xref: /openbmc/linux/block/blk-core.c (revision f6723b56)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47 
48 DEFINE_IDA(blk_queue_ida);
49 
50 /*
51  * For the allocated request tables
52  */
53 struct kmem_cache *request_cachep = NULL;
54 
55 /*
56  * For queue allocation
57  */
58 struct kmem_cache *blk_requestq_cachep;
59 
60 /*
61  * Controlling structure to kblockd
62  */
63 static struct workqueue_struct *kblockd_workqueue;
64 
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 	int nr;
68 
69 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 	if (nr > q->nr_requests)
71 		nr = q->nr_requests;
72 	q->nr_congestion_on = nr;
73 
74 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 	if (nr < 1)
76 		nr = 1;
77 	q->nr_congestion_off = nr;
78 }
79 
80 /**
81  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82  * @bdev:	device
83  *
84  * Locates the passed device's request queue and returns the address of its
85  * backing_dev_info
86  *
87  * Will return NULL if the request queue cannot be located.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct backing_dev_info *ret = NULL;
92 	struct request_queue *q = bdev_get_queue(bdev);
93 
94 	if (q)
95 		ret = &q->backing_dev_info;
96 	return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99 
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 	memset(rq, 0, sizeof(*rq));
103 
104 	INIT_LIST_HEAD(&rq->queuelist);
105 	INIT_LIST_HEAD(&rq->timeout_list);
106 	rq->cpu = -1;
107 	rq->q = q;
108 	rq->__sector = (sector_t) -1;
109 	INIT_HLIST_NODE(&rq->hash);
110 	RB_CLEAR_NODE(&rq->rb_node);
111 	rq->cmd = rq->__cmd;
112 	rq->cmd_len = BLK_MAX_CDB;
113 	rq->tag = -1;
114 	rq->start_time = jiffies;
115 	set_start_time_ns(rq);
116 	rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119 
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 			  unsigned int nbytes, int error)
122 {
123 	if (error)
124 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 		error = -EIO;
127 
128 	if (unlikely(rq->cmd_flags & REQ_QUIET))
129 		set_bit(BIO_QUIET, &bio->bi_flags);
130 
131 	bio_advance(bio, nbytes);
132 
133 	/* don't actually finish bio if it's part of flush sequence */
134 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 		bio_endio(bio, error);
136 }
137 
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 	int bit;
141 
142 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 		(unsigned long long) rq->cmd_flags);
145 
146 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
147 	       (unsigned long long)blk_rq_pos(rq),
148 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
150 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
151 
152 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 		printk(KERN_INFO "  cdb: ");
154 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 			printk("%02x ", rq->cmd[bit]);
156 		printk("\n");
157 	}
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160 
161 static void blk_delay_work(struct work_struct *work)
162 {
163 	struct request_queue *q;
164 
165 	q = container_of(work, struct request_queue, delay_work.work);
166 	spin_lock_irq(q->queue_lock);
167 	__blk_run_queue(q);
168 	spin_unlock_irq(q->queue_lock);
169 }
170 
171 /**
172  * blk_delay_queue - restart queueing after defined interval
173  * @q:		The &struct request_queue in question
174  * @msecs:	Delay in msecs
175  *
176  * Description:
177  *   Sometimes queueing needs to be postponed for a little while, to allow
178  *   resources to come back. This function will make sure that queueing is
179  *   restarted around the specified time. Queue lock must be held.
180  */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 	if (likely(!blk_queue_dead(q)))
184 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 				   msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188 
189 /**
190  * blk_start_queue - restart a previously stopped queue
191  * @q:    The &struct request_queue in question
192  *
193  * Description:
194  *   blk_start_queue() will clear the stop flag on the queue, and call
195  *   the request_fn for the queue if it was in a stopped state when
196  *   entered. Also see blk_stop_queue(). Queue lock must be held.
197  **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 	WARN_ON(!irqs_disabled());
201 
202 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 	__blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206 
207 /**
208  * blk_stop_queue - stop a queue
209  * @q:    The &struct request_queue in question
210  *
211  * Description:
212  *   The Linux block layer assumes that a block driver will consume all
213  *   entries on the request queue when the request_fn strategy is called.
214  *   Often this will not happen, because of hardware limitations (queue
215  *   depth settings). If a device driver gets a 'queue full' response,
216  *   or if it simply chooses not to queue more I/O at one point, it can
217  *   call this function to prevent the request_fn from being called until
218  *   the driver has signalled it's ready to go again. This happens by calling
219  *   blk_start_queue() to restart queue operations. Queue lock must be held.
220  **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 	cancel_delayed_work(&q->delay_work);
224 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227 
228 /**
229  * blk_sync_queue - cancel any pending callbacks on a queue
230  * @q: the queue
231  *
232  * Description:
233  *     The block layer may perform asynchronous callback activity
234  *     on a queue, such as calling the unplug function after a timeout.
235  *     A block device may call blk_sync_queue to ensure that any
236  *     such activity is cancelled, thus allowing it to release resources
237  *     that the callbacks might use. The caller must already have made sure
238  *     that its ->make_request_fn will not re-add plugging prior to calling
239  *     this function.
240  *
241  *     This function does not cancel any asynchronous activity arising
242  *     out of elevator or throttling code. That would require elevaotor_exit()
243  *     and blkcg_exit_queue() to be called with queue lock initialized.
244  *
245  */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 	del_timer_sync(&q->timeout);
249 
250 	if (q->mq_ops) {
251 		struct blk_mq_hw_ctx *hctx;
252 		int i;
253 
254 		queue_for_each_hw_ctx(q, hctx, i)
255 			cancel_delayed_work_sync(&hctx->delayed_work);
256 	} else {
257 		cancel_delayed_work_sync(&q->delay_work);
258 	}
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261 
262 /**
263  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264  * @q:	The queue to run
265  *
266  * Description:
267  *    Invoke request handling on a queue if there are any pending requests.
268  *    May be used to restart request handling after a request has completed.
269  *    This variant runs the queue whether or not the queue has been
270  *    stopped. Must be called with the queue lock held and interrupts
271  *    disabled. See also @blk_run_queue.
272  */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 	if (unlikely(blk_queue_dead(q)))
276 		return;
277 
278 	/*
279 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 	 * the queue lock internally. As a result multiple threads may be
281 	 * running such a request function concurrently. Keep track of the
282 	 * number of active request_fn invocations such that blk_drain_queue()
283 	 * can wait until all these request_fn calls have finished.
284 	 */
285 	q->request_fn_active++;
286 	q->request_fn(q);
287 	q->request_fn_active--;
288 }
289 
290 /**
291  * __blk_run_queue - run a single device queue
292  * @q:	The queue to run
293  *
294  * Description:
295  *    See @blk_run_queue. This variant must be called with the queue lock
296  *    held and interrupts disabled.
297  */
298 void __blk_run_queue(struct request_queue *q)
299 {
300 	if (unlikely(blk_queue_stopped(q)))
301 		return;
302 
303 	__blk_run_queue_uncond(q);
304 }
305 EXPORT_SYMBOL(__blk_run_queue);
306 
307 /**
308  * blk_run_queue_async - run a single device queue in workqueue context
309  * @q:	The queue to run
310  *
311  * Description:
312  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313  *    of us. The caller must hold the queue lock.
314  */
315 void blk_run_queue_async(struct request_queue *q)
316 {
317 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 }
320 EXPORT_SYMBOL(blk_run_queue_async);
321 
322 /**
323  * blk_run_queue - run a single device queue
324  * @q: The queue to run
325  *
326  * Description:
327  *    Invoke request handling on this queue, if it has pending work to do.
328  *    May be used to restart queueing when a request has completed.
329  */
330 void blk_run_queue(struct request_queue *q)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(q->queue_lock, flags);
335 	__blk_run_queue(q);
336 	spin_unlock_irqrestore(q->queue_lock, flags);
337 }
338 EXPORT_SYMBOL(blk_run_queue);
339 
340 void blk_put_queue(struct request_queue *q)
341 {
342 	kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345 
346 /**
347  * __blk_drain_queue - drain requests from request_queue
348  * @q: queue to drain
349  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350  *
351  * Drain requests from @q.  If @drain_all is set, all requests are drained.
352  * If not, only ELVPRIV requests are drained.  The caller is responsible
353  * for ensuring that no new requests which need to be drained are queued.
354  */
355 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 	__releases(q->queue_lock)
357 	__acquires(q->queue_lock)
358 {
359 	int i;
360 
361 	lockdep_assert_held(q->queue_lock);
362 
363 	while (true) {
364 		bool drain = false;
365 
366 		/*
367 		 * The caller might be trying to drain @q before its
368 		 * elevator is initialized.
369 		 */
370 		if (q->elevator)
371 			elv_drain_elevator(q);
372 
373 		blkcg_drain_queue(q);
374 
375 		/*
376 		 * This function might be called on a queue which failed
377 		 * driver init after queue creation or is not yet fully
378 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
379 		 * in such cases.  Kick queue iff dispatch queue has
380 		 * something on it and @q has request_fn set.
381 		 */
382 		if (!list_empty(&q->queue_head) && q->request_fn)
383 			__blk_run_queue(q);
384 
385 		drain |= q->nr_rqs_elvpriv;
386 		drain |= q->request_fn_active;
387 
388 		/*
389 		 * Unfortunately, requests are queued at and tracked from
390 		 * multiple places and there's no single counter which can
391 		 * be drained.  Check all the queues and counters.
392 		 */
393 		if (drain_all) {
394 			drain |= !list_empty(&q->queue_head);
395 			for (i = 0; i < 2; i++) {
396 				drain |= q->nr_rqs[i];
397 				drain |= q->in_flight[i];
398 				drain |= !list_empty(&q->flush_queue[i]);
399 			}
400 		}
401 
402 		if (!drain)
403 			break;
404 
405 		spin_unlock_irq(q->queue_lock);
406 
407 		msleep(10);
408 
409 		spin_lock_irq(q->queue_lock);
410 	}
411 
412 	/*
413 	 * With queue marked dead, any woken up waiter will fail the
414 	 * allocation path, so the wakeup chaining is lost and we're
415 	 * left with hung waiters. We need to wake up those waiters.
416 	 */
417 	if (q->request_fn) {
418 		struct request_list *rl;
419 
420 		blk_queue_for_each_rl(rl, q)
421 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 				wake_up_all(&rl->wait[i]);
423 	}
424 }
425 
426 /**
427  * blk_queue_bypass_start - enter queue bypass mode
428  * @q: queue of interest
429  *
430  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
431  * function makes @q enter bypass mode and drains all requests which were
432  * throttled or issued before.  On return, it's guaranteed that no request
433  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434  * inside queue or RCU read lock.
435  */
436 void blk_queue_bypass_start(struct request_queue *q)
437 {
438 	bool drain;
439 
440 	spin_lock_irq(q->queue_lock);
441 	drain = !q->bypass_depth++;
442 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 	spin_unlock_irq(q->queue_lock);
444 
445 	if (drain) {
446 		spin_lock_irq(q->queue_lock);
447 		__blk_drain_queue(q, false);
448 		spin_unlock_irq(q->queue_lock);
449 
450 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
451 		synchronize_rcu();
452 	}
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455 
456 /**
457  * blk_queue_bypass_end - leave queue bypass mode
458  * @q: queue of interest
459  *
460  * Leave bypass mode and restore the normal queueing behavior.
461  */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 	spin_lock_irq(q->queue_lock);
465 	if (!--q->bypass_depth)
466 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 	WARN_ON_ONCE(q->bypass_depth < 0);
468 	spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471 
472 /**
473  * blk_cleanup_queue - shutdown a request queue
474  * @q: request queue to shutdown
475  *
476  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477  * put it.  All future requests will be failed immediately with -ENODEV.
478  */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 	spinlock_t *lock = q->queue_lock;
482 
483 	/* mark @q DYING, no new request or merges will be allowed afterwards */
484 	mutex_lock(&q->sysfs_lock);
485 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
486 	spin_lock_irq(lock);
487 
488 	/*
489 	 * A dying queue is permanently in bypass mode till released.  Note
490 	 * that, unlike blk_queue_bypass_start(), we aren't performing
491 	 * synchronize_rcu() after entering bypass mode to avoid the delay
492 	 * as some drivers create and destroy a lot of queues while
493 	 * probing.  This is still safe because blk_release_queue() will be
494 	 * called only after the queue refcnt drops to zero and nothing,
495 	 * RCU or not, would be traversing the queue by then.
496 	 */
497 	q->bypass_depth++;
498 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
499 
500 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 	queue_flag_set(QUEUE_FLAG_DYING, q);
503 	spin_unlock_irq(lock);
504 	mutex_unlock(&q->sysfs_lock);
505 
506 	/*
507 	 * Drain all requests queued before DYING marking. Set DEAD flag to
508 	 * prevent that q->request_fn() gets invoked after draining finished.
509 	 */
510 	if (q->mq_ops) {
511 		blk_mq_drain_queue(q);
512 		spin_lock_irq(lock);
513 	} else {
514 		spin_lock_irq(lock);
515 		__blk_drain_queue(q, true);
516 	}
517 	queue_flag_set(QUEUE_FLAG_DEAD, q);
518 	spin_unlock_irq(lock);
519 
520 	/* @q won't process any more request, flush async actions */
521 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 	blk_sync_queue(q);
523 
524 	spin_lock_irq(lock);
525 	if (q->queue_lock != &q->__queue_lock)
526 		q->queue_lock = &q->__queue_lock;
527 	spin_unlock_irq(lock);
528 
529 	/* @q is and will stay empty, shutdown and put */
530 	blk_put_queue(q);
531 }
532 EXPORT_SYMBOL(blk_cleanup_queue);
533 
534 int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 		gfp_t gfp_mask)
536 {
537 	if (unlikely(rl->rq_pool))
538 		return 0;
539 
540 	rl->q = q;
541 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
543 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
545 
546 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
547 					  mempool_free_slab, request_cachep,
548 					  gfp_mask, q->node);
549 	if (!rl->rq_pool)
550 		return -ENOMEM;
551 
552 	return 0;
553 }
554 
555 void blk_exit_rl(struct request_list *rl)
556 {
557 	if (rl->rq_pool)
558 		mempool_destroy(rl->rq_pool);
559 }
560 
561 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
562 {
563 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
564 }
565 EXPORT_SYMBOL(blk_alloc_queue);
566 
567 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
568 {
569 	struct request_queue *q;
570 	int err;
571 
572 	q = kmem_cache_alloc_node(blk_requestq_cachep,
573 				gfp_mask | __GFP_ZERO, node_id);
574 	if (!q)
575 		return NULL;
576 
577 	if (percpu_counter_init(&q->mq_usage_counter, 0))
578 		goto fail_q;
579 
580 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 	if (q->id < 0)
582 		goto fail_c;
583 
584 	q->backing_dev_info.ra_pages =
585 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 	q->backing_dev_info.state = 0;
587 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 	q->backing_dev_info.name = "block";
589 	q->node = node_id;
590 
591 	err = bdi_init(&q->backing_dev_info);
592 	if (err)
593 		goto fail_id;
594 
595 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 		    laptop_mode_timer_fn, (unsigned long) q);
597 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 	INIT_LIST_HEAD(&q->queue_head);
599 	INIT_LIST_HEAD(&q->timeout_list);
600 	INIT_LIST_HEAD(&q->icq_list);
601 #ifdef CONFIG_BLK_CGROUP
602 	INIT_LIST_HEAD(&q->blkg_list);
603 #endif
604 	INIT_LIST_HEAD(&q->flush_queue[0]);
605 	INIT_LIST_HEAD(&q->flush_queue[1]);
606 	INIT_LIST_HEAD(&q->flush_data_in_flight);
607 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608 
609 	kobject_init(&q->kobj, &blk_queue_ktype);
610 
611 	mutex_init(&q->sysfs_lock);
612 	spin_lock_init(&q->__queue_lock);
613 
614 	/*
615 	 * By default initialize queue_lock to internal lock and driver can
616 	 * override it later if need be.
617 	 */
618 	q->queue_lock = &q->__queue_lock;
619 
620 	/*
621 	 * A queue starts its life with bypass turned on to avoid
622 	 * unnecessary bypass on/off overhead and nasty surprises during
623 	 * init.  The initial bypass will be finished when the queue is
624 	 * registered by blk_register_queue().
625 	 */
626 	q->bypass_depth = 1;
627 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628 
629 	init_waitqueue_head(&q->mq_freeze_wq);
630 
631 	if (blkcg_init_queue(q))
632 		goto fail_bdi;
633 
634 	return q;
635 
636 fail_bdi:
637 	bdi_destroy(&q->backing_dev_info);
638 fail_id:
639 	ida_simple_remove(&blk_queue_ida, q->id);
640 fail_c:
641 	percpu_counter_destroy(&q->mq_usage_counter);
642 fail_q:
643 	kmem_cache_free(blk_requestq_cachep, q);
644 	return NULL;
645 }
646 EXPORT_SYMBOL(blk_alloc_queue_node);
647 
648 /**
649  * blk_init_queue  - prepare a request queue for use with a block device
650  * @rfn:  The function to be called to process requests that have been
651  *        placed on the queue.
652  * @lock: Request queue spin lock
653  *
654  * Description:
655  *    If a block device wishes to use the standard request handling procedures,
656  *    which sorts requests and coalesces adjacent requests, then it must
657  *    call blk_init_queue().  The function @rfn will be called when there
658  *    are requests on the queue that need to be processed.  If the device
659  *    supports plugging, then @rfn may not be called immediately when requests
660  *    are available on the queue, but may be called at some time later instead.
661  *    Plugged queues are generally unplugged when a buffer belonging to one
662  *    of the requests on the queue is needed, or due to memory pressure.
663  *
664  *    @rfn is not required, or even expected, to remove all requests off the
665  *    queue, but only as many as it can handle at a time.  If it does leave
666  *    requests on the queue, it is responsible for arranging that the requests
667  *    get dealt with eventually.
668  *
669  *    The queue spin lock must be held while manipulating the requests on the
670  *    request queue; this lock will be taken also from interrupt context, so irq
671  *    disabling is needed for it.
672  *
673  *    Function returns a pointer to the initialized request queue, or %NULL if
674  *    it didn't succeed.
675  *
676  * Note:
677  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
678  *    when the block device is deactivated (such as at module unload).
679  **/
680 
681 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
682 {
683 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
684 }
685 EXPORT_SYMBOL(blk_init_queue);
686 
687 struct request_queue *
688 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689 {
690 	struct request_queue *uninit_q, *q;
691 
692 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 	if (!uninit_q)
694 		return NULL;
695 
696 	uninit_q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
697 	if (!uninit_q->flush_rq)
698 		goto out_cleanup_queue;
699 
700 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
701 	if (!q)
702 		goto out_free_flush_rq;
703 	return q;
704 
705 out_free_flush_rq:
706 	kfree(uninit_q->flush_rq);
707 out_cleanup_queue:
708 	blk_cleanup_queue(uninit_q);
709 	return NULL;
710 }
711 EXPORT_SYMBOL(blk_init_queue_node);
712 
713 struct request_queue *
714 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
715 			 spinlock_t *lock)
716 {
717 	if (!q)
718 		return NULL;
719 
720 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
721 		return NULL;
722 
723 	q->request_fn		= rfn;
724 	q->prep_rq_fn		= NULL;
725 	q->unprep_rq_fn		= NULL;
726 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
727 
728 	/* Override internal queue lock with supplied lock pointer */
729 	if (lock)
730 		q->queue_lock		= lock;
731 
732 	/*
733 	 * This also sets hw/phys segments, boundary and size
734 	 */
735 	blk_queue_make_request(q, blk_queue_bio);
736 
737 	q->sg_reserved_size = INT_MAX;
738 
739 	/* Protect q->elevator from elevator_change */
740 	mutex_lock(&q->sysfs_lock);
741 
742 	/* init elevator */
743 	if (elevator_init(q, NULL)) {
744 		mutex_unlock(&q->sysfs_lock);
745 		return NULL;
746 	}
747 
748 	mutex_unlock(&q->sysfs_lock);
749 
750 	return q;
751 }
752 EXPORT_SYMBOL(blk_init_allocated_queue);
753 
754 bool blk_get_queue(struct request_queue *q)
755 {
756 	if (likely(!blk_queue_dying(q))) {
757 		__blk_get_queue(q);
758 		return true;
759 	}
760 
761 	return false;
762 }
763 EXPORT_SYMBOL(blk_get_queue);
764 
765 static inline void blk_free_request(struct request_list *rl, struct request *rq)
766 {
767 	if (rq->cmd_flags & REQ_ELVPRIV) {
768 		elv_put_request(rl->q, rq);
769 		if (rq->elv.icq)
770 			put_io_context(rq->elv.icq->ioc);
771 	}
772 
773 	mempool_free(rq, rl->rq_pool);
774 }
775 
776 /*
777  * ioc_batching returns true if the ioc is a valid batching request and
778  * should be given priority access to a request.
779  */
780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
781 {
782 	if (!ioc)
783 		return 0;
784 
785 	/*
786 	 * Make sure the process is able to allocate at least 1 request
787 	 * even if the batch times out, otherwise we could theoretically
788 	 * lose wakeups.
789 	 */
790 	return ioc->nr_batch_requests == q->nr_batching ||
791 		(ioc->nr_batch_requests > 0
792 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
793 }
794 
795 /*
796  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797  * will cause the process to be a "batcher" on all queues in the system. This
798  * is the behaviour we want though - once it gets a wakeup it should be given
799  * a nice run.
800  */
801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
802 {
803 	if (!ioc || ioc_batching(q, ioc))
804 		return;
805 
806 	ioc->nr_batch_requests = q->nr_batching;
807 	ioc->last_waited = jiffies;
808 }
809 
810 static void __freed_request(struct request_list *rl, int sync)
811 {
812 	struct request_queue *q = rl->q;
813 
814 	/*
815 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
816 	 * blkcg anyway, just use root blkcg state.
817 	 */
818 	if (rl == &q->root_rl &&
819 	    rl->count[sync] < queue_congestion_off_threshold(q))
820 		blk_clear_queue_congested(q, sync);
821 
822 	if (rl->count[sync] + 1 <= q->nr_requests) {
823 		if (waitqueue_active(&rl->wait[sync]))
824 			wake_up(&rl->wait[sync]);
825 
826 		blk_clear_rl_full(rl, sync);
827 	}
828 }
829 
830 /*
831  * A request has just been released.  Account for it, update the full and
832  * congestion status, wake up any waiters.   Called under q->queue_lock.
833  */
834 static void freed_request(struct request_list *rl, unsigned int flags)
835 {
836 	struct request_queue *q = rl->q;
837 	int sync = rw_is_sync(flags);
838 
839 	q->nr_rqs[sync]--;
840 	rl->count[sync]--;
841 	if (flags & REQ_ELVPRIV)
842 		q->nr_rqs_elvpriv--;
843 
844 	__freed_request(rl, sync);
845 
846 	if (unlikely(rl->starved[sync ^ 1]))
847 		__freed_request(rl, sync ^ 1);
848 }
849 
850 /*
851  * Determine if elevator data should be initialized when allocating the
852  * request associated with @bio.
853  */
854 static bool blk_rq_should_init_elevator(struct bio *bio)
855 {
856 	if (!bio)
857 		return true;
858 
859 	/*
860 	 * Flush requests do not use the elevator so skip initialization.
861 	 * This allows a request to share the flush and elevator data.
862 	 */
863 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
864 		return false;
865 
866 	return true;
867 }
868 
869 /**
870  * rq_ioc - determine io_context for request allocation
871  * @bio: request being allocated is for this bio (can be %NULL)
872  *
873  * Determine io_context to use for request allocation for @bio.  May return
874  * %NULL if %current->io_context doesn't exist.
875  */
876 static struct io_context *rq_ioc(struct bio *bio)
877 {
878 #ifdef CONFIG_BLK_CGROUP
879 	if (bio && bio->bi_ioc)
880 		return bio->bi_ioc;
881 #endif
882 	return current->io_context;
883 }
884 
885 /**
886  * __get_request - get a free request
887  * @rl: request list to allocate from
888  * @rw_flags: RW and SYNC flags
889  * @bio: bio to allocate request for (can be %NULL)
890  * @gfp_mask: allocation mask
891  *
892  * Get a free request from @q.  This function may fail under memory
893  * pressure or if @q is dead.
894  *
895  * Must be callled with @q->queue_lock held and,
896  * Returns %NULL on failure, with @q->queue_lock held.
897  * Returns !%NULL on success, with @q->queue_lock *not held*.
898  */
899 static struct request *__get_request(struct request_list *rl, int rw_flags,
900 				     struct bio *bio, gfp_t gfp_mask)
901 {
902 	struct request_queue *q = rl->q;
903 	struct request *rq;
904 	struct elevator_type *et = q->elevator->type;
905 	struct io_context *ioc = rq_ioc(bio);
906 	struct io_cq *icq = NULL;
907 	const bool is_sync = rw_is_sync(rw_flags) != 0;
908 	int may_queue;
909 
910 	if (unlikely(blk_queue_dying(q)))
911 		return NULL;
912 
913 	may_queue = elv_may_queue(q, rw_flags);
914 	if (may_queue == ELV_MQUEUE_NO)
915 		goto rq_starved;
916 
917 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
918 		if (rl->count[is_sync]+1 >= q->nr_requests) {
919 			/*
920 			 * The queue will fill after this allocation, so set
921 			 * it as full, and mark this process as "batching".
922 			 * This process will be allowed to complete a batch of
923 			 * requests, others will be blocked.
924 			 */
925 			if (!blk_rl_full(rl, is_sync)) {
926 				ioc_set_batching(q, ioc);
927 				blk_set_rl_full(rl, is_sync);
928 			} else {
929 				if (may_queue != ELV_MQUEUE_MUST
930 						&& !ioc_batching(q, ioc)) {
931 					/*
932 					 * The queue is full and the allocating
933 					 * process is not a "batcher", and not
934 					 * exempted by the IO scheduler
935 					 */
936 					return NULL;
937 				}
938 			}
939 		}
940 		/*
941 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
942 		 * root blkcg anyway, just use root blkcg state.
943 		 */
944 		if (rl == &q->root_rl)
945 			blk_set_queue_congested(q, is_sync);
946 	}
947 
948 	/*
949 	 * Only allow batching queuers to allocate up to 50% over the defined
950 	 * limit of requests, otherwise we could have thousands of requests
951 	 * allocated with any setting of ->nr_requests
952 	 */
953 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
954 		return NULL;
955 
956 	q->nr_rqs[is_sync]++;
957 	rl->count[is_sync]++;
958 	rl->starved[is_sync] = 0;
959 
960 	/*
961 	 * Decide whether the new request will be managed by elevator.  If
962 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
963 	 * prevent the current elevator from being destroyed until the new
964 	 * request is freed.  This guarantees icq's won't be destroyed and
965 	 * makes creating new ones safe.
966 	 *
967 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
968 	 * it will be created after releasing queue_lock.
969 	 */
970 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
971 		rw_flags |= REQ_ELVPRIV;
972 		q->nr_rqs_elvpriv++;
973 		if (et->icq_cache && ioc)
974 			icq = ioc_lookup_icq(ioc, q);
975 	}
976 
977 	if (blk_queue_io_stat(q))
978 		rw_flags |= REQ_IO_STAT;
979 	spin_unlock_irq(q->queue_lock);
980 
981 	/* allocate and init request */
982 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
983 	if (!rq)
984 		goto fail_alloc;
985 
986 	blk_rq_init(q, rq);
987 	blk_rq_set_rl(rq, rl);
988 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
989 
990 	/* init elvpriv */
991 	if (rw_flags & REQ_ELVPRIV) {
992 		if (unlikely(et->icq_cache && !icq)) {
993 			if (ioc)
994 				icq = ioc_create_icq(ioc, q, gfp_mask);
995 			if (!icq)
996 				goto fail_elvpriv;
997 		}
998 
999 		rq->elv.icq = icq;
1000 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1001 			goto fail_elvpriv;
1002 
1003 		/* @rq->elv.icq holds io_context until @rq is freed */
1004 		if (icq)
1005 			get_io_context(icq->ioc);
1006 	}
1007 out:
1008 	/*
1009 	 * ioc may be NULL here, and ioc_batching will be false. That's
1010 	 * OK, if the queue is under the request limit then requests need
1011 	 * not count toward the nr_batch_requests limit. There will always
1012 	 * be some limit enforced by BLK_BATCH_TIME.
1013 	 */
1014 	if (ioc_batching(q, ioc))
1015 		ioc->nr_batch_requests--;
1016 
1017 	trace_block_getrq(q, bio, rw_flags & 1);
1018 	return rq;
1019 
1020 fail_elvpriv:
1021 	/*
1022 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1023 	 * and may fail indefinitely under memory pressure and thus
1024 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1025 	 * disturb iosched and blkcg but weird is bettern than dead.
1026 	 */
1027 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1028 			   dev_name(q->backing_dev_info.dev));
1029 
1030 	rq->cmd_flags &= ~REQ_ELVPRIV;
1031 	rq->elv.icq = NULL;
1032 
1033 	spin_lock_irq(q->queue_lock);
1034 	q->nr_rqs_elvpriv--;
1035 	spin_unlock_irq(q->queue_lock);
1036 	goto out;
1037 
1038 fail_alloc:
1039 	/*
1040 	 * Allocation failed presumably due to memory. Undo anything we
1041 	 * might have messed up.
1042 	 *
1043 	 * Allocating task should really be put onto the front of the wait
1044 	 * queue, but this is pretty rare.
1045 	 */
1046 	spin_lock_irq(q->queue_lock);
1047 	freed_request(rl, rw_flags);
1048 
1049 	/*
1050 	 * in the very unlikely event that allocation failed and no
1051 	 * requests for this direction was pending, mark us starved so that
1052 	 * freeing of a request in the other direction will notice
1053 	 * us. another possible fix would be to split the rq mempool into
1054 	 * READ and WRITE
1055 	 */
1056 rq_starved:
1057 	if (unlikely(rl->count[is_sync] == 0))
1058 		rl->starved[is_sync] = 1;
1059 	return NULL;
1060 }
1061 
1062 /**
1063  * get_request - get a free request
1064  * @q: request_queue to allocate request from
1065  * @rw_flags: RW and SYNC flags
1066  * @bio: bio to allocate request for (can be %NULL)
1067  * @gfp_mask: allocation mask
1068  *
1069  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1070  * function keeps retrying under memory pressure and fails iff @q is dead.
1071  *
1072  * Must be callled with @q->queue_lock held and,
1073  * Returns %NULL on failure, with @q->queue_lock held.
1074  * Returns !%NULL on success, with @q->queue_lock *not held*.
1075  */
1076 static struct request *get_request(struct request_queue *q, int rw_flags,
1077 				   struct bio *bio, gfp_t gfp_mask)
1078 {
1079 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1080 	DEFINE_WAIT(wait);
1081 	struct request_list *rl;
1082 	struct request *rq;
1083 
1084 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1085 retry:
1086 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1087 	if (rq)
1088 		return rq;
1089 
1090 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1091 		blk_put_rl(rl);
1092 		return NULL;
1093 	}
1094 
1095 	/* wait on @rl and retry */
1096 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1097 				  TASK_UNINTERRUPTIBLE);
1098 
1099 	trace_block_sleeprq(q, bio, rw_flags & 1);
1100 
1101 	spin_unlock_irq(q->queue_lock);
1102 	io_schedule();
1103 
1104 	/*
1105 	 * After sleeping, we become a "batching" process and will be able
1106 	 * to allocate at least one request, and up to a big batch of them
1107 	 * for a small period time.  See ioc_batching, ioc_set_batching
1108 	 */
1109 	ioc_set_batching(q, current->io_context);
1110 
1111 	spin_lock_irq(q->queue_lock);
1112 	finish_wait(&rl->wait[is_sync], &wait);
1113 
1114 	goto retry;
1115 }
1116 
1117 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1118 		gfp_t gfp_mask)
1119 {
1120 	struct request *rq;
1121 
1122 	BUG_ON(rw != READ && rw != WRITE);
1123 
1124 	/* create ioc upfront */
1125 	create_io_context(gfp_mask, q->node);
1126 
1127 	spin_lock_irq(q->queue_lock);
1128 	rq = get_request(q, rw, NULL, gfp_mask);
1129 	if (!rq)
1130 		spin_unlock_irq(q->queue_lock);
1131 	/* q->queue_lock is unlocked at this point */
1132 
1133 	return rq;
1134 }
1135 
1136 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1137 {
1138 	if (q->mq_ops)
1139 		return blk_mq_alloc_request(q, rw, gfp_mask);
1140 	else
1141 		return blk_old_get_request(q, rw, gfp_mask);
1142 }
1143 EXPORT_SYMBOL(blk_get_request);
1144 
1145 /**
1146  * blk_make_request - given a bio, allocate a corresponding struct request.
1147  * @q: target request queue
1148  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1149  *        It may be a chained-bio properly constructed by block/bio layer.
1150  * @gfp_mask: gfp flags to be used for memory allocation
1151  *
1152  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1153  * type commands. Where the struct request needs to be farther initialized by
1154  * the caller. It is passed a &struct bio, which describes the memory info of
1155  * the I/O transfer.
1156  *
1157  * The caller of blk_make_request must make sure that bi_io_vec
1158  * are set to describe the memory buffers. That bio_data_dir() will return
1159  * the needed direction of the request. (And all bio's in the passed bio-chain
1160  * are properly set accordingly)
1161  *
1162  * If called under none-sleepable conditions, mapped bio buffers must not
1163  * need bouncing, by calling the appropriate masked or flagged allocator,
1164  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1165  * BUG.
1166  *
1167  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1168  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1169  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1170  * completion of a bio that hasn't been submitted yet, thus resulting in a
1171  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1172  * of bio_alloc(), as that avoids the mempool deadlock.
1173  * If possible a big IO should be split into smaller parts when allocation
1174  * fails. Partial allocation should not be an error, or you risk a live-lock.
1175  */
1176 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1177 				 gfp_t gfp_mask)
1178 {
1179 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1180 
1181 	if (unlikely(!rq))
1182 		return ERR_PTR(-ENOMEM);
1183 
1184 	for_each_bio(bio) {
1185 		struct bio *bounce_bio = bio;
1186 		int ret;
1187 
1188 		blk_queue_bounce(q, &bounce_bio);
1189 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1190 		if (unlikely(ret)) {
1191 			blk_put_request(rq);
1192 			return ERR_PTR(ret);
1193 		}
1194 	}
1195 
1196 	return rq;
1197 }
1198 EXPORT_SYMBOL(blk_make_request);
1199 
1200 /**
1201  * blk_requeue_request - put a request back on queue
1202  * @q:		request queue where request should be inserted
1203  * @rq:		request to be inserted
1204  *
1205  * Description:
1206  *    Drivers often keep queueing requests until the hardware cannot accept
1207  *    more, when that condition happens we need to put the request back
1208  *    on the queue. Must be called with queue lock held.
1209  */
1210 void blk_requeue_request(struct request_queue *q, struct request *rq)
1211 {
1212 	blk_delete_timer(rq);
1213 	blk_clear_rq_complete(rq);
1214 	trace_block_rq_requeue(q, rq);
1215 
1216 	if (blk_rq_tagged(rq))
1217 		blk_queue_end_tag(q, rq);
1218 
1219 	BUG_ON(blk_queued_rq(rq));
1220 
1221 	elv_requeue_request(q, rq);
1222 }
1223 EXPORT_SYMBOL(blk_requeue_request);
1224 
1225 static void add_acct_request(struct request_queue *q, struct request *rq,
1226 			     int where)
1227 {
1228 	blk_account_io_start(rq, true);
1229 	__elv_add_request(q, rq, where);
1230 }
1231 
1232 static void part_round_stats_single(int cpu, struct hd_struct *part,
1233 				    unsigned long now)
1234 {
1235 	if (now == part->stamp)
1236 		return;
1237 
1238 	if (part_in_flight(part)) {
1239 		__part_stat_add(cpu, part, time_in_queue,
1240 				part_in_flight(part) * (now - part->stamp));
1241 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1242 	}
1243 	part->stamp = now;
1244 }
1245 
1246 /**
1247  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1248  * @cpu: cpu number for stats access
1249  * @part: target partition
1250  *
1251  * The average IO queue length and utilisation statistics are maintained
1252  * by observing the current state of the queue length and the amount of
1253  * time it has been in this state for.
1254  *
1255  * Normally, that accounting is done on IO completion, but that can result
1256  * in more than a second's worth of IO being accounted for within any one
1257  * second, leading to >100% utilisation.  To deal with that, we call this
1258  * function to do a round-off before returning the results when reading
1259  * /proc/diskstats.  This accounts immediately for all queue usage up to
1260  * the current jiffies and restarts the counters again.
1261  */
1262 void part_round_stats(int cpu, struct hd_struct *part)
1263 {
1264 	unsigned long now = jiffies;
1265 
1266 	if (part->partno)
1267 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1268 	part_round_stats_single(cpu, part, now);
1269 }
1270 EXPORT_SYMBOL_GPL(part_round_stats);
1271 
1272 #ifdef CONFIG_PM_RUNTIME
1273 static void blk_pm_put_request(struct request *rq)
1274 {
1275 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1276 		pm_runtime_mark_last_busy(rq->q->dev);
1277 }
1278 #else
1279 static inline void blk_pm_put_request(struct request *rq) {}
1280 #endif
1281 
1282 /*
1283  * queue lock must be held
1284  */
1285 void __blk_put_request(struct request_queue *q, struct request *req)
1286 {
1287 	if (unlikely(!q))
1288 		return;
1289 
1290 	if (q->mq_ops) {
1291 		blk_mq_free_request(req);
1292 		return;
1293 	}
1294 
1295 	blk_pm_put_request(req);
1296 
1297 	elv_completed_request(q, req);
1298 
1299 	/* this is a bio leak */
1300 	WARN_ON(req->bio != NULL);
1301 
1302 	/*
1303 	 * Request may not have originated from ll_rw_blk. if not,
1304 	 * it didn't come out of our reserved rq pools
1305 	 */
1306 	if (req->cmd_flags & REQ_ALLOCED) {
1307 		unsigned int flags = req->cmd_flags;
1308 		struct request_list *rl = blk_rq_rl(req);
1309 
1310 		BUG_ON(!list_empty(&req->queuelist));
1311 		BUG_ON(!hlist_unhashed(&req->hash));
1312 
1313 		blk_free_request(rl, req);
1314 		freed_request(rl, flags);
1315 		blk_put_rl(rl);
1316 	}
1317 }
1318 EXPORT_SYMBOL_GPL(__blk_put_request);
1319 
1320 void blk_put_request(struct request *req)
1321 {
1322 	struct request_queue *q = req->q;
1323 
1324 	if (q->mq_ops)
1325 		blk_mq_free_request(req);
1326 	else {
1327 		unsigned long flags;
1328 
1329 		spin_lock_irqsave(q->queue_lock, flags);
1330 		__blk_put_request(q, req);
1331 		spin_unlock_irqrestore(q->queue_lock, flags);
1332 	}
1333 }
1334 EXPORT_SYMBOL(blk_put_request);
1335 
1336 /**
1337  * blk_add_request_payload - add a payload to a request
1338  * @rq: request to update
1339  * @page: page backing the payload
1340  * @len: length of the payload.
1341  *
1342  * This allows to later add a payload to an already submitted request by
1343  * a block driver.  The driver needs to take care of freeing the payload
1344  * itself.
1345  *
1346  * Note that this is a quite horrible hack and nothing but handling of
1347  * discard requests should ever use it.
1348  */
1349 void blk_add_request_payload(struct request *rq, struct page *page,
1350 		unsigned int len)
1351 {
1352 	struct bio *bio = rq->bio;
1353 
1354 	bio->bi_io_vec->bv_page = page;
1355 	bio->bi_io_vec->bv_offset = 0;
1356 	bio->bi_io_vec->bv_len = len;
1357 
1358 	bio->bi_iter.bi_size = len;
1359 	bio->bi_vcnt = 1;
1360 	bio->bi_phys_segments = 1;
1361 
1362 	rq->__data_len = rq->resid_len = len;
1363 	rq->nr_phys_segments = 1;
1364 	rq->buffer = bio_data(bio);
1365 }
1366 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1367 
1368 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1369 			    struct bio *bio)
1370 {
1371 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1372 
1373 	if (!ll_back_merge_fn(q, req, bio))
1374 		return false;
1375 
1376 	trace_block_bio_backmerge(q, req, bio);
1377 
1378 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1379 		blk_rq_set_mixed_merge(req);
1380 
1381 	req->biotail->bi_next = bio;
1382 	req->biotail = bio;
1383 	req->__data_len += bio->bi_iter.bi_size;
1384 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1385 
1386 	blk_account_io_start(req, false);
1387 	return true;
1388 }
1389 
1390 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1391 			     struct bio *bio)
1392 {
1393 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1394 
1395 	if (!ll_front_merge_fn(q, req, bio))
1396 		return false;
1397 
1398 	trace_block_bio_frontmerge(q, req, bio);
1399 
1400 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1401 		blk_rq_set_mixed_merge(req);
1402 
1403 	bio->bi_next = req->bio;
1404 	req->bio = bio;
1405 
1406 	/*
1407 	 * may not be valid. if the low level driver said
1408 	 * it didn't need a bounce buffer then it better
1409 	 * not touch req->buffer either...
1410 	 */
1411 	req->buffer = bio_data(bio);
1412 	req->__sector = bio->bi_iter.bi_sector;
1413 	req->__data_len += bio->bi_iter.bi_size;
1414 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1415 
1416 	blk_account_io_start(req, false);
1417 	return true;
1418 }
1419 
1420 /**
1421  * blk_attempt_plug_merge - try to merge with %current's plugged list
1422  * @q: request_queue new bio is being queued at
1423  * @bio: new bio being queued
1424  * @request_count: out parameter for number of traversed plugged requests
1425  *
1426  * Determine whether @bio being queued on @q can be merged with a request
1427  * on %current's plugged list.  Returns %true if merge was successful,
1428  * otherwise %false.
1429  *
1430  * Plugging coalesces IOs from the same issuer for the same purpose without
1431  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1432  * than scheduling, and the request, while may have elvpriv data, is not
1433  * added on the elevator at this point.  In addition, we don't have
1434  * reliable access to the elevator outside queue lock.  Only check basic
1435  * merging parameters without querying the elevator.
1436  */
1437 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1438 			    unsigned int *request_count)
1439 {
1440 	struct blk_plug *plug;
1441 	struct request *rq;
1442 	bool ret = false;
1443 	struct list_head *plug_list;
1444 
1445 	if (blk_queue_nomerges(q))
1446 		goto out;
1447 
1448 	plug = current->plug;
1449 	if (!plug)
1450 		goto out;
1451 	*request_count = 0;
1452 
1453 	if (q->mq_ops)
1454 		plug_list = &plug->mq_list;
1455 	else
1456 		plug_list = &plug->list;
1457 
1458 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1459 		int el_ret;
1460 
1461 		if (rq->q == q)
1462 			(*request_count)++;
1463 
1464 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1465 			continue;
1466 
1467 		el_ret = blk_try_merge(rq, bio);
1468 		if (el_ret == ELEVATOR_BACK_MERGE) {
1469 			ret = bio_attempt_back_merge(q, rq, bio);
1470 			if (ret)
1471 				break;
1472 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1473 			ret = bio_attempt_front_merge(q, rq, bio);
1474 			if (ret)
1475 				break;
1476 		}
1477 	}
1478 out:
1479 	return ret;
1480 }
1481 
1482 void init_request_from_bio(struct request *req, struct bio *bio)
1483 {
1484 	req->cmd_type = REQ_TYPE_FS;
1485 
1486 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1487 	if (bio->bi_rw & REQ_RAHEAD)
1488 		req->cmd_flags |= REQ_FAILFAST_MASK;
1489 
1490 	req->errors = 0;
1491 	req->__sector = bio->bi_iter.bi_sector;
1492 	req->ioprio = bio_prio(bio);
1493 	blk_rq_bio_prep(req->q, req, bio);
1494 }
1495 
1496 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1497 {
1498 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1499 	struct blk_plug *plug;
1500 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1501 	struct request *req;
1502 	unsigned int request_count = 0;
1503 
1504 	/*
1505 	 * low level driver can indicate that it wants pages above a
1506 	 * certain limit bounced to low memory (ie for highmem, or even
1507 	 * ISA dma in theory)
1508 	 */
1509 	blk_queue_bounce(q, &bio);
1510 
1511 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1512 		bio_endio(bio, -EIO);
1513 		return;
1514 	}
1515 
1516 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1517 		spin_lock_irq(q->queue_lock);
1518 		where = ELEVATOR_INSERT_FLUSH;
1519 		goto get_rq;
1520 	}
1521 
1522 	/*
1523 	 * Check if we can merge with the plugged list before grabbing
1524 	 * any locks.
1525 	 */
1526 	if (blk_attempt_plug_merge(q, bio, &request_count))
1527 		return;
1528 
1529 	spin_lock_irq(q->queue_lock);
1530 
1531 	el_ret = elv_merge(q, &req, bio);
1532 	if (el_ret == ELEVATOR_BACK_MERGE) {
1533 		if (bio_attempt_back_merge(q, req, bio)) {
1534 			elv_bio_merged(q, req, bio);
1535 			if (!attempt_back_merge(q, req))
1536 				elv_merged_request(q, req, el_ret);
1537 			goto out_unlock;
1538 		}
1539 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1540 		if (bio_attempt_front_merge(q, req, bio)) {
1541 			elv_bio_merged(q, req, bio);
1542 			if (!attempt_front_merge(q, req))
1543 				elv_merged_request(q, req, el_ret);
1544 			goto out_unlock;
1545 		}
1546 	}
1547 
1548 get_rq:
1549 	/*
1550 	 * This sync check and mask will be re-done in init_request_from_bio(),
1551 	 * but we need to set it earlier to expose the sync flag to the
1552 	 * rq allocator and io schedulers.
1553 	 */
1554 	rw_flags = bio_data_dir(bio);
1555 	if (sync)
1556 		rw_flags |= REQ_SYNC;
1557 
1558 	/*
1559 	 * Grab a free request. This is might sleep but can not fail.
1560 	 * Returns with the queue unlocked.
1561 	 */
1562 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1563 	if (unlikely(!req)) {
1564 		bio_endio(bio, -ENODEV);	/* @q is dead */
1565 		goto out_unlock;
1566 	}
1567 
1568 	/*
1569 	 * After dropping the lock and possibly sleeping here, our request
1570 	 * may now be mergeable after it had proven unmergeable (above).
1571 	 * We don't worry about that case for efficiency. It won't happen
1572 	 * often, and the elevators are able to handle it.
1573 	 */
1574 	init_request_from_bio(req, bio);
1575 
1576 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1577 		req->cpu = raw_smp_processor_id();
1578 
1579 	plug = current->plug;
1580 	if (plug) {
1581 		/*
1582 		 * If this is the first request added after a plug, fire
1583 		 * of a plug trace.
1584 		 */
1585 		if (!request_count)
1586 			trace_block_plug(q);
1587 		else {
1588 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1589 				blk_flush_plug_list(plug, false);
1590 				trace_block_plug(q);
1591 			}
1592 		}
1593 		list_add_tail(&req->queuelist, &plug->list);
1594 		blk_account_io_start(req, true);
1595 	} else {
1596 		spin_lock_irq(q->queue_lock);
1597 		add_acct_request(q, req, where);
1598 		__blk_run_queue(q);
1599 out_unlock:
1600 		spin_unlock_irq(q->queue_lock);
1601 	}
1602 }
1603 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1604 
1605 /*
1606  * If bio->bi_dev is a partition, remap the location
1607  */
1608 static inline void blk_partition_remap(struct bio *bio)
1609 {
1610 	struct block_device *bdev = bio->bi_bdev;
1611 
1612 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1613 		struct hd_struct *p = bdev->bd_part;
1614 
1615 		bio->bi_iter.bi_sector += p->start_sect;
1616 		bio->bi_bdev = bdev->bd_contains;
1617 
1618 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1619 				      bdev->bd_dev,
1620 				      bio->bi_iter.bi_sector - p->start_sect);
1621 	}
1622 }
1623 
1624 static void handle_bad_sector(struct bio *bio)
1625 {
1626 	char b[BDEVNAME_SIZE];
1627 
1628 	printk(KERN_INFO "attempt to access beyond end of device\n");
1629 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1630 			bdevname(bio->bi_bdev, b),
1631 			bio->bi_rw,
1632 			(unsigned long long)bio_end_sector(bio),
1633 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1634 
1635 	set_bit(BIO_EOF, &bio->bi_flags);
1636 }
1637 
1638 #ifdef CONFIG_FAIL_MAKE_REQUEST
1639 
1640 static DECLARE_FAULT_ATTR(fail_make_request);
1641 
1642 static int __init setup_fail_make_request(char *str)
1643 {
1644 	return setup_fault_attr(&fail_make_request, str);
1645 }
1646 __setup("fail_make_request=", setup_fail_make_request);
1647 
1648 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1649 {
1650 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1651 }
1652 
1653 static int __init fail_make_request_debugfs(void)
1654 {
1655 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1656 						NULL, &fail_make_request);
1657 
1658 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1659 }
1660 
1661 late_initcall(fail_make_request_debugfs);
1662 
1663 #else /* CONFIG_FAIL_MAKE_REQUEST */
1664 
1665 static inline bool should_fail_request(struct hd_struct *part,
1666 					unsigned int bytes)
1667 {
1668 	return false;
1669 }
1670 
1671 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1672 
1673 /*
1674  * Check whether this bio extends beyond the end of the device.
1675  */
1676 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1677 {
1678 	sector_t maxsector;
1679 
1680 	if (!nr_sectors)
1681 		return 0;
1682 
1683 	/* Test device or partition size, when known. */
1684 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1685 	if (maxsector) {
1686 		sector_t sector = bio->bi_iter.bi_sector;
1687 
1688 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1689 			/*
1690 			 * This may well happen - the kernel calls bread()
1691 			 * without checking the size of the device, e.g., when
1692 			 * mounting a device.
1693 			 */
1694 			handle_bad_sector(bio);
1695 			return 1;
1696 		}
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 static noinline_for_stack bool
1703 generic_make_request_checks(struct bio *bio)
1704 {
1705 	struct request_queue *q;
1706 	int nr_sectors = bio_sectors(bio);
1707 	int err = -EIO;
1708 	char b[BDEVNAME_SIZE];
1709 	struct hd_struct *part;
1710 
1711 	might_sleep();
1712 
1713 	if (bio_check_eod(bio, nr_sectors))
1714 		goto end_io;
1715 
1716 	q = bdev_get_queue(bio->bi_bdev);
1717 	if (unlikely(!q)) {
1718 		printk(KERN_ERR
1719 		       "generic_make_request: Trying to access "
1720 			"nonexistent block-device %s (%Lu)\n",
1721 			bdevname(bio->bi_bdev, b),
1722 			(long long) bio->bi_iter.bi_sector);
1723 		goto end_io;
1724 	}
1725 
1726 	if (likely(bio_is_rw(bio) &&
1727 		   nr_sectors > queue_max_hw_sectors(q))) {
1728 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1729 		       bdevname(bio->bi_bdev, b),
1730 		       bio_sectors(bio),
1731 		       queue_max_hw_sectors(q));
1732 		goto end_io;
1733 	}
1734 
1735 	part = bio->bi_bdev->bd_part;
1736 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1737 	    should_fail_request(&part_to_disk(part)->part0,
1738 				bio->bi_iter.bi_size))
1739 		goto end_io;
1740 
1741 	/*
1742 	 * If this device has partitions, remap block n
1743 	 * of partition p to block n+start(p) of the disk.
1744 	 */
1745 	blk_partition_remap(bio);
1746 
1747 	if (bio_check_eod(bio, nr_sectors))
1748 		goto end_io;
1749 
1750 	/*
1751 	 * Filter flush bio's early so that make_request based
1752 	 * drivers without flush support don't have to worry
1753 	 * about them.
1754 	 */
1755 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1756 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1757 		if (!nr_sectors) {
1758 			err = 0;
1759 			goto end_io;
1760 		}
1761 	}
1762 
1763 	if ((bio->bi_rw & REQ_DISCARD) &&
1764 	    (!blk_queue_discard(q) ||
1765 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1766 		err = -EOPNOTSUPP;
1767 		goto end_io;
1768 	}
1769 
1770 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1771 		err = -EOPNOTSUPP;
1772 		goto end_io;
1773 	}
1774 
1775 	/*
1776 	 * Various block parts want %current->io_context and lazy ioc
1777 	 * allocation ends up trading a lot of pain for a small amount of
1778 	 * memory.  Just allocate it upfront.  This may fail and block
1779 	 * layer knows how to live with it.
1780 	 */
1781 	create_io_context(GFP_ATOMIC, q->node);
1782 
1783 	if (blk_throtl_bio(q, bio))
1784 		return false;	/* throttled, will be resubmitted later */
1785 
1786 	trace_block_bio_queue(q, bio);
1787 	return true;
1788 
1789 end_io:
1790 	bio_endio(bio, err);
1791 	return false;
1792 }
1793 
1794 /**
1795  * generic_make_request - hand a buffer to its device driver for I/O
1796  * @bio:  The bio describing the location in memory and on the device.
1797  *
1798  * generic_make_request() is used to make I/O requests of block
1799  * devices. It is passed a &struct bio, which describes the I/O that needs
1800  * to be done.
1801  *
1802  * generic_make_request() does not return any status.  The
1803  * success/failure status of the request, along with notification of
1804  * completion, is delivered asynchronously through the bio->bi_end_io
1805  * function described (one day) else where.
1806  *
1807  * The caller of generic_make_request must make sure that bi_io_vec
1808  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1809  * set to describe the device address, and the
1810  * bi_end_io and optionally bi_private are set to describe how
1811  * completion notification should be signaled.
1812  *
1813  * generic_make_request and the drivers it calls may use bi_next if this
1814  * bio happens to be merged with someone else, and may resubmit the bio to
1815  * a lower device by calling into generic_make_request recursively, which
1816  * means the bio should NOT be touched after the call to ->make_request_fn.
1817  */
1818 void generic_make_request(struct bio *bio)
1819 {
1820 	struct bio_list bio_list_on_stack;
1821 
1822 	if (!generic_make_request_checks(bio))
1823 		return;
1824 
1825 	/*
1826 	 * We only want one ->make_request_fn to be active at a time, else
1827 	 * stack usage with stacked devices could be a problem.  So use
1828 	 * current->bio_list to keep a list of requests submited by a
1829 	 * make_request_fn function.  current->bio_list is also used as a
1830 	 * flag to say if generic_make_request is currently active in this
1831 	 * task or not.  If it is NULL, then no make_request is active.  If
1832 	 * it is non-NULL, then a make_request is active, and new requests
1833 	 * should be added at the tail
1834 	 */
1835 	if (current->bio_list) {
1836 		bio_list_add(current->bio_list, bio);
1837 		return;
1838 	}
1839 
1840 	/* following loop may be a bit non-obvious, and so deserves some
1841 	 * explanation.
1842 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1843 	 * ensure that) so we have a list with a single bio.
1844 	 * We pretend that we have just taken it off a longer list, so
1845 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1846 	 * thus initialising the bio_list of new bios to be
1847 	 * added.  ->make_request() may indeed add some more bios
1848 	 * through a recursive call to generic_make_request.  If it
1849 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1850 	 * from the top.  In this case we really did just take the bio
1851 	 * of the top of the list (no pretending) and so remove it from
1852 	 * bio_list, and call into ->make_request() again.
1853 	 */
1854 	BUG_ON(bio->bi_next);
1855 	bio_list_init(&bio_list_on_stack);
1856 	current->bio_list = &bio_list_on_stack;
1857 	do {
1858 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1859 
1860 		q->make_request_fn(q, bio);
1861 
1862 		bio = bio_list_pop(current->bio_list);
1863 	} while (bio);
1864 	current->bio_list = NULL; /* deactivate */
1865 }
1866 EXPORT_SYMBOL(generic_make_request);
1867 
1868 /**
1869  * submit_bio - submit a bio to the block device layer for I/O
1870  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1871  * @bio: The &struct bio which describes the I/O
1872  *
1873  * submit_bio() is very similar in purpose to generic_make_request(), and
1874  * uses that function to do most of the work. Both are fairly rough
1875  * interfaces; @bio must be presetup and ready for I/O.
1876  *
1877  */
1878 void submit_bio(int rw, struct bio *bio)
1879 {
1880 	bio->bi_rw |= rw;
1881 
1882 	/*
1883 	 * If it's a regular read/write or a barrier with data attached,
1884 	 * go through the normal accounting stuff before submission.
1885 	 */
1886 	if (bio_has_data(bio)) {
1887 		unsigned int count;
1888 
1889 		if (unlikely(rw & REQ_WRITE_SAME))
1890 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1891 		else
1892 			count = bio_sectors(bio);
1893 
1894 		if (rw & WRITE) {
1895 			count_vm_events(PGPGOUT, count);
1896 		} else {
1897 			task_io_account_read(bio->bi_iter.bi_size);
1898 			count_vm_events(PGPGIN, count);
1899 		}
1900 
1901 		if (unlikely(block_dump)) {
1902 			char b[BDEVNAME_SIZE];
1903 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1904 			current->comm, task_pid_nr(current),
1905 				(rw & WRITE) ? "WRITE" : "READ",
1906 				(unsigned long long)bio->bi_iter.bi_sector,
1907 				bdevname(bio->bi_bdev, b),
1908 				count);
1909 		}
1910 	}
1911 
1912 	generic_make_request(bio);
1913 }
1914 EXPORT_SYMBOL(submit_bio);
1915 
1916 /**
1917  * blk_rq_check_limits - Helper function to check a request for the queue limit
1918  * @q:  the queue
1919  * @rq: the request being checked
1920  *
1921  * Description:
1922  *    @rq may have been made based on weaker limitations of upper-level queues
1923  *    in request stacking drivers, and it may violate the limitation of @q.
1924  *    Since the block layer and the underlying device driver trust @rq
1925  *    after it is inserted to @q, it should be checked against @q before
1926  *    the insertion using this generic function.
1927  *
1928  *    This function should also be useful for request stacking drivers
1929  *    in some cases below, so export this function.
1930  *    Request stacking drivers like request-based dm may change the queue
1931  *    limits while requests are in the queue (e.g. dm's table swapping).
1932  *    Such request stacking drivers should check those requests agaist
1933  *    the new queue limits again when they dispatch those requests,
1934  *    although such checkings are also done against the old queue limits
1935  *    when submitting requests.
1936  */
1937 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1938 {
1939 	if (!rq_mergeable(rq))
1940 		return 0;
1941 
1942 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1943 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1944 		return -EIO;
1945 	}
1946 
1947 	/*
1948 	 * queue's settings related to segment counting like q->bounce_pfn
1949 	 * may differ from that of other stacking queues.
1950 	 * Recalculate it to check the request correctly on this queue's
1951 	 * limitation.
1952 	 */
1953 	blk_recalc_rq_segments(rq);
1954 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1955 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1956 		return -EIO;
1957 	}
1958 
1959 	return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1962 
1963 /**
1964  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1965  * @q:  the queue to submit the request
1966  * @rq: the request being queued
1967  */
1968 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1969 {
1970 	unsigned long flags;
1971 	int where = ELEVATOR_INSERT_BACK;
1972 
1973 	if (blk_rq_check_limits(q, rq))
1974 		return -EIO;
1975 
1976 	if (rq->rq_disk &&
1977 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1978 		return -EIO;
1979 
1980 	spin_lock_irqsave(q->queue_lock, flags);
1981 	if (unlikely(blk_queue_dying(q))) {
1982 		spin_unlock_irqrestore(q->queue_lock, flags);
1983 		return -ENODEV;
1984 	}
1985 
1986 	/*
1987 	 * Submitting request must be dequeued before calling this function
1988 	 * because it will be linked to another request_queue
1989 	 */
1990 	BUG_ON(blk_queued_rq(rq));
1991 
1992 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1993 		where = ELEVATOR_INSERT_FLUSH;
1994 
1995 	add_acct_request(q, rq, where);
1996 	if (where == ELEVATOR_INSERT_FLUSH)
1997 		__blk_run_queue(q);
1998 	spin_unlock_irqrestore(q->queue_lock, flags);
1999 
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2003 
2004 /**
2005  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2006  * @rq: request to examine
2007  *
2008  * Description:
2009  *     A request could be merge of IOs which require different failure
2010  *     handling.  This function determines the number of bytes which
2011  *     can be failed from the beginning of the request without
2012  *     crossing into area which need to be retried further.
2013  *
2014  * Return:
2015  *     The number of bytes to fail.
2016  *
2017  * Context:
2018  *     queue_lock must be held.
2019  */
2020 unsigned int blk_rq_err_bytes(const struct request *rq)
2021 {
2022 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2023 	unsigned int bytes = 0;
2024 	struct bio *bio;
2025 
2026 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2027 		return blk_rq_bytes(rq);
2028 
2029 	/*
2030 	 * Currently the only 'mixing' which can happen is between
2031 	 * different fastfail types.  We can safely fail portions
2032 	 * which have all the failfast bits that the first one has -
2033 	 * the ones which are at least as eager to fail as the first
2034 	 * one.
2035 	 */
2036 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2037 		if ((bio->bi_rw & ff) != ff)
2038 			break;
2039 		bytes += bio->bi_iter.bi_size;
2040 	}
2041 
2042 	/* this could lead to infinite loop */
2043 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2044 	return bytes;
2045 }
2046 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2047 
2048 void blk_account_io_completion(struct request *req, unsigned int bytes)
2049 {
2050 	if (blk_do_io_stat(req)) {
2051 		const int rw = rq_data_dir(req);
2052 		struct hd_struct *part;
2053 		int cpu;
2054 
2055 		cpu = part_stat_lock();
2056 		part = req->part;
2057 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2058 		part_stat_unlock();
2059 	}
2060 }
2061 
2062 void blk_account_io_done(struct request *req)
2063 {
2064 	/*
2065 	 * Account IO completion.  flush_rq isn't accounted as a
2066 	 * normal IO on queueing nor completion.  Accounting the
2067 	 * containing request is enough.
2068 	 */
2069 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2070 		unsigned long duration = jiffies - req->start_time;
2071 		const int rw = rq_data_dir(req);
2072 		struct hd_struct *part;
2073 		int cpu;
2074 
2075 		cpu = part_stat_lock();
2076 		part = req->part;
2077 
2078 		part_stat_inc(cpu, part, ios[rw]);
2079 		part_stat_add(cpu, part, ticks[rw], duration);
2080 		part_round_stats(cpu, part);
2081 		part_dec_in_flight(part, rw);
2082 
2083 		hd_struct_put(part);
2084 		part_stat_unlock();
2085 	}
2086 }
2087 
2088 #ifdef CONFIG_PM_RUNTIME
2089 /*
2090  * Don't process normal requests when queue is suspended
2091  * or in the process of suspending/resuming
2092  */
2093 static struct request *blk_pm_peek_request(struct request_queue *q,
2094 					   struct request *rq)
2095 {
2096 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2097 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2098 		return NULL;
2099 	else
2100 		return rq;
2101 }
2102 #else
2103 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2104 						  struct request *rq)
2105 {
2106 	return rq;
2107 }
2108 #endif
2109 
2110 void blk_account_io_start(struct request *rq, bool new_io)
2111 {
2112 	struct hd_struct *part;
2113 	int rw = rq_data_dir(rq);
2114 	int cpu;
2115 
2116 	if (!blk_do_io_stat(rq))
2117 		return;
2118 
2119 	cpu = part_stat_lock();
2120 
2121 	if (!new_io) {
2122 		part = rq->part;
2123 		part_stat_inc(cpu, part, merges[rw]);
2124 	} else {
2125 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2126 		if (!hd_struct_try_get(part)) {
2127 			/*
2128 			 * The partition is already being removed,
2129 			 * the request will be accounted on the disk only
2130 			 *
2131 			 * We take a reference on disk->part0 although that
2132 			 * partition will never be deleted, so we can treat
2133 			 * it as any other partition.
2134 			 */
2135 			part = &rq->rq_disk->part0;
2136 			hd_struct_get(part);
2137 		}
2138 		part_round_stats(cpu, part);
2139 		part_inc_in_flight(part, rw);
2140 		rq->part = part;
2141 	}
2142 
2143 	part_stat_unlock();
2144 }
2145 
2146 /**
2147  * blk_peek_request - peek at the top of a request queue
2148  * @q: request queue to peek at
2149  *
2150  * Description:
2151  *     Return the request at the top of @q.  The returned request
2152  *     should be started using blk_start_request() before LLD starts
2153  *     processing it.
2154  *
2155  * Return:
2156  *     Pointer to the request at the top of @q if available.  Null
2157  *     otherwise.
2158  *
2159  * Context:
2160  *     queue_lock must be held.
2161  */
2162 struct request *blk_peek_request(struct request_queue *q)
2163 {
2164 	struct request *rq;
2165 	int ret;
2166 
2167 	while ((rq = __elv_next_request(q)) != NULL) {
2168 
2169 		rq = blk_pm_peek_request(q, rq);
2170 		if (!rq)
2171 			break;
2172 
2173 		if (!(rq->cmd_flags & REQ_STARTED)) {
2174 			/*
2175 			 * This is the first time the device driver
2176 			 * sees this request (possibly after
2177 			 * requeueing).  Notify IO scheduler.
2178 			 */
2179 			if (rq->cmd_flags & REQ_SORTED)
2180 				elv_activate_rq(q, rq);
2181 
2182 			/*
2183 			 * just mark as started even if we don't start
2184 			 * it, a request that has been delayed should
2185 			 * not be passed by new incoming requests
2186 			 */
2187 			rq->cmd_flags |= REQ_STARTED;
2188 			trace_block_rq_issue(q, rq);
2189 		}
2190 
2191 		if (!q->boundary_rq || q->boundary_rq == rq) {
2192 			q->end_sector = rq_end_sector(rq);
2193 			q->boundary_rq = NULL;
2194 		}
2195 
2196 		if (rq->cmd_flags & REQ_DONTPREP)
2197 			break;
2198 
2199 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2200 			/*
2201 			 * make sure space for the drain appears we
2202 			 * know we can do this because max_hw_segments
2203 			 * has been adjusted to be one fewer than the
2204 			 * device can handle
2205 			 */
2206 			rq->nr_phys_segments++;
2207 		}
2208 
2209 		if (!q->prep_rq_fn)
2210 			break;
2211 
2212 		ret = q->prep_rq_fn(q, rq);
2213 		if (ret == BLKPREP_OK) {
2214 			break;
2215 		} else if (ret == BLKPREP_DEFER) {
2216 			/*
2217 			 * the request may have been (partially) prepped.
2218 			 * we need to keep this request in the front to
2219 			 * avoid resource deadlock.  REQ_STARTED will
2220 			 * prevent other fs requests from passing this one.
2221 			 */
2222 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2223 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2224 				/*
2225 				 * remove the space for the drain we added
2226 				 * so that we don't add it again
2227 				 */
2228 				--rq->nr_phys_segments;
2229 			}
2230 
2231 			rq = NULL;
2232 			break;
2233 		} else if (ret == BLKPREP_KILL) {
2234 			rq->cmd_flags |= REQ_QUIET;
2235 			/*
2236 			 * Mark this request as started so we don't trigger
2237 			 * any debug logic in the end I/O path.
2238 			 */
2239 			blk_start_request(rq);
2240 			__blk_end_request_all(rq, -EIO);
2241 		} else {
2242 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2243 			break;
2244 		}
2245 	}
2246 
2247 	return rq;
2248 }
2249 EXPORT_SYMBOL(blk_peek_request);
2250 
2251 void blk_dequeue_request(struct request *rq)
2252 {
2253 	struct request_queue *q = rq->q;
2254 
2255 	BUG_ON(list_empty(&rq->queuelist));
2256 	BUG_ON(ELV_ON_HASH(rq));
2257 
2258 	list_del_init(&rq->queuelist);
2259 
2260 	/*
2261 	 * the time frame between a request being removed from the lists
2262 	 * and to it is freed is accounted as io that is in progress at
2263 	 * the driver side.
2264 	 */
2265 	if (blk_account_rq(rq)) {
2266 		q->in_flight[rq_is_sync(rq)]++;
2267 		set_io_start_time_ns(rq);
2268 	}
2269 }
2270 
2271 /**
2272  * blk_start_request - start request processing on the driver
2273  * @req: request to dequeue
2274  *
2275  * Description:
2276  *     Dequeue @req and start timeout timer on it.  This hands off the
2277  *     request to the driver.
2278  *
2279  *     Block internal functions which don't want to start timer should
2280  *     call blk_dequeue_request().
2281  *
2282  * Context:
2283  *     queue_lock must be held.
2284  */
2285 void blk_start_request(struct request *req)
2286 {
2287 	blk_dequeue_request(req);
2288 
2289 	/*
2290 	 * We are now handing the request to the hardware, initialize
2291 	 * resid_len to full count and add the timeout handler.
2292 	 */
2293 	req->resid_len = blk_rq_bytes(req);
2294 	if (unlikely(blk_bidi_rq(req)))
2295 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2296 
2297 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2298 	blk_add_timer(req);
2299 }
2300 EXPORT_SYMBOL(blk_start_request);
2301 
2302 /**
2303  * blk_fetch_request - fetch a request from a request queue
2304  * @q: request queue to fetch a request from
2305  *
2306  * Description:
2307  *     Return the request at the top of @q.  The request is started on
2308  *     return and LLD can start processing it immediately.
2309  *
2310  * Return:
2311  *     Pointer to the request at the top of @q if available.  Null
2312  *     otherwise.
2313  *
2314  * Context:
2315  *     queue_lock must be held.
2316  */
2317 struct request *blk_fetch_request(struct request_queue *q)
2318 {
2319 	struct request *rq;
2320 
2321 	rq = blk_peek_request(q);
2322 	if (rq)
2323 		blk_start_request(rq);
2324 	return rq;
2325 }
2326 EXPORT_SYMBOL(blk_fetch_request);
2327 
2328 /**
2329  * blk_update_request - Special helper function for request stacking drivers
2330  * @req:      the request being processed
2331  * @error:    %0 for success, < %0 for error
2332  * @nr_bytes: number of bytes to complete @req
2333  *
2334  * Description:
2335  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2336  *     the request structure even if @req doesn't have leftover.
2337  *     If @req has leftover, sets it up for the next range of segments.
2338  *
2339  *     This special helper function is only for request stacking drivers
2340  *     (e.g. request-based dm) so that they can handle partial completion.
2341  *     Actual device drivers should use blk_end_request instead.
2342  *
2343  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2344  *     %false return from this function.
2345  *
2346  * Return:
2347  *     %false - this request doesn't have any more data
2348  *     %true  - this request has more data
2349  **/
2350 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2351 {
2352 	int total_bytes;
2353 
2354 	if (!req->bio)
2355 		return false;
2356 
2357 	trace_block_rq_complete(req->q, req);
2358 
2359 	/*
2360 	 * For fs requests, rq is just carrier of independent bio's
2361 	 * and each partial completion should be handled separately.
2362 	 * Reset per-request error on each partial completion.
2363 	 *
2364 	 * TODO: tj: This is too subtle.  It would be better to let
2365 	 * low level drivers do what they see fit.
2366 	 */
2367 	if (req->cmd_type == REQ_TYPE_FS)
2368 		req->errors = 0;
2369 
2370 	if (error && req->cmd_type == REQ_TYPE_FS &&
2371 	    !(req->cmd_flags & REQ_QUIET)) {
2372 		char *error_type;
2373 
2374 		switch (error) {
2375 		case -ENOLINK:
2376 			error_type = "recoverable transport";
2377 			break;
2378 		case -EREMOTEIO:
2379 			error_type = "critical target";
2380 			break;
2381 		case -EBADE:
2382 			error_type = "critical nexus";
2383 			break;
2384 		case -ETIMEDOUT:
2385 			error_type = "timeout";
2386 			break;
2387 		case -ENOSPC:
2388 			error_type = "critical space allocation";
2389 			break;
2390 		case -ENODATA:
2391 			error_type = "critical medium";
2392 			break;
2393 		case -EIO:
2394 		default:
2395 			error_type = "I/O";
2396 			break;
2397 		}
2398 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2399 				   error_type, req->rq_disk ?
2400 				   req->rq_disk->disk_name : "?",
2401 				   (unsigned long long)blk_rq_pos(req));
2402 
2403 	}
2404 
2405 	blk_account_io_completion(req, nr_bytes);
2406 
2407 	total_bytes = 0;
2408 	while (req->bio) {
2409 		struct bio *bio = req->bio;
2410 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2411 
2412 		if (bio_bytes == bio->bi_iter.bi_size)
2413 			req->bio = bio->bi_next;
2414 
2415 		req_bio_endio(req, bio, bio_bytes, error);
2416 
2417 		total_bytes += bio_bytes;
2418 		nr_bytes -= bio_bytes;
2419 
2420 		if (!nr_bytes)
2421 			break;
2422 	}
2423 
2424 	/*
2425 	 * completely done
2426 	 */
2427 	if (!req->bio) {
2428 		/*
2429 		 * Reset counters so that the request stacking driver
2430 		 * can find how many bytes remain in the request
2431 		 * later.
2432 		 */
2433 		req->__data_len = 0;
2434 		return false;
2435 	}
2436 
2437 	req->__data_len -= total_bytes;
2438 	req->buffer = bio_data(req->bio);
2439 
2440 	/* update sector only for requests with clear definition of sector */
2441 	if (req->cmd_type == REQ_TYPE_FS)
2442 		req->__sector += total_bytes >> 9;
2443 
2444 	/* mixed attributes always follow the first bio */
2445 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2446 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2447 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2448 	}
2449 
2450 	/*
2451 	 * If total number of sectors is less than the first segment
2452 	 * size, something has gone terribly wrong.
2453 	 */
2454 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2455 		blk_dump_rq_flags(req, "request botched");
2456 		req->__data_len = blk_rq_cur_bytes(req);
2457 	}
2458 
2459 	/* recalculate the number of segments */
2460 	blk_recalc_rq_segments(req);
2461 
2462 	return true;
2463 }
2464 EXPORT_SYMBOL_GPL(blk_update_request);
2465 
2466 static bool blk_update_bidi_request(struct request *rq, int error,
2467 				    unsigned int nr_bytes,
2468 				    unsigned int bidi_bytes)
2469 {
2470 	if (blk_update_request(rq, error, nr_bytes))
2471 		return true;
2472 
2473 	/* Bidi request must be completed as a whole */
2474 	if (unlikely(blk_bidi_rq(rq)) &&
2475 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2476 		return true;
2477 
2478 	if (blk_queue_add_random(rq->q))
2479 		add_disk_randomness(rq->rq_disk);
2480 
2481 	return false;
2482 }
2483 
2484 /**
2485  * blk_unprep_request - unprepare a request
2486  * @req:	the request
2487  *
2488  * This function makes a request ready for complete resubmission (or
2489  * completion).  It happens only after all error handling is complete,
2490  * so represents the appropriate moment to deallocate any resources
2491  * that were allocated to the request in the prep_rq_fn.  The queue
2492  * lock is held when calling this.
2493  */
2494 void blk_unprep_request(struct request *req)
2495 {
2496 	struct request_queue *q = req->q;
2497 
2498 	req->cmd_flags &= ~REQ_DONTPREP;
2499 	if (q->unprep_rq_fn)
2500 		q->unprep_rq_fn(q, req);
2501 }
2502 EXPORT_SYMBOL_GPL(blk_unprep_request);
2503 
2504 /*
2505  * queue lock must be held
2506  */
2507 static void blk_finish_request(struct request *req, int error)
2508 {
2509 	if (blk_rq_tagged(req))
2510 		blk_queue_end_tag(req->q, req);
2511 
2512 	BUG_ON(blk_queued_rq(req));
2513 
2514 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2515 		laptop_io_completion(&req->q->backing_dev_info);
2516 
2517 	blk_delete_timer(req);
2518 
2519 	if (req->cmd_flags & REQ_DONTPREP)
2520 		blk_unprep_request(req);
2521 
2522 	blk_account_io_done(req);
2523 
2524 	if (req->end_io)
2525 		req->end_io(req, error);
2526 	else {
2527 		if (blk_bidi_rq(req))
2528 			__blk_put_request(req->next_rq->q, req->next_rq);
2529 
2530 		__blk_put_request(req->q, req);
2531 	}
2532 }
2533 
2534 /**
2535  * blk_end_bidi_request - Complete a bidi request
2536  * @rq:         the request to complete
2537  * @error:      %0 for success, < %0 for error
2538  * @nr_bytes:   number of bytes to complete @rq
2539  * @bidi_bytes: number of bytes to complete @rq->next_rq
2540  *
2541  * Description:
2542  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2543  *     Drivers that supports bidi can safely call this member for any
2544  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2545  *     just ignored.
2546  *
2547  * Return:
2548  *     %false - we are done with this request
2549  *     %true  - still buffers pending for this request
2550  **/
2551 static bool blk_end_bidi_request(struct request *rq, int error,
2552 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2553 {
2554 	struct request_queue *q = rq->q;
2555 	unsigned long flags;
2556 
2557 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2558 		return true;
2559 
2560 	spin_lock_irqsave(q->queue_lock, flags);
2561 	blk_finish_request(rq, error);
2562 	spin_unlock_irqrestore(q->queue_lock, flags);
2563 
2564 	return false;
2565 }
2566 
2567 /**
2568  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2569  * @rq:         the request to complete
2570  * @error:      %0 for success, < %0 for error
2571  * @nr_bytes:   number of bytes to complete @rq
2572  * @bidi_bytes: number of bytes to complete @rq->next_rq
2573  *
2574  * Description:
2575  *     Identical to blk_end_bidi_request() except that queue lock is
2576  *     assumed to be locked on entry and remains so on return.
2577  *
2578  * Return:
2579  *     %false - we are done with this request
2580  *     %true  - still buffers pending for this request
2581  **/
2582 bool __blk_end_bidi_request(struct request *rq, int error,
2583 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2584 {
2585 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2586 		return true;
2587 
2588 	blk_finish_request(rq, error);
2589 
2590 	return false;
2591 }
2592 
2593 /**
2594  * blk_end_request - Helper function for drivers to complete the request.
2595  * @rq:       the request being processed
2596  * @error:    %0 for success, < %0 for error
2597  * @nr_bytes: number of bytes to complete
2598  *
2599  * Description:
2600  *     Ends I/O on a number of bytes attached to @rq.
2601  *     If @rq has leftover, sets it up for the next range of segments.
2602  *
2603  * Return:
2604  *     %false - we are done with this request
2605  *     %true  - still buffers pending for this request
2606  **/
2607 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2608 {
2609 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2610 }
2611 EXPORT_SYMBOL(blk_end_request);
2612 
2613 /**
2614  * blk_end_request_all - Helper function for drives to finish the request.
2615  * @rq: the request to finish
2616  * @error: %0 for success, < %0 for error
2617  *
2618  * Description:
2619  *     Completely finish @rq.
2620  */
2621 void blk_end_request_all(struct request *rq, int error)
2622 {
2623 	bool pending;
2624 	unsigned int bidi_bytes = 0;
2625 
2626 	if (unlikely(blk_bidi_rq(rq)))
2627 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2628 
2629 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2630 	BUG_ON(pending);
2631 }
2632 EXPORT_SYMBOL(blk_end_request_all);
2633 
2634 /**
2635  * blk_end_request_cur - Helper function to finish the current request chunk.
2636  * @rq: the request to finish the current chunk for
2637  * @error: %0 for success, < %0 for error
2638  *
2639  * Description:
2640  *     Complete the current consecutively mapped chunk from @rq.
2641  *
2642  * Return:
2643  *     %false - we are done with this request
2644  *     %true  - still buffers pending for this request
2645  */
2646 bool blk_end_request_cur(struct request *rq, int error)
2647 {
2648 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2649 }
2650 EXPORT_SYMBOL(blk_end_request_cur);
2651 
2652 /**
2653  * blk_end_request_err - Finish a request till the next failure boundary.
2654  * @rq: the request to finish till the next failure boundary for
2655  * @error: must be negative errno
2656  *
2657  * Description:
2658  *     Complete @rq till the next failure boundary.
2659  *
2660  * Return:
2661  *     %false - we are done with this request
2662  *     %true  - still buffers pending for this request
2663  */
2664 bool blk_end_request_err(struct request *rq, int error)
2665 {
2666 	WARN_ON(error >= 0);
2667 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2668 }
2669 EXPORT_SYMBOL_GPL(blk_end_request_err);
2670 
2671 /**
2672  * __blk_end_request - Helper function for drivers to complete the request.
2673  * @rq:       the request being processed
2674  * @error:    %0 for success, < %0 for error
2675  * @nr_bytes: number of bytes to complete
2676  *
2677  * Description:
2678  *     Must be called with queue lock held unlike blk_end_request().
2679  *
2680  * Return:
2681  *     %false - we are done with this request
2682  *     %true  - still buffers pending for this request
2683  **/
2684 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2685 {
2686 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2687 }
2688 EXPORT_SYMBOL(__blk_end_request);
2689 
2690 /**
2691  * __blk_end_request_all - Helper function for drives to finish the request.
2692  * @rq: the request to finish
2693  * @error: %0 for success, < %0 for error
2694  *
2695  * Description:
2696  *     Completely finish @rq.  Must be called with queue lock held.
2697  */
2698 void __blk_end_request_all(struct request *rq, int error)
2699 {
2700 	bool pending;
2701 	unsigned int bidi_bytes = 0;
2702 
2703 	if (unlikely(blk_bidi_rq(rq)))
2704 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2705 
2706 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2707 	BUG_ON(pending);
2708 }
2709 EXPORT_SYMBOL(__blk_end_request_all);
2710 
2711 /**
2712  * __blk_end_request_cur - Helper function to finish the current request chunk.
2713  * @rq: the request to finish the current chunk for
2714  * @error: %0 for success, < %0 for error
2715  *
2716  * Description:
2717  *     Complete the current consecutively mapped chunk from @rq.  Must
2718  *     be called with queue lock held.
2719  *
2720  * Return:
2721  *     %false - we are done with this request
2722  *     %true  - still buffers pending for this request
2723  */
2724 bool __blk_end_request_cur(struct request *rq, int error)
2725 {
2726 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2727 }
2728 EXPORT_SYMBOL(__blk_end_request_cur);
2729 
2730 /**
2731  * __blk_end_request_err - Finish a request till the next failure boundary.
2732  * @rq: the request to finish till the next failure boundary for
2733  * @error: must be negative errno
2734  *
2735  * Description:
2736  *     Complete @rq till the next failure boundary.  Must be called
2737  *     with queue lock held.
2738  *
2739  * Return:
2740  *     %false - we are done with this request
2741  *     %true  - still buffers pending for this request
2742  */
2743 bool __blk_end_request_err(struct request *rq, int error)
2744 {
2745 	WARN_ON(error >= 0);
2746 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2747 }
2748 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2749 
2750 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2751 		     struct bio *bio)
2752 {
2753 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2754 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2755 
2756 	if (bio_has_data(bio)) {
2757 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2758 		rq->buffer = bio_data(bio);
2759 	}
2760 	rq->__data_len = bio->bi_iter.bi_size;
2761 	rq->bio = rq->biotail = bio;
2762 
2763 	if (bio->bi_bdev)
2764 		rq->rq_disk = bio->bi_bdev->bd_disk;
2765 }
2766 
2767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2768 /**
2769  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2770  * @rq: the request to be flushed
2771  *
2772  * Description:
2773  *     Flush all pages in @rq.
2774  */
2775 void rq_flush_dcache_pages(struct request *rq)
2776 {
2777 	struct req_iterator iter;
2778 	struct bio_vec bvec;
2779 
2780 	rq_for_each_segment(bvec, rq, iter)
2781 		flush_dcache_page(bvec.bv_page);
2782 }
2783 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2784 #endif
2785 
2786 /**
2787  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2788  * @q : the queue of the device being checked
2789  *
2790  * Description:
2791  *    Check if underlying low-level drivers of a device are busy.
2792  *    If the drivers want to export their busy state, they must set own
2793  *    exporting function using blk_queue_lld_busy() first.
2794  *
2795  *    Basically, this function is used only by request stacking drivers
2796  *    to stop dispatching requests to underlying devices when underlying
2797  *    devices are busy.  This behavior helps more I/O merging on the queue
2798  *    of the request stacking driver and prevents I/O throughput regression
2799  *    on burst I/O load.
2800  *
2801  * Return:
2802  *    0 - Not busy (The request stacking driver should dispatch request)
2803  *    1 - Busy (The request stacking driver should stop dispatching request)
2804  */
2805 int blk_lld_busy(struct request_queue *q)
2806 {
2807 	if (q->lld_busy_fn)
2808 		return q->lld_busy_fn(q);
2809 
2810 	return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(blk_lld_busy);
2813 
2814 /**
2815  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2816  * @rq: the clone request to be cleaned up
2817  *
2818  * Description:
2819  *     Free all bios in @rq for a cloned request.
2820  */
2821 void blk_rq_unprep_clone(struct request *rq)
2822 {
2823 	struct bio *bio;
2824 
2825 	while ((bio = rq->bio) != NULL) {
2826 		rq->bio = bio->bi_next;
2827 
2828 		bio_put(bio);
2829 	}
2830 }
2831 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2832 
2833 /*
2834  * Copy attributes of the original request to the clone request.
2835  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2836  */
2837 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2838 {
2839 	dst->cpu = src->cpu;
2840 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2841 	dst->cmd_type = src->cmd_type;
2842 	dst->__sector = blk_rq_pos(src);
2843 	dst->__data_len = blk_rq_bytes(src);
2844 	dst->nr_phys_segments = src->nr_phys_segments;
2845 	dst->ioprio = src->ioprio;
2846 	dst->extra_len = src->extra_len;
2847 }
2848 
2849 /**
2850  * blk_rq_prep_clone - Helper function to setup clone request
2851  * @rq: the request to be setup
2852  * @rq_src: original request to be cloned
2853  * @bs: bio_set that bios for clone are allocated from
2854  * @gfp_mask: memory allocation mask for bio
2855  * @bio_ctr: setup function to be called for each clone bio.
2856  *           Returns %0 for success, non %0 for failure.
2857  * @data: private data to be passed to @bio_ctr
2858  *
2859  * Description:
2860  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2861  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2862  *     are not copied, and copying such parts is the caller's responsibility.
2863  *     Also, pages which the original bios are pointing to are not copied
2864  *     and the cloned bios just point same pages.
2865  *     So cloned bios must be completed before original bios, which means
2866  *     the caller must complete @rq before @rq_src.
2867  */
2868 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2869 		      struct bio_set *bs, gfp_t gfp_mask,
2870 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2871 		      void *data)
2872 {
2873 	struct bio *bio, *bio_src;
2874 
2875 	if (!bs)
2876 		bs = fs_bio_set;
2877 
2878 	blk_rq_init(NULL, rq);
2879 
2880 	__rq_for_each_bio(bio_src, rq_src) {
2881 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2882 		if (!bio)
2883 			goto free_and_out;
2884 
2885 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2886 			goto free_and_out;
2887 
2888 		if (rq->bio) {
2889 			rq->biotail->bi_next = bio;
2890 			rq->biotail = bio;
2891 		} else
2892 			rq->bio = rq->biotail = bio;
2893 	}
2894 
2895 	__blk_rq_prep_clone(rq, rq_src);
2896 
2897 	return 0;
2898 
2899 free_and_out:
2900 	if (bio)
2901 		bio_put(bio);
2902 	blk_rq_unprep_clone(rq);
2903 
2904 	return -ENOMEM;
2905 }
2906 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2907 
2908 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2909 {
2910 	return queue_work(kblockd_workqueue, work);
2911 }
2912 EXPORT_SYMBOL(kblockd_schedule_work);
2913 
2914 int kblockd_schedule_delayed_work(struct request_queue *q,
2915 			struct delayed_work *dwork, unsigned long delay)
2916 {
2917 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2918 }
2919 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2920 
2921 #define PLUG_MAGIC	0x91827364
2922 
2923 /**
2924  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2925  * @plug:	The &struct blk_plug that needs to be initialized
2926  *
2927  * Description:
2928  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2929  *   pending I/O should the task end up blocking between blk_start_plug() and
2930  *   blk_finish_plug(). This is important from a performance perspective, but
2931  *   also ensures that we don't deadlock. For instance, if the task is blocking
2932  *   for a memory allocation, memory reclaim could end up wanting to free a
2933  *   page belonging to that request that is currently residing in our private
2934  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2935  *   this kind of deadlock.
2936  */
2937 void blk_start_plug(struct blk_plug *plug)
2938 {
2939 	struct task_struct *tsk = current;
2940 
2941 	plug->magic = PLUG_MAGIC;
2942 	INIT_LIST_HEAD(&plug->list);
2943 	INIT_LIST_HEAD(&plug->mq_list);
2944 	INIT_LIST_HEAD(&plug->cb_list);
2945 
2946 	/*
2947 	 * If this is a nested plug, don't actually assign it. It will be
2948 	 * flushed on its own.
2949 	 */
2950 	if (!tsk->plug) {
2951 		/*
2952 		 * Store ordering should not be needed here, since a potential
2953 		 * preempt will imply a full memory barrier
2954 		 */
2955 		tsk->plug = plug;
2956 	}
2957 }
2958 EXPORT_SYMBOL(blk_start_plug);
2959 
2960 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2961 {
2962 	struct request *rqa = container_of(a, struct request, queuelist);
2963 	struct request *rqb = container_of(b, struct request, queuelist);
2964 
2965 	return !(rqa->q < rqb->q ||
2966 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2967 }
2968 
2969 /*
2970  * If 'from_schedule' is true, then postpone the dispatch of requests
2971  * until a safe kblockd context. We due this to avoid accidental big
2972  * additional stack usage in driver dispatch, in places where the originally
2973  * plugger did not intend it.
2974  */
2975 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2976 			    bool from_schedule)
2977 	__releases(q->queue_lock)
2978 {
2979 	trace_block_unplug(q, depth, !from_schedule);
2980 
2981 	if (from_schedule)
2982 		blk_run_queue_async(q);
2983 	else
2984 		__blk_run_queue(q);
2985 	spin_unlock(q->queue_lock);
2986 }
2987 
2988 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2989 {
2990 	LIST_HEAD(callbacks);
2991 
2992 	while (!list_empty(&plug->cb_list)) {
2993 		list_splice_init(&plug->cb_list, &callbacks);
2994 
2995 		while (!list_empty(&callbacks)) {
2996 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2997 							  struct blk_plug_cb,
2998 							  list);
2999 			list_del(&cb->list);
3000 			cb->callback(cb, from_schedule);
3001 		}
3002 	}
3003 }
3004 
3005 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3006 				      int size)
3007 {
3008 	struct blk_plug *plug = current->plug;
3009 	struct blk_plug_cb *cb;
3010 
3011 	if (!plug)
3012 		return NULL;
3013 
3014 	list_for_each_entry(cb, &plug->cb_list, list)
3015 		if (cb->callback == unplug && cb->data == data)
3016 			return cb;
3017 
3018 	/* Not currently on the callback list */
3019 	BUG_ON(size < sizeof(*cb));
3020 	cb = kzalloc(size, GFP_ATOMIC);
3021 	if (cb) {
3022 		cb->data = data;
3023 		cb->callback = unplug;
3024 		list_add(&cb->list, &plug->cb_list);
3025 	}
3026 	return cb;
3027 }
3028 EXPORT_SYMBOL(blk_check_plugged);
3029 
3030 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3031 {
3032 	struct request_queue *q;
3033 	unsigned long flags;
3034 	struct request *rq;
3035 	LIST_HEAD(list);
3036 	unsigned int depth;
3037 
3038 	BUG_ON(plug->magic != PLUG_MAGIC);
3039 
3040 	flush_plug_callbacks(plug, from_schedule);
3041 
3042 	if (!list_empty(&plug->mq_list))
3043 		blk_mq_flush_plug_list(plug, from_schedule);
3044 
3045 	if (list_empty(&plug->list))
3046 		return;
3047 
3048 	list_splice_init(&plug->list, &list);
3049 
3050 	list_sort(NULL, &list, plug_rq_cmp);
3051 
3052 	q = NULL;
3053 	depth = 0;
3054 
3055 	/*
3056 	 * Save and disable interrupts here, to avoid doing it for every
3057 	 * queue lock we have to take.
3058 	 */
3059 	local_irq_save(flags);
3060 	while (!list_empty(&list)) {
3061 		rq = list_entry_rq(list.next);
3062 		list_del_init(&rq->queuelist);
3063 		BUG_ON(!rq->q);
3064 		if (rq->q != q) {
3065 			/*
3066 			 * This drops the queue lock
3067 			 */
3068 			if (q)
3069 				queue_unplugged(q, depth, from_schedule);
3070 			q = rq->q;
3071 			depth = 0;
3072 			spin_lock(q->queue_lock);
3073 		}
3074 
3075 		/*
3076 		 * Short-circuit if @q is dead
3077 		 */
3078 		if (unlikely(blk_queue_dying(q))) {
3079 			__blk_end_request_all(rq, -ENODEV);
3080 			continue;
3081 		}
3082 
3083 		/*
3084 		 * rq is already accounted, so use raw insert
3085 		 */
3086 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3087 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3088 		else
3089 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3090 
3091 		depth++;
3092 	}
3093 
3094 	/*
3095 	 * This drops the queue lock
3096 	 */
3097 	if (q)
3098 		queue_unplugged(q, depth, from_schedule);
3099 
3100 	local_irq_restore(flags);
3101 }
3102 
3103 void blk_finish_plug(struct blk_plug *plug)
3104 {
3105 	blk_flush_plug_list(plug, false);
3106 
3107 	if (plug == current->plug)
3108 		current->plug = NULL;
3109 }
3110 EXPORT_SYMBOL(blk_finish_plug);
3111 
3112 #ifdef CONFIG_PM_RUNTIME
3113 /**
3114  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3115  * @q: the queue of the device
3116  * @dev: the device the queue belongs to
3117  *
3118  * Description:
3119  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3120  *    @dev. Drivers that want to take advantage of request-based runtime PM
3121  *    should call this function after @dev has been initialized, and its
3122  *    request queue @q has been allocated, and runtime PM for it can not happen
3123  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3124  *    cases, driver should call this function before any I/O has taken place.
3125  *
3126  *    This function takes care of setting up using auto suspend for the device,
3127  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3128  *    until an updated value is either set by user or by driver. Drivers do
3129  *    not need to touch other autosuspend settings.
3130  *
3131  *    The block layer runtime PM is request based, so only works for drivers
3132  *    that use request as their IO unit instead of those directly use bio's.
3133  */
3134 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3135 {
3136 	q->dev = dev;
3137 	q->rpm_status = RPM_ACTIVE;
3138 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3139 	pm_runtime_use_autosuspend(q->dev);
3140 }
3141 EXPORT_SYMBOL(blk_pm_runtime_init);
3142 
3143 /**
3144  * blk_pre_runtime_suspend - Pre runtime suspend check
3145  * @q: the queue of the device
3146  *
3147  * Description:
3148  *    This function will check if runtime suspend is allowed for the device
3149  *    by examining if there are any requests pending in the queue. If there
3150  *    are requests pending, the device can not be runtime suspended; otherwise,
3151  *    the queue's status will be updated to SUSPENDING and the driver can
3152  *    proceed to suspend the device.
3153  *
3154  *    For the not allowed case, we mark last busy for the device so that
3155  *    runtime PM core will try to autosuspend it some time later.
3156  *
3157  *    This function should be called near the start of the device's
3158  *    runtime_suspend callback.
3159  *
3160  * Return:
3161  *    0		- OK to runtime suspend the device
3162  *    -EBUSY	- Device should not be runtime suspended
3163  */
3164 int blk_pre_runtime_suspend(struct request_queue *q)
3165 {
3166 	int ret = 0;
3167 
3168 	spin_lock_irq(q->queue_lock);
3169 	if (q->nr_pending) {
3170 		ret = -EBUSY;
3171 		pm_runtime_mark_last_busy(q->dev);
3172 	} else {
3173 		q->rpm_status = RPM_SUSPENDING;
3174 	}
3175 	spin_unlock_irq(q->queue_lock);
3176 	return ret;
3177 }
3178 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3179 
3180 /**
3181  * blk_post_runtime_suspend - Post runtime suspend processing
3182  * @q: the queue of the device
3183  * @err: return value of the device's runtime_suspend function
3184  *
3185  * Description:
3186  *    Update the queue's runtime status according to the return value of the
3187  *    device's runtime suspend function and mark last busy for the device so
3188  *    that PM core will try to auto suspend the device at a later time.
3189  *
3190  *    This function should be called near the end of the device's
3191  *    runtime_suspend callback.
3192  */
3193 void blk_post_runtime_suspend(struct request_queue *q, int err)
3194 {
3195 	spin_lock_irq(q->queue_lock);
3196 	if (!err) {
3197 		q->rpm_status = RPM_SUSPENDED;
3198 	} else {
3199 		q->rpm_status = RPM_ACTIVE;
3200 		pm_runtime_mark_last_busy(q->dev);
3201 	}
3202 	spin_unlock_irq(q->queue_lock);
3203 }
3204 EXPORT_SYMBOL(blk_post_runtime_suspend);
3205 
3206 /**
3207  * blk_pre_runtime_resume - Pre runtime resume processing
3208  * @q: the queue of the device
3209  *
3210  * Description:
3211  *    Update the queue's runtime status to RESUMING in preparation for the
3212  *    runtime resume of the device.
3213  *
3214  *    This function should be called near the start of the device's
3215  *    runtime_resume callback.
3216  */
3217 void blk_pre_runtime_resume(struct request_queue *q)
3218 {
3219 	spin_lock_irq(q->queue_lock);
3220 	q->rpm_status = RPM_RESUMING;
3221 	spin_unlock_irq(q->queue_lock);
3222 }
3223 EXPORT_SYMBOL(blk_pre_runtime_resume);
3224 
3225 /**
3226  * blk_post_runtime_resume - Post runtime resume processing
3227  * @q: the queue of the device
3228  * @err: return value of the device's runtime_resume function
3229  *
3230  * Description:
3231  *    Update the queue's runtime status according to the return value of the
3232  *    device's runtime_resume function. If it is successfully resumed, process
3233  *    the requests that are queued into the device's queue when it is resuming
3234  *    and then mark last busy and initiate autosuspend for it.
3235  *
3236  *    This function should be called near the end of the device's
3237  *    runtime_resume callback.
3238  */
3239 void blk_post_runtime_resume(struct request_queue *q, int err)
3240 {
3241 	spin_lock_irq(q->queue_lock);
3242 	if (!err) {
3243 		q->rpm_status = RPM_ACTIVE;
3244 		__blk_run_queue(q);
3245 		pm_runtime_mark_last_busy(q->dev);
3246 		pm_request_autosuspend(q->dev);
3247 	} else {
3248 		q->rpm_status = RPM_SUSPENDED;
3249 	}
3250 	spin_unlock_irq(q->queue_lock);
3251 }
3252 EXPORT_SYMBOL(blk_post_runtime_resume);
3253 #endif
3254 
3255 int __init blk_dev_init(void)
3256 {
3257 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3258 			sizeof(((struct request *)0)->cmd_flags));
3259 
3260 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3261 	kblockd_workqueue = alloc_workqueue("kblockd",
3262 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3263 					    WQ_POWER_EFFICIENT, 0);
3264 	if (!kblockd_workqueue)
3265 		panic("Failed to create kblockd\n");
3266 
3267 	request_cachep = kmem_cache_create("blkdev_requests",
3268 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3269 
3270 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3271 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3272 
3273 	return 0;
3274 }
3275