1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 47 48 DEFINE_IDA(blk_queue_ida); 49 50 /* 51 * For the allocated request tables 52 */ 53 struct kmem_cache *request_cachep = NULL; 54 55 /* 56 * For queue allocation 57 */ 58 struct kmem_cache *blk_requestq_cachep; 59 60 /* 61 * Controlling structure to kblockd 62 */ 63 static struct workqueue_struct *kblockd_workqueue; 64 65 void blk_queue_congestion_threshold(struct request_queue *q) 66 { 67 int nr; 68 69 nr = q->nr_requests - (q->nr_requests / 8) + 1; 70 if (nr > q->nr_requests) 71 nr = q->nr_requests; 72 q->nr_congestion_on = nr; 73 74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 75 if (nr < 1) 76 nr = 1; 77 q->nr_congestion_off = nr; 78 } 79 80 /** 81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 82 * @bdev: device 83 * 84 * Locates the passed device's request queue and returns the address of its 85 * backing_dev_info 86 * 87 * Will return NULL if the request queue cannot be located. 88 */ 89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 90 { 91 struct backing_dev_info *ret = NULL; 92 struct request_queue *q = bdev_get_queue(bdev); 93 94 if (q) 95 ret = &q->backing_dev_info; 96 return ret; 97 } 98 EXPORT_SYMBOL(blk_get_backing_dev_info); 99 100 void blk_rq_init(struct request_queue *q, struct request *rq) 101 { 102 memset(rq, 0, sizeof(*rq)); 103 104 INIT_LIST_HEAD(&rq->queuelist); 105 INIT_LIST_HEAD(&rq->timeout_list); 106 rq->cpu = -1; 107 rq->q = q; 108 rq->__sector = (sector_t) -1; 109 INIT_HLIST_NODE(&rq->hash); 110 RB_CLEAR_NODE(&rq->rb_node); 111 rq->cmd = rq->__cmd; 112 rq->cmd_len = BLK_MAX_CDB; 113 rq->tag = -1; 114 rq->start_time = jiffies; 115 set_start_time_ns(rq); 116 rq->part = NULL; 117 } 118 EXPORT_SYMBOL(blk_rq_init); 119 120 static void req_bio_endio(struct request *rq, struct bio *bio, 121 unsigned int nbytes, int error) 122 { 123 if (error) 124 clear_bit(BIO_UPTODATE, &bio->bi_flags); 125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 126 error = -EIO; 127 128 if (unlikely(rq->cmd_flags & REQ_QUIET)) 129 set_bit(BIO_QUIET, &bio->bi_flags); 130 131 bio_advance(bio, nbytes); 132 133 /* don't actually finish bio if it's part of flush sequence */ 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 135 bio_endio(bio, error); 136 } 137 138 void blk_dump_rq_flags(struct request *rq, char *msg) 139 { 140 int bit; 141 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 144 (unsigned long long) rq->cmd_flags); 145 146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 147 (unsigned long long)blk_rq_pos(rq), 148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 151 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 153 printk(KERN_INFO " cdb: "); 154 for (bit = 0; bit < BLK_MAX_CDB; bit++) 155 printk("%02x ", rq->cmd[bit]); 156 printk("\n"); 157 } 158 } 159 EXPORT_SYMBOL(blk_dump_rq_flags); 160 161 static void blk_delay_work(struct work_struct *work) 162 { 163 struct request_queue *q; 164 165 q = container_of(work, struct request_queue, delay_work.work); 166 spin_lock_irq(q->queue_lock); 167 __blk_run_queue(q); 168 spin_unlock_irq(q->queue_lock); 169 } 170 171 /** 172 * blk_delay_queue - restart queueing after defined interval 173 * @q: The &struct request_queue in question 174 * @msecs: Delay in msecs 175 * 176 * Description: 177 * Sometimes queueing needs to be postponed for a little while, to allow 178 * resources to come back. This function will make sure that queueing is 179 * restarted around the specified time. Queue lock must be held. 180 */ 181 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 182 { 183 if (likely(!blk_queue_dead(q))) 184 queue_delayed_work(kblockd_workqueue, &q->delay_work, 185 msecs_to_jiffies(msecs)); 186 } 187 EXPORT_SYMBOL(blk_delay_queue); 188 189 /** 190 * blk_start_queue - restart a previously stopped queue 191 * @q: The &struct request_queue in question 192 * 193 * Description: 194 * blk_start_queue() will clear the stop flag on the queue, and call 195 * the request_fn for the queue if it was in a stopped state when 196 * entered. Also see blk_stop_queue(). Queue lock must be held. 197 **/ 198 void blk_start_queue(struct request_queue *q) 199 { 200 WARN_ON(!irqs_disabled()); 201 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 203 __blk_run_queue(q); 204 } 205 EXPORT_SYMBOL(blk_start_queue); 206 207 /** 208 * blk_stop_queue - stop a queue 209 * @q: The &struct request_queue in question 210 * 211 * Description: 212 * The Linux block layer assumes that a block driver will consume all 213 * entries on the request queue when the request_fn strategy is called. 214 * Often this will not happen, because of hardware limitations (queue 215 * depth settings). If a device driver gets a 'queue full' response, 216 * or if it simply chooses not to queue more I/O at one point, it can 217 * call this function to prevent the request_fn from being called until 218 * the driver has signalled it's ready to go again. This happens by calling 219 * blk_start_queue() to restart queue operations. Queue lock must be held. 220 **/ 221 void blk_stop_queue(struct request_queue *q) 222 { 223 cancel_delayed_work(&q->delay_work); 224 queue_flag_set(QUEUE_FLAG_STOPPED, q); 225 } 226 EXPORT_SYMBOL(blk_stop_queue); 227 228 /** 229 * blk_sync_queue - cancel any pending callbacks on a queue 230 * @q: the queue 231 * 232 * Description: 233 * The block layer may perform asynchronous callback activity 234 * on a queue, such as calling the unplug function after a timeout. 235 * A block device may call blk_sync_queue to ensure that any 236 * such activity is cancelled, thus allowing it to release resources 237 * that the callbacks might use. The caller must already have made sure 238 * that its ->make_request_fn will not re-add plugging prior to calling 239 * this function. 240 * 241 * This function does not cancel any asynchronous activity arising 242 * out of elevator or throttling code. That would require elevaotor_exit() 243 * and blkcg_exit_queue() to be called with queue lock initialized. 244 * 245 */ 246 void blk_sync_queue(struct request_queue *q) 247 { 248 del_timer_sync(&q->timeout); 249 250 if (q->mq_ops) { 251 struct blk_mq_hw_ctx *hctx; 252 int i; 253 254 queue_for_each_hw_ctx(q, hctx, i) 255 cancel_delayed_work_sync(&hctx->delayed_work); 256 } else { 257 cancel_delayed_work_sync(&q->delay_work); 258 } 259 } 260 EXPORT_SYMBOL(blk_sync_queue); 261 262 /** 263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 264 * @q: The queue to run 265 * 266 * Description: 267 * Invoke request handling on a queue if there are any pending requests. 268 * May be used to restart request handling after a request has completed. 269 * This variant runs the queue whether or not the queue has been 270 * stopped. Must be called with the queue lock held and interrupts 271 * disabled. See also @blk_run_queue. 272 */ 273 inline void __blk_run_queue_uncond(struct request_queue *q) 274 { 275 if (unlikely(blk_queue_dead(q))) 276 return; 277 278 /* 279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 280 * the queue lock internally. As a result multiple threads may be 281 * running such a request function concurrently. Keep track of the 282 * number of active request_fn invocations such that blk_drain_queue() 283 * can wait until all these request_fn calls have finished. 284 */ 285 q->request_fn_active++; 286 q->request_fn(q); 287 q->request_fn_active--; 288 } 289 290 /** 291 * __blk_run_queue - run a single device queue 292 * @q: The queue to run 293 * 294 * Description: 295 * See @blk_run_queue. This variant must be called with the queue lock 296 * held and interrupts disabled. 297 */ 298 void __blk_run_queue(struct request_queue *q) 299 { 300 if (unlikely(blk_queue_stopped(q))) 301 return; 302 303 __blk_run_queue_uncond(q); 304 } 305 EXPORT_SYMBOL(__blk_run_queue); 306 307 /** 308 * blk_run_queue_async - run a single device queue in workqueue context 309 * @q: The queue to run 310 * 311 * Description: 312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 313 * of us. The caller must hold the queue lock. 314 */ 315 void blk_run_queue_async(struct request_queue *q) 316 { 317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 319 } 320 EXPORT_SYMBOL(blk_run_queue_async); 321 322 /** 323 * blk_run_queue - run a single device queue 324 * @q: The queue to run 325 * 326 * Description: 327 * Invoke request handling on this queue, if it has pending work to do. 328 * May be used to restart queueing when a request has completed. 329 */ 330 void blk_run_queue(struct request_queue *q) 331 { 332 unsigned long flags; 333 334 spin_lock_irqsave(q->queue_lock, flags); 335 __blk_run_queue(q); 336 spin_unlock_irqrestore(q->queue_lock, flags); 337 } 338 EXPORT_SYMBOL(blk_run_queue); 339 340 void blk_put_queue(struct request_queue *q) 341 { 342 kobject_put(&q->kobj); 343 } 344 EXPORT_SYMBOL(blk_put_queue); 345 346 /** 347 * __blk_drain_queue - drain requests from request_queue 348 * @q: queue to drain 349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 350 * 351 * Drain requests from @q. If @drain_all is set, all requests are drained. 352 * If not, only ELVPRIV requests are drained. The caller is responsible 353 * for ensuring that no new requests which need to be drained are queued. 354 */ 355 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 356 __releases(q->queue_lock) 357 __acquires(q->queue_lock) 358 { 359 int i; 360 361 lockdep_assert_held(q->queue_lock); 362 363 while (true) { 364 bool drain = false; 365 366 /* 367 * The caller might be trying to drain @q before its 368 * elevator is initialized. 369 */ 370 if (q->elevator) 371 elv_drain_elevator(q); 372 373 blkcg_drain_queue(q); 374 375 /* 376 * This function might be called on a queue which failed 377 * driver init after queue creation or is not yet fully 378 * active yet. Some drivers (e.g. fd and loop) get unhappy 379 * in such cases. Kick queue iff dispatch queue has 380 * something on it and @q has request_fn set. 381 */ 382 if (!list_empty(&q->queue_head) && q->request_fn) 383 __blk_run_queue(q); 384 385 drain |= q->nr_rqs_elvpriv; 386 drain |= q->request_fn_active; 387 388 /* 389 * Unfortunately, requests are queued at and tracked from 390 * multiple places and there's no single counter which can 391 * be drained. Check all the queues and counters. 392 */ 393 if (drain_all) { 394 drain |= !list_empty(&q->queue_head); 395 for (i = 0; i < 2; i++) { 396 drain |= q->nr_rqs[i]; 397 drain |= q->in_flight[i]; 398 drain |= !list_empty(&q->flush_queue[i]); 399 } 400 } 401 402 if (!drain) 403 break; 404 405 spin_unlock_irq(q->queue_lock); 406 407 msleep(10); 408 409 spin_lock_irq(q->queue_lock); 410 } 411 412 /* 413 * With queue marked dead, any woken up waiter will fail the 414 * allocation path, so the wakeup chaining is lost and we're 415 * left with hung waiters. We need to wake up those waiters. 416 */ 417 if (q->request_fn) { 418 struct request_list *rl; 419 420 blk_queue_for_each_rl(rl, q) 421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 422 wake_up_all(&rl->wait[i]); 423 } 424 } 425 426 /** 427 * blk_queue_bypass_start - enter queue bypass mode 428 * @q: queue of interest 429 * 430 * In bypass mode, only the dispatch FIFO queue of @q is used. This 431 * function makes @q enter bypass mode and drains all requests which were 432 * throttled or issued before. On return, it's guaranteed that no request 433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 434 * inside queue or RCU read lock. 435 */ 436 void blk_queue_bypass_start(struct request_queue *q) 437 { 438 bool drain; 439 440 spin_lock_irq(q->queue_lock); 441 drain = !q->bypass_depth++; 442 queue_flag_set(QUEUE_FLAG_BYPASS, q); 443 spin_unlock_irq(q->queue_lock); 444 445 if (drain) { 446 spin_lock_irq(q->queue_lock); 447 __blk_drain_queue(q, false); 448 spin_unlock_irq(q->queue_lock); 449 450 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 451 synchronize_rcu(); 452 } 453 } 454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 455 456 /** 457 * blk_queue_bypass_end - leave queue bypass mode 458 * @q: queue of interest 459 * 460 * Leave bypass mode and restore the normal queueing behavior. 461 */ 462 void blk_queue_bypass_end(struct request_queue *q) 463 { 464 spin_lock_irq(q->queue_lock); 465 if (!--q->bypass_depth) 466 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 467 WARN_ON_ONCE(q->bypass_depth < 0); 468 spin_unlock_irq(q->queue_lock); 469 } 470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 471 472 /** 473 * blk_cleanup_queue - shutdown a request queue 474 * @q: request queue to shutdown 475 * 476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 477 * put it. All future requests will be failed immediately with -ENODEV. 478 */ 479 void blk_cleanup_queue(struct request_queue *q) 480 { 481 spinlock_t *lock = q->queue_lock; 482 483 /* mark @q DYING, no new request or merges will be allowed afterwards */ 484 mutex_lock(&q->sysfs_lock); 485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 486 spin_lock_irq(lock); 487 488 /* 489 * A dying queue is permanently in bypass mode till released. Note 490 * that, unlike blk_queue_bypass_start(), we aren't performing 491 * synchronize_rcu() after entering bypass mode to avoid the delay 492 * as some drivers create and destroy a lot of queues while 493 * probing. This is still safe because blk_release_queue() will be 494 * called only after the queue refcnt drops to zero and nothing, 495 * RCU or not, would be traversing the queue by then. 496 */ 497 q->bypass_depth++; 498 queue_flag_set(QUEUE_FLAG_BYPASS, q); 499 500 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 502 queue_flag_set(QUEUE_FLAG_DYING, q); 503 spin_unlock_irq(lock); 504 mutex_unlock(&q->sysfs_lock); 505 506 /* 507 * Drain all requests queued before DYING marking. Set DEAD flag to 508 * prevent that q->request_fn() gets invoked after draining finished. 509 */ 510 if (q->mq_ops) { 511 blk_mq_drain_queue(q); 512 spin_lock_irq(lock); 513 } else { 514 spin_lock_irq(lock); 515 __blk_drain_queue(q, true); 516 } 517 queue_flag_set(QUEUE_FLAG_DEAD, q); 518 spin_unlock_irq(lock); 519 520 /* @q won't process any more request, flush async actions */ 521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 522 blk_sync_queue(q); 523 524 spin_lock_irq(lock); 525 if (q->queue_lock != &q->__queue_lock) 526 q->queue_lock = &q->__queue_lock; 527 spin_unlock_irq(lock); 528 529 /* @q is and will stay empty, shutdown and put */ 530 blk_put_queue(q); 531 } 532 EXPORT_SYMBOL(blk_cleanup_queue); 533 534 int blk_init_rl(struct request_list *rl, struct request_queue *q, 535 gfp_t gfp_mask) 536 { 537 if (unlikely(rl->rq_pool)) 538 return 0; 539 540 rl->q = q; 541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 545 546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 547 mempool_free_slab, request_cachep, 548 gfp_mask, q->node); 549 if (!rl->rq_pool) 550 return -ENOMEM; 551 552 return 0; 553 } 554 555 void blk_exit_rl(struct request_list *rl) 556 { 557 if (rl->rq_pool) 558 mempool_destroy(rl->rq_pool); 559 } 560 561 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 562 { 563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 564 } 565 EXPORT_SYMBOL(blk_alloc_queue); 566 567 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 568 { 569 struct request_queue *q; 570 int err; 571 572 q = kmem_cache_alloc_node(blk_requestq_cachep, 573 gfp_mask | __GFP_ZERO, node_id); 574 if (!q) 575 return NULL; 576 577 if (percpu_counter_init(&q->mq_usage_counter, 0)) 578 goto fail_q; 579 580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 581 if (q->id < 0) 582 goto fail_c; 583 584 q->backing_dev_info.ra_pages = 585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 586 q->backing_dev_info.state = 0; 587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 588 q->backing_dev_info.name = "block"; 589 q->node = node_id; 590 591 err = bdi_init(&q->backing_dev_info); 592 if (err) 593 goto fail_id; 594 595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 596 laptop_mode_timer_fn, (unsigned long) q); 597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 598 INIT_LIST_HEAD(&q->queue_head); 599 INIT_LIST_HEAD(&q->timeout_list); 600 INIT_LIST_HEAD(&q->icq_list); 601 #ifdef CONFIG_BLK_CGROUP 602 INIT_LIST_HEAD(&q->blkg_list); 603 #endif 604 INIT_LIST_HEAD(&q->flush_queue[0]); 605 INIT_LIST_HEAD(&q->flush_queue[1]); 606 INIT_LIST_HEAD(&q->flush_data_in_flight); 607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 608 609 kobject_init(&q->kobj, &blk_queue_ktype); 610 611 mutex_init(&q->sysfs_lock); 612 spin_lock_init(&q->__queue_lock); 613 614 /* 615 * By default initialize queue_lock to internal lock and driver can 616 * override it later if need be. 617 */ 618 q->queue_lock = &q->__queue_lock; 619 620 /* 621 * A queue starts its life with bypass turned on to avoid 622 * unnecessary bypass on/off overhead and nasty surprises during 623 * init. The initial bypass will be finished when the queue is 624 * registered by blk_register_queue(). 625 */ 626 q->bypass_depth = 1; 627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 628 629 init_waitqueue_head(&q->mq_freeze_wq); 630 631 if (blkcg_init_queue(q)) 632 goto fail_bdi; 633 634 return q; 635 636 fail_bdi: 637 bdi_destroy(&q->backing_dev_info); 638 fail_id: 639 ida_simple_remove(&blk_queue_ida, q->id); 640 fail_c: 641 percpu_counter_destroy(&q->mq_usage_counter); 642 fail_q: 643 kmem_cache_free(blk_requestq_cachep, q); 644 return NULL; 645 } 646 EXPORT_SYMBOL(blk_alloc_queue_node); 647 648 /** 649 * blk_init_queue - prepare a request queue for use with a block device 650 * @rfn: The function to be called to process requests that have been 651 * placed on the queue. 652 * @lock: Request queue spin lock 653 * 654 * Description: 655 * If a block device wishes to use the standard request handling procedures, 656 * which sorts requests and coalesces adjacent requests, then it must 657 * call blk_init_queue(). The function @rfn will be called when there 658 * are requests on the queue that need to be processed. If the device 659 * supports plugging, then @rfn may not be called immediately when requests 660 * are available on the queue, but may be called at some time later instead. 661 * Plugged queues are generally unplugged when a buffer belonging to one 662 * of the requests on the queue is needed, or due to memory pressure. 663 * 664 * @rfn is not required, or even expected, to remove all requests off the 665 * queue, but only as many as it can handle at a time. If it does leave 666 * requests on the queue, it is responsible for arranging that the requests 667 * get dealt with eventually. 668 * 669 * The queue spin lock must be held while manipulating the requests on the 670 * request queue; this lock will be taken also from interrupt context, so irq 671 * disabling is needed for it. 672 * 673 * Function returns a pointer to the initialized request queue, or %NULL if 674 * it didn't succeed. 675 * 676 * Note: 677 * blk_init_queue() must be paired with a blk_cleanup_queue() call 678 * when the block device is deactivated (such as at module unload). 679 **/ 680 681 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 682 { 683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 684 } 685 EXPORT_SYMBOL(blk_init_queue); 686 687 struct request_queue * 688 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 689 { 690 struct request_queue *uninit_q, *q; 691 692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 693 if (!uninit_q) 694 return NULL; 695 696 uninit_q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL); 697 if (!uninit_q->flush_rq) 698 goto out_cleanup_queue; 699 700 q = blk_init_allocated_queue(uninit_q, rfn, lock); 701 if (!q) 702 goto out_free_flush_rq; 703 return q; 704 705 out_free_flush_rq: 706 kfree(uninit_q->flush_rq); 707 out_cleanup_queue: 708 blk_cleanup_queue(uninit_q); 709 return NULL; 710 } 711 EXPORT_SYMBOL(blk_init_queue_node); 712 713 struct request_queue * 714 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 715 spinlock_t *lock) 716 { 717 if (!q) 718 return NULL; 719 720 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 721 return NULL; 722 723 q->request_fn = rfn; 724 q->prep_rq_fn = NULL; 725 q->unprep_rq_fn = NULL; 726 q->queue_flags |= QUEUE_FLAG_DEFAULT; 727 728 /* Override internal queue lock with supplied lock pointer */ 729 if (lock) 730 q->queue_lock = lock; 731 732 /* 733 * This also sets hw/phys segments, boundary and size 734 */ 735 blk_queue_make_request(q, blk_queue_bio); 736 737 q->sg_reserved_size = INT_MAX; 738 739 /* Protect q->elevator from elevator_change */ 740 mutex_lock(&q->sysfs_lock); 741 742 /* init elevator */ 743 if (elevator_init(q, NULL)) { 744 mutex_unlock(&q->sysfs_lock); 745 return NULL; 746 } 747 748 mutex_unlock(&q->sysfs_lock); 749 750 return q; 751 } 752 EXPORT_SYMBOL(blk_init_allocated_queue); 753 754 bool blk_get_queue(struct request_queue *q) 755 { 756 if (likely(!blk_queue_dying(q))) { 757 __blk_get_queue(q); 758 return true; 759 } 760 761 return false; 762 } 763 EXPORT_SYMBOL(blk_get_queue); 764 765 static inline void blk_free_request(struct request_list *rl, struct request *rq) 766 { 767 if (rq->cmd_flags & REQ_ELVPRIV) { 768 elv_put_request(rl->q, rq); 769 if (rq->elv.icq) 770 put_io_context(rq->elv.icq->ioc); 771 } 772 773 mempool_free(rq, rl->rq_pool); 774 } 775 776 /* 777 * ioc_batching returns true if the ioc is a valid batching request and 778 * should be given priority access to a request. 779 */ 780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 781 { 782 if (!ioc) 783 return 0; 784 785 /* 786 * Make sure the process is able to allocate at least 1 request 787 * even if the batch times out, otherwise we could theoretically 788 * lose wakeups. 789 */ 790 return ioc->nr_batch_requests == q->nr_batching || 791 (ioc->nr_batch_requests > 0 792 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 793 } 794 795 /* 796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 797 * will cause the process to be a "batcher" on all queues in the system. This 798 * is the behaviour we want though - once it gets a wakeup it should be given 799 * a nice run. 800 */ 801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 802 { 803 if (!ioc || ioc_batching(q, ioc)) 804 return; 805 806 ioc->nr_batch_requests = q->nr_batching; 807 ioc->last_waited = jiffies; 808 } 809 810 static void __freed_request(struct request_list *rl, int sync) 811 { 812 struct request_queue *q = rl->q; 813 814 /* 815 * bdi isn't aware of blkcg yet. As all async IOs end up root 816 * blkcg anyway, just use root blkcg state. 817 */ 818 if (rl == &q->root_rl && 819 rl->count[sync] < queue_congestion_off_threshold(q)) 820 blk_clear_queue_congested(q, sync); 821 822 if (rl->count[sync] + 1 <= q->nr_requests) { 823 if (waitqueue_active(&rl->wait[sync])) 824 wake_up(&rl->wait[sync]); 825 826 blk_clear_rl_full(rl, sync); 827 } 828 } 829 830 /* 831 * A request has just been released. Account for it, update the full and 832 * congestion status, wake up any waiters. Called under q->queue_lock. 833 */ 834 static void freed_request(struct request_list *rl, unsigned int flags) 835 { 836 struct request_queue *q = rl->q; 837 int sync = rw_is_sync(flags); 838 839 q->nr_rqs[sync]--; 840 rl->count[sync]--; 841 if (flags & REQ_ELVPRIV) 842 q->nr_rqs_elvpriv--; 843 844 __freed_request(rl, sync); 845 846 if (unlikely(rl->starved[sync ^ 1])) 847 __freed_request(rl, sync ^ 1); 848 } 849 850 /* 851 * Determine if elevator data should be initialized when allocating the 852 * request associated with @bio. 853 */ 854 static bool blk_rq_should_init_elevator(struct bio *bio) 855 { 856 if (!bio) 857 return true; 858 859 /* 860 * Flush requests do not use the elevator so skip initialization. 861 * This allows a request to share the flush and elevator data. 862 */ 863 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 864 return false; 865 866 return true; 867 } 868 869 /** 870 * rq_ioc - determine io_context for request allocation 871 * @bio: request being allocated is for this bio (can be %NULL) 872 * 873 * Determine io_context to use for request allocation for @bio. May return 874 * %NULL if %current->io_context doesn't exist. 875 */ 876 static struct io_context *rq_ioc(struct bio *bio) 877 { 878 #ifdef CONFIG_BLK_CGROUP 879 if (bio && bio->bi_ioc) 880 return bio->bi_ioc; 881 #endif 882 return current->io_context; 883 } 884 885 /** 886 * __get_request - get a free request 887 * @rl: request list to allocate from 888 * @rw_flags: RW and SYNC flags 889 * @bio: bio to allocate request for (can be %NULL) 890 * @gfp_mask: allocation mask 891 * 892 * Get a free request from @q. This function may fail under memory 893 * pressure or if @q is dead. 894 * 895 * Must be callled with @q->queue_lock held and, 896 * Returns %NULL on failure, with @q->queue_lock held. 897 * Returns !%NULL on success, with @q->queue_lock *not held*. 898 */ 899 static struct request *__get_request(struct request_list *rl, int rw_flags, 900 struct bio *bio, gfp_t gfp_mask) 901 { 902 struct request_queue *q = rl->q; 903 struct request *rq; 904 struct elevator_type *et = q->elevator->type; 905 struct io_context *ioc = rq_ioc(bio); 906 struct io_cq *icq = NULL; 907 const bool is_sync = rw_is_sync(rw_flags) != 0; 908 int may_queue; 909 910 if (unlikely(blk_queue_dying(q))) 911 return NULL; 912 913 may_queue = elv_may_queue(q, rw_flags); 914 if (may_queue == ELV_MQUEUE_NO) 915 goto rq_starved; 916 917 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 918 if (rl->count[is_sync]+1 >= q->nr_requests) { 919 /* 920 * The queue will fill after this allocation, so set 921 * it as full, and mark this process as "batching". 922 * This process will be allowed to complete a batch of 923 * requests, others will be blocked. 924 */ 925 if (!blk_rl_full(rl, is_sync)) { 926 ioc_set_batching(q, ioc); 927 blk_set_rl_full(rl, is_sync); 928 } else { 929 if (may_queue != ELV_MQUEUE_MUST 930 && !ioc_batching(q, ioc)) { 931 /* 932 * The queue is full and the allocating 933 * process is not a "batcher", and not 934 * exempted by the IO scheduler 935 */ 936 return NULL; 937 } 938 } 939 } 940 /* 941 * bdi isn't aware of blkcg yet. As all async IOs end up 942 * root blkcg anyway, just use root blkcg state. 943 */ 944 if (rl == &q->root_rl) 945 blk_set_queue_congested(q, is_sync); 946 } 947 948 /* 949 * Only allow batching queuers to allocate up to 50% over the defined 950 * limit of requests, otherwise we could have thousands of requests 951 * allocated with any setting of ->nr_requests 952 */ 953 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 954 return NULL; 955 956 q->nr_rqs[is_sync]++; 957 rl->count[is_sync]++; 958 rl->starved[is_sync] = 0; 959 960 /* 961 * Decide whether the new request will be managed by elevator. If 962 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 963 * prevent the current elevator from being destroyed until the new 964 * request is freed. This guarantees icq's won't be destroyed and 965 * makes creating new ones safe. 966 * 967 * Also, lookup icq while holding queue_lock. If it doesn't exist, 968 * it will be created after releasing queue_lock. 969 */ 970 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 971 rw_flags |= REQ_ELVPRIV; 972 q->nr_rqs_elvpriv++; 973 if (et->icq_cache && ioc) 974 icq = ioc_lookup_icq(ioc, q); 975 } 976 977 if (blk_queue_io_stat(q)) 978 rw_flags |= REQ_IO_STAT; 979 spin_unlock_irq(q->queue_lock); 980 981 /* allocate and init request */ 982 rq = mempool_alloc(rl->rq_pool, gfp_mask); 983 if (!rq) 984 goto fail_alloc; 985 986 blk_rq_init(q, rq); 987 blk_rq_set_rl(rq, rl); 988 rq->cmd_flags = rw_flags | REQ_ALLOCED; 989 990 /* init elvpriv */ 991 if (rw_flags & REQ_ELVPRIV) { 992 if (unlikely(et->icq_cache && !icq)) { 993 if (ioc) 994 icq = ioc_create_icq(ioc, q, gfp_mask); 995 if (!icq) 996 goto fail_elvpriv; 997 } 998 999 rq->elv.icq = icq; 1000 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1001 goto fail_elvpriv; 1002 1003 /* @rq->elv.icq holds io_context until @rq is freed */ 1004 if (icq) 1005 get_io_context(icq->ioc); 1006 } 1007 out: 1008 /* 1009 * ioc may be NULL here, and ioc_batching will be false. That's 1010 * OK, if the queue is under the request limit then requests need 1011 * not count toward the nr_batch_requests limit. There will always 1012 * be some limit enforced by BLK_BATCH_TIME. 1013 */ 1014 if (ioc_batching(q, ioc)) 1015 ioc->nr_batch_requests--; 1016 1017 trace_block_getrq(q, bio, rw_flags & 1); 1018 return rq; 1019 1020 fail_elvpriv: 1021 /* 1022 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1023 * and may fail indefinitely under memory pressure and thus 1024 * shouldn't stall IO. Treat this request as !elvpriv. This will 1025 * disturb iosched and blkcg but weird is bettern than dead. 1026 */ 1027 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1028 dev_name(q->backing_dev_info.dev)); 1029 1030 rq->cmd_flags &= ~REQ_ELVPRIV; 1031 rq->elv.icq = NULL; 1032 1033 spin_lock_irq(q->queue_lock); 1034 q->nr_rqs_elvpriv--; 1035 spin_unlock_irq(q->queue_lock); 1036 goto out; 1037 1038 fail_alloc: 1039 /* 1040 * Allocation failed presumably due to memory. Undo anything we 1041 * might have messed up. 1042 * 1043 * Allocating task should really be put onto the front of the wait 1044 * queue, but this is pretty rare. 1045 */ 1046 spin_lock_irq(q->queue_lock); 1047 freed_request(rl, rw_flags); 1048 1049 /* 1050 * in the very unlikely event that allocation failed and no 1051 * requests for this direction was pending, mark us starved so that 1052 * freeing of a request in the other direction will notice 1053 * us. another possible fix would be to split the rq mempool into 1054 * READ and WRITE 1055 */ 1056 rq_starved: 1057 if (unlikely(rl->count[is_sync] == 0)) 1058 rl->starved[is_sync] = 1; 1059 return NULL; 1060 } 1061 1062 /** 1063 * get_request - get a free request 1064 * @q: request_queue to allocate request from 1065 * @rw_flags: RW and SYNC flags 1066 * @bio: bio to allocate request for (can be %NULL) 1067 * @gfp_mask: allocation mask 1068 * 1069 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1070 * function keeps retrying under memory pressure and fails iff @q is dead. 1071 * 1072 * Must be callled with @q->queue_lock held and, 1073 * Returns %NULL on failure, with @q->queue_lock held. 1074 * Returns !%NULL on success, with @q->queue_lock *not held*. 1075 */ 1076 static struct request *get_request(struct request_queue *q, int rw_flags, 1077 struct bio *bio, gfp_t gfp_mask) 1078 { 1079 const bool is_sync = rw_is_sync(rw_flags) != 0; 1080 DEFINE_WAIT(wait); 1081 struct request_list *rl; 1082 struct request *rq; 1083 1084 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1085 retry: 1086 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1087 if (rq) 1088 return rq; 1089 1090 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1091 blk_put_rl(rl); 1092 return NULL; 1093 } 1094 1095 /* wait on @rl and retry */ 1096 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1097 TASK_UNINTERRUPTIBLE); 1098 1099 trace_block_sleeprq(q, bio, rw_flags & 1); 1100 1101 spin_unlock_irq(q->queue_lock); 1102 io_schedule(); 1103 1104 /* 1105 * After sleeping, we become a "batching" process and will be able 1106 * to allocate at least one request, and up to a big batch of them 1107 * for a small period time. See ioc_batching, ioc_set_batching 1108 */ 1109 ioc_set_batching(q, current->io_context); 1110 1111 spin_lock_irq(q->queue_lock); 1112 finish_wait(&rl->wait[is_sync], &wait); 1113 1114 goto retry; 1115 } 1116 1117 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1118 gfp_t gfp_mask) 1119 { 1120 struct request *rq; 1121 1122 BUG_ON(rw != READ && rw != WRITE); 1123 1124 /* create ioc upfront */ 1125 create_io_context(gfp_mask, q->node); 1126 1127 spin_lock_irq(q->queue_lock); 1128 rq = get_request(q, rw, NULL, gfp_mask); 1129 if (!rq) 1130 spin_unlock_irq(q->queue_lock); 1131 /* q->queue_lock is unlocked at this point */ 1132 1133 return rq; 1134 } 1135 1136 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1137 { 1138 if (q->mq_ops) 1139 return blk_mq_alloc_request(q, rw, gfp_mask); 1140 else 1141 return blk_old_get_request(q, rw, gfp_mask); 1142 } 1143 EXPORT_SYMBOL(blk_get_request); 1144 1145 /** 1146 * blk_make_request - given a bio, allocate a corresponding struct request. 1147 * @q: target request queue 1148 * @bio: The bio describing the memory mappings that will be submitted for IO. 1149 * It may be a chained-bio properly constructed by block/bio layer. 1150 * @gfp_mask: gfp flags to be used for memory allocation 1151 * 1152 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1153 * type commands. Where the struct request needs to be farther initialized by 1154 * the caller. It is passed a &struct bio, which describes the memory info of 1155 * the I/O transfer. 1156 * 1157 * The caller of blk_make_request must make sure that bi_io_vec 1158 * are set to describe the memory buffers. That bio_data_dir() will return 1159 * the needed direction of the request. (And all bio's in the passed bio-chain 1160 * are properly set accordingly) 1161 * 1162 * If called under none-sleepable conditions, mapped bio buffers must not 1163 * need bouncing, by calling the appropriate masked or flagged allocator, 1164 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1165 * BUG. 1166 * 1167 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1168 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1169 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1170 * completion of a bio that hasn't been submitted yet, thus resulting in a 1171 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1172 * of bio_alloc(), as that avoids the mempool deadlock. 1173 * If possible a big IO should be split into smaller parts when allocation 1174 * fails. Partial allocation should not be an error, or you risk a live-lock. 1175 */ 1176 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1177 gfp_t gfp_mask) 1178 { 1179 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1180 1181 if (unlikely(!rq)) 1182 return ERR_PTR(-ENOMEM); 1183 1184 for_each_bio(bio) { 1185 struct bio *bounce_bio = bio; 1186 int ret; 1187 1188 blk_queue_bounce(q, &bounce_bio); 1189 ret = blk_rq_append_bio(q, rq, bounce_bio); 1190 if (unlikely(ret)) { 1191 blk_put_request(rq); 1192 return ERR_PTR(ret); 1193 } 1194 } 1195 1196 return rq; 1197 } 1198 EXPORT_SYMBOL(blk_make_request); 1199 1200 /** 1201 * blk_requeue_request - put a request back on queue 1202 * @q: request queue where request should be inserted 1203 * @rq: request to be inserted 1204 * 1205 * Description: 1206 * Drivers often keep queueing requests until the hardware cannot accept 1207 * more, when that condition happens we need to put the request back 1208 * on the queue. Must be called with queue lock held. 1209 */ 1210 void blk_requeue_request(struct request_queue *q, struct request *rq) 1211 { 1212 blk_delete_timer(rq); 1213 blk_clear_rq_complete(rq); 1214 trace_block_rq_requeue(q, rq); 1215 1216 if (blk_rq_tagged(rq)) 1217 blk_queue_end_tag(q, rq); 1218 1219 BUG_ON(blk_queued_rq(rq)); 1220 1221 elv_requeue_request(q, rq); 1222 } 1223 EXPORT_SYMBOL(blk_requeue_request); 1224 1225 static void add_acct_request(struct request_queue *q, struct request *rq, 1226 int where) 1227 { 1228 blk_account_io_start(rq, true); 1229 __elv_add_request(q, rq, where); 1230 } 1231 1232 static void part_round_stats_single(int cpu, struct hd_struct *part, 1233 unsigned long now) 1234 { 1235 if (now == part->stamp) 1236 return; 1237 1238 if (part_in_flight(part)) { 1239 __part_stat_add(cpu, part, time_in_queue, 1240 part_in_flight(part) * (now - part->stamp)); 1241 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1242 } 1243 part->stamp = now; 1244 } 1245 1246 /** 1247 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1248 * @cpu: cpu number for stats access 1249 * @part: target partition 1250 * 1251 * The average IO queue length and utilisation statistics are maintained 1252 * by observing the current state of the queue length and the amount of 1253 * time it has been in this state for. 1254 * 1255 * Normally, that accounting is done on IO completion, but that can result 1256 * in more than a second's worth of IO being accounted for within any one 1257 * second, leading to >100% utilisation. To deal with that, we call this 1258 * function to do a round-off before returning the results when reading 1259 * /proc/diskstats. This accounts immediately for all queue usage up to 1260 * the current jiffies and restarts the counters again. 1261 */ 1262 void part_round_stats(int cpu, struct hd_struct *part) 1263 { 1264 unsigned long now = jiffies; 1265 1266 if (part->partno) 1267 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1268 part_round_stats_single(cpu, part, now); 1269 } 1270 EXPORT_SYMBOL_GPL(part_round_stats); 1271 1272 #ifdef CONFIG_PM_RUNTIME 1273 static void blk_pm_put_request(struct request *rq) 1274 { 1275 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1276 pm_runtime_mark_last_busy(rq->q->dev); 1277 } 1278 #else 1279 static inline void blk_pm_put_request(struct request *rq) {} 1280 #endif 1281 1282 /* 1283 * queue lock must be held 1284 */ 1285 void __blk_put_request(struct request_queue *q, struct request *req) 1286 { 1287 if (unlikely(!q)) 1288 return; 1289 1290 if (q->mq_ops) { 1291 blk_mq_free_request(req); 1292 return; 1293 } 1294 1295 blk_pm_put_request(req); 1296 1297 elv_completed_request(q, req); 1298 1299 /* this is a bio leak */ 1300 WARN_ON(req->bio != NULL); 1301 1302 /* 1303 * Request may not have originated from ll_rw_blk. if not, 1304 * it didn't come out of our reserved rq pools 1305 */ 1306 if (req->cmd_flags & REQ_ALLOCED) { 1307 unsigned int flags = req->cmd_flags; 1308 struct request_list *rl = blk_rq_rl(req); 1309 1310 BUG_ON(!list_empty(&req->queuelist)); 1311 BUG_ON(!hlist_unhashed(&req->hash)); 1312 1313 blk_free_request(rl, req); 1314 freed_request(rl, flags); 1315 blk_put_rl(rl); 1316 } 1317 } 1318 EXPORT_SYMBOL_GPL(__blk_put_request); 1319 1320 void blk_put_request(struct request *req) 1321 { 1322 struct request_queue *q = req->q; 1323 1324 if (q->mq_ops) 1325 blk_mq_free_request(req); 1326 else { 1327 unsigned long flags; 1328 1329 spin_lock_irqsave(q->queue_lock, flags); 1330 __blk_put_request(q, req); 1331 spin_unlock_irqrestore(q->queue_lock, flags); 1332 } 1333 } 1334 EXPORT_SYMBOL(blk_put_request); 1335 1336 /** 1337 * blk_add_request_payload - add a payload to a request 1338 * @rq: request to update 1339 * @page: page backing the payload 1340 * @len: length of the payload. 1341 * 1342 * This allows to later add a payload to an already submitted request by 1343 * a block driver. The driver needs to take care of freeing the payload 1344 * itself. 1345 * 1346 * Note that this is a quite horrible hack and nothing but handling of 1347 * discard requests should ever use it. 1348 */ 1349 void blk_add_request_payload(struct request *rq, struct page *page, 1350 unsigned int len) 1351 { 1352 struct bio *bio = rq->bio; 1353 1354 bio->bi_io_vec->bv_page = page; 1355 bio->bi_io_vec->bv_offset = 0; 1356 bio->bi_io_vec->bv_len = len; 1357 1358 bio->bi_iter.bi_size = len; 1359 bio->bi_vcnt = 1; 1360 bio->bi_phys_segments = 1; 1361 1362 rq->__data_len = rq->resid_len = len; 1363 rq->nr_phys_segments = 1; 1364 rq->buffer = bio_data(bio); 1365 } 1366 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1367 1368 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1369 struct bio *bio) 1370 { 1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1372 1373 if (!ll_back_merge_fn(q, req, bio)) 1374 return false; 1375 1376 trace_block_bio_backmerge(q, req, bio); 1377 1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1379 blk_rq_set_mixed_merge(req); 1380 1381 req->biotail->bi_next = bio; 1382 req->biotail = bio; 1383 req->__data_len += bio->bi_iter.bi_size; 1384 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1385 1386 blk_account_io_start(req, false); 1387 return true; 1388 } 1389 1390 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1391 struct bio *bio) 1392 { 1393 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1394 1395 if (!ll_front_merge_fn(q, req, bio)) 1396 return false; 1397 1398 trace_block_bio_frontmerge(q, req, bio); 1399 1400 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1401 blk_rq_set_mixed_merge(req); 1402 1403 bio->bi_next = req->bio; 1404 req->bio = bio; 1405 1406 /* 1407 * may not be valid. if the low level driver said 1408 * it didn't need a bounce buffer then it better 1409 * not touch req->buffer either... 1410 */ 1411 req->buffer = bio_data(bio); 1412 req->__sector = bio->bi_iter.bi_sector; 1413 req->__data_len += bio->bi_iter.bi_size; 1414 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1415 1416 blk_account_io_start(req, false); 1417 return true; 1418 } 1419 1420 /** 1421 * blk_attempt_plug_merge - try to merge with %current's plugged list 1422 * @q: request_queue new bio is being queued at 1423 * @bio: new bio being queued 1424 * @request_count: out parameter for number of traversed plugged requests 1425 * 1426 * Determine whether @bio being queued on @q can be merged with a request 1427 * on %current's plugged list. Returns %true if merge was successful, 1428 * otherwise %false. 1429 * 1430 * Plugging coalesces IOs from the same issuer for the same purpose without 1431 * going through @q->queue_lock. As such it's more of an issuing mechanism 1432 * than scheduling, and the request, while may have elvpriv data, is not 1433 * added on the elevator at this point. In addition, we don't have 1434 * reliable access to the elevator outside queue lock. Only check basic 1435 * merging parameters without querying the elevator. 1436 */ 1437 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1438 unsigned int *request_count) 1439 { 1440 struct blk_plug *plug; 1441 struct request *rq; 1442 bool ret = false; 1443 struct list_head *plug_list; 1444 1445 if (blk_queue_nomerges(q)) 1446 goto out; 1447 1448 plug = current->plug; 1449 if (!plug) 1450 goto out; 1451 *request_count = 0; 1452 1453 if (q->mq_ops) 1454 plug_list = &plug->mq_list; 1455 else 1456 plug_list = &plug->list; 1457 1458 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1459 int el_ret; 1460 1461 if (rq->q == q) 1462 (*request_count)++; 1463 1464 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1465 continue; 1466 1467 el_ret = blk_try_merge(rq, bio); 1468 if (el_ret == ELEVATOR_BACK_MERGE) { 1469 ret = bio_attempt_back_merge(q, rq, bio); 1470 if (ret) 1471 break; 1472 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1473 ret = bio_attempt_front_merge(q, rq, bio); 1474 if (ret) 1475 break; 1476 } 1477 } 1478 out: 1479 return ret; 1480 } 1481 1482 void init_request_from_bio(struct request *req, struct bio *bio) 1483 { 1484 req->cmd_type = REQ_TYPE_FS; 1485 1486 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1487 if (bio->bi_rw & REQ_RAHEAD) 1488 req->cmd_flags |= REQ_FAILFAST_MASK; 1489 1490 req->errors = 0; 1491 req->__sector = bio->bi_iter.bi_sector; 1492 req->ioprio = bio_prio(bio); 1493 blk_rq_bio_prep(req->q, req, bio); 1494 } 1495 1496 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1497 { 1498 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1499 struct blk_plug *plug; 1500 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1501 struct request *req; 1502 unsigned int request_count = 0; 1503 1504 /* 1505 * low level driver can indicate that it wants pages above a 1506 * certain limit bounced to low memory (ie for highmem, or even 1507 * ISA dma in theory) 1508 */ 1509 blk_queue_bounce(q, &bio); 1510 1511 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1512 bio_endio(bio, -EIO); 1513 return; 1514 } 1515 1516 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1517 spin_lock_irq(q->queue_lock); 1518 where = ELEVATOR_INSERT_FLUSH; 1519 goto get_rq; 1520 } 1521 1522 /* 1523 * Check if we can merge with the plugged list before grabbing 1524 * any locks. 1525 */ 1526 if (blk_attempt_plug_merge(q, bio, &request_count)) 1527 return; 1528 1529 spin_lock_irq(q->queue_lock); 1530 1531 el_ret = elv_merge(q, &req, bio); 1532 if (el_ret == ELEVATOR_BACK_MERGE) { 1533 if (bio_attempt_back_merge(q, req, bio)) { 1534 elv_bio_merged(q, req, bio); 1535 if (!attempt_back_merge(q, req)) 1536 elv_merged_request(q, req, el_ret); 1537 goto out_unlock; 1538 } 1539 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1540 if (bio_attempt_front_merge(q, req, bio)) { 1541 elv_bio_merged(q, req, bio); 1542 if (!attempt_front_merge(q, req)) 1543 elv_merged_request(q, req, el_ret); 1544 goto out_unlock; 1545 } 1546 } 1547 1548 get_rq: 1549 /* 1550 * This sync check and mask will be re-done in init_request_from_bio(), 1551 * but we need to set it earlier to expose the sync flag to the 1552 * rq allocator and io schedulers. 1553 */ 1554 rw_flags = bio_data_dir(bio); 1555 if (sync) 1556 rw_flags |= REQ_SYNC; 1557 1558 /* 1559 * Grab a free request. This is might sleep but can not fail. 1560 * Returns with the queue unlocked. 1561 */ 1562 req = get_request(q, rw_flags, bio, GFP_NOIO); 1563 if (unlikely(!req)) { 1564 bio_endio(bio, -ENODEV); /* @q is dead */ 1565 goto out_unlock; 1566 } 1567 1568 /* 1569 * After dropping the lock and possibly sleeping here, our request 1570 * may now be mergeable after it had proven unmergeable (above). 1571 * We don't worry about that case for efficiency. It won't happen 1572 * often, and the elevators are able to handle it. 1573 */ 1574 init_request_from_bio(req, bio); 1575 1576 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1577 req->cpu = raw_smp_processor_id(); 1578 1579 plug = current->plug; 1580 if (plug) { 1581 /* 1582 * If this is the first request added after a plug, fire 1583 * of a plug trace. 1584 */ 1585 if (!request_count) 1586 trace_block_plug(q); 1587 else { 1588 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1589 blk_flush_plug_list(plug, false); 1590 trace_block_plug(q); 1591 } 1592 } 1593 list_add_tail(&req->queuelist, &plug->list); 1594 blk_account_io_start(req, true); 1595 } else { 1596 spin_lock_irq(q->queue_lock); 1597 add_acct_request(q, req, where); 1598 __blk_run_queue(q); 1599 out_unlock: 1600 spin_unlock_irq(q->queue_lock); 1601 } 1602 } 1603 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1604 1605 /* 1606 * If bio->bi_dev is a partition, remap the location 1607 */ 1608 static inline void blk_partition_remap(struct bio *bio) 1609 { 1610 struct block_device *bdev = bio->bi_bdev; 1611 1612 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1613 struct hd_struct *p = bdev->bd_part; 1614 1615 bio->bi_iter.bi_sector += p->start_sect; 1616 bio->bi_bdev = bdev->bd_contains; 1617 1618 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1619 bdev->bd_dev, 1620 bio->bi_iter.bi_sector - p->start_sect); 1621 } 1622 } 1623 1624 static void handle_bad_sector(struct bio *bio) 1625 { 1626 char b[BDEVNAME_SIZE]; 1627 1628 printk(KERN_INFO "attempt to access beyond end of device\n"); 1629 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1630 bdevname(bio->bi_bdev, b), 1631 bio->bi_rw, 1632 (unsigned long long)bio_end_sector(bio), 1633 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1634 1635 set_bit(BIO_EOF, &bio->bi_flags); 1636 } 1637 1638 #ifdef CONFIG_FAIL_MAKE_REQUEST 1639 1640 static DECLARE_FAULT_ATTR(fail_make_request); 1641 1642 static int __init setup_fail_make_request(char *str) 1643 { 1644 return setup_fault_attr(&fail_make_request, str); 1645 } 1646 __setup("fail_make_request=", setup_fail_make_request); 1647 1648 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1649 { 1650 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1651 } 1652 1653 static int __init fail_make_request_debugfs(void) 1654 { 1655 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1656 NULL, &fail_make_request); 1657 1658 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1659 } 1660 1661 late_initcall(fail_make_request_debugfs); 1662 1663 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1664 1665 static inline bool should_fail_request(struct hd_struct *part, 1666 unsigned int bytes) 1667 { 1668 return false; 1669 } 1670 1671 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1672 1673 /* 1674 * Check whether this bio extends beyond the end of the device. 1675 */ 1676 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1677 { 1678 sector_t maxsector; 1679 1680 if (!nr_sectors) 1681 return 0; 1682 1683 /* Test device or partition size, when known. */ 1684 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1685 if (maxsector) { 1686 sector_t sector = bio->bi_iter.bi_sector; 1687 1688 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1689 /* 1690 * This may well happen - the kernel calls bread() 1691 * without checking the size of the device, e.g., when 1692 * mounting a device. 1693 */ 1694 handle_bad_sector(bio); 1695 return 1; 1696 } 1697 } 1698 1699 return 0; 1700 } 1701 1702 static noinline_for_stack bool 1703 generic_make_request_checks(struct bio *bio) 1704 { 1705 struct request_queue *q; 1706 int nr_sectors = bio_sectors(bio); 1707 int err = -EIO; 1708 char b[BDEVNAME_SIZE]; 1709 struct hd_struct *part; 1710 1711 might_sleep(); 1712 1713 if (bio_check_eod(bio, nr_sectors)) 1714 goto end_io; 1715 1716 q = bdev_get_queue(bio->bi_bdev); 1717 if (unlikely(!q)) { 1718 printk(KERN_ERR 1719 "generic_make_request: Trying to access " 1720 "nonexistent block-device %s (%Lu)\n", 1721 bdevname(bio->bi_bdev, b), 1722 (long long) bio->bi_iter.bi_sector); 1723 goto end_io; 1724 } 1725 1726 if (likely(bio_is_rw(bio) && 1727 nr_sectors > queue_max_hw_sectors(q))) { 1728 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1729 bdevname(bio->bi_bdev, b), 1730 bio_sectors(bio), 1731 queue_max_hw_sectors(q)); 1732 goto end_io; 1733 } 1734 1735 part = bio->bi_bdev->bd_part; 1736 if (should_fail_request(part, bio->bi_iter.bi_size) || 1737 should_fail_request(&part_to_disk(part)->part0, 1738 bio->bi_iter.bi_size)) 1739 goto end_io; 1740 1741 /* 1742 * If this device has partitions, remap block n 1743 * of partition p to block n+start(p) of the disk. 1744 */ 1745 blk_partition_remap(bio); 1746 1747 if (bio_check_eod(bio, nr_sectors)) 1748 goto end_io; 1749 1750 /* 1751 * Filter flush bio's early so that make_request based 1752 * drivers without flush support don't have to worry 1753 * about them. 1754 */ 1755 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1756 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1757 if (!nr_sectors) { 1758 err = 0; 1759 goto end_io; 1760 } 1761 } 1762 1763 if ((bio->bi_rw & REQ_DISCARD) && 1764 (!blk_queue_discard(q) || 1765 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1766 err = -EOPNOTSUPP; 1767 goto end_io; 1768 } 1769 1770 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1771 err = -EOPNOTSUPP; 1772 goto end_io; 1773 } 1774 1775 /* 1776 * Various block parts want %current->io_context and lazy ioc 1777 * allocation ends up trading a lot of pain for a small amount of 1778 * memory. Just allocate it upfront. This may fail and block 1779 * layer knows how to live with it. 1780 */ 1781 create_io_context(GFP_ATOMIC, q->node); 1782 1783 if (blk_throtl_bio(q, bio)) 1784 return false; /* throttled, will be resubmitted later */ 1785 1786 trace_block_bio_queue(q, bio); 1787 return true; 1788 1789 end_io: 1790 bio_endio(bio, err); 1791 return false; 1792 } 1793 1794 /** 1795 * generic_make_request - hand a buffer to its device driver for I/O 1796 * @bio: The bio describing the location in memory and on the device. 1797 * 1798 * generic_make_request() is used to make I/O requests of block 1799 * devices. It is passed a &struct bio, which describes the I/O that needs 1800 * to be done. 1801 * 1802 * generic_make_request() does not return any status. The 1803 * success/failure status of the request, along with notification of 1804 * completion, is delivered asynchronously through the bio->bi_end_io 1805 * function described (one day) else where. 1806 * 1807 * The caller of generic_make_request must make sure that bi_io_vec 1808 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1809 * set to describe the device address, and the 1810 * bi_end_io and optionally bi_private are set to describe how 1811 * completion notification should be signaled. 1812 * 1813 * generic_make_request and the drivers it calls may use bi_next if this 1814 * bio happens to be merged with someone else, and may resubmit the bio to 1815 * a lower device by calling into generic_make_request recursively, which 1816 * means the bio should NOT be touched after the call to ->make_request_fn. 1817 */ 1818 void generic_make_request(struct bio *bio) 1819 { 1820 struct bio_list bio_list_on_stack; 1821 1822 if (!generic_make_request_checks(bio)) 1823 return; 1824 1825 /* 1826 * We only want one ->make_request_fn to be active at a time, else 1827 * stack usage with stacked devices could be a problem. So use 1828 * current->bio_list to keep a list of requests submited by a 1829 * make_request_fn function. current->bio_list is also used as a 1830 * flag to say if generic_make_request is currently active in this 1831 * task or not. If it is NULL, then no make_request is active. If 1832 * it is non-NULL, then a make_request is active, and new requests 1833 * should be added at the tail 1834 */ 1835 if (current->bio_list) { 1836 bio_list_add(current->bio_list, bio); 1837 return; 1838 } 1839 1840 /* following loop may be a bit non-obvious, and so deserves some 1841 * explanation. 1842 * Before entering the loop, bio->bi_next is NULL (as all callers 1843 * ensure that) so we have a list with a single bio. 1844 * We pretend that we have just taken it off a longer list, so 1845 * we assign bio_list to a pointer to the bio_list_on_stack, 1846 * thus initialising the bio_list of new bios to be 1847 * added. ->make_request() may indeed add some more bios 1848 * through a recursive call to generic_make_request. If it 1849 * did, we find a non-NULL value in bio_list and re-enter the loop 1850 * from the top. In this case we really did just take the bio 1851 * of the top of the list (no pretending) and so remove it from 1852 * bio_list, and call into ->make_request() again. 1853 */ 1854 BUG_ON(bio->bi_next); 1855 bio_list_init(&bio_list_on_stack); 1856 current->bio_list = &bio_list_on_stack; 1857 do { 1858 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1859 1860 q->make_request_fn(q, bio); 1861 1862 bio = bio_list_pop(current->bio_list); 1863 } while (bio); 1864 current->bio_list = NULL; /* deactivate */ 1865 } 1866 EXPORT_SYMBOL(generic_make_request); 1867 1868 /** 1869 * submit_bio - submit a bio to the block device layer for I/O 1870 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1871 * @bio: The &struct bio which describes the I/O 1872 * 1873 * submit_bio() is very similar in purpose to generic_make_request(), and 1874 * uses that function to do most of the work. Both are fairly rough 1875 * interfaces; @bio must be presetup and ready for I/O. 1876 * 1877 */ 1878 void submit_bio(int rw, struct bio *bio) 1879 { 1880 bio->bi_rw |= rw; 1881 1882 /* 1883 * If it's a regular read/write or a barrier with data attached, 1884 * go through the normal accounting stuff before submission. 1885 */ 1886 if (bio_has_data(bio)) { 1887 unsigned int count; 1888 1889 if (unlikely(rw & REQ_WRITE_SAME)) 1890 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1891 else 1892 count = bio_sectors(bio); 1893 1894 if (rw & WRITE) { 1895 count_vm_events(PGPGOUT, count); 1896 } else { 1897 task_io_account_read(bio->bi_iter.bi_size); 1898 count_vm_events(PGPGIN, count); 1899 } 1900 1901 if (unlikely(block_dump)) { 1902 char b[BDEVNAME_SIZE]; 1903 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1904 current->comm, task_pid_nr(current), 1905 (rw & WRITE) ? "WRITE" : "READ", 1906 (unsigned long long)bio->bi_iter.bi_sector, 1907 bdevname(bio->bi_bdev, b), 1908 count); 1909 } 1910 } 1911 1912 generic_make_request(bio); 1913 } 1914 EXPORT_SYMBOL(submit_bio); 1915 1916 /** 1917 * blk_rq_check_limits - Helper function to check a request for the queue limit 1918 * @q: the queue 1919 * @rq: the request being checked 1920 * 1921 * Description: 1922 * @rq may have been made based on weaker limitations of upper-level queues 1923 * in request stacking drivers, and it may violate the limitation of @q. 1924 * Since the block layer and the underlying device driver trust @rq 1925 * after it is inserted to @q, it should be checked against @q before 1926 * the insertion using this generic function. 1927 * 1928 * This function should also be useful for request stacking drivers 1929 * in some cases below, so export this function. 1930 * Request stacking drivers like request-based dm may change the queue 1931 * limits while requests are in the queue (e.g. dm's table swapping). 1932 * Such request stacking drivers should check those requests agaist 1933 * the new queue limits again when they dispatch those requests, 1934 * although such checkings are also done against the old queue limits 1935 * when submitting requests. 1936 */ 1937 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1938 { 1939 if (!rq_mergeable(rq)) 1940 return 0; 1941 1942 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1943 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1944 return -EIO; 1945 } 1946 1947 /* 1948 * queue's settings related to segment counting like q->bounce_pfn 1949 * may differ from that of other stacking queues. 1950 * Recalculate it to check the request correctly on this queue's 1951 * limitation. 1952 */ 1953 blk_recalc_rq_segments(rq); 1954 if (rq->nr_phys_segments > queue_max_segments(q)) { 1955 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1956 return -EIO; 1957 } 1958 1959 return 0; 1960 } 1961 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1962 1963 /** 1964 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1965 * @q: the queue to submit the request 1966 * @rq: the request being queued 1967 */ 1968 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1969 { 1970 unsigned long flags; 1971 int where = ELEVATOR_INSERT_BACK; 1972 1973 if (blk_rq_check_limits(q, rq)) 1974 return -EIO; 1975 1976 if (rq->rq_disk && 1977 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1978 return -EIO; 1979 1980 spin_lock_irqsave(q->queue_lock, flags); 1981 if (unlikely(blk_queue_dying(q))) { 1982 spin_unlock_irqrestore(q->queue_lock, flags); 1983 return -ENODEV; 1984 } 1985 1986 /* 1987 * Submitting request must be dequeued before calling this function 1988 * because it will be linked to another request_queue 1989 */ 1990 BUG_ON(blk_queued_rq(rq)); 1991 1992 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1993 where = ELEVATOR_INSERT_FLUSH; 1994 1995 add_acct_request(q, rq, where); 1996 if (where == ELEVATOR_INSERT_FLUSH) 1997 __blk_run_queue(q); 1998 spin_unlock_irqrestore(q->queue_lock, flags); 1999 2000 return 0; 2001 } 2002 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2003 2004 /** 2005 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2006 * @rq: request to examine 2007 * 2008 * Description: 2009 * A request could be merge of IOs which require different failure 2010 * handling. This function determines the number of bytes which 2011 * can be failed from the beginning of the request without 2012 * crossing into area which need to be retried further. 2013 * 2014 * Return: 2015 * The number of bytes to fail. 2016 * 2017 * Context: 2018 * queue_lock must be held. 2019 */ 2020 unsigned int blk_rq_err_bytes(const struct request *rq) 2021 { 2022 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2023 unsigned int bytes = 0; 2024 struct bio *bio; 2025 2026 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2027 return blk_rq_bytes(rq); 2028 2029 /* 2030 * Currently the only 'mixing' which can happen is between 2031 * different fastfail types. We can safely fail portions 2032 * which have all the failfast bits that the first one has - 2033 * the ones which are at least as eager to fail as the first 2034 * one. 2035 */ 2036 for (bio = rq->bio; bio; bio = bio->bi_next) { 2037 if ((bio->bi_rw & ff) != ff) 2038 break; 2039 bytes += bio->bi_iter.bi_size; 2040 } 2041 2042 /* this could lead to infinite loop */ 2043 BUG_ON(blk_rq_bytes(rq) && !bytes); 2044 return bytes; 2045 } 2046 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2047 2048 void blk_account_io_completion(struct request *req, unsigned int bytes) 2049 { 2050 if (blk_do_io_stat(req)) { 2051 const int rw = rq_data_dir(req); 2052 struct hd_struct *part; 2053 int cpu; 2054 2055 cpu = part_stat_lock(); 2056 part = req->part; 2057 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2058 part_stat_unlock(); 2059 } 2060 } 2061 2062 void blk_account_io_done(struct request *req) 2063 { 2064 /* 2065 * Account IO completion. flush_rq isn't accounted as a 2066 * normal IO on queueing nor completion. Accounting the 2067 * containing request is enough. 2068 */ 2069 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2070 unsigned long duration = jiffies - req->start_time; 2071 const int rw = rq_data_dir(req); 2072 struct hd_struct *part; 2073 int cpu; 2074 2075 cpu = part_stat_lock(); 2076 part = req->part; 2077 2078 part_stat_inc(cpu, part, ios[rw]); 2079 part_stat_add(cpu, part, ticks[rw], duration); 2080 part_round_stats(cpu, part); 2081 part_dec_in_flight(part, rw); 2082 2083 hd_struct_put(part); 2084 part_stat_unlock(); 2085 } 2086 } 2087 2088 #ifdef CONFIG_PM_RUNTIME 2089 /* 2090 * Don't process normal requests when queue is suspended 2091 * or in the process of suspending/resuming 2092 */ 2093 static struct request *blk_pm_peek_request(struct request_queue *q, 2094 struct request *rq) 2095 { 2096 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2097 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2098 return NULL; 2099 else 2100 return rq; 2101 } 2102 #else 2103 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2104 struct request *rq) 2105 { 2106 return rq; 2107 } 2108 #endif 2109 2110 void blk_account_io_start(struct request *rq, bool new_io) 2111 { 2112 struct hd_struct *part; 2113 int rw = rq_data_dir(rq); 2114 int cpu; 2115 2116 if (!blk_do_io_stat(rq)) 2117 return; 2118 2119 cpu = part_stat_lock(); 2120 2121 if (!new_io) { 2122 part = rq->part; 2123 part_stat_inc(cpu, part, merges[rw]); 2124 } else { 2125 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2126 if (!hd_struct_try_get(part)) { 2127 /* 2128 * The partition is already being removed, 2129 * the request will be accounted on the disk only 2130 * 2131 * We take a reference on disk->part0 although that 2132 * partition will never be deleted, so we can treat 2133 * it as any other partition. 2134 */ 2135 part = &rq->rq_disk->part0; 2136 hd_struct_get(part); 2137 } 2138 part_round_stats(cpu, part); 2139 part_inc_in_flight(part, rw); 2140 rq->part = part; 2141 } 2142 2143 part_stat_unlock(); 2144 } 2145 2146 /** 2147 * blk_peek_request - peek at the top of a request queue 2148 * @q: request queue to peek at 2149 * 2150 * Description: 2151 * Return the request at the top of @q. The returned request 2152 * should be started using blk_start_request() before LLD starts 2153 * processing it. 2154 * 2155 * Return: 2156 * Pointer to the request at the top of @q if available. Null 2157 * otherwise. 2158 * 2159 * Context: 2160 * queue_lock must be held. 2161 */ 2162 struct request *blk_peek_request(struct request_queue *q) 2163 { 2164 struct request *rq; 2165 int ret; 2166 2167 while ((rq = __elv_next_request(q)) != NULL) { 2168 2169 rq = blk_pm_peek_request(q, rq); 2170 if (!rq) 2171 break; 2172 2173 if (!(rq->cmd_flags & REQ_STARTED)) { 2174 /* 2175 * This is the first time the device driver 2176 * sees this request (possibly after 2177 * requeueing). Notify IO scheduler. 2178 */ 2179 if (rq->cmd_flags & REQ_SORTED) 2180 elv_activate_rq(q, rq); 2181 2182 /* 2183 * just mark as started even if we don't start 2184 * it, a request that has been delayed should 2185 * not be passed by new incoming requests 2186 */ 2187 rq->cmd_flags |= REQ_STARTED; 2188 trace_block_rq_issue(q, rq); 2189 } 2190 2191 if (!q->boundary_rq || q->boundary_rq == rq) { 2192 q->end_sector = rq_end_sector(rq); 2193 q->boundary_rq = NULL; 2194 } 2195 2196 if (rq->cmd_flags & REQ_DONTPREP) 2197 break; 2198 2199 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2200 /* 2201 * make sure space for the drain appears we 2202 * know we can do this because max_hw_segments 2203 * has been adjusted to be one fewer than the 2204 * device can handle 2205 */ 2206 rq->nr_phys_segments++; 2207 } 2208 2209 if (!q->prep_rq_fn) 2210 break; 2211 2212 ret = q->prep_rq_fn(q, rq); 2213 if (ret == BLKPREP_OK) { 2214 break; 2215 } else if (ret == BLKPREP_DEFER) { 2216 /* 2217 * the request may have been (partially) prepped. 2218 * we need to keep this request in the front to 2219 * avoid resource deadlock. REQ_STARTED will 2220 * prevent other fs requests from passing this one. 2221 */ 2222 if (q->dma_drain_size && blk_rq_bytes(rq) && 2223 !(rq->cmd_flags & REQ_DONTPREP)) { 2224 /* 2225 * remove the space for the drain we added 2226 * so that we don't add it again 2227 */ 2228 --rq->nr_phys_segments; 2229 } 2230 2231 rq = NULL; 2232 break; 2233 } else if (ret == BLKPREP_KILL) { 2234 rq->cmd_flags |= REQ_QUIET; 2235 /* 2236 * Mark this request as started so we don't trigger 2237 * any debug logic in the end I/O path. 2238 */ 2239 blk_start_request(rq); 2240 __blk_end_request_all(rq, -EIO); 2241 } else { 2242 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2243 break; 2244 } 2245 } 2246 2247 return rq; 2248 } 2249 EXPORT_SYMBOL(blk_peek_request); 2250 2251 void blk_dequeue_request(struct request *rq) 2252 { 2253 struct request_queue *q = rq->q; 2254 2255 BUG_ON(list_empty(&rq->queuelist)); 2256 BUG_ON(ELV_ON_HASH(rq)); 2257 2258 list_del_init(&rq->queuelist); 2259 2260 /* 2261 * the time frame between a request being removed from the lists 2262 * and to it is freed is accounted as io that is in progress at 2263 * the driver side. 2264 */ 2265 if (blk_account_rq(rq)) { 2266 q->in_flight[rq_is_sync(rq)]++; 2267 set_io_start_time_ns(rq); 2268 } 2269 } 2270 2271 /** 2272 * blk_start_request - start request processing on the driver 2273 * @req: request to dequeue 2274 * 2275 * Description: 2276 * Dequeue @req and start timeout timer on it. This hands off the 2277 * request to the driver. 2278 * 2279 * Block internal functions which don't want to start timer should 2280 * call blk_dequeue_request(). 2281 * 2282 * Context: 2283 * queue_lock must be held. 2284 */ 2285 void blk_start_request(struct request *req) 2286 { 2287 blk_dequeue_request(req); 2288 2289 /* 2290 * We are now handing the request to the hardware, initialize 2291 * resid_len to full count and add the timeout handler. 2292 */ 2293 req->resid_len = blk_rq_bytes(req); 2294 if (unlikely(blk_bidi_rq(req))) 2295 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2296 2297 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2298 blk_add_timer(req); 2299 } 2300 EXPORT_SYMBOL(blk_start_request); 2301 2302 /** 2303 * blk_fetch_request - fetch a request from a request queue 2304 * @q: request queue to fetch a request from 2305 * 2306 * Description: 2307 * Return the request at the top of @q. The request is started on 2308 * return and LLD can start processing it immediately. 2309 * 2310 * Return: 2311 * Pointer to the request at the top of @q if available. Null 2312 * otherwise. 2313 * 2314 * Context: 2315 * queue_lock must be held. 2316 */ 2317 struct request *blk_fetch_request(struct request_queue *q) 2318 { 2319 struct request *rq; 2320 2321 rq = blk_peek_request(q); 2322 if (rq) 2323 blk_start_request(rq); 2324 return rq; 2325 } 2326 EXPORT_SYMBOL(blk_fetch_request); 2327 2328 /** 2329 * blk_update_request - Special helper function for request stacking drivers 2330 * @req: the request being processed 2331 * @error: %0 for success, < %0 for error 2332 * @nr_bytes: number of bytes to complete @req 2333 * 2334 * Description: 2335 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2336 * the request structure even if @req doesn't have leftover. 2337 * If @req has leftover, sets it up for the next range of segments. 2338 * 2339 * This special helper function is only for request stacking drivers 2340 * (e.g. request-based dm) so that they can handle partial completion. 2341 * Actual device drivers should use blk_end_request instead. 2342 * 2343 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2344 * %false return from this function. 2345 * 2346 * Return: 2347 * %false - this request doesn't have any more data 2348 * %true - this request has more data 2349 **/ 2350 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2351 { 2352 int total_bytes; 2353 2354 if (!req->bio) 2355 return false; 2356 2357 trace_block_rq_complete(req->q, req); 2358 2359 /* 2360 * For fs requests, rq is just carrier of independent bio's 2361 * and each partial completion should be handled separately. 2362 * Reset per-request error on each partial completion. 2363 * 2364 * TODO: tj: This is too subtle. It would be better to let 2365 * low level drivers do what they see fit. 2366 */ 2367 if (req->cmd_type == REQ_TYPE_FS) 2368 req->errors = 0; 2369 2370 if (error && req->cmd_type == REQ_TYPE_FS && 2371 !(req->cmd_flags & REQ_QUIET)) { 2372 char *error_type; 2373 2374 switch (error) { 2375 case -ENOLINK: 2376 error_type = "recoverable transport"; 2377 break; 2378 case -EREMOTEIO: 2379 error_type = "critical target"; 2380 break; 2381 case -EBADE: 2382 error_type = "critical nexus"; 2383 break; 2384 case -ETIMEDOUT: 2385 error_type = "timeout"; 2386 break; 2387 case -ENOSPC: 2388 error_type = "critical space allocation"; 2389 break; 2390 case -ENODATA: 2391 error_type = "critical medium"; 2392 break; 2393 case -EIO: 2394 default: 2395 error_type = "I/O"; 2396 break; 2397 } 2398 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2399 error_type, req->rq_disk ? 2400 req->rq_disk->disk_name : "?", 2401 (unsigned long long)blk_rq_pos(req)); 2402 2403 } 2404 2405 blk_account_io_completion(req, nr_bytes); 2406 2407 total_bytes = 0; 2408 while (req->bio) { 2409 struct bio *bio = req->bio; 2410 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2411 2412 if (bio_bytes == bio->bi_iter.bi_size) 2413 req->bio = bio->bi_next; 2414 2415 req_bio_endio(req, bio, bio_bytes, error); 2416 2417 total_bytes += bio_bytes; 2418 nr_bytes -= bio_bytes; 2419 2420 if (!nr_bytes) 2421 break; 2422 } 2423 2424 /* 2425 * completely done 2426 */ 2427 if (!req->bio) { 2428 /* 2429 * Reset counters so that the request stacking driver 2430 * can find how many bytes remain in the request 2431 * later. 2432 */ 2433 req->__data_len = 0; 2434 return false; 2435 } 2436 2437 req->__data_len -= total_bytes; 2438 req->buffer = bio_data(req->bio); 2439 2440 /* update sector only for requests with clear definition of sector */ 2441 if (req->cmd_type == REQ_TYPE_FS) 2442 req->__sector += total_bytes >> 9; 2443 2444 /* mixed attributes always follow the first bio */ 2445 if (req->cmd_flags & REQ_MIXED_MERGE) { 2446 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2447 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2448 } 2449 2450 /* 2451 * If total number of sectors is less than the first segment 2452 * size, something has gone terribly wrong. 2453 */ 2454 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2455 blk_dump_rq_flags(req, "request botched"); 2456 req->__data_len = blk_rq_cur_bytes(req); 2457 } 2458 2459 /* recalculate the number of segments */ 2460 blk_recalc_rq_segments(req); 2461 2462 return true; 2463 } 2464 EXPORT_SYMBOL_GPL(blk_update_request); 2465 2466 static bool blk_update_bidi_request(struct request *rq, int error, 2467 unsigned int nr_bytes, 2468 unsigned int bidi_bytes) 2469 { 2470 if (blk_update_request(rq, error, nr_bytes)) 2471 return true; 2472 2473 /* Bidi request must be completed as a whole */ 2474 if (unlikely(blk_bidi_rq(rq)) && 2475 blk_update_request(rq->next_rq, error, bidi_bytes)) 2476 return true; 2477 2478 if (blk_queue_add_random(rq->q)) 2479 add_disk_randomness(rq->rq_disk); 2480 2481 return false; 2482 } 2483 2484 /** 2485 * blk_unprep_request - unprepare a request 2486 * @req: the request 2487 * 2488 * This function makes a request ready for complete resubmission (or 2489 * completion). It happens only after all error handling is complete, 2490 * so represents the appropriate moment to deallocate any resources 2491 * that were allocated to the request in the prep_rq_fn. The queue 2492 * lock is held when calling this. 2493 */ 2494 void blk_unprep_request(struct request *req) 2495 { 2496 struct request_queue *q = req->q; 2497 2498 req->cmd_flags &= ~REQ_DONTPREP; 2499 if (q->unprep_rq_fn) 2500 q->unprep_rq_fn(q, req); 2501 } 2502 EXPORT_SYMBOL_GPL(blk_unprep_request); 2503 2504 /* 2505 * queue lock must be held 2506 */ 2507 static void blk_finish_request(struct request *req, int error) 2508 { 2509 if (blk_rq_tagged(req)) 2510 blk_queue_end_tag(req->q, req); 2511 2512 BUG_ON(blk_queued_rq(req)); 2513 2514 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2515 laptop_io_completion(&req->q->backing_dev_info); 2516 2517 blk_delete_timer(req); 2518 2519 if (req->cmd_flags & REQ_DONTPREP) 2520 blk_unprep_request(req); 2521 2522 blk_account_io_done(req); 2523 2524 if (req->end_io) 2525 req->end_io(req, error); 2526 else { 2527 if (blk_bidi_rq(req)) 2528 __blk_put_request(req->next_rq->q, req->next_rq); 2529 2530 __blk_put_request(req->q, req); 2531 } 2532 } 2533 2534 /** 2535 * blk_end_bidi_request - Complete a bidi request 2536 * @rq: the request to complete 2537 * @error: %0 for success, < %0 for error 2538 * @nr_bytes: number of bytes to complete @rq 2539 * @bidi_bytes: number of bytes to complete @rq->next_rq 2540 * 2541 * Description: 2542 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2543 * Drivers that supports bidi can safely call this member for any 2544 * type of request, bidi or uni. In the later case @bidi_bytes is 2545 * just ignored. 2546 * 2547 * Return: 2548 * %false - we are done with this request 2549 * %true - still buffers pending for this request 2550 **/ 2551 static bool blk_end_bidi_request(struct request *rq, int error, 2552 unsigned int nr_bytes, unsigned int bidi_bytes) 2553 { 2554 struct request_queue *q = rq->q; 2555 unsigned long flags; 2556 2557 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2558 return true; 2559 2560 spin_lock_irqsave(q->queue_lock, flags); 2561 blk_finish_request(rq, error); 2562 spin_unlock_irqrestore(q->queue_lock, flags); 2563 2564 return false; 2565 } 2566 2567 /** 2568 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2569 * @rq: the request to complete 2570 * @error: %0 for success, < %0 for error 2571 * @nr_bytes: number of bytes to complete @rq 2572 * @bidi_bytes: number of bytes to complete @rq->next_rq 2573 * 2574 * Description: 2575 * Identical to blk_end_bidi_request() except that queue lock is 2576 * assumed to be locked on entry and remains so on return. 2577 * 2578 * Return: 2579 * %false - we are done with this request 2580 * %true - still buffers pending for this request 2581 **/ 2582 bool __blk_end_bidi_request(struct request *rq, int error, 2583 unsigned int nr_bytes, unsigned int bidi_bytes) 2584 { 2585 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2586 return true; 2587 2588 blk_finish_request(rq, error); 2589 2590 return false; 2591 } 2592 2593 /** 2594 * blk_end_request - Helper function for drivers to complete the request. 2595 * @rq: the request being processed 2596 * @error: %0 for success, < %0 for error 2597 * @nr_bytes: number of bytes to complete 2598 * 2599 * Description: 2600 * Ends I/O on a number of bytes attached to @rq. 2601 * If @rq has leftover, sets it up for the next range of segments. 2602 * 2603 * Return: 2604 * %false - we are done with this request 2605 * %true - still buffers pending for this request 2606 **/ 2607 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2608 { 2609 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2610 } 2611 EXPORT_SYMBOL(blk_end_request); 2612 2613 /** 2614 * blk_end_request_all - Helper function for drives to finish the request. 2615 * @rq: the request to finish 2616 * @error: %0 for success, < %0 for error 2617 * 2618 * Description: 2619 * Completely finish @rq. 2620 */ 2621 void blk_end_request_all(struct request *rq, int error) 2622 { 2623 bool pending; 2624 unsigned int bidi_bytes = 0; 2625 2626 if (unlikely(blk_bidi_rq(rq))) 2627 bidi_bytes = blk_rq_bytes(rq->next_rq); 2628 2629 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2630 BUG_ON(pending); 2631 } 2632 EXPORT_SYMBOL(blk_end_request_all); 2633 2634 /** 2635 * blk_end_request_cur - Helper function to finish the current request chunk. 2636 * @rq: the request to finish the current chunk for 2637 * @error: %0 for success, < %0 for error 2638 * 2639 * Description: 2640 * Complete the current consecutively mapped chunk from @rq. 2641 * 2642 * Return: 2643 * %false - we are done with this request 2644 * %true - still buffers pending for this request 2645 */ 2646 bool blk_end_request_cur(struct request *rq, int error) 2647 { 2648 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2649 } 2650 EXPORT_SYMBOL(blk_end_request_cur); 2651 2652 /** 2653 * blk_end_request_err - Finish a request till the next failure boundary. 2654 * @rq: the request to finish till the next failure boundary for 2655 * @error: must be negative errno 2656 * 2657 * Description: 2658 * Complete @rq till the next failure boundary. 2659 * 2660 * Return: 2661 * %false - we are done with this request 2662 * %true - still buffers pending for this request 2663 */ 2664 bool blk_end_request_err(struct request *rq, int error) 2665 { 2666 WARN_ON(error >= 0); 2667 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2668 } 2669 EXPORT_SYMBOL_GPL(blk_end_request_err); 2670 2671 /** 2672 * __blk_end_request - Helper function for drivers to complete the request. 2673 * @rq: the request being processed 2674 * @error: %0 for success, < %0 for error 2675 * @nr_bytes: number of bytes to complete 2676 * 2677 * Description: 2678 * Must be called with queue lock held unlike blk_end_request(). 2679 * 2680 * Return: 2681 * %false - we are done with this request 2682 * %true - still buffers pending for this request 2683 **/ 2684 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2685 { 2686 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2687 } 2688 EXPORT_SYMBOL(__blk_end_request); 2689 2690 /** 2691 * __blk_end_request_all - Helper function for drives to finish the request. 2692 * @rq: the request to finish 2693 * @error: %0 for success, < %0 for error 2694 * 2695 * Description: 2696 * Completely finish @rq. Must be called with queue lock held. 2697 */ 2698 void __blk_end_request_all(struct request *rq, int error) 2699 { 2700 bool pending; 2701 unsigned int bidi_bytes = 0; 2702 2703 if (unlikely(blk_bidi_rq(rq))) 2704 bidi_bytes = blk_rq_bytes(rq->next_rq); 2705 2706 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2707 BUG_ON(pending); 2708 } 2709 EXPORT_SYMBOL(__blk_end_request_all); 2710 2711 /** 2712 * __blk_end_request_cur - Helper function to finish the current request chunk. 2713 * @rq: the request to finish the current chunk for 2714 * @error: %0 for success, < %0 for error 2715 * 2716 * Description: 2717 * Complete the current consecutively mapped chunk from @rq. Must 2718 * be called with queue lock held. 2719 * 2720 * Return: 2721 * %false - we are done with this request 2722 * %true - still buffers pending for this request 2723 */ 2724 bool __blk_end_request_cur(struct request *rq, int error) 2725 { 2726 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2727 } 2728 EXPORT_SYMBOL(__blk_end_request_cur); 2729 2730 /** 2731 * __blk_end_request_err - Finish a request till the next failure boundary. 2732 * @rq: the request to finish till the next failure boundary for 2733 * @error: must be negative errno 2734 * 2735 * Description: 2736 * Complete @rq till the next failure boundary. Must be called 2737 * with queue lock held. 2738 * 2739 * Return: 2740 * %false - we are done with this request 2741 * %true - still buffers pending for this request 2742 */ 2743 bool __blk_end_request_err(struct request *rq, int error) 2744 { 2745 WARN_ON(error >= 0); 2746 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2747 } 2748 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2749 2750 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2751 struct bio *bio) 2752 { 2753 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2754 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2755 2756 if (bio_has_data(bio)) { 2757 rq->nr_phys_segments = bio_phys_segments(q, bio); 2758 rq->buffer = bio_data(bio); 2759 } 2760 rq->__data_len = bio->bi_iter.bi_size; 2761 rq->bio = rq->biotail = bio; 2762 2763 if (bio->bi_bdev) 2764 rq->rq_disk = bio->bi_bdev->bd_disk; 2765 } 2766 2767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2768 /** 2769 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2770 * @rq: the request to be flushed 2771 * 2772 * Description: 2773 * Flush all pages in @rq. 2774 */ 2775 void rq_flush_dcache_pages(struct request *rq) 2776 { 2777 struct req_iterator iter; 2778 struct bio_vec bvec; 2779 2780 rq_for_each_segment(bvec, rq, iter) 2781 flush_dcache_page(bvec.bv_page); 2782 } 2783 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2784 #endif 2785 2786 /** 2787 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2788 * @q : the queue of the device being checked 2789 * 2790 * Description: 2791 * Check if underlying low-level drivers of a device are busy. 2792 * If the drivers want to export their busy state, they must set own 2793 * exporting function using blk_queue_lld_busy() first. 2794 * 2795 * Basically, this function is used only by request stacking drivers 2796 * to stop dispatching requests to underlying devices when underlying 2797 * devices are busy. This behavior helps more I/O merging on the queue 2798 * of the request stacking driver and prevents I/O throughput regression 2799 * on burst I/O load. 2800 * 2801 * Return: 2802 * 0 - Not busy (The request stacking driver should dispatch request) 2803 * 1 - Busy (The request stacking driver should stop dispatching request) 2804 */ 2805 int blk_lld_busy(struct request_queue *q) 2806 { 2807 if (q->lld_busy_fn) 2808 return q->lld_busy_fn(q); 2809 2810 return 0; 2811 } 2812 EXPORT_SYMBOL_GPL(blk_lld_busy); 2813 2814 /** 2815 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2816 * @rq: the clone request to be cleaned up 2817 * 2818 * Description: 2819 * Free all bios in @rq for a cloned request. 2820 */ 2821 void blk_rq_unprep_clone(struct request *rq) 2822 { 2823 struct bio *bio; 2824 2825 while ((bio = rq->bio) != NULL) { 2826 rq->bio = bio->bi_next; 2827 2828 bio_put(bio); 2829 } 2830 } 2831 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2832 2833 /* 2834 * Copy attributes of the original request to the clone request. 2835 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2836 */ 2837 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2838 { 2839 dst->cpu = src->cpu; 2840 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2841 dst->cmd_type = src->cmd_type; 2842 dst->__sector = blk_rq_pos(src); 2843 dst->__data_len = blk_rq_bytes(src); 2844 dst->nr_phys_segments = src->nr_phys_segments; 2845 dst->ioprio = src->ioprio; 2846 dst->extra_len = src->extra_len; 2847 } 2848 2849 /** 2850 * blk_rq_prep_clone - Helper function to setup clone request 2851 * @rq: the request to be setup 2852 * @rq_src: original request to be cloned 2853 * @bs: bio_set that bios for clone are allocated from 2854 * @gfp_mask: memory allocation mask for bio 2855 * @bio_ctr: setup function to be called for each clone bio. 2856 * Returns %0 for success, non %0 for failure. 2857 * @data: private data to be passed to @bio_ctr 2858 * 2859 * Description: 2860 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2861 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2862 * are not copied, and copying such parts is the caller's responsibility. 2863 * Also, pages which the original bios are pointing to are not copied 2864 * and the cloned bios just point same pages. 2865 * So cloned bios must be completed before original bios, which means 2866 * the caller must complete @rq before @rq_src. 2867 */ 2868 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2869 struct bio_set *bs, gfp_t gfp_mask, 2870 int (*bio_ctr)(struct bio *, struct bio *, void *), 2871 void *data) 2872 { 2873 struct bio *bio, *bio_src; 2874 2875 if (!bs) 2876 bs = fs_bio_set; 2877 2878 blk_rq_init(NULL, rq); 2879 2880 __rq_for_each_bio(bio_src, rq_src) { 2881 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2882 if (!bio) 2883 goto free_and_out; 2884 2885 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2886 goto free_and_out; 2887 2888 if (rq->bio) { 2889 rq->biotail->bi_next = bio; 2890 rq->biotail = bio; 2891 } else 2892 rq->bio = rq->biotail = bio; 2893 } 2894 2895 __blk_rq_prep_clone(rq, rq_src); 2896 2897 return 0; 2898 2899 free_and_out: 2900 if (bio) 2901 bio_put(bio); 2902 blk_rq_unprep_clone(rq); 2903 2904 return -ENOMEM; 2905 } 2906 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2907 2908 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2909 { 2910 return queue_work(kblockd_workqueue, work); 2911 } 2912 EXPORT_SYMBOL(kblockd_schedule_work); 2913 2914 int kblockd_schedule_delayed_work(struct request_queue *q, 2915 struct delayed_work *dwork, unsigned long delay) 2916 { 2917 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2918 } 2919 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2920 2921 #define PLUG_MAGIC 0x91827364 2922 2923 /** 2924 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2925 * @plug: The &struct blk_plug that needs to be initialized 2926 * 2927 * Description: 2928 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2929 * pending I/O should the task end up blocking between blk_start_plug() and 2930 * blk_finish_plug(). This is important from a performance perspective, but 2931 * also ensures that we don't deadlock. For instance, if the task is blocking 2932 * for a memory allocation, memory reclaim could end up wanting to free a 2933 * page belonging to that request that is currently residing in our private 2934 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2935 * this kind of deadlock. 2936 */ 2937 void blk_start_plug(struct blk_plug *plug) 2938 { 2939 struct task_struct *tsk = current; 2940 2941 plug->magic = PLUG_MAGIC; 2942 INIT_LIST_HEAD(&plug->list); 2943 INIT_LIST_HEAD(&plug->mq_list); 2944 INIT_LIST_HEAD(&plug->cb_list); 2945 2946 /* 2947 * If this is a nested plug, don't actually assign it. It will be 2948 * flushed on its own. 2949 */ 2950 if (!tsk->plug) { 2951 /* 2952 * Store ordering should not be needed here, since a potential 2953 * preempt will imply a full memory barrier 2954 */ 2955 tsk->plug = plug; 2956 } 2957 } 2958 EXPORT_SYMBOL(blk_start_plug); 2959 2960 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2961 { 2962 struct request *rqa = container_of(a, struct request, queuelist); 2963 struct request *rqb = container_of(b, struct request, queuelist); 2964 2965 return !(rqa->q < rqb->q || 2966 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2967 } 2968 2969 /* 2970 * If 'from_schedule' is true, then postpone the dispatch of requests 2971 * until a safe kblockd context. We due this to avoid accidental big 2972 * additional stack usage in driver dispatch, in places where the originally 2973 * plugger did not intend it. 2974 */ 2975 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2976 bool from_schedule) 2977 __releases(q->queue_lock) 2978 { 2979 trace_block_unplug(q, depth, !from_schedule); 2980 2981 if (from_schedule) 2982 blk_run_queue_async(q); 2983 else 2984 __blk_run_queue(q); 2985 spin_unlock(q->queue_lock); 2986 } 2987 2988 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2989 { 2990 LIST_HEAD(callbacks); 2991 2992 while (!list_empty(&plug->cb_list)) { 2993 list_splice_init(&plug->cb_list, &callbacks); 2994 2995 while (!list_empty(&callbacks)) { 2996 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2997 struct blk_plug_cb, 2998 list); 2999 list_del(&cb->list); 3000 cb->callback(cb, from_schedule); 3001 } 3002 } 3003 } 3004 3005 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3006 int size) 3007 { 3008 struct blk_plug *plug = current->plug; 3009 struct blk_plug_cb *cb; 3010 3011 if (!plug) 3012 return NULL; 3013 3014 list_for_each_entry(cb, &plug->cb_list, list) 3015 if (cb->callback == unplug && cb->data == data) 3016 return cb; 3017 3018 /* Not currently on the callback list */ 3019 BUG_ON(size < sizeof(*cb)); 3020 cb = kzalloc(size, GFP_ATOMIC); 3021 if (cb) { 3022 cb->data = data; 3023 cb->callback = unplug; 3024 list_add(&cb->list, &plug->cb_list); 3025 } 3026 return cb; 3027 } 3028 EXPORT_SYMBOL(blk_check_plugged); 3029 3030 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3031 { 3032 struct request_queue *q; 3033 unsigned long flags; 3034 struct request *rq; 3035 LIST_HEAD(list); 3036 unsigned int depth; 3037 3038 BUG_ON(plug->magic != PLUG_MAGIC); 3039 3040 flush_plug_callbacks(plug, from_schedule); 3041 3042 if (!list_empty(&plug->mq_list)) 3043 blk_mq_flush_plug_list(plug, from_schedule); 3044 3045 if (list_empty(&plug->list)) 3046 return; 3047 3048 list_splice_init(&plug->list, &list); 3049 3050 list_sort(NULL, &list, plug_rq_cmp); 3051 3052 q = NULL; 3053 depth = 0; 3054 3055 /* 3056 * Save and disable interrupts here, to avoid doing it for every 3057 * queue lock we have to take. 3058 */ 3059 local_irq_save(flags); 3060 while (!list_empty(&list)) { 3061 rq = list_entry_rq(list.next); 3062 list_del_init(&rq->queuelist); 3063 BUG_ON(!rq->q); 3064 if (rq->q != q) { 3065 /* 3066 * This drops the queue lock 3067 */ 3068 if (q) 3069 queue_unplugged(q, depth, from_schedule); 3070 q = rq->q; 3071 depth = 0; 3072 spin_lock(q->queue_lock); 3073 } 3074 3075 /* 3076 * Short-circuit if @q is dead 3077 */ 3078 if (unlikely(blk_queue_dying(q))) { 3079 __blk_end_request_all(rq, -ENODEV); 3080 continue; 3081 } 3082 3083 /* 3084 * rq is already accounted, so use raw insert 3085 */ 3086 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3087 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3088 else 3089 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3090 3091 depth++; 3092 } 3093 3094 /* 3095 * This drops the queue lock 3096 */ 3097 if (q) 3098 queue_unplugged(q, depth, from_schedule); 3099 3100 local_irq_restore(flags); 3101 } 3102 3103 void blk_finish_plug(struct blk_plug *plug) 3104 { 3105 blk_flush_plug_list(plug, false); 3106 3107 if (plug == current->plug) 3108 current->plug = NULL; 3109 } 3110 EXPORT_SYMBOL(blk_finish_plug); 3111 3112 #ifdef CONFIG_PM_RUNTIME 3113 /** 3114 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3115 * @q: the queue of the device 3116 * @dev: the device the queue belongs to 3117 * 3118 * Description: 3119 * Initialize runtime-PM-related fields for @q and start auto suspend for 3120 * @dev. Drivers that want to take advantage of request-based runtime PM 3121 * should call this function after @dev has been initialized, and its 3122 * request queue @q has been allocated, and runtime PM for it can not happen 3123 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3124 * cases, driver should call this function before any I/O has taken place. 3125 * 3126 * This function takes care of setting up using auto suspend for the device, 3127 * the autosuspend delay is set to -1 to make runtime suspend impossible 3128 * until an updated value is either set by user or by driver. Drivers do 3129 * not need to touch other autosuspend settings. 3130 * 3131 * The block layer runtime PM is request based, so only works for drivers 3132 * that use request as their IO unit instead of those directly use bio's. 3133 */ 3134 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3135 { 3136 q->dev = dev; 3137 q->rpm_status = RPM_ACTIVE; 3138 pm_runtime_set_autosuspend_delay(q->dev, -1); 3139 pm_runtime_use_autosuspend(q->dev); 3140 } 3141 EXPORT_SYMBOL(blk_pm_runtime_init); 3142 3143 /** 3144 * blk_pre_runtime_suspend - Pre runtime suspend check 3145 * @q: the queue of the device 3146 * 3147 * Description: 3148 * This function will check if runtime suspend is allowed for the device 3149 * by examining if there are any requests pending in the queue. If there 3150 * are requests pending, the device can not be runtime suspended; otherwise, 3151 * the queue's status will be updated to SUSPENDING and the driver can 3152 * proceed to suspend the device. 3153 * 3154 * For the not allowed case, we mark last busy for the device so that 3155 * runtime PM core will try to autosuspend it some time later. 3156 * 3157 * This function should be called near the start of the device's 3158 * runtime_suspend callback. 3159 * 3160 * Return: 3161 * 0 - OK to runtime suspend the device 3162 * -EBUSY - Device should not be runtime suspended 3163 */ 3164 int blk_pre_runtime_suspend(struct request_queue *q) 3165 { 3166 int ret = 0; 3167 3168 spin_lock_irq(q->queue_lock); 3169 if (q->nr_pending) { 3170 ret = -EBUSY; 3171 pm_runtime_mark_last_busy(q->dev); 3172 } else { 3173 q->rpm_status = RPM_SUSPENDING; 3174 } 3175 spin_unlock_irq(q->queue_lock); 3176 return ret; 3177 } 3178 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3179 3180 /** 3181 * blk_post_runtime_suspend - Post runtime suspend processing 3182 * @q: the queue of the device 3183 * @err: return value of the device's runtime_suspend function 3184 * 3185 * Description: 3186 * Update the queue's runtime status according to the return value of the 3187 * device's runtime suspend function and mark last busy for the device so 3188 * that PM core will try to auto suspend the device at a later time. 3189 * 3190 * This function should be called near the end of the device's 3191 * runtime_suspend callback. 3192 */ 3193 void blk_post_runtime_suspend(struct request_queue *q, int err) 3194 { 3195 spin_lock_irq(q->queue_lock); 3196 if (!err) { 3197 q->rpm_status = RPM_SUSPENDED; 3198 } else { 3199 q->rpm_status = RPM_ACTIVE; 3200 pm_runtime_mark_last_busy(q->dev); 3201 } 3202 spin_unlock_irq(q->queue_lock); 3203 } 3204 EXPORT_SYMBOL(blk_post_runtime_suspend); 3205 3206 /** 3207 * blk_pre_runtime_resume - Pre runtime resume processing 3208 * @q: the queue of the device 3209 * 3210 * Description: 3211 * Update the queue's runtime status to RESUMING in preparation for the 3212 * runtime resume of the device. 3213 * 3214 * This function should be called near the start of the device's 3215 * runtime_resume callback. 3216 */ 3217 void blk_pre_runtime_resume(struct request_queue *q) 3218 { 3219 spin_lock_irq(q->queue_lock); 3220 q->rpm_status = RPM_RESUMING; 3221 spin_unlock_irq(q->queue_lock); 3222 } 3223 EXPORT_SYMBOL(blk_pre_runtime_resume); 3224 3225 /** 3226 * blk_post_runtime_resume - Post runtime resume processing 3227 * @q: the queue of the device 3228 * @err: return value of the device's runtime_resume function 3229 * 3230 * Description: 3231 * Update the queue's runtime status according to the return value of the 3232 * device's runtime_resume function. If it is successfully resumed, process 3233 * the requests that are queued into the device's queue when it is resuming 3234 * and then mark last busy and initiate autosuspend for it. 3235 * 3236 * This function should be called near the end of the device's 3237 * runtime_resume callback. 3238 */ 3239 void blk_post_runtime_resume(struct request_queue *q, int err) 3240 { 3241 spin_lock_irq(q->queue_lock); 3242 if (!err) { 3243 q->rpm_status = RPM_ACTIVE; 3244 __blk_run_queue(q); 3245 pm_runtime_mark_last_busy(q->dev); 3246 pm_request_autosuspend(q->dev); 3247 } else { 3248 q->rpm_status = RPM_SUSPENDED; 3249 } 3250 spin_unlock_irq(q->queue_lock); 3251 } 3252 EXPORT_SYMBOL(blk_post_runtime_resume); 3253 #endif 3254 3255 int __init blk_dev_init(void) 3256 { 3257 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3258 sizeof(((struct request *)0)->cmd_flags)); 3259 3260 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3261 kblockd_workqueue = alloc_workqueue("kblockd", 3262 WQ_MEM_RECLAIM | WQ_HIGHPRI | 3263 WQ_POWER_EFFICIENT, 0); 3264 if (!kblockd_workqueue) 3265 panic("Failed to create kblockd\n"); 3266 3267 request_cachep = kmem_cache_create("blkdev_requests", 3268 sizeof(struct request), 0, SLAB_PANIC, NULL); 3269 3270 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3271 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3272 3273 return 0; 3274 } 3275