507 } 1508 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1509 if (bio_attempt_front_merge(q, req, bio)) { 1510 elv_bio_merged(q, req, bio); 1511 if (!attempt_front_merge(q, req)) 1512 elv_merged_request(q, req, el_ret); 1513 goto out_unlock; 1514 } 1515 } 1516 1517 get_rq: 1518 /* 1519 * This sync check and mask will be re-done in init_request_from_bio(), 1520 * but we need to set it earlier to expose the sync flag to the 1521 * rq allocator and io schedulers. 1522 */ 1523 rw_flags = bio_data_dir(bio); 1524 if (sync) 1525 rw_flags |= REQ_SYNC; 1526 1527 /* 1528 * Grab a free request. This is might sleep but can not fail. 1529 * Returns with the queue unlocked. 1530 */ 1531 req = get_request(q, rw_flags, bio, GFP_NOIO); 1532 if (unlikely(!req)) { 1533 bio_endio(bio, -ENODEV); /* @q is dead */ 1534 goto out_unlock; 1535 } 1536 1537 /* 1538 * After dropping the lock and possibly sleeping here, our request 1539 * may now be mergeable after it had proven unmergeable (above). 1540 * We don't worry about that case for efficiency. It won't happen 1541 * often, and the elevators are able to handle it. 1542 */ 1543 init_request_from_bio(req, bio); 1544 1545 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1546 req->cpu = raw_smp_processor_id(); 1547 1548 plug = current->plug; 1549 if (plug) { 1550 /* 1551 * If this is the first request added after a plug, fire 1552 * of a plug trace. 1553 */ 1554 if (!request_count) 1555 trace_block_plug(q); 1556 else { 1557 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1558 blk_flush_plug_list(plug, false); 1559 trace_block_plug(q); 1560 } 1561 } 1562 list_add_tail(&req->queuelist, &plug->list); 1563 drive_stat_acct(req, 1); 1564 } else { 1565 spin_lock_irq(q->queue_lock); 1566 add_acct_request(q, req, where); 1567 __blk_run_queue(q); 1568 out_unlock: 1569 spin_unlock_irq(q->queue_lock); 1570 } 1571 } 1572 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1573 1574 /* 1575 * If bio->bi_dev is a partition, remap the location 1576 */ 1577 static inline void blk_partition_remap(struct bio *bio) 1578 { 1579 struct block_device *bdev = bio->bi_bdev; 1580 1581 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1582 struct hd_struct *p = bdev->bd_part; 1583 1584 bio->bi_sector += p->start_sect; 1585 bio->bi_bdev = bdev->bd_contains; 1586 1587 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1588 bdev->bd_dev, 1589 bio->bi_sector - p->start_sect); 1590 } 1591 } 1592 1593 static void handle_bad_sector(struct bio *bio) 1594 { 1595 char b[BDEVNAME_SIZE]; 1596 1597 printk(KERN_INFO "attempt to access beyond end of device\n"); 1598 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1599 bdevname(bio->bi_bdev, b), 1600 bio->bi_rw, 1601 (unsigned long long)bio_end_sector(bio), 1602 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1603 1604 set_bit(BIO_EOF, &bio->bi_flags); 1605 } 1606 1607 #ifdef CONFIG_FAIL_MAKE_REQUEST 1608 1609 static DECLARE_FAULT_ATTR(fail_make_request); 1610 1611 static int __init setup_fail_make_request(char *str) 1612 { 1613 return setup_fault_attr(&fail_make_request, str); 1614 } 1615 __setup("fail_make_request=", setup_fail_make_request); 1616 1617 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1618 { 1619 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1620 } 1621 1622 static int __init fail_make_request_debugfs(void) 1623 { 1624 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1625 NULL, &fail_make_request); 1626 1627 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1628 } 1629 1630 late_initcall(fail_make_request_debugfs); 1631 1632 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1633 1634 static inline bool should_fail_request(struct hd_struct *part, 1635 unsigned int bytes) 1636 { 1637 return false; 1638 } 1639 1640 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1641 1642 /* 1643 * Check whether this bio extends beyond the end of the device. 1644 */ 1645 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1646 { 1647 sector_t maxsector; 1648 1649 if (!nr_sectors) 1650 return 0; 1651 1652 /* Test device or partition size, when known. */ 1653 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1654 if (maxsector) { 1655 sector_t sector = bio->bi_sector; 1656 1657 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1658 /* 1659 * This may well happen - the kernel calls bread() 1660 * without checking the size of the device, e.g., when 1661 * mounting a device. 1662 */ 1663 handle_bad_sector(bio); 1664 return 1; 1665 } 1666 } 1667 1668 return 0; 1669 } 1670 1671 static noinline_for_stack bool 1672 generic_make_request_checks(struct bio *bio) 1673 { 1674 struct request_queue *q; 1675 int nr_sectors = bio_sectors(bio); 1676 int err = -EIO; 1677 char b[BDEVNAME_SIZE]; 1678 struct hd_struct *part; 1679 1680 might_sleep(); 1681 1682 if (bio_check_eod(bio, nr_sectors)) 1683 goto end_io; 1684 1685 q = bdev_get_queue(bio->bi_bdev); 1686 if (unlikely(!q)) { 1687 printk(KERN_ERR 1688 "generic_make_request: Trying to access " 1689 "nonexistent block-device %s (%Lu)\n", 1690 bdevname(bio->bi_bdev, b), 1691 (long long) bio->bi_sector); 1692 goto end_io; 1693 } 1694 1695 if (likely(bio_is_rw(bio) && 1696 nr_sectors > queue_max_hw_sectors(q))) { 1697 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1698 bdevname(bio->bi_bdev, b), 1699 bio_sectors(bio), 1700 queue_max_hw_sectors(q)); 1701 goto end_io; 1702 } 1703 1704 part = bio->bi_bdev->bd_part; 1705 if (should_fail_request(part, bio->bi_size) || 1706 should_fail_request(&part_to_disk(part)->part0, 1707 bio->bi_size)) 1708 goto end_io; 1709 1710 /* 1711 * If this device has partitions, remap block n 1712 * of partition p to block n+start(p) of the disk. 1713 */ 1714 blk_partition_remap(bio); 1715 1716 if (bio_check_eod(bio, nr_sectors)) 1717 goto end_io; 1718 1719 /* 1720 * Filter flush bio's early so that make_request based 1721 * drivers without flush support don't have to worry 1722 * about them. 1723 */ 1724 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1725 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1726 if (!nr_sectors) { 1727 err = 0; 1728 goto end_io; 1729 } 1730 } 1731 1732 if ((bio->bi_rw & REQ_DISCARD) && 1733 (!blk_queue_discard(q) || 1734 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1735 err = -EOPNOTSUPP; 1736 goto end_io; 1737 } 1738 1739 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1740 err = -EOPNOTSUPP; 1741 goto end_io; 1742 } 1743 1744 /* 1745 * Various block parts want %current->io_context and lazy ioc 1746 * allocation ends up trading a lot of pain for a small amount of 1747 * memory. Just allocate it upfront. This may fail and block 1748 * layer knows how to live with it. 1749 */ 1750 create_io_context(GFP_ATOMIC, q->node); 1751 1752 if (blk_throtl_bio(q, bio)) 1753 return false; /* throttled, will be resubmitted later */ 1754 1755 trace_block_bio_queue(q, bio); 1756 return true; 1757 1758 end_io: 1759 bio_endio(bio, err); 1760 return false; 1761 } 1762 1763 /** 1764 * generic_make_request - hand a buffer to its device driver for I/O 1765 * @bio: The bio describing the location in memory and on the device. 1766 * 1767 * generic_make_request() is used to make I/O requests of block 1768 * devices. It is passed a &struct bio, which describes the I/O that needs 1769 * to be done. 1770 * 1771 * generic_make_request() does not return any status. The 1772 * success/failure status of the request, along with notification of 1773 * completion, is delivered asynchronously through the bio->bi_end_io 1774 * function described (one day) else where. 1775 * 1776 * The caller of generic_make_request must make sure that bi_io_vec 1777 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1778 * set to describe the device address, and the 1779 * bi_end_io and optionally bi_private are set to describe how 1780 * completion notification should be signaled. 1781 * 1782 * generic_make_request and the drivers it calls may use bi_next if this 1783 * bio happens to be merged with someone else, and may resubmit the bio to 1784 * a lower device by calling into generic_make_request recursively, which 1785 * means the bio should NOT be touched after the call to ->make_request_fn. 1786 */ 1787 void generic_make_request(struct bio *bio) 1788 { 1789 struct bio_list bio_list_on_stack; 1790 1791 if (!generic_make_request_checks(bio)) 1792 return; 1793 1794 /* 1795 * We only want one ->make_request_fn to be active at a time, else 1796 * stack usage with stacked devices could be a problem. So use 1797 * current->bio_list to keep a list of requests submited by a 1798 * make_request_fn function. current->bio_list is also used as a 1799 * flag to say if generic_make_request is currently active in this 1800 * task or not. If it is NULL, then no make_request is active. If 1801 * it is non-NULL, then a make_request is active, and new requests 1802 * should be added at the tail 1803 */ 1804 if (current->bio_list) { 1805 bio_list_add(current->bio_list, bio); 1806 return; 1807 } 1808 1809 /* following loop may be a bit non-obvious, and so deserves some 1810 * explanation. 1811 * Before entering the loop, bio->bi_next is NULL (as all callers 1812 * ensure that) so we have a list with a single bio. 1813 * We pretend that we have just taken it off a longer list, so 1814 * we assign bio_list to a pointer to the bio_list_on_stack, 1815 * thus initialising the bio_list of new bios to be 1816 * added. ->make_request() may indeed add some more bios 1817 * through a recursive call to generic_make_request. If it 1818 * did, we find a non-NULL value in bio_list and re-enter the loop 1819 * from the top. In this case we really did just take the bio 1820 * of the top of the list (no pretending) and so remove it from 1821 * bio_list, and call into ->make_request() again. 1822 */ 1823 BUG_ON(bio->bi_next); 1824 bio_list_init(&bio_list_on_stack); 1825 current->bio_list = &bio_list_on_stack; 1826 do { 1827 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1828 1829 q->make_request_fn(q, bio); 1830 1831 bio = bio_list_pop(current->bio_list); 1832 } while (bio); 1833 current->bio_list = NULL; /* deactivate */ 1834 } 1835 EXPORT_SYMBOL(generic_make_request); 1836 1837 /** 1838 * submit_bio - submit a bio to the block device layer for I/O 1839 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1840 * @bio: The &struct bio which describes the I/O 1841 * 1842 * submit_bio() is very similar in purpose to generic_make_request(), and 1843 * uses that function to do most of the work. Both are fairly rough 1844 * interfaces; @bio must be presetup and ready for I/O. 1845 * 1846 */ 1847 void submit_bio(int rw, struct bio *bio) 1848 { 1849 bio->bi_rw |= rw; 1850 1851 /* 1852 * If it's a regular read/write or a barrier with data attached, 1853 * go through the normal accounting stuff before submission. 1854 */ 1855 if (bio_has_data(bio)) { 1856 unsigned int count; 1857 1858 if (unlikely(rw & REQ_WRITE_SAME)) 1859 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1860 else 1861 count = bio_sectors(bio); 1862 1863 if (rw & WRITE) { 1864 count_vm_events(PGPGOUT, count); 1865 } else { 1866 task_io_account_read(bio->bi_size); 1867 count_vm_events(PGPGIN, count); 1868 } 1869 1870 if (unlikely(block_dump)) { 1871 char b[BDEVNAME_SIZE]; 1872 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1873 current->comm, task_pid_nr(current), 1874 (rw & WRITE) ? "WRITE" : "READ", 1875 (unsigned long long)bio->bi_sector, 1876 bdevname(bio->bi_bdev, b), 1877 count); 1878 } 1879 } 1880 1881 generic_make_request(bio); 1882 } 1883 EXPORT_SYMBOL(submit_bio); 1884 1885 /** 1886 * blk_rq_check_limits - Helper function to check a request for the queue limit 1887 * @q: the queue 1888 * @rq: the request being checked 1889 * 1890 * Description: 1891 * @rq may have been made based on weaker limitations of upper-level queues 1892 * in request stacking drivers, and it may violate the limitation of @q. 1893 * Since the block layer and the underlying device driver trust @rq 1894 * after it is inserted to @q, it should be checked against @q before 1895 * the insertion using this generic function. 1896 * 1897 * This function should also be useful for request stacking drivers 1898 * in some cases below, so export this function. 1899 * Request stacking drivers like request-based dm may change the queue 1900 * limits while requests are in the queue (e.g. dm's table swapping). 1901 * Such request stacking drivers should check those requests agaist 1902 * the new queue limits again when they dispatch those requests, 1903 * although such checkings are also done against the old queue limits 1904 * when submitting requests. 1905 */ 1906 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1907 { 1908 if (!rq_mergeable(rq)) 1909 return 0; 1910 1911 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1912 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1913 return -EIO; 1914 } 1915 1916 /* 1917 * queue's settings related to segment counting like q->bounce_pfn 1918 * may differ from that of other stacking queues. 1919 * Recalculate it to check the request correctly on this queue's 1920 * limitation. 1921 */ 1922 blk_recalc_rq_segments(rq); 1923 if (rq->nr_phys_segments > queue_max_segments(q)) { 1924 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1925 return -EIO; 1926 } 1927 1928 return 0; 1929 } 1930 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1931 1932 /** 1933 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1934 * @q: the queue to submit the request 1935 * @rq: the request being queued 1936 */ 1937 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1938 { 1939 unsigned long flags; 1940 int where = ELEVATOR_INSERT_BACK; 1941 1942 if (blk_rq_check_limits(q, rq)) 1943 return -EIO; 1944 1945 if (rq->rq_disk && 1946 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1947 return -EIO; 1948 1949 spin_lock_irqsave(q->queue_lock, flags); 1950 if (unlikely(blk_queue_dying(q))) { 1951 spin_unlock_irqrestore(q->queue_lock, flags); 1952 return -ENODEV; 1953 } 1954 1955 /* 1956 * Submitting request must be dequeued before calling this function 1957 * because it will be linked to another request_queue 1958 */ 1959 BUG_ON(blk_queued_rq(rq)); 1960 1961 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1962 where = ELEVATOR_INSERT_FLUSH; 1963 1964 add_acct_request(q, rq, where); 1965 if (where == ELEVATOR_INSERT_FLUSH) 1966 __blk_run_queue(q); 1967 spin_unlock_irqrestore(q->queue_lock, flags); 1968 1969 return 0; 1970 } 1971 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1972 1973 /** 1974 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1975 * @rq: request to examine 1976 * 1977 * Description: 1978 * A request could be merge of IOs which require different failure 1979 * handling. This function determines the number of bytes which 1980 * can be failed from the beginning of the request without 1981 * crossing into area which need to be retried further. 1982 * 1983 * Return: 1984 * The number of bytes to fail. 1985 * 1986 * Context: 1987 * queue_lock must be held. 1988 */ 1989 unsigned int blk_rq_err_bytes(const struct request *rq) 1990 { 1991 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1992 unsigned int bytes = 0; 1993 struct bio *bio; 1994 1995 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1996 return blk_rq_bytes(rq); 1997 1998 /* 1999 * Currently the only 'mixing' which can happen is between 2000 * different fastfail types. We can safely fail portions 2001 * which have all the failfast bits that the first one has - 2002 * the ones which are at least as eager to fail as the first 2003 * one. 2004 */ 2005 for (bio = rq->bio; bio; bio = bio->bi_next) { 2006 if ((bio->bi_rw & ff) != ff) 2007 break; 2008 bytes += bio->bi_size; 2009 } 2010 2011 /* this could lead to infinite loop */ 2012 BUG_ON(blk_rq_bytes(rq) && !bytes); 2013 return bytes; 2014 } 2015 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2016 2017 static void blk_account_io_completion(struct request *req, unsigned int bytes) 2018 { 2019 if (blk_do_io_stat(req)) { 2020 const int rw = rq_data_dir(req); 2021 struct hd_struct *part; 2022 int cpu; 2023 2024 cpu = part_stat_lock(); 2025 part = req->part; 2026 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2027 part_stat_unlock(); 2028 } 2029 } 2030 2031 static void blk_account_io_done(struct request *req) 2032 { 2033 /* 2034 * Account IO completion. flush_rq isn't accounted as a 2035 * normal IO on queueing nor completion. Accounting the 2036 * containing request is enough. 2037 */ 2038 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2039 unsigned long duration = jiffies - req->start_time; 2040 const int rw = rq_data_dir(req); 2041 struct hd_struct *part; 2042 int cpu; 2043 2044 cpu = part_stat_lock(); 2045 part = req->part; 2046 2047 part_stat_inc(cpu, part, ios[rw]); 2048 part_stat_add(cpu, part, ticks[rw], duration); 2049 part_round_stats(cpu, part); 2050 part_dec_in_flight(part, rw); 2051 2052 hd_struct_put(part); 2053 part_stat_unlock(); 2054 } 2055 } 2056 2057 #ifdef CONFIG_PM_RUNTIME 2058 /* 2059 * Don't process normal requests when queue is suspended 2060 * or in the process of suspending/resuming 2061 */ 2062 static struct request *blk_pm_peek_request(struct request_queue *q, 2063 struct request *rq) 2064 { 2065 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2066 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2067 return NULL; 2068 else 2069 return rq; 2070 } 2071 #else 2072 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2073 struct request *rq) 2074 { 2075 return rq; 2076 } 2077 #endif 2078 2079 /** 2080 * blk_peek_request - peek at the top of a request queue 2081 * @q: request queue to peek at 2082 * 2083 * Description: 2084 * Return the request at the top of @q. The returned request 2085 * should be started using blk_start_request() before LLD starts 2086 * processing it. 2087 * 2088 * Return: 2089 * Pointer to the request at the top of @q if available. Null 2090 * otherwise. 2091 * 2092 * Context: 2093 * queue_lock must be held. 2094 */ 2095 struct request *blk_peek_request(struct request_queue *q) 2096 { 2097 struct request *rq; 2098 int ret; 2099 2100 while ((rq = __elv_next_request(q)) != NULL) { 2101 2102 rq = blk_pm_peek_request(q, rq); 2103 if (!rq) 2104 break; 2105 2106 if (!(rq->cmd_flags & REQ_STARTED)) { 2107 /* 2108 * This is the first time the device driver 2109 * sees this request (possibly after 2110 * requeueing). Notify IO scheduler. 2111 */ 2112 if (rq->cmd_flags & REQ_SORTED) 2113 elv_activate_rq(q, rq); 2114 2115 /* 2116 * just mark as started even if we don't start 2117 * it, a request that has been delayed should 2118 * not be passed by new incoming requests 2119 */ 2120 rq->cmd_flags |= REQ_STARTED; 2121 trace_block_rq_issue(q, rq); 2122 } 2123 2124 if (!q->boundary_rq || q->boundary_rq == rq) { 2125 q->end_sector = rq_end_sector(rq); 2126 q->boundary_rq = NULL; 2127 } 2128 2129 if (rq->cmd_flags & REQ_DONTPREP) 2130 break; 2131 2132 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2133 /* 2134 * make sure space for the drain appears we 2135 * know we can do this because max_hw_segments 2136 * has been adjusted to be one fewer than the 2137 * device can handle 2138 */ 2139 rq->nr_phys_segments++; 2140 } 2141 2142 if (!q->prep_rq_fn) 2143 break; 2144 2145 ret = q->prep_rq_fn(q, rq); 2146 if (ret == BLKPREP_OK) { 2147 break; 2148 } else if (ret == BLKPREP_DEFER) { 2149 /* 2150 * the request may have been (partially) prepped. 2151 * we need to keep this request in the front to 2152 * avoid resource deadlock. REQ_STARTED will 2153 * prevent other fs requests from passing this one. 2154 */ 2155 if (q->dma_drain_size && blk_rq_bytes(rq) && 2156 !(rq->cmd_flags & REQ_DONTPREP)) { 2157 /* 2158 * remove the space for the drain we added 2159 * so that we don't add it again 2160 */ 2161 --rq->nr_phys_segments; 2162 } 2163 2164 rq = NULL; 2165 break; 2166 } else if (ret == BLKPREP_KILL) { 2167 rq->cmd_flags |= REQ_QUIET; 2168 /* 2169 * Mark this request as started so we don't trigger 2170 * any debug logic in the end I/O path. 2171 */ 2172 blk_start_request(rq); 2173 __blk_end_request_all(rq, -EIO); 2174 } else { 2175 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2176 break; 2177 } 2178 } 2179 2180 return rq; 2181 } 2182 EXPORT_SYMBOL(blk_peek_request); 2183 2184 void blk_dequeue_request(struct request *rq) 2185 { 2186 struct request_queue *q = rq->q; 2187 2188 BUG_ON(list_empty(&rq->queuelist)); 2189 BUG_ON(ELV_ON_HASH(rq)); 2190 2191 list_del_init(&rq->queuelist); 2192 2193 /* 2194 * the time frame between a request being removed from the lists 2195 * and to it is freed is accounted as io that is in progress at 2196 * the driver side. 2197 */ 2198 if (blk_account_rq(rq)) { 2199 q->in_flight[rq_is_sync(rq)]++; 2200 set_io_start_time_ns(rq); 2201 } 2202 } 2203 2204 /** 2205 * blk_start_request - start request processing on the driver 2206 * @req: request to dequeue 2207 * 2208 * Description: 2209 * Dequeue @req and start timeout timer on it. This hands off the 2210 * request to the driver. 2211 * 2212 * Block internal functions which don't want to start timer should 2213 * call blk_dequeue_request(). 2214 * 2215 * Context: 2216 * queue_lock must be held. 2217 */ 2218 void blk_start_request(struct request *req) 2219 { 2220 blk_dequeue_request(req); 2221 2222 /* 2223 * We are now handing the request to the hardware, initialize 2224 * resid_len to full count and add the timeout handler. 2225 */ 2226 req->resid_len = blk_rq_bytes(req); 2227 if (unlikely(blk_bidi_rq(req))) 2228 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2229 2230 blk_add_timer(req); 2231 } 2232 EXPORT_SYMBOL(blk_start_request); 2233 2234 /** 2235 * blk_fetch_request - fetch a request from a request queue 2236 * @q: request queue to fetch a request from 2237 * 2238 * Description: 2239 * Return the request at the top of @q. The request is started on 2240 * return and LLD can start processing it immediately. 2241 * 2242 * Return: 2243 * Pointer to the request at the top of @q if available. Null 2244 * otherwise. 2245 * 2246 * Context: 2247 * queue_lock must be held. 2248 */ 2249 struct request *blk_fetch_request(struct request_queue *q) 2250 { 2251 struct request *rq; 2252 2253 rq = blk_peek_request(q); 2254 if (rq) 2255 blk_start_request(rq); 2256 return rq; 2257 } 2258 EXPORT_SYMBOL(blk_fetch_request); 2259 2260 /** 2261 * blk_update_request - Special helper function for request stacking drivers 2262 * @req: the request being processed 2263 * @error: %0 for success, < %0 for error 2264 * @nr_bytes: number of bytes to complete @req 2265 * 2266 * Description: 2267 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2268 * the request structure even if @req doesn't have leftover. 2269 * If @req has leftover, sets it up for the next range of segments. 2270 * 2271 * This special helper function is only for request stacking drivers 2272 * (e.g. request-based dm) so that they can handle partial completion. 2273 * Actual device drivers should use blk_end_request instead. 2274 * 2275 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2276 * %false return from this function. 2277 * 2278 * Return: 2279 * %false - this request doesn't have any more data 2280 * %true - this request has more data 2281 **/ 2282 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2283 { 2284 int total_bytes; 2285 2286 if (!req->bio) 2287 return false; 2288 2289 trace_block_rq_complete(req->q, req); 2290 2291 /* 2292 * For fs requests, rq is just carrier of independent bio's 2293 * and each partial completion should be handled separately. 2294 * Reset per-request error on each partial completion. 2295 * 2296 * TODO: tj: This is too subtle. It would be better to let 2297 * low level drivers do what they see fit. 2298 */ 2299 if (req->cmd_type == REQ_TYPE_FS) 2300 req->errors = 0; 2301 2302 if (error && req->cmd_type == REQ_TYPE_FS && 2303 !(req->cmd_flags & REQ_QUIET)) { 2304 char *error_type; 2305 2306 switch (error) { 2307 case -ENOLINK: 2308 error_type = "recoverable transport"; 2309 break; 2310 case -EREMOTEIO: 2311 error_type = "critical target"; 2312 break; 2313 case -EBADE: 2314 error_type = "critical nexus"; 2315 break; 2316 case -ETIMEDOUT: 2317 error_type = "timeout"; 2318 break; 2319 case -ENOSPC: 2320 error_type = "critical space allocation"; 2321 break; 2322 case -ENODATA: 2323 error_type = "critical medium"; 2324 break; 2325 case -EIO: 2326 default: 2327 error_type = "I/O"; 2328 break; 2329 } 2330 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2331 error_type, req->rq_disk ? 2332 req->rq_disk->disk_name : "?", 2333 (unsigned long long)blk_rq_pos(req)); 2334 2335 } 2336 2337 blk_account_io_completion(req, nr_bytes); 2338 2339 total_bytes = 0; 2340 while (req->bio) { 2341 struct bio *bio = req->bio; 2342 unsigned bio_bytes = min(bio->bi_size, nr_bytes); 2343 2344 if (bio_bytes == bio->bi_size) 2345 req->bio = bio->bi_next; 2346 2347 req_bio_endio(req, bio, bio_bytes, error); 2348 2349 total_bytes += bio_bytes; 2350 nr_bytes -= bio_bytes; 2351 2352 if (!nr_bytes) 2353 break; 2354 } 2355 2356 /* 2357 * completely done 2358 */ 2359 if (!req->bio) { 2360 /* 2361 * Reset counters so that the request stacking driver 2362 * can find how many bytes remain in the request 2363 * later. 2364 */ 2365 req->__data_len = 0; 2366 return false; 2367 } 2368 2369 req->__data_len -= total_bytes; 2370 req->buffer = bio_data(req->bio); 2371 2372 /* update sector only for requests with clear definition of sector */ 2373 if (req->cmd_type == REQ_TYPE_FS) 2374 req->__sector += total_bytes >> 9; 2375 2376 /* mixed attributes always follow the first bio */ 2377 if (req->cmd_flags & REQ_MIXED_MERGE) { 2378 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2379 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2380 } 2381 2382 /* 2383 * If total number of sectors is less than the first segment 2384 * size, something has gone terribly wrong. 2385 */ 2386 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2387 blk_dump_rq_flags(req, "request botched"); 2388 req->__data_len = blk_rq_cur_bytes(req); 2389 } 2390 2391 /* recalculate the number of segments */ 2392 blk_recalc_rq_segments(req); 2393 2394 return true; 2395 } 2396 EXPORT_SYMBOL_GPL(blk_update_request); 2397 2398 static bool blk_update_bidi_request(struct request *rq, int error, 2399 unsigned int nr_bytes, 2400 unsigned int bidi_bytes) 2401 { 2402 if (blk_update_request(rq, error, nr_bytes)) 2403 return true; 2404 2405 /* Bidi request must be completed as a whole */ 2406 if (unlikely(blk_bidi_rq(rq)) && 2407 blk_update_request(rq->next_rq, error, bidi_bytes)) 2408 return true; 2409 2410 if (blk_queue_add_random(rq->q)) 2411 add_disk_randomness(rq->rq_disk); 2412 2413 return false; 2414 } 2415 2416 /** 2417 * blk_unprep_request - unprepare a request 2418 * @req: the request 2419 * 2420 * This function makes a request ready for complete resubmission (or 2421 * completion). It happens only after all error handling is complete, 2422 * so represents the appropriate moment to deallocate any resources 2423 * that were allocated to the request in the prep_rq_fn. The queue 2424 * lock is held when calling this. 2425 */ 2426 void blk_unprep_request(struct request *req) 2427 { 2428 struct request_queue *q = req->q; 2429 2430 req->cmd_flags &= ~REQ_DONTPREP; 2431 if (q->unprep_rq_fn) 2432 q->unprep_rq_fn(q, req); 2433 } 2434 EXPORT_SYMBOL_GPL(blk_unprep_request); 2435 2436 /* 2437 * queue lock must be held 2438 */ 2439 static void blk_finish_request(struct request *req, int error) 2440 { 2441 if (blk_rq_tagged(req)) 2442 blk_queue_end_tag(req->q, req); 2443 2444 BUG_ON(blk_queued_rq(req)); 2445 2446 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2447 laptop_io_completion(&req->q->backing_dev_info); 2448 2449 blk_delete_timer(req); 2450 2451 if (req->cmd_flags & REQ_DONTPREP) 2452 blk_unprep_request(req); 2453 2454 2455 blk_account_io_done(req); 2456 2457 if (req->end_io) 2458 req->end_io(req, error); 2459 else { 2460 if (blk_bidi_rq(req)) 2461 __blk_put_request(req->next_rq->q, req->next_rq); 2462 2463 __blk_put_request(req->q, req); 2464 } 2465 } 2466 2467 /** 2468 * blk_end_bidi_request - Complete a bidi request 2469 * @rq: the request to complete 2470 * @error: %0 for success, < %0 for error 2471 * @nr_bytes: number of bytes to complete @rq 2472 * @bidi_bytes: number of bytes to complete @rq->next_rq 2473 * 2474 * Description: 2475 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2476 * Drivers that supports bidi can safely call this member for any 2477 * type of request, bidi or uni. In the later case @bidi_bytes is 2478 * just ignored. 2479 * 2480 * Return: 2481 * %false - we are done with this request 2482 * %true - still buffers pending for this request 2483 **/ 2484 static bool blk_end_bidi_request(struct request *rq, int error, 2485 unsigned int nr_bytes, unsigned int bidi_bytes) 2486 { 2487 struct request_queue *q = rq->q; 2488 unsigned long flags; 2489 2490 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2491 return true; 2492 2493 spin_lock_irqsave(q->queue_lock, flags); 2494 blk_finish_request(rq, error); 2495 spin_unlock_irqrestore(q->queue_lock, flags); 2496 2497 return false; 2498 } 2499 2500 /** 2501 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2502 * @rq: the request to complete 2503 * @error: %0 for success, < %0 for error 2504 * @nr_bytes: number of bytes to complete @rq 2505 * @bidi_bytes: number of bytes to complete @rq->next_rq 2506 * 2507 * Description: 2508 * Identical to blk_end_bidi_request() except that queue lock is 2509 * assumed to be locked on entry and remains so on return. 2510 * 2511 * Return: 2512 * %false - we are done with this request 2513 * %true - still buffers pending for this request 2514 **/ 2515 bool __blk_end_bidi_request(struct request *rq, int error, 2516 unsigned int nr_bytes, unsigned int bidi_bytes) 2517 { 2518 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2519 return true; 2520 2521 blk_finish_request(rq, error); 2522 2523 return false; 2524 } 2525 2526 /** 2527 * blk_end_request - Helper function for drivers to complete the request. 2528 * @rq: the request being processed 2529 * @error: %0 for success, < %0 for error 2530 * @nr_bytes: number of bytes to complete 2531 * 2532 * Description: 2533 * Ends I/O on a number of bytes attached to @rq. 2534 * If @rq has leftover, sets it up for the next range of segments. 2535 * 2536 * Return: 2537 * %false - we are done with this request 2538 * %true - still buffers pending for this request 2539 **/ 2540 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2541 { 2542 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2543 } 2544 EXPORT_SYMBOL(blk_end_request); 2545 2546 /** 2547 * blk_end_request_all - Helper function for drives to finish the request. 2548 * @rq: the request to finish 2549 * @error: %0 for success, < %0 for error 2550 * 2551 * Description: 2552 * Completely finish @rq. 2553 */ 2554 void blk_end_request_all(struct request *rq, int error) 2555 { 2556 bool pending; 2557 unsigned int bidi_bytes = 0; 2558 2559 if (unlikely(blk_bidi_rq(rq))) 2560 bidi_bytes = blk_rq_bytes(rq->next_rq); 2561 2562 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2563 BUG_ON(pending); 2564 } 2565 EXPORT_SYMBOL(blk_end_request_all); 2566 2567 /** 2568 * blk_end_request_cur - Helper function to finish the current request chunk. 2569 * @rq: the request to finish the current chunk for 2570 * @error: %0 for success, < %0 for error 2571 * 2572 * Description: 2573 * Complete the current consecutively mapped chunk from @rq. 2574 * 2575 * Return: 2576 * %false - we are done with this request 2577 * %true - still buffers pending for this request 2578 */ 2579 bool blk_end_request_cur(struct request *rq, int error) 2580 { 2581 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2582 } 2583 EXPORT_SYMBOL(blk_end_request_cur); 2584 2585 /** 2586 * blk_end_request_err - Finish a request till the next failure boundary. 2587 * @rq: the request to finish till the next failure boundary for 2588 * @error: must be negative errno 2589 * 2590 * Description: 2591 * Complete @rq till the next failure boundary. 2592 * 2593 * Return: 2594 * %false - we are done with this request 2595 * %true - still buffers pending for this request 2596 */ 2597 bool blk_end_request_err(struct request *rq, int error) 2598 { 2599 WARN_ON(error >= 0); 2600 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2601 } 2602 EXPORT_SYMBOL_GPL(blk_end_request_err); 2603 2604 /** 2605 * __blk_end_request - Helper function for drivers to complete the request. 2606 * @rq: the request being processed 2607 * @error: %0 for success, < %0 for error 2608 * @nr_bytes: number of bytes to complete 2609 * 2610 * Description: 2611 * Must be called with queue lock held unlike blk_end_request(). 2612 * 2613 * Return: 2614 * %false - we are done with this request 2615 * %true - still buffers pending for this request 2616 **/ 2617 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2618 { 2619 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2620 } 2621 EXPORT_SYMBOL(__blk_end_request); 2622 2623 /** 2624 * __blk_end_request_all - Helper function for drives to finish the request. 2625 * @rq: the request to finish 2626 * @error: %0 for success, < %0 for error 2627 * 2628 * Description: 2629 * Completely finish @rq. Must be called with queue lock held. 2630 */ 2631 void __blk_end_request_all(struct request *rq, int error) 2632 { 2633 bool pending; 2634 unsigned int bidi_bytes = 0; 2635 2636 if (unlikely(blk_bidi_rq(rq))) 2637 bidi_bytes = blk_rq_bytes(rq->next_rq); 2638 2639 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2640 BUG_ON(pending); 2641 } 2642 EXPORT_SYMBOL(__blk_end_request_all); 2643 2644 /** 2645 * __blk_end_request_cur - Helper function to finish the current request chunk. 2646 * @rq: the request to finish the current chunk for 2647 * @error: %0 for success, < %0 for error 2648 * 2649 * Description: 2650 * Complete the current consecutively mapped chunk from @rq. Must 2651 * be called with queue lock held. 2652 * 2653 * Return: 2654 * %false - we are done with this request 2655 * %true - still buffers pending for this request 2656 */ 2657 bool __blk_end_request_cur(struct request *rq, int error) 2658 { 2659 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2660 } 2661 EXPORT_SYMBOL(__blk_end_request_cur); 2662 2663 /** 2664 * __blk_end_request_err - Finish a request till the next failure boundary. 2665 * @rq: the request to finish till the next failure boundary for 2666 * @error: must be negative errno 2667 * 2668 * Description: 2669 * Complete @rq till the next failure boundary. Must be called 2670 * with queue lock held. 2671 * 2672 * Return: 2673 * %false - we are done with this request 2674 * %true - still buffers pending for this request 2675 */ 2676 bool __blk_end_request_err(struct request *rq, int error) 2677 { 2678 WARN_ON(error >= 0); 2679 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2680 } 2681 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2682 2683 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2684 struct bio *bio) 2685 { 2686 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2687 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2688 2689 if (bio_has_data(bio)) { 2690 rq->nr_phys_segments = bio_phys_segments(q, bio); 2691 rq->buffer = bio_data(bio); 2692 } 2693 rq->__data_len = bio->bi_size; 2694 rq->bio = rq->biotail = bio; 2695 2696 if (bio->bi_bdev) 2697 rq->rq_disk = bio->bi_bdev->bd_disk; 2698 } 2699 2700 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2701 /** 2702 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2703 * @rq: the request to be flushed 2704 * 2705 * Description: 2706 * Flush all pages in @rq. 2707 */ 2708 void rq_flush_dcache_pages(struct request *rq) 2709 { 2710 struct req_iterator iter; 2711 struct bio_vec *bvec; 2712 2713 rq_for_each_segment(bvec, rq, iter) 2714 flush_dcache_page(bvec->bv_page); 2715 } 2716 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2717 #endif 2718 2719 /** 2720 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2721 * @q : the queue of the device being checked 2722 * 2723 * Description: 2724 * Check if underlying low-level drivers of a device are busy. 2725 * If the drivers want to export their busy state, they must set own 2726 * exporting function using blk_queue_lld_busy() first. 2727 * 2728 * Basically, this function is used only by request stacking drivers 2729 * to stop dispatching requests to underlying devices when underlying 2730 * devices are busy. This behavior helps more I/O merging on the queue 2731 * of the request stacking driver and prevents I/O throughput regression 2732 * on burst I/O load. 2733 * 2734 * Return: 2735 * 0 - Not busy (The request stacking driver should dispatch request) 2736 * 1 - Busy (The request stacking driver should stop dispatching request) 2737 */ 2738 int blk_lld_busy(struct request_queue *q) 2739 { 2740 if (q->lld_busy_fn) 2741 return q->lld_busy_fn(q); 2742 2743 return 0; 2744 } 2745 EXPORT_SYMBOL_GPL(blk_lld_busy); 2746 2747 /** 2748 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2749 * @rq: the clone request to be cleaned up 2750 * 2751 * Description: 2752 * Free all bios in @rq for a cloned request. 2753 */ 2754 void blk_rq_unprep_clone(struct request *rq) 2755 { 2756 struct bio *bio; 2757 2758 while ((bio = rq->bio) != NULL) { 2759 rq->bio = bio->bi_next; 2760 2761 bio_put(bio); 2762 } 2763 } 2764 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2765 2766 /* 2767 * Copy attributes of the original request to the clone request. 2768 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2769 */ 2770 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2771 { 2772 dst->cpu = src->cpu; 2773 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2774 dst->cmd_type = src->cmd_type; 2775 dst->__sector = blk_rq_pos(src); 2776 dst->__data_len = blk_rq_bytes(src); 2777 dst->nr_phys_segments = src->nr_phys_segments; 2778 dst->ioprio = src->ioprio; 2779 dst->extra_len = src->extra_len; 2780 } 2781 2782 /** 2783 * blk_rq_prep_clone - Helper function to setup clone request 2784 * @rq: the request to be setup 2785 * @rq_src: original request to be cloned 2786 * @bs: bio_set that bios for clone are allocated from 2787 * @gfp_mask: memory allocation mask for bio 2788 * @bio_ctr: setup function to be called for each clone bio. 2789 * Returns %0 for success, non %0 for failure. 2790 * @data: private data to be passed to @bio_ctr 2791 * 2792 * Description: 2793 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2794 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2795 * are not copied, and copying such parts is the caller's responsibility. 2796 * Also, pages which the original bios are pointing to are not copied 2797 * and the cloned bios just point same pages. 2798 * So cloned bios must be completed before original bios, which means 2799 * the caller must complete @rq before @rq_src. 2800 */ 2801 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2802 struct bio_set *bs, gfp_t gfp_mask, 2803 int (*bio_ctr)(struct bio *, struct bio *, void *), 2804 void *data) 2805 { 2806 struct bio *bio, *bio_src; 2807 2808 if (!bs) 2809 bs = fs_bio_set; 2810 2811 blk_rq_init(NULL, rq); 2812 2813 __rq_for_each_bio(bio_src, rq_src) { 2814 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2815 if (!bio) 2816 goto free_and_out; 2817 2818 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2819 goto free_and_out; 2820 2821 if (rq->bio) { 2822 rq->biotail->bi_next = bio; 2823 rq->biotail = bio; 2824 } else 2825 rq->bio = rq->biotail = bio; 2826 } 2827 2828 __blk_rq_prep_clone(rq, rq_src); 2829 2830 return 0; 2831 2832 free_and_out: 2833 if (bio) 2834 bio_put(bio); 2835 blk_rq_unprep_clone(rq); 2836 2837 return -ENOMEM; 2838 } 2839 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2840 2841 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2842 { 2843 return queue_work(kblockd_workqueue, work); 2844 } 2845 EXPORT_SYMBOL(kblockd_schedule_work); 2846 2847 int kblockd_schedule_delayed_work(struct request_queue *q, 2848 struct delayed_work *dwork, unsigned long delay) 2849 { 2850 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2851 } 2852 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2853 2854 #define PLUG_MAGIC 0x91827364 2855 2856 /** 2857 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2858 * @plug: The &struct blk_plug that needs to be initialized 2859 * 2860 * Description: 2861 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2862 * pending I/O should the task end up blocking between blk_start_plug() and 2863 * blk_finish_plug(). This is important from a performance perspective, but 2864 * also ensures that we don't deadlock. For instance, if the task is blocking 2865 * for a memory allocation, memory reclaim could end up wanting to free a 2866 * page belonging to that request that is currently residing in our private 2867 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2868 * this kind of deadlock. 2869 */ 2870 void blk_start_plug(struct blk_plug *plug) 2871 { 2872 struct task_struct *tsk = current; 2873 2874 plug->magic = PLUG_MAGIC; 2875 INIT_LIST_HEAD(&plug->list); 2876 INIT_LIST_HEAD(&plug->cb_list); 2877 2878 /* 2879 * If this is a nested plug, don't actually assign it. It will be 2880 * flushed on its own. 2881 */ 2882 if (!tsk->plug) { 2883 /* 2884 * Store ordering should not be needed here, since a potential 2885 * preempt will imply a full memory barrier 2886 */ 2887 tsk->plug = plug; 2888 } 2889 } 2890 EXPORT_SYMBOL(blk_start_plug); 2891 2892 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2893 { 2894 struct request *rqa = container_of(a, struct request, queuelist); 2895 struct request *rqb = container_of(b, struct request, queuelist); 2896 2897 return !(rqa->q < rqb->q || 2898 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2899 } 2900 2901 /* 2902 * If 'from_schedule' is true, then postpone the dispatch of requests 2903 * until a safe kblockd context. We due this to avoid accidental big 2904 * additional stack usage in driver dispatch, in places where the originally 2905 * plugger did not intend it. 2906 */ 2907 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2908 bool from_schedule) 2909 __releases(q->queue_lock) 2910 { 2911 trace_block_unplug(q, depth, !from_schedule); 2912 2913 if (from_schedule) 2914 blk_run_queue_async(q); 2915 else 2916 __blk_run_queue(q); 2917 spin_unlock(q->queue_lock); 2918 } 2919 2920 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2921 { 2922 LIST_HEAD(callbacks); 2923 2924 while (!list_empty(&plug->cb_list)) { 2925 list_splice_init(&plug->cb_list, &callbacks); 2926 2927 while (!list_empty(&callbacks)) { 2928 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2929 struct blk_plug_cb, 2930 list); 2931 list_del(&cb->list); 2932 cb->callback(cb, from_schedule); 2933 } 2934 } 2935 } 2936 2937 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 2938 int size) 2939 { 2940 struct blk_plug *plug = current->plug; 2941 struct blk_plug_cb *cb; 2942 2943 if (!plug) 2944 return NULL; 2945 2946 list_for_each_entry(cb, &plug->cb_list, list) 2947 if (cb->callback == unplug && cb->data == data) 2948 return cb; 2949 2950 /* Not currently on the callback list */ 2951 BUG_ON(size < sizeof(*cb)); 2952 cb = kzalloc(size, GFP_ATOMIC); 2953 if (cb) { 2954 cb->data = data; 2955 cb->callback = unplug; 2956 list_add(&cb->list, &plug->cb_list); 2957 } 2958 return cb; 2959 } 2960 EXPORT_SYMBOL(blk_check_plugged); 2961 2962 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2963 { 2964 struct request_queue *q; 2965 unsigned long flags; 2966 struct request *rq; 2967 LIST_HEAD(list); 2968 unsigned int depth; 2969 2970 BUG_ON(plug->magic != PLUG_MAGIC); 2971 2972 flush_plug_callbacks(plug, from_schedule); 2973 if (list_empty(&plug->list)) 2974 return; 2975 2976 list_splice_init(&plug->list, &list); 2977 2978 list_sort(NULL, &list, plug_rq_cmp); 2979 2980 q = NULL; 2981 depth = 0; 2982 2983 /* 2984 * Save and disable interrupts here, to avoid doing it for every 2985 * queue lock we have to take. 2986 */ 2987 local_irq_save(flags); 2988 while (!list_empty(&list)) { 2989 rq = list_entry_rq(list.next); 2990 list_del_init(&rq->queuelist); 2991 BUG_ON(!rq->q); 2992 if (rq->q != q) { 2993 /* 2994 * This drops the queue lock 2995 */ 2996 if (q) 2997 queue_unplugged(q, depth, from_schedule); 2998 q = rq->q; 2999 depth = 0; 3000 spin_lock(q->queue_lock); 3001 } 3002 3003 /* 3004 * Short-circuit if @q is dead 3005 */ 3006 if (unlikely(blk_queue_dying(q))) { 3007 __blk_end_request_all(rq, -ENODEV); 3008 continue; 3009 } 3010 3011 /* 3012 * rq is already accounted, so use raw insert 3013 */ 3014 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3015 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3016 else 3017 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3018 3019 depth++; 3020 } 3021 3022 /* 3023 * This drops the queue lock 3024 */ 3025 if (q) 3026 queue_unplugged(q, depth, from_schedule); 3027 3028 local_irq_restore(flags); 3029 } 3030 3031 void blk_finish_plug(struct blk_plug *plug) 3032 { 3033 blk_flush_plug_list(plug, false); 3034 3035 if (plug == current->plug) 3036 current->plug = NULL; 3037 } 3038 EXPORT_SYMBOL(blk_finish_plug); 3039 3040 #ifdef CONFIG_PM_RUNTIME 3041 /** 3042 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3043 * @q: the queue of the device 3044 * @dev: the device the queue belongs to 3045 * 3046 * Description: 3047 * Initialize runtime-PM-related fields for @q and start auto suspend for 3048 * @dev. Drivers that want to take advantage of request-based runtime PM 3049 * should call this function after @dev has been initialized, and its 3050 * request queue @q has been allocated, and runtime PM for it can not happen 3051 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3052 * cases, driver should call this function before any I/O has taken place. 3053 * 3054 * This function takes care of setting up using auto suspend for the device, 3055 * the autosuspend delay is set to -1 to make runtime suspend impossible 3056 * until an updated value is either set by user or by driver. Drivers do 3057 * not need to touch other autosuspend settings. 3058 * 3059 * The block layer runtime PM is request based, so only works for drivers 3060 * that use request as their IO unit instead of those directly use bio's. 3061 */ 3062 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3063 { 3064 q->dev = dev; 3065 q->rpm_status = RPM_ACTIVE; 3066 pm_runtime_set_autosuspend_delay(q->dev, -1); 3067 pm_runtime_use_autosuspend(q->dev); 3068 } 3069 EXPORT_SYMBOL(blk_pm_runtime_init); 3070 3071 /** 3072 * blk_pre_runtime_suspend - Pre runtime suspend check 3073 * @q: the queue of the device 3074 * 3075 * Description: 3076 * This function will check if runtime suspend is allowed for the device 3077 * by examining if there are any requests pending in the queue. If there 3078 * are requests pending, the device can not be runtime suspended; otherwise, 3079 * the queue's status will be updated to SUSPENDING and the driver can 3080 * proceed to suspend the device. 3081 * 3082 * For the not allowed case, we mark last busy for the device so that 3083 * runtime PM core will try to autosuspend it some time later. 3084 * 3085 * This function should be called near the start of the device's 3086 * runtime_suspend callback. 3087 * 3088 * Return: 3089 * 0 - OK to runtime suspend the device 3090 * -EBUSY - Device should not be runtime suspended 3091 */ 3092 int blk_pre_runtime_suspend(struct request_queue *q) 3093 { 3094 int ret = 0; 3095 3096 spin_lock_irq(q->queue_lock); 3097 if (q->nr_pending) { 3098 ret = -EBUSY; 3099 pm_runtime_mark_last_busy(q->dev); 3100 } else { 3101 q->rpm_status = RPM_SUSPENDING; 3102 } 3103 spin_unlock_irq(q->queue_lock); 3104 return ret; 3105 } 3106 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3107 3108 /** 3109 * blk_post_runtime_suspend - Post runtime suspend processing 3110 * @q: the queue of the device 3111 * @err: return value of the device's runtime_suspend function 3112 * 3113 * Description: 3114 * Update the queue's runtime status according to the return value of the 3115 * device's runtime suspend function and mark last busy for the device so 3116 * that PM core will try to auto suspend the device at a later time. 3117 * 3118 * This function should be called near the end of the device's 3119 * runtime_suspend callback. 3120 */ 3121 void blk_post_runtime_suspend(struct request_queue *q, int err) 3122 { 3123 spin_lock_irq(q->queue_lock); 3124 if (!err) { 3125 q->rpm_status = RPM_SUSPENDED; 3126 } else { 3127 q->rpm_status = RPM_ACTIVE; 3128 pm_runtime_mark_last_busy(q->dev); 3129 } 3130 spin_unlock_irq(q->queue_lock); 3131 } 3132 EXPORT_SYMBOL(blk_post_runtime_suspend); 3133 3134 /** 3135 * blk_pre_runtime_resume - Pre runtime resume processing 3136 * @q: the queue of the device 3137 * 3138 * Description: 3139 * Update the queue's runtime status to RESUMING in preparation for the 3140 * runtime resume of the device. 3141 * 3142 * This function should be called near the start of the device's 3143 * runtime_resume callback. 3144 */ 3145 void blk_pre_runtime_resume(struct request_queue *q) 3146 { 3147 spin_lock_irq(q->queue_lock); 3148 q->rpm_status = RPM_RESUMING; 3149 spin_unlock_irq(q->queue_lock); 3150 } 3151 EXPORT_SYMBOL(blk_pre_runtime_resume); 3152 3153 /** 3154 * blk_post_runtime_resume - Post runtime resume processing 3155 * @q: the queue of the device 3156 * @err: return value of the device's runtime_resume function 3157 * 3158 * Description: 3159 * Update the queue's runtime status according to the return value of the 3160 * device's runtime_resume function. If it is successfully resumed, process 3161 * the requests that are queued into the device's queue when it is resuming 3162 * and then mark last busy and initiate autosuspend for it. 3163 * 3164 * This function should be called near the end of the device's 3165 * runtime_resume callback. 3166 */ 3167 void blk_post_runtime_resume(struct request_queue *q, int err) 3168 { 3169 spin_lock_irq(q->queue_lock); 3170 if (!err) { 3171 q->rpm_status = RPM_ACTIVE; 3172 __blk_run_queue(q); 3173 pm_runtime_mark_last_busy(q->dev); 3174 pm_request_autosuspend(q->dev); 3175 } else { 3176 q->rpm_status = RPM_SUSPENDED; 3177 } 3178 spin_unlock_irq(q->queue_lock); 3179 } 3180 EXPORT_SYMBOL(blk_post_runtime_resume); 3181 #endif 3182 3183 int __init blk_dev_init(void) 3184 { 3185 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3186 sizeof(((struct request *)0)->cmd_flags)); 3187 3188 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3189 kblockd_workqueue = alloc_workqueue("kblockd", 3190 WQ_MEM_RECLAIM | WQ_HIGHPRI | 3191 WQ_POWER_EFFICIENT, 0); 3192 if (!kblockd_workqueue) 3193 panic("Failed to create kblockd\n"); 3194 3195 request_cachep = kmem_cache_create("blkdev_requests", 3196 sizeof(struct request), 0, SLAB_PANIC, NULL); 3197 3198 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3199 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3200 3201 return 0; 3202 } 3203