1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep = NULL; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 static void blk_clear_congested(struct request_list *rl, int sync) 67 { 68 #ifdef CONFIG_CGROUP_WRITEBACK 69 clear_wb_congested(rl->blkg->wb_congested, sync); 70 #else 71 /* 72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 73 * flip its congestion state for events on other blkcgs. 74 */ 75 if (rl == &rl->q->root_rl) 76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 77 #endif 78 } 79 80 static void blk_set_congested(struct request_list *rl, int sync) 81 { 82 #ifdef CONFIG_CGROUP_WRITEBACK 83 set_wb_congested(rl->blkg->wb_congested, sync); 84 #else 85 /* see blk_clear_congested() */ 86 if (rl == &rl->q->root_rl) 87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 88 #endif 89 } 90 91 void blk_queue_congestion_threshold(struct request_queue *q) 92 { 93 int nr; 94 95 nr = q->nr_requests - (q->nr_requests / 8) + 1; 96 if (nr > q->nr_requests) 97 nr = q->nr_requests; 98 q->nr_congestion_on = nr; 99 100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 101 if (nr < 1) 102 nr = 1; 103 q->nr_congestion_off = nr; 104 } 105 106 /** 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 108 * @bdev: device 109 * 110 * Locates the passed device's request queue and returns the address of its 111 * backing_dev_info. This function can only be called if @bdev is opened 112 * and the return value is never NULL. 113 */ 114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 115 { 116 struct request_queue *q = bdev_get_queue(bdev); 117 118 return &q->backing_dev_info; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->__sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->start_time = jiffies; 137 set_start_time_ns(rq); 138 rq->part = NULL; 139 } 140 EXPORT_SYMBOL(blk_rq_init); 141 142 static void req_bio_endio(struct request *rq, struct bio *bio, 143 unsigned int nbytes, int error) 144 { 145 if (error) 146 bio->bi_error = error; 147 148 if (unlikely(rq->cmd_flags & REQ_QUIET)) 149 bio_set_flag(bio, BIO_QUIET); 150 151 bio_advance(bio, nbytes); 152 153 /* don't actually finish bio if it's part of flush sequence */ 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 155 bio_endio(bio); 156 } 157 158 void blk_dump_rq_flags(struct request *rq, char *msg) 159 { 160 int bit; 161 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 164 (unsigned long long) rq->cmd_flags); 165 166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 167 (unsigned long long)blk_rq_pos(rq), 168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 169 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 170 rq->bio, rq->biotail, blk_rq_bytes(rq)); 171 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 173 printk(KERN_INFO " cdb: "); 174 for (bit = 0; bit < BLK_MAX_CDB; bit++) 175 printk("%02x ", rq->cmd[bit]); 176 printk("\n"); 177 } 178 } 179 EXPORT_SYMBOL(blk_dump_rq_flags); 180 181 static void blk_delay_work(struct work_struct *work) 182 { 183 struct request_queue *q; 184 185 q = container_of(work, struct request_queue, delay_work.work); 186 spin_lock_irq(q->queue_lock); 187 __blk_run_queue(q); 188 spin_unlock_irq(q->queue_lock); 189 } 190 191 /** 192 * blk_delay_queue - restart queueing after defined interval 193 * @q: The &struct request_queue in question 194 * @msecs: Delay in msecs 195 * 196 * Description: 197 * Sometimes queueing needs to be postponed for a little while, to allow 198 * resources to come back. This function will make sure that queueing is 199 * restarted around the specified time. Queue lock must be held. 200 */ 201 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 202 { 203 if (likely(!blk_queue_dead(q))) 204 queue_delayed_work(kblockd_workqueue, &q->delay_work, 205 msecs_to_jiffies(msecs)); 206 } 207 EXPORT_SYMBOL(blk_delay_queue); 208 209 /** 210 * blk_start_queue - restart a previously stopped queue 211 * @q: The &struct request_queue in question 212 * 213 * Description: 214 * blk_start_queue() will clear the stop flag on the queue, and call 215 * the request_fn for the queue if it was in a stopped state when 216 * entered. Also see blk_stop_queue(). Queue lock must be held. 217 **/ 218 void blk_start_queue(struct request_queue *q) 219 { 220 WARN_ON(!irqs_disabled()); 221 222 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 223 __blk_run_queue(q); 224 } 225 EXPORT_SYMBOL(blk_start_queue); 226 227 /** 228 * blk_stop_queue - stop a queue 229 * @q: The &struct request_queue in question 230 * 231 * Description: 232 * The Linux block layer assumes that a block driver will consume all 233 * entries on the request queue when the request_fn strategy is called. 234 * Often this will not happen, because of hardware limitations (queue 235 * depth settings). If a device driver gets a 'queue full' response, 236 * or if it simply chooses not to queue more I/O at one point, it can 237 * call this function to prevent the request_fn from being called until 238 * the driver has signalled it's ready to go again. This happens by calling 239 * blk_start_queue() to restart queue operations. Queue lock must be held. 240 **/ 241 void blk_stop_queue(struct request_queue *q) 242 { 243 cancel_delayed_work(&q->delay_work); 244 queue_flag_set(QUEUE_FLAG_STOPPED, q); 245 } 246 EXPORT_SYMBOL(blk_stop_queue); 247 248 /** 249 * blk_sync_queue - cancel any pending callbacks on a queue 250 * @q: the queue 251 * 252 * Description: 253 * The block layer may perform asynchronous callback activity 254 * on a queue, such as calling the unplug function after a timeout. 255 * A block device may call blk_sync_queue to ensure that any 256 * such activity is cancelled, thus allowing it to release resources 257 * that the callbacks might use. The caller must already have made sure 258 * that its ->make_request_fn will not re-add plugging prior to calling 259 * this function. 260 * 261 * This function does not cancel any asynchronous activity arising 262 * out of elevator or throttling code. That would require elevator_exit() 263 * and blkcg_exit_queue() to be called with queue lock initialized. 264 * 265 */ 266 void blk_sync_queue(struct request_queue *q) 267 { 268 del_timer_sync(&q->timeout); 269 270 if (q->mq_ops) { 271 struct blk_mq_hw_ctx *hctx; 272 int i; 273 274 queue_for_each_hw_ctx(q, hctx, i) { 275 cancel_delayed_work_sync(&hctx->run_work); 276 cancel_delayed_work_sync(&hctx->delay_work); 277 } 278 } else { 279 cancel_delayed_work_sync(&q->delay_work); 280 } 281 } 282 EXPORT_SYMBOL(blk_sync_queue); 283 284 /** 285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 286 * @q: The queue to run 287 * 288 * Description: 289 * Invoke request handling on a queue if there are any pending requests. 290 * May be used to restart request handling after a request has completed. 291 * This variant runs the queue whether or not the queue has been 292 * stopped. Must be called with the queue lock held and interrupts 293 * disabled. See also @blk_run_queue. 294 */ 295 inline void __blk_run_queue_uncond(struct request_queue *q) 296 { 297 if (unlikely(blk_queue_dead(q))) 298 return; 299 300 /* 301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 302 * the queue lock internally. As a result multiple threads may be 303 * running such a request function concurrently. Keep track of the 304 * number of active request_fn invocations such that blk_drain_queue() 305 * can wait until all these request_fn calls have finished. 306 */ 307 q->request_fn_active++; 308 q->request_fn(q); 309 q->request_fn_active--; 310 } 311 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 312 313 /** 314 * __blk_run_queue - run a single device queue 315 * @q: The queue to run 316 * 317 * Description: 318 * See @blk_run_queue. This variant must be called with the queue lock 319 * held and interrupts disabled. 320 */ 321 void __blk_run_queue(struct request_queue *q) 322 { 323 if (unlikely(blk_queue_stopped(q))) 324 return; 325 326 __blk_run_queue_uncond(q); 327 } 328 EXPORT_SYMBOL(__blk_run_queue); 329 330 /** 331 * blk_run_queue_async - run a single device queue in workqueue context 332 * @q: The queue to run 333 * 334 * Description: 335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 336 * of us. The caller must hold the queue lock. 337 */ 338 void blk_run_queue_async(struct request_queue *q) 339 { 340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 342 } 343 EXPORT_SYMBOL(blk_run_queue_async); 344 345 /** 346 * blk_run_queue - run a single device queue 347 * @q: The queue to run 348 * 349 * Description: 350 * Invoke request handling on this queue, if it has pending work to do. 351 * May be used to restart queueing when a request has completed. 352 */ 353 void blk_run_queue(struct request_queue *q) 354 { 355 unsigned long flags; 356 357 spin_lock_irqsave(q->queue_lock, flags); 358 __blk_run_queue(q); 359 spin_unlock_irqrestore(q->queue_lock, flags); 360 } 361 EXPORT_SYMBOL(blk_run_queue); 362 363 void blk_put_queue(struct request_queue *q) 364 { 365 kobject_put(&q->kobj); 366 } 367 EXPORT_SYMBOL(blk_put_queue); 368 369 /** 370 * __blk_drain_queue - drain requests from request_queue 371 * @q: queue to drain 372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 373 * 374 * Drain requests from @q. If @drain_all is set, all requests are drained. 375 * If not, only ELVPRIV requests are drained. The caller is responsible 376 * for ensuring that no new requests which need to be drained are queued. 377 */ 378 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 379 __releases(q->queue_lock) 380 __acquires(q->queue_lock) 381 { 382 int i; 383 384 lockdep_assert_held(q->queue_lock); 385 386 while (true) { 387 bool drain = false; 388 389 /* 390 * The caller might be trying to drain @q before its 391 * elevator is initialized. 392 */ 393 if (q->elevator) 394 elv_drain_elevator(q); 395 396 blkcg_drain_queue(q); 397 398 /* 399 * This function might be called on a queue which failed 400 * driver init after queue creation or is not yet fully 401 * active yet. Some drivers (e.g. fd and loop) get unhappy 402 * in such cases. Kick queue iff dispatch queue has 403 * something on it and @q has request_fn set. 404 */ 405 if (!list_empty(&q->queue_head) && q->request_fn) 406 __blk_run_queue(q); 407 408 drain |= q->nr_rqs_elvpriv; 409 drain |= q->request_fn_active; 410 411 /* 412 * Unfortunately, requests are queued at and tracked from 413 * multiple places and there's no single counter which can 414 * be drained. Check all the queues and counters. 415 */ 416 if (drain_all) { 417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 418 drain |= !list_empty(&q->queue_head); 419 for (i = 0; i < 2; i++) { 420 drain |= q->nr_rqs[i]; 421 drain |= q->in_flight[i]; 422 if (fq) 423 drain |= !list_empty(&fq->flush_queue[i]); 424 } 425 } 426 427 if (!drain) 428 break; 429 430 spin_unlock_irq(q->queue_lock); 431 432 msleep(10); 433 434 spin_lock_irq(q->queue_lock); 435 } 436 437 /* 438 * With queue marked dead, any woken up waiter will fail the 439 * allocation path, so the wakeup chaining is lost and we're 440 * left with hung waiters. We need to wake up those waiters. 441 */ 442 if (q->request_fn) { 443 struct request_list *rl; 444 445 blk_queue_for_each_rl(rl, q) 446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 447 wake_up_all(&rl->wait[i]); 448 } 449 } 450 451 /** 452 * blk_queue_bypass_start - enter queue bypass mode 453 * @q: queue of interest 454 * 455 * In bypass mode, only the dispatch FIFO queue of @q is used. This 456 * function makes @q enter bypass mode and drains all requests which were 457 * throttled or issued before. On return, it's guaranteed that no request 458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 459 * inside queue or RCU read lock. 460 */ 461 void blk_queue_bypass_start(struct request_queue *q) 462 { 463 spin_lock_irq(q->queue_lock); 464 q->bypass_depth++; 465 queue_flag_set(QUEUE_FLAG_BYPASS, q); 466 spin_unlock_irq(q->queue_lock); 467 468 /* 469 * Queues start drained. Skip actual draining till init is 470 * complete. This avoids lenghty delays during queue init which 471 * can happen many times during boot. 472 */ 473 if (blk_queue_init_done(q)) { 474 spin_lock_irq(q->queue_lock); 475 __blk_drain_queue(q, false); 476 spin_unlock_irq(q->queue_lock); 477 478 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 479 synchronize_rcu(); 480 } 481 } 482 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 483 484 /** 485 * blk_queue_bypass_end - leave queue bypass mode 486 * @q: queue of interest 487 * 488 * Leave bypass mode and restore the normal queueing behavior. 489 */ 490 void blk_queue_bypass_end(struct request_queue *q) 491 { 492 spin_lock_irq(q->queue_lock); 493 if (!--q->bypass_depth) 494 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 495 WARN_ON_ONCE(q->bypass_depth < 0); 496 spin_unlock_irq(q->queue_lock); 497 } 498 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 499 500 void blk_set_queue_dying(struct request_queue *q) 501 { 502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 503 504 if (q->mq_ops) 505 blk_mq_wake_waiters(q); 506 else { 507 struct request_list *rl; 508 509 blk_queue_for_each_rl(rl, q) { 510 if (rl->rq_pool) { 511 wake_up(&rl->wait[BLK_RW_SYNC]); 512 wake_up(&rl->wait[BLK_RW_ASYNC]); 513 } 514 } 515 } 516 } 517 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 518 519 /** 520 * blk_cleanup_queue - shutdown a request queue 521 * @q: request queue to shutdown 522 * 523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 524 * put it. All future requests will be failed immediately with -ENODEV. 525 */ 526 void blk_cleanup_queue(struct request_queue *q) 527 { 528 spinlock_t *lock = q->queue_lock; 529 530 /* mark @q DYING, no new request or merges will be allowed afterwards */ 531 mutex_lock(&q->sysfs_lock); 532 blk_set_queue_dying(q); 533 spin_lock_irq(lock); 534 535 /* 536 * A dying queue is permanently in bypass mode till released. Note 537 * that, unlike blk_queue_bypass_start(), we aren't performing 538 * synchronize_rcu() after entering bypass mode to avoid the delay 539 * as some drivers create and destroy a lot of queues while 540 * probing. This is still safe because blk_release_queue() will be 541 * called only after the queue refcnt drops to zero and nothing, 542 * RCU or not, would be traversing the queue by then. 543 */ 544 q->bypass_depth++; 545 queue_flag_set(QUEUE_FLAG_BYPASS, q); 546 547 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 549 queue_flag_set(QUEUE_FLAG_DYING, q); 550 spin_unlock_irq(lock); 551 mutex_unlock(&q->sysfs_lock); 552 553 /* 554 * Drain all requests queued before DYING marking. Set DEAD flag to 555 * prevent that q->request_fn() gets invoked after draining finished. 556 */ 557 if (q->mq_ops) { 558 blk_mq_freeze_queue(q); 559 spin_lock_irq(lock); 560 } else { 561 spin_lock_irq(lock); 562 __blk_drain_queue(q, true); 563 } 564 queue_flag_set(QUEUE_FLAG_DEAD, q); 565 spin_unlock_irq(lock); 566 567 /* @q won't process any more request, flush async actions */ 568 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 569 blk_sync_queue(q); 570 571 if (q->mq_ops) 572 blk_mq_free_queue(q); 573 574 spin_lock_irq(lock); 575 if (q->queue_lock != &q->__queue_lock) 576 q->queue_lock = &q->__queue_lock; 577 spin_unlock_irq(lock); 578 579 bdi_destroy(&q->backing_dev_info); 580 581 /* @q is and will stay empty, shutdown and put */ 582 blk_put_queue(q); 583 } 584 EXPORT_SYMBOL(blk_cleanup_queue); 585 586 /* Allocate memory local to the request queue */ 587 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 588 { 589 int nid = (int)(long)data; 590 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 591 } 592 593 static void free_request_struct(void *element, void *unused) 594 { 595 kmem_cache_free(request_cachep, element); 596 } 597 598 int blk_init_rl(struct request_list *rl, struct request_queue *q, 599 gfp_t gfp_mask) 600 { 601 if (unlikely(rl->rq_pool)) 602 return 0; 603 604 rl->q = q; 605 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 606 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 607 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 608 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 609 610 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 611 free_request_struct, 612 (void *)(long)q->node, gfp_mask, 613 q->node); 614 if (!rl->rq_pool) 615 return -ENOMEM; 616 617 return 0; 618 } 619 620 void blk_exit_rl(struct request_list *rl) 621 { 622 if (rl->rq_pool) 623 mempool_destroy(rl->rq_pool); 624 } 625 626 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 627 { 628 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 629 } 630 EXPORT_SYMBOL(blk_alloc_queue); 631 632 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 633 { 634 struct request_queue *q; 635 int err; 636 637 q = kmem_cache_alloc_node(blk_requestq_cachep, 638 gfp_mask | __GFP_ZERO, node_id); 639 if (!q) 640 return NULL; 641 642 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 643 if (q->id < 0) 644 goto fail_q; 645 646 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 647 if (!q->bio_split) 648 goto fail_id; 649 650 q->backing_dev_info.ra_pages = 651 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 652 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 653 q->backing_dev_info.name = "block"; 654 q->node = node_id; 655 656 err = bdi_init(&q->backing_dev_info); 657 if (err) 658 goto fail_split; 659 660 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 661 laptop_mode_timer_fn, (unsigned long) q); 662 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 663 INIT_LIST_HEAD(&q->queue_head); 664 INIT_LIST_HEAD(&q->timeout_list); 665 INIT_LIST_HEAD(&q->icq_list); 666 #ifdef CONFIG_BLK_CGROUP 667 INIT_LIST_HEAD(&q->blkg_list); 668 #endif 669 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 670 671 kobject_init(&q->kobj, &blk_queue_ktype); 672 673 mutex_init(&q->sysfs_lock); 674 spin_lock_init(&q->__queue_lock); 675 676 /* 677 * By default initialize queue_lock to internal lock and driver can 678 * override it later if need be. 679 */ 680 q->queue_lock = &q->__queue_lock; 681 682 /* 683 * A queue starts its life with bypass turned on to avoid 684 * unnecessary bypass on/off overhead and nasty surprises during 685 * init. The initial bypass will be finished when the queue is 686 * registered by blk_register_queue(). 687 */ 688 q->bypass_depth = 1; 689 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 690 691 init_waitqueue_head(&q->mq_freeze_wq); 692 693 if (blkcg_init_queue(q)) 694 goto fail_bdi; 695 696 return q; 697 698 fail_bdi: 699 bdi_destroy(&q->backing_dev_info); 700 fail_split: 701 bioset_free(q->bio_split); 702 fail_id: 703 ida_simple_remove(&blk_queue_ida, q->id); 704 fail_q: 705 kmem_cache_free(blk_requestq_cachep, q); 706 return NULL; 707 } 708 EXPORT_SYMBOL(blk_alloc_queue_node); 709 710 /** 711 * blk_init_queue - prepare a request queue for use with a block device 712 * @rfn: The function to be called to process requests that have been 713 * placed on the queue. 714 * @lock: Request queue spin lock 715 * 716 * Description: 717 * If a block device wishes to use the standard request handling procedures, 718 * which sorts requests and coalesces adjacent requests, then it must 719 * call blk_init_queue(). The function @rfn will be called when there 720 * are requests on the queue that need to be processed. If the device 721 * supports plugging, then @rfn may not be called immediately when requests 722 * are available on the queue, but may be called at some time later instead. 723 * Plugged queues are generally unplugged when a buffer belonging to one 724 * of the requests on the queue is needed, or due to memory pressure. 725 * 726 * @rfn is not required, or even expected, to remove all requests off the 727 * queue, but only as many as it can handle at a time. If it does leave 728 * requests on the queue, it is responsible for arranging that the requests 729 * get dealt with eventually. 730 * 731 * The queue spin lock must be held while manipulating the requests on the 732 * request queue; this lock will be taken also from interrupt context, so irq 733 * disabling is needed for it. 734 * 735 * Function returns a pointer to the initialized request queue, or %NULL if 736 * it didn't succeed. 737 * 738 * Note: 739 * blk_init_queue() must be paired with a blk_cleanup_queue() call 740 * when the block device is deactivated (such as at module unload). 741 **/ 742 743 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 744 { 745 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 746 } 747 EXPORT_SYMBOL(blk_init_queue); 748 749 struct request_queue * 750 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 751 { 752 struct request_queue *uninit_q, *q; 753 754 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 755 if (!uninit_q) 756 return NULL; 757 758 q = blk_init_allocated_queue(uninit_q, rfn, lock); 759 if (!q) 760 blk_cleanup_queue(uninit_q); 761 762 return q; 763 } 764 EXPORT_SYMBOL(blk_init_queue_node); 765 766 static void blk_queue_bio(struct request_queue *q, struct bio *bio); 767 768 struct request_queue * 769 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 770 spinlock_t *lock) 771 { 772 if (!q) 773 return NULL; 774 775 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 776 if (!q->fq) 777 return NULL; 778 779 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 780 goto fail; 781 782 q->request_fn = rfn; 783 q->prep_rq_fn = NULL; 784 q->unprep_rq_fn = NULL; 785 q->queue_flags |= QUEUE_FLAG_DEFAULT; 786 787 /* Override internal queue lock with supplied lock pointer */ 788 if (lock) 789 q->queue_lock = lock; 790 791 /* 792 * This also sets hw/phys segments, boundary and size 793 */ 794 blk_queue_make_request(q, blk_queue_bio); 795 796 q->sg_reserved_size = INT_MAX; 797 798 /* Protect q->elevator from elevator_change */ 799 mutex_lock(&q->sysfs_lock); 800 801 /* init elevator */ 802 if (elevator_init(q, NULL)) { 803 mutex_unlock(&q->sysfs_lock); 804 goto fail; 805 } 806 807 mutex_unlock(&q->sysfs_lock); 808 809 return q; 810 811 fail: 812 blk_free_flush_queue(q->fq); 813 return NULL; 814 } 815 EXPORT_SYMBOL(blk_init_allocated_queue); 816 817 bool blk_get_queue(struct request_queue *q) 818 { 819 if (likely(!blk_queue_dying(q))) { 820 __blk_get_queue(q); 821 return true; 822 } 823 824 return false; 825 } 826 EXPORT_SYMBOL(blk_get_queue); 827 828 static inline void blk_free_request(struct request_list *rl, struct request *rq) 829 { 830 if (rq->cmd_flags & REQ_ELVPRIV) { 831 elv_put_request(rl->q, rq); 832 if (rq->elv.icq) 833 put_io_context(rq->elv.icq->ioc); 834 } 835 836 mempool_free(rq, rl->rq_pool); 837 } 838 839 /* 840 * ioc_batching returns true if the ioc is a valid batching request and 841 * should be given priority access to a request. 842 */ 843 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 844 { 845 if (!ioc) 846 return 0; 847 848 /* 849 * Make sure the process is able to allocate at least 1 request 850 * even if the batch times out, otherwise we could theoretically 851 * lose wakeups. 852 */ 853 return ioc->nr_batch_requests == q->nr_batching || 854 (ioc->nr_batch_requests > 0 855 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 856 } 857 858 /* 859 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 860 * will cause the process to be a "batcher" on all queues in the system. This 861 * is the behaviour we want though - once it gets a wakeup it should be given 862 * a nice run. 863 */ 864 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 865 { 866 if (!ioc || ioc_batching(q, ioc)) 867 return; 868 869 ioc->nr_batch_requests = q->nr_batching; 870 ioc->last_waited = jiffies; 871 } 872 873 static void __freed_request(struct request_list *rl, int sync) 874 { 875 struct request_queue *q = rl->q; 876 877 if (rl->count[sync] < queue_congestion_off_threshold(q)) 878 blk_clear_congested(rl, sync); 879 880 if (rl->count[sync] + 1 <= q->nr_requests) { 881 if (waitqueue_active(&rl->wait[sync])) 882 wake_up(&rl->wait[sync]); 883 884 blk_clear_rl_full(rl, sync); 885 } 886 } 887 888 /* 889 * A request has just been released. Account for it, update the full and 890 * congestion status, wake up any waiters. Called under q->queue_lock. 891 */ 892 static void freed_request(struct request_list *rl, unsigned int flags) 893 { 894 struct request_queue *q = rl->q; 895 int sync = rw_is_sync(flags); 896 897 q->nr_rqs[sync]--; 898 rl->count[sync]--; 899 if (flags & REQ_ELVPRIV) 900 q->nr_rqs_elvpriv--; 901 902 __freed_request(rl, sync); 903 904 if (unlikely(rl->starved[sync ^ 1])) 905 __freed_request(rl, sync ^ 1); 906 } 907 908 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 909 { 910 struct request_list *rl; 911 int on_thresh, off_thresh; 912 913 spin_lock_irq(q->queue_lock); 914 q->nr_requests = nr; 915 blk_queue_congestion_threshold(q); 916 on_thresh = queue_congestion_on_threshold(q); 917 off_thresh = queue_congestion_off_threshold(q); 918 919 blk_queue_for_each_rl(rl, q) { 920 if (rl->count[BLK_RW_SYNC] >= on_thresh) 921 blk_set_congested(rl, BLK_RW_SYNC); 922 else if (rl->count[BLK_RW_SYNC] < off_thresh) 923 blk_clear_congested(rl, BLK_RW_SYNC); 924 925 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 926 blk_set_congested(rl, BLK_RW_ASYNC); 927 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 928 blk_clear_congested(rl, BLK_RW_ASYNC); 929 930 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 931 blk_set_rl_full(rl, BLK_RW_SYNC); 932 } else { 933 blk_clear_rl_full(rl, BLK_RW_SYNC); 934 wake_up(&rl->wait[BLK_RW_SYNC]); 935 } 936 937 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 938 blk_set_rl_full(rl, BLK_RW_ASYNC); 939 } else { 940 blk_clear_rl_full(rl, BLK_RW_ASYNC); 941 wake_up(&rl->wait[BLK_RW_ASYNC]); 942 } 943 } 944 945 spin_unlock_irq(q->queue_lock); 946 return 0; 947 } 948 949 /* 950 * Determine if elevator data should be initialized when allocating the 951 * request associated with @bio. 952 */ 953 static bool blk_rq_should_init_elevator(struct bio *bio) 954 { 955 if (!bio) 956 return true; 957 958 /* 959 * Flush requests do not use the elevator so skip initialization. 960 * This allows a request to share the flush and elevator data. 961 */ 962 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 963 return false; 964 965 return true; 966 } 967 968 /** 969 * rq_ioc - determine io_context for request allocation 970 * @bio: request being allocated is for this bio (can be %NULL) 971 * 972 * Determine io_context to use for request allocation for @bio. May return 973 * %NULL if %current->io_context doesn't exist. 974 */ 975 static struct io_context *rq_ioc(struct bio *bio) 976 { 977 #ifdef CONFIG_BLK_CGROUP 978 if (bio && bio->bi_ioc) 979 return bio->bi_ioc; 980 #endif 981 return current->io_context; 982 } 983 984 /** 985 * __get_request - get a free request 986 * @rl: request list to allocate from 987 * @rw_flags: RW and SYNC flags 988 * @bio: bio to allocate request for (can be %NULL) 989 * @gfp_mask: allocation mask 990 * 991 * Get a free request from @q. This function may fail under memory 992 * pressure or if @q is dead. 993 * 994 * Must be called with @q->queue_lock held and, 995 * Returns ERR_PTR on failure, with @q->queue_lock held. 996 * Returns request pointer on success, with @q->queue_lock *not held*. 997 */ 998 static struct request *__get_request(struct request_list *rl, int rw_flags, 999 struct bio *bio, gfp_t gfp_mask) 1000 { 1001 struct request_queue *q = rl->q; 1002 struct request *rq; 1003 struct elevator_type *et = q->elevator->type; 1004 struct io_context *ioc = rq_ioc(bio); 1005 struct io_cq *icq = NULL; 1006 const bool is_sync = rw_is_sync(rw_flags) != 0; 1007 int may_queue; 1008 1009 if (unlikely(blk_queue_dying(q))) 1010 return ERR_PTR(-ENODEV); 1011 1012 may_queue = elv_may_queue(q, rw_flags); 1013 if (may_queue == ELV_MQUEUE_NO) 1014 goto rq_starved; 1015 1016 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1017 if (rl->count[is_sync]+1 >= q->nr_requests) { 1018 /* 1019 * The queue will fill after this allocation, so set 1020 * it as full, and mark this process as "batching". 1021 * This process will be allowed to complete a batch of 1022 * requests, others will be blocked. 1023 */ 1024 if (!blk_rl_full(rl, is_sync)) { 1025 ioc_set_batching(q, ioc); 1026 blk_set_rl_full(rl, is_sync); 1027 } else { 1028 if (may_queue != ELV_MQUEUE_MUST 1029 && !ioc_batching(q, ioc)) { 1030 /* 1031 * The queue is full and the allocating 1032 * process is not a "batcher", and not 1033 * exempted by the IO scheduler 1034 */ 1035 return ERR_PTR(-ENOMEM); 1036 } 1037 } 1038 } 1039 blk_set_congested(rl, is_sync); 1040 } 1041 1042 /* 1043 * Only allow batching queuers to allocate up to 50% over the defined 1044 * limit of requests, otherwise we could have thousands of requests 1045 * allocated with any setting of ->nr_requests 1046 */ 1047 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1048 return ERR_PTR(-ENOMEM); 1049 1050 q->nr_rqs[is_sync]++; 1051 rl->count[is_sync]++; 1052 rl->starved[is_sync] = 0; 1053 1054 /* 1055 * Decide whether the new request will be managed by elevator. If 1056 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1057 * prevent the current elevator from being destroyed until the new 1058 * request is freed. This guarantees icq's won't be destroyed and 1059 * makes creating new ones safe. 1060 * 1061 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1062 * it will be created after releasing queue_lock. 1063 */ 1064 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1065 rw_flags |= REQ_ELVPRIV; 1066 q->nr_rqs_elvpriv++; 1067 if (et->icq_cache && ioc) 1068 icq = ioc_lookup_icq(ioc, q); 1069 } 1070 1071 if (blk_queue_io_stat(q)) 1072 rw_flags |= REQ_IO_STAT; 1073 spin_unlock_irq(q->queue_lock); 1074 1075 /* allocate and init request */ 1076 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1077 if (!rq) 1078 goto fail_alloc; 1079 1080 blk_rq_init(q, rq); 1081 blk_rq_set_rl(rq, rl); 1082 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1083 1084 /* init elvpriv */ 1085 if (rw_flags & REQ_ELVPRIV) { 1086 if (unlikely(et->icq_cache && !icq)) { 1087 if (ioc) 1088 icq = ioc_create_icq(ioc, q, gfp_mask); 1089 if (!icq) 1090 goto fail_elvpriv; 1091 } 1092 1093 rq->elv.icq = icq; 1094 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1095 goto fail_elvpriv; 1096 1097 /* @rq->elv.icq holds io_context until @rq is freed */ 1098 if (icq) 1099 get_io_context(icq->ioc); 1100 } 1101 out: 1102 /* 1103 * ioc may be NULL here, and ioc_batching will be false. That's 1104 * OK, if the queue is under the request limit then requests need 1105 * not count toward the nr_batch_requests limit. There will always 1106 * be some limit enforced by BLK_BATCH_TIME. 1107 */ 1108 if (ioc_batching(q, ioc)) 1109 ioc->nr_batch_requests--; 1110 1111 trace_block_getrq(q, bio, rw_flags & 1); 1112 return rq; 1113 1114 fail_elvpriv: 1115 /* 1116 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1117 * and may fail indefinitely under memory pressure and thus 1118 * shouldn't stall IO. Treat this request as !elvpriv. This will 1119 * disturb iosched and blkcg but weird is bettern than dead. 1120 */ 1121 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1122 __func__, dev_name(q->backing_dev_info.dev)); 1123 1124 rq->cmd_flags &= ~REQ_ELVPRIV; 1125 rq->elv.icq = NULL; 1126 1127 spin_lock_irq(q->queue_lock); 1128 q->nr_rqs_elvpriv--; 1129 spin_unlock_irq(q->queue_lock); 1130 goto out; 1131 1132 fail_alloc: 1133 /* 1134 * Allocation failed presumably due to memory. Undo anything we 1135 * might have messed up. 1136 * 1137 * Allocating task should really be put onto the front of the wait 1138 * queue, but this is pretty rare. 1139 */ 1140 spin_lock_irq(q->queue_lock); 1141 freed_request(rl, rw_flags); 1142 1143 /* 1144 * in the very unlikely event that allocation failed and no 1145 * requests for this direction was pending, mark us starved so that 1146 * freeing of a request in the other direction will notice 1147 * us. another possible fix would be to split the rq mempool into 1148 * READ and WRITE 1149 */ 1150 rq_starved: 1151 if (unlikely(rl->count[is_sync] == 0)) 1152 rl->starved[is_sync] = 1; 1153 return ERR_PTR(-ENOMEM); 1154 } 1155 1156 /** 1157 * get_request - get a free request 1158 * @q: request_queue to allocate request from 1159 * @rw_flags: RW and SYNC flags 1160 * @bio: bio to allocate request for (can be %NULL) 1161 * @gfp_mask: allocation mask 1162 * 1163 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1164 * function keeps retrying under memory pressure and fails iff @q is dead. 1165 * 1166 * Must be called with @q->queue_lock held and, 1167 * Returns ERR_PTR on failure, with @q->queue_lock held. 1168 * Returns request pointer on success, with @q->queue_lock *not held*. 1169 */ 1170 static struct request *get_request(struct request_queue *q, int rw_flags, 1171 struct bio *bio, gfp_t gfp_mask) 1172 { 1173 const bool is_sync = rw_is_sync(rw_flags) != 0; 1174 DEFINE_WAIT(wait); 1175 struct request_list *rl; 1176 struct request *rq; 1177 1178 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1179 retry: 1180 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1181 if (!IS_ERR(rq)) 1182 return rq; 1183 1184 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1185 blk_put_rl(rl); 1186 return rq; 1187 } 1188 1189 /* wait on @rl and retry */ 1190 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1191 TASK_UNINTERRUPTIBLE); 1192 1193 trace_block_sleeprq(q, bio, rw_flags & 1); 1194 1195 spin_unlock_irq(q->queue_lock); 1196 io_schedule(); 1197 1198 /* 1199 * After sleeping, we become a "batching" process and will be able 1200 * to allocate at least one request, and up to a big batch of them 1201 * for a small period time. See ioc_batching, ioc_set_batching 1202 */ 1203 ioc_set_batching(q, current->io_context); 1204 1205 spin_lock_irq(q->queue_lock); 1206 finish_wait(&rl->wait[is_sync], &wait); 1207 1208 goto retry; 1209 } 1210 1211 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1212 gfp_t gfp_mask) 1213 { 1214 struct request *rq; 1215 1216 BUG_ON(rw != READ && rw != WRITE); 1217 1218 /* create ioc upfront */ 1219 create_io_context(gfp_mask, q->node); 1220 1221 spin_lock_irq(q->queue_lock); 1222 rq = get_request(q, rw, NULL, gfp_mask); 1223 if (IS_ERR(rq)) 1224 spin_unlock_irq(q->queue_lock); 1225 /* q->queue_lock is unlocked at this point */ 1226 1227 return rq; 1228 } 1229 1230 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1231 { 1232 if (q->mq_ops) 1233 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1234 else 1235 return blk_old_get_request(q, rw, gfp_mask); 1236 } 1237 EXPORT_SYMBOL(blk_get_request); 1238 1239 /** 1240 * blk_make_request - given a bio, allocate a corresponding struct request. 1241 * @q: target request queue 1242 * @bio: The bio describing the memory mappings that will be submitted for IO. 1243 * It may be a chained-bio properly constructed by block/bio layer. 1244 * @gfp_mask: gfp flags to be used for memory allocation 1245 * 1246 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1247 * type commands. Where the struct request needs to be farther initialized by 1248 * the caller. It is passed a &struct bio, which describes the memory info of 1249 * the I/O transfer. 1250 * 1251 * The caller of blk_make_request must make sure that bi_io_vec 1252 * are set to describe the memory buffers. That bio_data_dir() will return 1253 * the needed direction of the request. (And all bio's in the passed bio-chain 1254 * are properly set accordingly) 1255 * 1256 * If called under none-sleepable conditions, mapped bio buffers must not 1257 * need bouncing, by calling the appropriate masked or flagged allocator, 1258 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1259 * BUG. 1260 * 1261 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1262 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1263 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1264 * completion of a bio that hasn't been submitted yet, thus resulting in a 1265 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1266 * of bio_alloc(), as that avoids the mempool deadlock. 1267 * If possible a big IO should be split into smaller parts when allocation 1268 * fails. Partial allocation should not be an error, or you risk a live-lock. 1269 */ 1270 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1271 gfp_t gfp_mask) 1272 { 1273 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1274 1275 if (IS_ERR(rq)) 1276 return rq; 1277 1278 blk_rq_set_block_pc(rq); 1279 1280 for_each_bio(bio) { 1281 struct bio *bounce_bio = bio; 1282 int ret; 1283 1284 blk_queue_bounce(q, &bounce_bio); 1285 ret = blk_rq_append_bio(q, rq, bounce_bio); 1286 if (unlikely(ret)) { 1287 blk_put_request(rq); 1288 return ERR_PTR(ret); 1289 } 1290 } 1291 1292 return rq; 1293 } 1294 EXPORT_SYMBOL(blk_make_request); 1295 1296 /** 1297 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1298 * @rq: request to be initialized 1299 * 1300 */ 1301 void blk_rq_set_block_pc(struct request *rq) 1302 { 1303 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1304 rq->__data_len = 0; 1305 rq->__sector = (sector_t) -1; 1306 rq->bio = rq->biotail = NULL; 1307 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1308 } 1309 EXPORT_SYMBOL(blk_rq_set_block_pc); 1310 1311 /** 1312 * blk_requeue_request - put a request back on queue 1313 * @q: request queue where request should be inserted 1314 * @rq: request to be inserted 1315 * 1316 * Description: 1317 * Drivers often keep queueing requests until the hardware cannot accept 1318 * more, when that condition happens we need to put the request back 1319 * on the queue. Must be called with queue lock held. 1320 */ 1321 void blk_requeue_request(struct request_queue *q, struct request *rq) 1322 { 1323 blk_delete_timer(rq); 1324 blk_clear_rq_complete(rq); 1325 trace_block_rq_requeue(q, rq); 1326 1327 if (rq->cmd_flags & REQ_QUEUED) 1328 blk_queue_end_tag(q, rq); 1329 1330 BUG_ON(blk_queued_rq(rq)); 1331 1332 elv_requeue_request(q, rq); 1333 } 1334 EXPORT_SYMBOL(blk_requeue_request); 1335 1336 static void add_acct_request(struct request_queue *q, struct request *rq, 1337 int where) 1338 { 1339 blk_account_io_start(rq, true); 1340 __elv_add_request(q, rq, where); 1341 } 1342 1343 static void part_round_stats_single(int cpu, struct hd_struct *part, 1344 unsigned long now) 1345 { 1346 int inflight; 1347 1348 if (now == part->stamp) 1349 return; 1350 1351 inflight = part_in_flight(part); 1352 if (inflight) { 1353 __part_stat_add(cpu, part, time_in_queue, 1354 inflight * (now - part->stamp)); 1355 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1356 } 1357 part->stamp = now; 1358 } 1359 1360 /** 1361 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1362 * @cpu: cpu number for stats access 1363 * @part: target partition 1364 * 1365 * The average IO queue length and utilisation statistics are maintained 1366 * by observing the current state of the queue length and the amount of 1367 * time it has been in this state for. 1368 * 1369 * Normally, that accounting is done on IO completion, but that can result 1370 * in more than a second's worth of IO being accounted for within any one 1371 * second, leading to >100% utilisation. To deal with that, we call this 1372 * function to do a round-off before returning the results when reading 1373 * /proc/diskstats. This accounts immediately for all queue usage up to 1374 * the current jiffies and restarts the counters again. 1375 */ 1376 void part_round_stats(int cpu, struct hd_struct *part) 1377 { 1378 unsigned long now = jiffies; 1379 1380 if (part->partno) 1381 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1382 part_round_stats_single(cpu, part, now); 1383 } 1384 EXPORT_SYMBOL_GPL(part_round_stats); 1385 1386 #ifdef CONFIG_PM 1387 static void blk_pm_put_request(struct request *rq) 1388 { 1389 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1390 pm_runtime_mark_last_busy(rq->q->dev); 1391 } 1392 #else 1393 static inline void blk_pm_put_request(struct request *rq) {} 1394 #endif 1395 1396 /* 1397 * queue lock must be held 1398 */ 1399 void __blk_put_request(struct request_queue *q, struct request *req) 1400 { 1401 if (unlikely(!q)) 1402 return; 1403 1404 if (q->mq_ops) { 1405 blk_mq_free_request(req); 1406 return; 1407 } 1408 1409 blk_pm_put_request(req); 1410 1411 elv_completed_request(q, req); 1412 1413 /* this is a bio leak */ 1414 WARN_ON(req->bio != NULL); 1415 1416 /* 1417 * Request may not have originated from ll_rw_blk. if not, 1418 * it didn't come out of our reserved rq pools 1419 */ 1420 if (req->cmd_flags & REQ_ALLOCED) { 1421 unsigned int flags = req->cmd_flags; 1422 struct request_list *rl = blk_rq_rl(req); 1423 1424 BUG_ON(!list_empty(&req->queuelist)); 1425 BUG_ON(ELV_ON_HASH(req)); 1426 1427 blk_free_request(rl, req); 1428 freed_request(rl, flags); 1429 blk_put_rl(rl); 1430 } 1431 } 1432 EXPORT_SYMBOL_GPL(__blk_put_request); 1433 1434 void blk_put_request(struct request *req) 1435 { 1436 struct request_queue *q = req->q; 1437 1438 if (q->mq_ops) 1439 blk_mq_free_request(req); 1440 else { 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(q->queue_lock, flags); 1444 __blk_put_request(q, req); 1445 spin_unlock_irqrestore(q->queue_lock, flags); 1446 } 1447 } 1448 EXPORT_SYMBOL(blk_put_request); 1449 1450 /** 1451 * blk_add_request_payload - add a payload to a request 1452 * @rq: request to update 1453 * @page: page backing the payload 1454 * @len: length of the payload. 1455 * 1456 * This allows to later add a payload to an already submitted request by 1457 * a block driver. The driver needs to take care of freeing the payload 1458 * itself. 1459 * 1460 * Note that this is a quite horrible hack and nothing but handling of 1461 * discard requests should ever use it. 1462 */ 1463 void blk_add_request_payload(struct request *rq, struct page *page, 1464 unsigned int len) 1465 { 1466 struct bio *bio = rq->bio; 1467 1468 bio->bi_io_vec->bv_page = page; 1469 bio->bi_io_vec->bv_offset = 0; 1470 bio->bi_io_vec->bv_len = len; 1471 1472 bio->bi_iter.bi_size = len; 1473 bio->bi_vcnt = 1; 1474 bio->bi_phys_segments = 1; 1475 1476 rq->__data_len = rq->resid_len = len; 1477 rq->nr_phys_segments = 1; 1478 } 1479 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1480 1481 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1482 struct bio *bio) 1483 { 1484 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1485 1486 if (!ll_back_merge_fn(q, req, bio)) 1487 return false; 1488 1489 trace_block_bio_backmerge(q, req, bio); 1490 1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1492 blk_rq_set_mixed_merge(req); 1493 1494 req->biotail->bi_next = bio; 1495 req->biotail = bio; 1496 req->__data_len += bio->bi_iter.bi_size; 1497 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1498 1499 blk_account_io_start(req, false); 1500 return true; 1501 } 1502 1503 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1504 struct bio *bio) 1505 { 1506 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1507 1508 if (!ll_front_merge_fn(q, req, bio)) 1509 return false; 1510 1511 trace_block_bio_frontmerge(q, req, bio); 1512 1513 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1514 blk_rq_set_mixed_merge(req); 1515 1516 bio->bi_next = req->bio; 1517 req->bio = bio; 1518 1519 req->__sector = bio->bi_iter.bi_sector; 1520 req->__data_len += bio->bi_iter.bi_size; 1521 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1522 1523 blk_account_io_start(req, false); 1524 return true; 1525 } 1526 1527 /** 1528 * blk_attempt_plug_merge - try to merge with %current's plugged list 1529 * @q: request_queue new bio is being queued at 1530 * @bio: new bio being queued 1531 * @request_count: out parameter for number of traversed plugged requests 1532 * 1533 * Determine whether @bio being queued on @q can be merged with a request 1534 * on %current's plugged list. Returns %true if merge was successful, 1535 * otherwise %false. 1536 * 1537 * Plugging coalesces IOs from the same issuer for the same purpose without 1538 * going through @q->queue_lock. As such it's more of an issuing mechanism 1539 * than scheduling, and the request, while may have elvpriv data, is not 1540 * added on the elevator at this point. In addition, we don't have 1541 * reliable access to the elevator outside queue lock. Only check basic 1542 * merging parameters without querying the elevator. 1543 * 1544 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1545 */ 1546 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1547 unsigned int *request_count, 1548 struct request **same_queue_rq) 1549 { 1550 struct blk_plug *plug; 1551 struct request *rq; 1552 bool ret = false; 1553 struct list_head *plug_list; 1554 1555 plug = current->plug; 1556 if (!plug) 1557 goto out; 1558 *request_count = 0; 1559 1560 if (q->mq_ops) 1561 plug_list = &plug->mq_list; 1562 else 1563 plug_list = &plug->list; 1564 1565 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1566 int el_ret; 1567 1568 if (rq->q == q) { 1569 (*request_count)++; 1570 /* 1571 * Only blk-mq multiple hardware queues case checks the 1572 * rq in the same queue, there should be only one such 1573 * rq in a queue 1574 **/ 1575 if (same_queue_rq) 1576 *same_queue_rq = rq; 1577 } 1578 1579 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1580 continue; 1581 1582 el_ret = blk_try_merge(rq, bio); 1583 if (el_ret == ELEVATOR_BACK_MERGE) { 1584 ret = bio_attempt_back_merge(q, rq, bio); 1585 if (ret) 1586 break; 1587 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1588 ret = bio_attempt_front_merge(q, rq, bio); 1589 if (ret) 1590 break; 1591 } 1592 } 1593 out: 1594 return ret; 1595 } 1596 1597 void init_request_from_bio(struct request *req, struct bio *bio) 1598 { 1599 req->cmd_type = REQ_TYPE_FS; 1600 1601 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1602 if (bio->bi_rw & REQ_RAHEAD) 1603 req->cmd_flags |= REQ_FAILFAST_MASK; 1604 1605 req->errors = 0; 1606 req->__sector = bio->bi_iter.bi_sector; 1607 req->ioprio = bio_prio(bio); 1608 blk_rq_bio_prep(req->q, req, bio); 1609 } 1610 1611 static void blk_queue_bio(struct request_queue *q, struct bio *bio) 1612 { 1613 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1614 struct blk_plug *plug; 1615 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1616 struct request *req; 1617 unsigned int request_count = 0; 1618 1619 blk_queue_split(q, &bio, q->bio_split); 1620 1621 /* 1622 * low level driver can indicate that it wants pages above a 1623 * certain limit bounced to low memory (ie for highmem, or even 1624 * ISA dma in theory) 1625 */ 1626 blk_queue_bounce(q, &bio); 1627 1628 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1629 bio->bi_error = -EIO; 1630 bio_endio(bio); 1631 return; 1632 } 1633 1634 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1635 spin_lock_irq(q->queue_lock); 1636 where = ELEVATOR_INSERT_FLUSH; 1637 goto get_rq; 1638 } 1639 1640 /* 1641 * Check if we can merge with the plugged list before grabbing 1642 * any locks. 1643 */ 1644 if (!blk_queue_nomerges(q) && 1645 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1646 return; 1647 1648 spin_lock_irq(q->queue_lock); 1649 1650 el_ret = elv_merge(q, &req, bio); 1651 if (el_ret == ELEVATOR_BACK_MERGE) { 1652 if (bio_attempt_back_merge(q, req, bio)) { 1653 elv_bio_merged(q, req, bio); 1654 if (!attempt_back_merge(q, req)) 1655 elv_merged_request(q, req, el_ret); 1656 goto out_unlock; 1657 } 1658 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1659 if (bio_attempt_front_merge(q, req, bio)) { 1660 elv_bio_merged(q, req, bio); 1661 if (!attempt_front_merge(q, req)) 1662 elv_merged_request(q, req, el_ret); 1663 goto out_unlock; 1664 } 1665 } 1666 1667 get_rq: 1668 /* 1669 * This sync check and mask will be re-done in init_request_from_bio(), 1670 * but we need to set it earlier to expose the sync flag to the 1671 * rq allocator and io schedulers. 1672 */ 1673 rw_flags = bio_data_dir(bio); 1674 if (sync) 1675 rw_flags |= REQ_SYNC; 1676 1677 /* 1678 * Grab a free request. This is might sleep but can not fail. 1679 * Returns with the queue unlocked. 1680 */ 1681 req = get_request(q, rw_flags, bio, GFP_NOIO); 1682 if (IS_ERR(req)) { 1683 bio->bi_error = PTR_ERR(req); 1684 bio_endio(bio); 1685 goto out_unlock; 1686 } 1687 1688 /* 1689 * After dropping the lock and possibly sleeping here, our request 1690 * may now be mergeable after it had proven unmergeable (above). 1691 * We don't worry about that case for efficiency. It won't happen 1692 * often, and the elevators are able to handle it. 1693 */ 1694 init_request_from_bio(req, bio); 1695 1696 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1697 req->cpu = raw_smp_processor_id(); 1698 1699 plug = current->plug; 1700 if (plug) { 1701 /* 1702 * If this is the first request added after a plug, fire 1703 * of a plug trace. 1704 */ 1705 if (!request_count) 1706 trace_block_plug(q); 1707 else { 1708 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1709 blk_flush_plug_list(plug, false); 1710 trace_block_plug(q); 1711 } 1712 } 1713 list_add_tail(&req->queuelist, &plug->list); 1714 blk_account_io_start(req, true); 1715 } else { 1716 spin_lock_irq(q->queue_lock); 1717 add_acct_request(q, req, where); 1718 __blk_run_queue(q); 1719 out_unlock: 1720 spin_unlock_irq(q->queue_lock); 1721 } 1722 } 1723 1724 /* 1725 * If bio->bi_dev is a partition, remap the location 1726 */ 1727 static inline void blk_partition_remap(struct bio *bio) 1728 { 1729 struct block_device *bdev = bio->bi_bdev; 1730 1731 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1732 struct hd_struct *p = bdev->bd_part; 1733 1734 bio->bi_iter.bi_sector += p->start_sect; 1735 bio->bi_bdev = bdev->bd_contains; 1736 1737 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1738 bdev->bd_dev, 1739 bio->bi_iter.bi_sector - p->start_sect); 1740 } 1741 } 1742 1743 static void handle_bad_sector(struct bio *bio) 1744 { 1745 char b[BDEVNAME_SIZE]; 1746 1747 printk(KERN_INFO "attempt to access beyond end of device\n"); 1748 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1749 bdevname(bio->bi_bdev, b), 1750 bio->bi_rw, 1751 (unsigned long long)bio_end_sector(bio), 1752 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1753 } 1754 1755 #ifdef CONFIG_FAIL_MAKE_REQUEST 1756 1757 static DECLARE_FAULT_ATTR(fail_make_request); 1758 1759 static int __init setup_fail_make_request(char *str) 1760 { 1761 return setup_fault_attr(&fail_make_request, str); 1762 } 1763 __setup("fail_make_request=", setup_fail_make_request); 1764 1765 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1766 { 1767 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1768 } 1769 1770 static int __init fail_make_request_debugfs(void) 1771 { 1772 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1773 NULL, &fail_make_request); 1774 1775 return PTR_ERR_OR_ZERO(dir); 1776 } 1777 1778 late_initcall(fail_make_request_debugfs); 1779 1780 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1781 1782 static inline bool should_fail_request(struct hd_struct *part, 1783 unsigned int bytes) 1784 { 1785 return false; 1786 } 1787 1788 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1789 1790 /* 1791 * Check whether this bio extends beyond the end of the device. 1792 */ 1793 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1794 { 1795 sector_t maxsector; 1796 1797 if (!nr_sectors) 1798 return 0; 1799 1800 /* Test device or partition size, when known. */ 1801 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1802 if (maxsector) { 1803 sector_t sector = bio->bi_iter.bi_sector; 1804 1805 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1806 /* 1807 * This may well happen - the kernel calls bread() 1808 * without checking the size of the device, e.g., when 1809 * mounting a device. 1810 */ 1811 handle_bad_sector(bio); 1812 return 1; 1813 } 1814 } 1815 1816 return 0; 1817 } 1818 1819 static noinline_for_stack bool 1820 generic_make_request_checks(struct bio *bio) 1821 { 1822 struct request_queue *q; 1823 int nr_sectors = bio_sectors(bio); 1824 int err = -EIO; 1825 char b[BDEVNAME_SIZE]; 1826 struct hd_struct *part; 1827 1828 might_sleep(); 1829 1830 if (bio_check_eod(bio, nr_sectors)) 1831 goto end_io; 1832 1833 q = bdev_get_queue(bio->bi_bdev); 1834 if (unlikely(!q)) { 1835 printk(KERN_ERR 1836 "generic_make_request: Trying to access " 1837 "nonexistent block-device %s (%Lu)\n", 1838 bdevname(bio->bi_bdev, b), 1839 (long long) bio->bi_iter.bi_sector); 1840 goto end_io; 1841 } 1842 1843 part = bio->bi_bdev->bd_part; 1844 if (should_fail_request(part, bio->bi_iter.bi_size) || 1845 should_fail_request(&part_to_disk(part)->part0, 1846 bio->bi_iter.bi_size)) 1847 goto end_io; 1848 1849 /* 1850 * If this device has partitions, remap block n 1851 * of partition p to block n+start(p) of the disk. 1852 */ 1853 blk_partition_remap(bio); 1854 1855 if (bio_check_eod(bio, nr_sectors)) 1856 goto end_io; 1857 1858 /* 1859 * Filter flush bio's early so that make_request based 1860 * drivers without flush support don't have to worry 1861 * about them. 1862 */ 1863 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1864 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1865 if (!nr_sectors) { 1866 err = 0; 1867 goto end_io; 1868 } 1869 } 1870 1871 if ((bio->bi_rw & REQ_DISCARD) && 1872 (!blk_queue_discard(q) || 1873 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1874 err = -EOPNOTSUPP; 1875 goto end_io; 1876 } 1877 1878 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1879 err = -EOPNOTSUPP; 1880 goto end_io; 1881 } 1882 1883 /* 1884 * Various block parts want %current->io_context and lazy ioc 1885 * allocation ends up trading a lot of pain for a small amount of 1886 * memory. Just allocate it upfront. This may fail and block 1887 * layer knows how to live with it. 1888 */ 1889 create_io_context(GFP_ATOMIC, q->node); 1890 1891 if (!blkcg_bio_issue_check(q, bio)) 1892 return false; 1893 1894 trace_block_bio_queue(q, bio); 1895 return true; 1896 1897 end_io: 1898 bio->bi_error = err; 1899 bio_endio(bio); 1900 return false; 1901 } 1902 1903 /** 1904 * generic_make_request - hand a buffer to its device driver for I/O 1905 * @bio: The bio describing the location in memory and on the device. 1906 * 1907 * generic_make_request() is used to make I/O requests of block 1908 * devices. It is passed a &struct bio, which describes the I/O that needs 1909 * to be done. 1910 * 1911 * generic_make_request() does not return any status. The 1912 * success/failure status of the request, along with notification of 1913 * completion, is delivered asynchronously through the bio->bi_end_io 1914 * function described (one day) else where. 1915 * 1916 * The caller of generic_make_request must make sure that bi_io_vec 1917 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1918 * set to describe the device address, and the 1919 * bi_end_io and optionally bi_private are set to describe how 1920 * completion notification should be signaled. 1921 * 1922 * generic_make_request and the drivers it calls may use bi_next if this 1923 * bio happens to be merged with someone else, and may resubmit the bio to 1924 * a lower device by calling into generic_make_request recursively, which 1925 * means the bio should NOT be touched after the call to ->make_request_fn. 1926 */ 1927 void generic_make_request(struct bio *bio) 1928 { 1929 struct bio_list bio_list_on_stack; 1930 1931 if (!generic_make_request_checks(bio)) 1932 return; 1933 1934 /* 1935 * We only want one ->make_request_fn to be active at a time, else 1936 * stack usage with stacked devices could be a problem. So use 1937 * current->bio_list to keep a list of requests submited by a 1938 * make_request_fn function. current->bio_list is also used as a 1939 * flag to say if generic_make_request is currently active in this 1940 * task or not. If it is NULL, then no make_request is active. If 1941 * it is non-NULL, then a make_request is active, and new requests 1942 * should be added at the tail 1943 */ 1944 if (current->bio_list) { 1945 bio_list_add(current->bio_list, bio); 1946 return; 1947 } 1948 1949 /* following loop may be a bit non-obvious, and so deserves some 1950 * explanation. 1951 * Before entering the loop, bio->bi_next is NULL (as all callers 1952 * ensure that) so we have a list with a single bio. 1953 * We pretend that we have just taken it off a longer list, so 1954 * we assign bio_list to a pointer to the bio_list_on_stack, 1955 * thus initialising the bio_list of new bios to be 1956 * added. ->make_request() may indeed add some more bios 1957 * through a recursive call to generic_make_request. If it 1958 * did, we find a non-NULL value in bio_list and re-enter the loop 1959 * from the top. In this case we really did just take the bio 1960 * of the top of the list (no pretending) and so remove it from 1961 * bio_list, and call into ->make_request() again. 1962 */ 1963 BUG_ON(bio->bi_next); 1964 bio_list_init(&bio_list_on_stack); 1965 current->bio_list = &bio_list_on_stack; 1966 do { 1967 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1968 1969 q->make_request_fn(q, bio); 1970 1971 bio = bio_list_pop(current->bio_list); 1972 } while (bio); 1973 current->bio_list = NULL; /* deactivate */ 1974 } 1975 EXPORT_SYMBOL(generic_make_request); 1976 1977 /** 1978 * submit_bio - submit a bio to the block device layer for I/O 1979 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1980 * @bio: The &struct bio which describes the I/O 1981 * 1982 * submit_bio() is very similar in purpose to generic_make_request(), and 1983 * uses that function to do most of the work. Both are fairly rough 1984 * interfaces; @bio must be presetup and ready for I/O. 1985 * 1986 */ 1987 void submit_bio(int rw, struct bio *bio) 1988 { 1989 bio->bi_rw |= rw; 1990 1991 /* 1992 * If it's a regular read/write or a barrier with data attached, 1993 * go through the normal accounting stuff before submission. 1994 */ 1995 if (bio_has_data(bio)) { 1996 unsigned int count; 1997 1998 if (unlikely(rw & REQ_WRITE_SAME)) 1999 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2000 else 2001 count = bio_sectors(bio); 2002 2003 if (rw & WRITE) { 2004 count_vm_events(PGPGOUT, count); 2005 } else { 2006 task_io_account_read(bio->bi_iter.bi_size); 2007 count_vm_events(PGPGIN, count); 2008 } 2009 2010 if (unlikely(block_dump)) { 2011 char b[BDEVNAME_SIZE]; 2012 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2013 current->comm, task_pid_nr(current), 2014 (rw & WRITE) ? "WRITE" : "READ", 2015 (unsigned long long)bio->bi_iter.bi_sector, 2016 bdevname(bio->bi_bdev, b), 2017 count); 2018 } 2019 } 2020 2021 generic_make_request(bio); 2022 } 2023 EXPORT_SYMBOL(submit_bio); 2024 2025 /** 2026 * blk_rq_check_limits - Helper function to check a request for the queue limit 2027 * @q: the queue 2028 * @rq: the request being checked 2029 * 2030 * Description: 2031 * @rq may have been made based on weaker limitations of upper-level queues 2032 * in request stacking drivers, and it may violate the limitation of @q. 2033 * Since the block layer and the underlying device driver trust @rq 2034 * after it is inserted to @q, it should be checked against @q before 2035 * the insertion using this generic function. 2036 * 2037 * This function should also be useful for request stacking drivers 2038 * in some cases below, so export this function. 2039 * Request stacking drivers like request-based dm may change the queue 2040 * limits while requests are in the queue (e.g. dm's table swapping). 2041 * Such request stacking drivers should check those requests against 2042 * the new queue limits again when they dispatch those requests, 2043 * although such checkings are also done against the old queue limits 2044 * when submitting requests. 2045 */ 2046 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 2047 { 2048 if (!rq_mergeable(rq)) 2049 return 0; 2050 2051 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 2052 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2053 return -EIO; 2054 } 2055 2056 /* 2057 * queue's settings related to segment counting like q->bounce_pfn 2058 * may differ from that of other stacking queues. 2059 * Recalculate it to check the request correctly on this queue's 2060 * limitation. 2061 */ 2062 blk_recalc_rq_segments(rq); 2063 if (rq->nr_phys_segments > queue_max_segments(q)) { 2064 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2065 return -EIO; 2066 } 2067 2068 return 0; 2069 } 2070 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 2071 2072 /** 2073 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2074 * @q: the queue to submit the request 2075 * @rq: the request being queued 2076 */ 2077 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2078 { 2079 unsigned long flags; 2080 int where = ELEVATOR_INSERT_BACK; 2081 2082 if (blk_rq_check_limits(q, rq)) 2083 return -EIO; 2084 2085 if (rq->rq_disk && 2086 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2087 return -EIO; 2088 2089 if (q->mq_ops) { 2090 if (blk_queue_io_stat(q)) 2091 blk_account_io_start(rq, true); 2092 blk_mq_insert_request(rq, false, true, true); 2093 return 0; 2094 } 2095 2096 spin_lock_irqsave(q->queue_lock, flags); 2097 if (unlikely(blk_queue_dying(q))) { 2098 spin_unlock_irqrestore(q->queue_lock, flags); 2099 return -ENODEV; 2100 } 2101 2102 /* 2103 * Submitting request must be dequeued before calling this function 2104 * because it will be linked to another request_queue 2105 */ 2106 BUG_ON(blk_queued_rq(rq)); 2107 2108 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2109 where = ELEVATOR_INSERT_FLUSH; 2110 2111 add_acct_request(q, rq, where); 2112 if (where == ELEVATOR_INSERT_FLUSH) 2113 __blk_run_queue(q); 2114 spin_unlock_irqrestore(q->queue_lock, flags); 2115 2116 return 0; 2117 } 2118 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2119 2120 /** 2121 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2122 * @rq: request to examine 2123 * 2124 * Description: 2125 * A request could be merge of IOs which require different failure 2126 * handling. This function determines the number of bytes which 2127 * can be failed from the beginning of the request without 2128 * crossing into area which need to be retried further. 2129 * 2130 * Return: 2131 * The number of bytes to fail. 2132 * 2133 * Context: 2134 * queue_lock must be held. 2135 */ 2136 unsigned int blk_rq_err_bytes(const struct request *rq) 2137 { 2138 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2139 unsigned int bytes = 0; 2140 struct bio *bio; 2141 2142 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2143 return blk_rq_bytes(rq); 2144 2145 /* 2146 * Currently the only 'mixing' which can happen is between 2147 * different fastfail types. We can safely fail portions 2148 * which have all the failfast bits that the first one has - 2149 * the ones which are at least as eager to fail as the first 2150 * one. 2151 */ 2152 for (bio = rq->bio; bio; bio = bio->bi_next) { 2153 if ((bio->bi_rw & ff) != ff) 2154 break; 2155 bytes += bio->bi_iter.bi_size; 2156 } 2157 2158 /* this could lead to infinite loop */ 2159 BUG_ON(blk_rq_bytes(rq) && !bytes); 2160 return bytes; 2161 } 2162 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2163 2164 void blk_account_io_completion(struct request *req, unsigned int bytes) 2165 { 2166 if (blk_do_io_stat(req)) { 2167 const int rw = rq_data_dir(req); 2168 struct hd_struct *part; 2169 int cpu; 2170 2171 cpu = part_stat_lock(); 2172 part = req->part; 2173 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2174 part_stat_unlock(); 2175 } 2176 } 2177 2178 void blk_account_io_done(struct request *req) 2179 { 2180 /* 2181 * Account IO completion. flush_rq isn't accounted as a 2182 * normal IO on queueing nor completion. Accounting the 2183 * containing request is enough. 2184 */ 2185 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2186 unsigned long duration = jiffies - req->start_time; 2187 const int rw = rq_data_dir(req); 2188 struct hd_struct *part; 2189 int cpu; 2190 2191 cpu = part_stat_lock(); 2192 part = req->part; 2193 2194 part_stat_inc(cpu, part, ios[rw]); 2195 part_stat_add(cpu, part, ticks[rw], duration); 2196 part_round_stats(cpu, part); 2197 part_dec_in_flight(part, rw); 2198 2199 hd_struct_put(part); 2200 part_stat_unlock(); 2201 } 2202 } 2203 2204 #ifdef CONFIG_PM 2205 /* 2206 * Don't process normal requests when queue is suspended 2207 * or in the process of suspending/resuming 2208 */ 2209 static struct request *blk_pm_peek_request(struct request_queue *q, 2210 struct request *rq) 2211 { 2212 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2213 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2214 return NULL; 2215 else 2216 return rq; 2217 } 2218 #else 2219 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2220 struct request *rq) 2221 { 2222 return rq; 2223 } 2224 #endif 2225 2226 void blk_account_io_start(struct request *rq, bool new_io) 2227 { 2228 struct hd_struct *part; 2229 int rw = rq_data_dir(rq); 2230 int cpu; 2231 2232 if (!blk_do_io_stat(rq)) 2233 return; 2234 2235 cpu = part_stat_lock(); 2236 2237 if (!new_io) { 2238 part = rq->part; 2239 part_stat_inc(cpu, part, merges[rw]); 2240 } else { 2241 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2242 if (!hd_struct_try_get(part)) { 2243 /* 2244 * The partition is already being removed, 2245 * the request will be accounted on the disk only 2246 * 2247 * We take a reference on disk->part0 although that 2248 * partition will never be deleted, so we can treat 2249 * it as any other partition. 2250 */ 2251 part = &rq->rq_disk->part0; 2252 hd_struct_get(part); 2253 } 2254 part_round_stats(cpu, part); 2255 part_inc_in_flight(part, rw); 2256 rq->part = part; 2257 } 2258 2259 part_stat_unlock(); 2260 } 2261 2262 /** 2263 * blk_peek_request - peek at the top of a request queue 2264 * @q: request queue to peek at 2265 * 2266 * Description: 2267 * Return the request at the top of @q. The returned request 2268 * should be started using blk_start_request() before LLD starts 2269 * processing it. 2270 * 2271 * Return: 2272 * Pointer to the request at the top of @q if available. Null 2273 * otherwise. 2274 * 2275 * Context: 2276 * queue_lock must be held. 2277 */ 2278 struct request *blk_peek_request(struct request_queue *q) 2279 { 2280 struct request *rq; 2281 int ret; 2282 2283 while ((rq = __elv_next_request(q)) != NULL) { 2284 2285 rq = blk_pm_peek_request(q, rq); 2286 if (!rq) 2287 break; 2288 2289 if (!(rq->cmd_flags & REQ_STARTED)) { 2290 /* 2291 * This is the first time the device driver 2292 * sees this request (possibly after 2293 * requeueing). Notify IO scheduler. 2294 */ 2295 if (rq->cmd_flags & REQ_SORTED) 2296 elv_activate_rq(q, rq); 2297 2298 /* 2299 * just mark as started even if we don't start 2300 * it, a request that has been delayed should 2301 * not be passed by new incoming requests 2302 */ 2303 rq->cmd_flags |= REQ_STARTED; 2304 trace_block_rq_issue(q, rq); 2305 } 2306 2307 if (!q->boundary_rq || q->boundary_rq == rq) { 2308 q->end_sector = rq_end_sector(rq); 2309 q->boundary_rq = NULL; 2310 } 2311 2312 if (rq->cmd_flags & REQ_DONTPREP) 2313 break; 2314 2315 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2316 /* 2317 * make sure space for the drain appears we 2318 * know we can do this because max_hw_segments 2319 * has been adjusted to be one fewer than the 2320 * device can handle 2321 */ 2322 rq->nr_phys_segments++; 2323 } 2324 2325 if (!q->prep_rq_fn) 2326 break; 2327 2328 ret = q->prep_rq_fn(q, rq); 2329 if (ret == BLKPREP_OK) { 2330 break; 2331 } else if (ret == BLKPREP_DEFER) { 2332 /* 2333 * the request may have been (partially) prepped. 2334 * we need to keep this request in the front to 2335 * avoid resource deadlock. REQ_STARTED will 2336 * prevent other fs requests from passing this one. 2337 */ 2338 if (q->dma_drain_size && blk_rq_bytes(rq) && 2339 !(rq->cmd_flags & REQ_DONTPREP)) { 2340 /* 2341 * remove the space for the drain we added 2342 * so that we don't add it again 2343 */ 2344 --rq->nr_phys_segments; 2345 } 2346 2347 rq = NULL; 2348 break; 2349 } else if (ret == BLKPREP_KILL) { 2350 rq->cmd_flags |= REQ_QUIET; 2351 /* 2352 * Mark this request as started so we don't trigger 2353 * any debug logic in the end I/O path. 2354 */ 2355 blk_start_request(rq); 2356 __blk_end_request_all(rq, -EIO); 2357 } else { 2358 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2359 break; 2360 } 2361 } 2362 2363 return rq; 2364 } 2365 EXPORT_SYMBOL(blk_peek_request); 2366 2367 void blk_dequeue_request(struct request *rq) 2368 { 2369 struct request_queue *q = rq->q; 2370 2371 BUG_ON(list_empty(&rq->queuelist)); 2372 BUG_ON(ELV_ON_HASH(rq)); 2373 2374 list_del_init(&rq->queuelist); 2375 2376 /* 2377 * the time frame between a request being removed from the lists 2378 * and to it is freed is accounted as io that is in progress at 2379 * the driver side. 2380 */ 2381 if (blk_account_rq(rq)) { 2382 q->in_flight[rq_is_sync(rq)]++; 2383 set_io_start_time_ns(rq); 2384 } 2385 } 2386 2387 /** 2388 * blk_start_request - start request processing on the driver 2389 * @req: request to dequeue 2390 * 2391 * Description: 2392 * Dequeue @req and start timeout timer on it. This hands off the 2393 * request to the driver. 2394 * 2395 * Block internal functions which don't want to start timer should 2396 * call blk_dequeue_request(). 2397 * 2398 * Context: 2399 * queue_lock must be held. 2400 */ 2401 void blk_start_request(struct request *req) 2402 { 2403 blk_dequeue_request(req); 2404 2405 /* 2406 * We are now handing the request to the hardware, initialize 2407 * resid_len to full count and add the timeout handler. 2408 */ 2409 req->resid_len = blk_rq_bytes(req); 2410 if (unlikely(blk_bidi_rq(req))) 2411 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2412 2413 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2414 blk_add_timer(req); 2415 } 2416 EXPORT_SYMBOL(blk_start_request); 2417 2418 /** 2419 * blk_fetch_request - fetch a request from a request queue 2420 * @q: request queue to fetch a request from 2421 * 2422 * Description: 2423 * Return the request at the top of @q. The request is started on 2424 * return and LLD can start processing it immediately. 2425 * 2426 * Return: 2427 * Pointer to the request at the top of @q if available. Null 2428 * otherwise. 2429 * 2430 * Context: 2431 * queue_lock must be held. 2432 */ 2433 struct request *blk_fetch_request(struct request_queue *q) 2434 { 2435 struct request *rq; 2436 2437 rq = blk_peek_request(q); 2438 if (rq) 2439 blk_start_request(rq); 2440 return rq; 2441 } 2442 EXPORT_SYMBOL(blk_fetch_request); 2443 2444 /** 2445 * blk_update_request - Special helper function for request stacking drivers 2446 * @req: the request being processed 2447 * @error: %0 for success, < %0 for error 2448 * @nr_bytes: number of bytes to complete @req 2449 * 2450 * Description: 2451 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2452 * the request structure even if @req doesn't have leftover. 2453 * If @req has leftover, sets it up for the next range of segments. 2454 * 2455 * This special helper function is only for request stacking drivers 2456 * (e.g. request-based dm) so that they can handle partial completion. 2457 * Actual device drivers should use blk_end_request instead. 2458 * 2459 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2460 * %false return from this function. 2461 * 2462 * Return: 2463 * %false - this request doesn't have any more data 2464 * %true - this request has more data 2465 **/ 2466 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2467 { 2468 int total_bytes; 2469 2470 trace_block_rq_complete(req->q, req, nr_bytes); 2471 2472 if (!req->bio) 2473 return false; 2474 2475 /* 2476 * For fs requests, rq is just carrier of independent bio's 2477 * and each partial completion should be handled separately. 2478 * Reset per-request error on each partial completion. 2479 * 2480 * TODO: tj: This is too subtle. It would be better to let 2481 * low level drivers do what they see fit. 2482 */ 2483 if (req->cmd_type == REQ_TYPE_FS) 2484 req->errors = 0; 2485 2486 if (error && req->cmd_type == REQ_TYPE_FS && 2487 !(req->cmd_flags & REQ_QUIET)) { 2488 char *error_type; 2489 2490 switch (error) { 2491 case -ENOLINK: 2492 error_type = "recoverable transport"; 2493 break; 2494 case -EREMOTEIO: 2495 error_type = "critical target"; 2496 break; 2497 case -EBADE: 2498 error_type = "critical nexus"; 2499 break; 2500 case -ETIMEDOUT: 2501 error_type = "timeout"; 2502 break; 2503 case -ENOSPC: 2504 error_type = "critical space allocation"; 2505 break; 2506 case -ENODATA: 2507 error_type = "critical medium"; 2508 break; 2509 case -EIO: 2510 default: 2511 error_type = "I/O"; 2512 break; 2513 } 2514 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2515 __func__, error_type, req->rq_disk ? 2516 req->rq_disk->disk_name : "?", 2517 (unsigned long long)blk_rq_pos(req)); 2518 2519 } 2520 2521 blk_account_io_completion(req, nr_bytes); 2522 2523 total_bytes = 0; 2524 while (req->bio) { 2525 struct bio *bio = req->bio; 2526 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2527 2528 if (bio_bytes == bio->bi_iter.bi_size) 2529 req->bio = bio->bi_next; 2530 2531 req_bio_endio(req, bio, bio_bytes, error); 2532 2533 total_bytes += bio_bytes; 2534 nr_bytes -= bio_bytes; 2535 2536 if (!nr_bytes) 2537 break; 2538 } 2539 2540 /* 2541 * completely done 2542 */ 2543 if (!req->bio) { 2544 /* 2545 * Reset counters so that the request stacking driver 2546 * can find how many bytes remain in the request 2547 * later. 2548 */ 2549 req->__data_len = 0; 2550 return false; 2551 } 2552 2553 req->__data_len -= total_bytes; 2554 2555 /* update sector only for requests with clear definition of sector */ 2556 if (req->cmd_type == REQ_TYPE_FS) 2557 req->__sector += total_bytes >> 9; 2558 2559 /* mixed attributes always follow the first bio */ 2560 if (req->cmd_flags & REQ_MIXED_MERGE) { 2561 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2562 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2563 } 2564 2565 /* 2566 * If total number of sectors is less than the first segment 2567 * size, something has gone terribly wrong. 2568 */ 2569 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2570 blk_dump_rq_flags(req, "request botched"); 2571 req->__data_len = blk_rq_cur_bytes(req); 2572 } 2573 2574 /* recalculate the number of segments */ 2575 blk_recalc_rq_segments(req); 2576 2577 return true; 2578 } 2579 EXPORT_SYMBOL_GPL(blk_update_request); 2580 2581 static bool blk_update_bidi_request(struct request *rq, int error, 2582 unsigned int nr_bytes, 2583 unsigned int bidi_bytes) 2584 { 2585 if (blk_update_request(rq, error, nr_bytes)) 2586 return true; 2587 2588 /* Bidi request must be completed as a whole */ 2589 if (unlikely(blk_bidi_rq(rq)) && 2590 blk_update_request(rq->next_rq, error, bidi_bytes)) 2591 return true; 2592 2593 if (blk_queue_add_random(rq->q)) 2594 add_disk_randomness(rq->rq_disk); 2595 2596 return false; 2597 } 2598 2599 /** 2600 * blk_unprep_request - unprepare a request 2601 * @req: the request 2602 * 2603 * This function makes a request ready for complete resubmission (or 2604 * completion). It happens only after all error handling is complete, 2605 * so represents the appropriate moment to deallocate any resources 2606 * that were allocated to the request in the prep_rq_fn. The queue 2607 * lock is held when calling this. 2608 */ 2609 void blk_unprep_request(struct request *req) 2610 { 2611 struct request_queue *q = req->q; 2612 2613 req->cmd_flags &= ~REQ_DONTPREP; 2614 if (q->unprep_rq_fn) 2615 q->unprep_rq_fn(q, req); 2616 } 2617 EXPORT_SYMBOL_GPL(blk_unprep_request); 2618 2619 /* 2620 * queue lock must be held 2621 */ 2622 void blk_finish_request(struct request *req, int error) 2623 { 2624 if (req->cmd_flags & REQ_QUEUED) 2625 blk_queue_end_tag(req->q, req); 2626 2627 BUG_ON(blk_queued_rq(req)); 2628 2629 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2630 laptop_io_completion(&req->q->backing_dev_info); 2631 2632 blk_delete_timer(req); 2633 2634 if (req->cmd_flags & REQ_DONTPREP) 2635 blk_unprep_request(req); 2636 2637 blk_account_io_done(req); 2638 2639 if (req->end_io) 2640 req->end_io(req, error); 2641 else { 2642 if (blk_bidi_rq(req)) 2643 __blk_put_request(req->next_rq->q, req->next_rq); 2644 2645 __blk_put_request(req->q, req); 2646 } 2647 } 2648 EXPORT_SYMBOL(blk_finish_request); 2649 2650 /** 2651 * blk_end_bidi_request - Complete a bidi request 2652 * @rq: the request to complete 2653 * @error: %0 for success, < %0 for error 2654 * @nr_bytes: number of bytes to complete @rq 2655 * @bidi_bytes: number of bytes to complete @rq->next_rq 2656 * 2657 * Description: 2658 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2659 * Drivers that supports bidi can safely call this member for any 2660 * type of request, bidi or uni. In the later case @bidi_bytes is 2661 * just ignored. 2662 * 2663 * Return: 2664 * %false - we are done with this request 2665 * %true - still buffers pending for this request 2666 **/ 2667 static bool blk_end_bidi_request(struct request *rq, int error, 2668 unsigned int nr_bytes, unsigned int bidi_bytes) 2669 { 2670 struct request_queue *q = rq->q; 2671 unsigned long flags; 2672 2673 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2674 return true; 2675 2676 spin_lock_irqsave(q->queue_lock, flags); 2677 blk_finish_request(rq, error); 2678 spin_unlock_irqrestore(q->queue_lock, flags); 2679 2680 return false; 2681 } 2682 2683 /** 2684 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2685 * @rq: the request to complete 2686 * @error: %0 for success, < %0 for error 2687 * @nr_bytes: number of bytes to complete @rq 2688 * @bidi_bytes: number of bytes to complete @rq->next_rq 2689 * 2690 * Description: 2691 * Identical to blk_end_bidi_request() except that queue lock is 2692 * assumed to be locked on entry and remains so on return. 2693 * 2694 * Return: 2695 * %false - we are done with this request 2696 * %true - still buffers pending for this request 2697 **/ 2698 bool __blk_end_bidi_request(struct request *rq, int error, 2699 unsigned int nr_bytes, unsigned int bidi_bytes) 2700 { 2701 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2702 return true; 2703 2704 blk_finish_request(rq, error); 2705 2706 return false; 2707 } 2708 2709 /** 2710 * blk_end_request - Helper function for drivers to complete the request. 2711 * @rq: the request being processed 2712 * @error: %0 for success, < %0 for error 2713 * @nr_bytes: number of bytes to complete 2714 * 2715 * Description: 2716 * Ends I/O on a number of bytes attached to @rq. 2717 * If @rq has leftover, sets it up for the next range of segments. 2718 * 2719 * Return: 2720 * %false - we are done with this request 2721 * %true - still buffers pending for this request 2722 **/ 2723 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2724 { 2725 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2726 } 2727 EXPORT_SYMBOL(blk_end_request); 2728 2729 /** 2730 * blk_end_request_all - Helper function for drives to finish the request. 2731 * @rq: the request to finish 2732 * @error: %0 for success, < %0 for error 2733 * 2734 * Description: 2735 * Completely finish @rq. 2736 */ 2737 void blk_end_request_all(struct request *rq, int error) 2738 { 2739 bool pending; 2740 unsigned int bidi_bytes = 0; 2741 2742 if (unlikely(blk_bidi_rq(rq))) 2743 bidi_bytes = blk_rq_bytes(rq->next_rq); 2744 2745 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2746 BUG_ON(pending); 2747 } 2748 EXPORT_SYMBOL(blk_end_request_all); 2749 2750 /** 2751 * blk_end_request_cur - Helper function to finish the current request chunk. 2752 * @rq: the request to finish the current chunk for 2753 * @error: %0 for success, < %0 for error 2754 * 2755 * Description: 2756 * Complete the current consecutively mapped chunk from @rq. 2757 * 2758 * Return: 2759 * %false - we are done with this request 2760 * %true - still buffers pending for this request 2761 */ 2762 bool blk_end_request_cur(struct request *rq, int error) 2763 { 2764 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2765 } 2766 EXPORT_SYMBOL(blk_end_request_cur); 2767 2768 /** 2769 * blk_end_request_err - Finish a request till the next failure boundary. 2770 * @rq: the request to finish till the next failure boundary for 2771 * @error: must be negative errno 2772 * 2773 * Description: 2774 * Complete @rq till the next failure boundary. 2775 * 2776 * Return: 2777 * %false - we are done with this request 2778 * %true - still buffers pending for this request 2779 */ 2780 bool blk_end_request_err(struct request *rq, int error) 2781 { 2782 WARN_ON(error >= 0); 2783 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2784 } 2785 EXPORT_SYMBOL_GPL(blk_end_request_err); 2786 2787 /** 2788 * __blk_end_request - Helper function for drivers to complete the request. 2789 * @rq: the request being processed 2790 * @error: %0 for success, < %0 for error 2791 * @nr_bytes: number of bytes to complete 2792 * 2793 * Description: 2794 * Must be called with queue lock held unlike blk_end_request(). 2795 * 2796 * Return: 2797 * %false - we are done with this request 2798 * %true - still buffers pending for this request 2799 **/ 2800 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2801 { 2802 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2803 } 2804 EXPORT_SYMBOL(__blk_end_request); 2805 2806 /** 2807 * __blk_end_request_all - Helper function for drives to finish the request. 2808 * @rq: the request to finish 2809 * @error: %0 for success, < %0 for error 2810 * 2811 * Description: 2812 * Completely finish @rq. Must be called with queue lock held. 2813 */ 2814 void __blk_end_request_all(struct request *rq, int error) 2815 { 2816 bool pending; 2817 unsigned int bidi_bytes = 0; 2818 2819 if (unlikely(blk_bidi_rq(rq))) 2820 bidi_bytes = blk_rq_bytes(rq->next_rq); 2821 2822 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2823 BUG_ON(pending); 2824 } 2825 EXPORT_SYMBOL(__blk_end_request_all); 2826 2827 /** 2828 * __blk_end_request_cur - Helper function to finish the current request chunk. 2829 * @rq: the request to finish the current chunk for 2830 * @error: %0 for success, < %0 for error 2831 * 2832 * Description: 2833 * Complete the current consecutively mapped chunk from @rq. Must 2834 * be called with queue lock held. 2835 * 2836 * Return: 2837 * %false - we are done with this request 2838 * %true - still buffers pending for this request 2839 */ 2840 bool __blk_end_request_cur(struct request *rq, int error) 2841 { 2842 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2843 } 2844 EXPORT_SYMBOL(__blk_end_request_cur); 2845 2846 /** 2847 * __blk_end_request_err - Finish a request till the next failure boundary. 2848 * @rq: the request to finish till the next failure boundary for 2849 * @error: must be negative errno 2850 * 2851 * Description: 2852 * Complete @rq till the next failure boundary. Must be called 2853 * with queue lock held. 2854 * 2855 * Return: 2856 * %false - we are done with this request 2857 * %true - still buffers pending for this request 2858 */ 2859 bool __blk_end_request_err(struct request *rq, int error) 2860 { 2861 WARN_ON(error >= 0); 2862 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2863 } 2864 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2865 2866 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2867 struct bio *bio) 2868 { 2869 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2870 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2871 2872 if (bio_has_data(bio)) 2873 rq->nr_phys_segments = bio_phys_segments(q, bio); 2874 2875 rq->__data_len = bio->bi_iter.bi_size; 2876 rq->bio = rq->biotail = bio; 2877 2878 if (bio->bi_bdev) 2879 rq->rq_disk = bio->bi_bdev->bd_disk; 2880 } 2881 2882 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2883 /** 2884 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2885 * @rq: the request to be flushed 2886 * 2887 * Description: 2888 * Flush all pages in @rq. 2889 */ 2890 void rq_flush_dcache_pages(struct request *rq) 2891 { 2892 struct req_iterator iter; 2893 struct bio_vec bvec; 2894 2895 rq_for_each_segment(bvec, rq, iter) 2896 flush_dcache_page(bvec.bv_page); 2897 } 2898 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2899 #endif 2900 2901 /** 2902 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2903 * @q : the queue of the device being checked 2904 * 2905 * Description: 2906 * Check if underlying low-level drivers of a device are busy. 2907 * If the drivers want to export their busy state, they must set own 2908 * exporting function using blk_queue_lld_busy() first. 2909 * 2910 * Basically, this function is used only by request stacking drivers 2911 * to stop dispatching requests to underlying devices when underlying 2912 * devices are busy. This behavior helps more I/O merging on the queue 2913 * of the request stacking driver and prevents I/O throughput regression 2914 * on burst I/O load. 2915 * 2916 * Return: 2917 * 0 - Not busy (The request stacking driver should dispatch request) 2918 * 1 - Busy (The request stacking driver should stop dispatching request) 2919 */ 2920 int blk_lld_busy(struct request_queue *q) 2921 { 2922 if (q->lld_busy_fn) 2923 return q->lld_busy_fn(q); 2924 2925 return 0; 2926 } 2927 EXPORT_SYMBOL_GPL(blk_lld_busy); 2928 2929 /** 2930 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2931 * @rq: the clone request to be cleaned up 2932 * 2933 * Description: 2934 * Free all bios in @rq for a cloned request. 2935 */ 2936 void blk_rq_unprep_clone(struct request *rq) 2937 { 2938 struct bio *bio; 2939 2940 while ((bio = rq->bio) != NULL) { 2941 rq->bio = bio->bi_next; 2942 2943 bio_put(bio); 2944 } 2945 } 2946 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2947 2948 /* 2949 * Copy attributes of the original request to the clone request. 2950 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2951 */ 2952 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2953 { 2954 dst->cpu = src->cpu; 2955 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2956 dst->cmd_type = src->cmd_type; 2957 dst->__sector = blk_rq_pos(src); 2958 dst->__data_len = blk_rq_bytes(src); 2959 dst->nr_phys_segments = src->nr_phys_segments; 2960 dst->ioprio = src->ioprio; 2961 dst->extra_len = src->extra_len; 2962 } 2963 2964 /** 2965 * blk_rq_prep_clone - Helper function to setup clone request 2966 * @rq: the request to be setup 2967 * @rq_src: original request to be cloned 2968 * @bs: bio_set that bios for clone are allocated from 2969 * @gfp_mask: memory allocation mask for bio 2970 * @bio_ctr: setup function to be called for each clone bio. 2971 * Returns %0 for success, non %0 for failure. 2972 * @data: private data to be passed to @bio_ctr 2973 * 2974 * Description: 2975 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2976 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2977 * are not copied, and copying such parts is the caller's responsibility. 2978 * Also, pages which the original bios are pointing to are not copied 2979 * and the cloned bios just point same pages. 2980 * So cloned bios must be completed before original bios, which means 2981 * the caller must complete @rq before @rq_src. 2982 */ 2983 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2984 struct bio_set *bs, gfp_t gfp_mask, 2985 int (*bio_ctr)(struct bio *, struct bio *, void *), 2986 void *data) 2987 { 2988 struct bio *bio, *bio_src; 2989 2990 if (!bs) 2991 bs = fs_bio_set; 2992 2993 __rq_for_each_bio(bio_src, rq_src) { 2994 bio = bio_clone_fast(bio_src, gfp_mask, bs); 2995 if (!bio) 2996 goto free_and_out; 2997 2998 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2999 goto free_and_out; 3000 3001 if (rq->bio) { 3002 rq->biotail->bi_next = bio; 3003 rq->biotail = bio; 3004 } else 3005 rq->bio = rq->biotail = bio; 3006 } 3007 3008 __blk_rq_prep_clone(rq, rq_src); 3009 3010 return 0; 3011 3012 free_and_out: 3013 if (bio) 3014 bio_put(bio); 3015 blk_rq_unprep_clone(rq); 3016 3017 return -ENOMEM; 3018 } 3019 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3020 3021 int kblockd_schedule_work(struct work_struct *work) 3022 { 3023 return queue_work(kblockd_workqueue, work); 3024 } 3025 EXPORT_SYMBOL(kblockd_schedule_work); 3026 3027 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3028 unsigned long delay) 3029 { 3030 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3031 } 3032 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3033 3034 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3035 unsigned long delay) 3036 { 3037 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3038 } 3039 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3040 3041 /** 3042 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3043 * @plug: The &struct blk_plug that needs to be initialized 3044 * 3045 * Description: 3046 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3047 * pending I/O should the task end up blocking between blk_start_plug() and 3048 * blk_finish_plug(). This is important from a performance perspective, but 3049 * also ensures that we don't deadlock. For instance, if the task is blocking 3050 * for a memory allocation, memory reclaim could end up wanting to free a 3051 * page belonging to that request that is currently residing in our private 3052 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3053 * this kind of deadlock. 3054 */ 3055 void blk_start_plug(struct blk_plug *plug) 3056 { 3057 struct task_struct *tsk = current; 3058 3059 /* 3060 * If this is a nested plug, don't actually assign it. 3061 */ 3062 if (tsk->plug) 3063 return; 3064 3065 INIT_LIST_HEAD(&plug->list); 3066 INIT_LIST_HEAD(&plug->mq_list); 3067 INIT_LIST_HEAD(&plug->cb_list); 3068 /* 3069 * Store ordering should not be needed here, since a potential 3070 * preempt will imply a full memory barrier 3071 */ 3072 tsk->plug = plug; 3073 } 3074 EXPORT_SYMBOL(blk_start_plug); 3075 3076 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3077 { 3078 struct request *rqa = container_of(a, struct request, queuelist); 3079 struct request *rqb = container_of(b, struct request, queuelist); 3080 3081 return !(rqa->q < rqb->q || 3082 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3083 } 3084 3085 /* 3086 * If 'from_schedule' is true, then postpone the dispatch of requests 3087 * until a safe kblockd context. We due this to avoid accidental big 3088 * additional stack usage in driver dispatch, in places where the originally 3089 * plugger did not intend it. 3090 */ 3091 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3092 bool from_schedule) 3093 __releases(q->queue_lock) 3094 { 3095 trace_block_unplug(q, depth, !from_schedule); 3096 3097 if (from_schedule) 3098 blk_run_queue_async(q); 3099 else 3100 __blk_run_queue(q); 3101 spin_unlock(q->queue_lock); 3102 } 3103 3104 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3105 { 3106 LIST_HEAD(callbacks); 3107 3108 while (!list_empty(&plug->cb_list)) { 3109 list_splice_init(&plug->cb_list, &callbacks); 3110 3111 while (!list_empty(&callbacks)) { 3112 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3113 struct blk_plug_cb, 3114 list); 3115 list_del(&cb->list); 3116 cb->callback(cb, from_schedule); 3117 } 3118 } 3119 } 3120 3121 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3122 int size) 3123 { 3124 struct blk_plug *plug = current->plug; 3125 struct blk_plug_cb *cb; 3126 3127 if (!plug) 3128 return NULL; 3129 3130 list_for_each_entry(cb, &plug->cb_list, list) 3131 if (cb->callback == unplug && cb->data == data) 3132 return cb; 3133 3134 /* Not currently on the callback list */ 3135 BUG_ON(size < sizeof(*cb)); 3136 cb = kzalloc(size, GFP_ATOMIC); 3137 if (cb) { 3138 cb->data = data; 3139 cb->callback = unplug; 3140 list_add(&cb->list, &plug->cb_list); 3141 } 3142 return cb; 3143 } 3144 EXPORT_SYMBOL(blk_check_plugged); 3145 3146 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3147 { 3148 struct request_queue *q; 3149 unsigned long flags; 3150 struct request *rq; 3151 LIST_HEAD(list); 3152 unsigned int depth; 3153 3154 flush_plug_callbacks(plug, from_schedule); 3155 3156 if (!list_empty(&plug->mq_list)) 3157 blk_mq_flush_plug_list(plug, from_schedule); 3158 3159 if (list_empty(&plug->list)) 3160 return; 3161 3162 list_splice_init(&plug->list, &list); 3163 3164 list_sort(NULL, &list, plug_rq_cmp); 3165 3166 q = NULL; 3167 depth = 0; 3168 3169 /* 3170 * Save and disable interrupts here, to avoid doing it for every 3171 * queue lock we have to take. 3172 */ 3173 local_irq_save(flags); 3174 while (!list_empty(&list)) { 3175 rq = list_entry_rq(list.next); 3176 list_del_init(&rq->queuelist); 3177 BUG_ON(!rq->q); 3178 if (rq->q != q) { 3179 /* 3180 * This drops the queue lock 3181 */ 3182 if (q) 3183 queue_unplugged(q, depth, from_schedule); 3184 q = rq->q; 3185 depth = 0; 3186 spin_lock(q->queue_lock); 3187 } 3188 3189 /* 3190 * Short-circuit if @q is dead 3191 */ 3192 if (unlikely(blk_queue_dying(q))) { 3193 __blk_end_request_all(rq, -ENODEV); 3194 continue; 3195 } 3196 3197 /* 3198 * rq is already accounted, so use raw insert 3199 */ 3200 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3201 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3202 else 3203 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3204 3205 depth++; 3206 } 3207 3208 /* 3209 * This drops the queue lock 3210 */ 3211 if (q) 3212 queue_unplugged(q, depth, from_schedule); 3213 3214 local_irq_restore(flags); 3215 } 3216 3217 void blk_finish_plug(struct blk_plug *plug) 3218 { 3219 if (plug != current->plug) 3220 return; 3221 blk_flush_plug_list(plug, false); 3222 3223 current->plug = NULL; 3224 } 3225 EXPORT_SYMBOL(blk_finish_plug); 3226 3227 #ifdef CONFIG_PM 3228 /** 3229 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3230 * @q: the queue of the device 3231 * @dev: the device the queue belongs to 3232 * 3233 * Description: 3234 * Initialize runtime-PM-related fields for @q and start auto suspend for 3235 * @dev. Drivers that want to take advantage of request-based runtime PM 3236 * should call this function after @dev has been initialized, and its 3237 * request queue @q has been allocated, and runtime PM for it can not happen 3238 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3239 * cases, driver should call this function before any I/O has taken place. 3240 * 3241 * This function takes care of setting up using auto suspend for the device, 3242 * the autosuspend delay is set to -1 to make runtime suspend impossible 3243 * until an updated value is either set by user or by driver. Drivers do 3244 * not need to touch other autosuspend settings. 3245 * 3246 * The block layer runtime PM is request based, so only works for drivers 3247 * that use request as their IO unit instead of those directly use bio's. 3248 */ 3249 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3250 { 3251 q->dev = dev; 3252 q->rpm_status = RPM_ACTIVE; 3253 pm_runtime_set_autosuspend_delay(q->dev, -1); 3254 pm_runtime_use_autosuspend(q->dev); 3255 } 3256 EXPORT_SYMBOL(blk_pm_runtime_init); 3257 3258 /** 3259 * blk_pre_runtime_suspend - Pre runtime suspend check 3260 * @q: the queue of the device 3261 * 3262 * Description: 3263 * This function will check if runtime suspend is allowed for the device 3264 * by examining if there are any requests pending in the queue. If there 3265 * are requests pending, the device can not be runtime suspended; otherwise, 3266 * the queue's status will be updated to SUSPENDING and the driver can 3267 * proceed to suspend the device. 3268 * 3269 * For the not allowed case, we mark last busy for the device so that 3270 * runtime PM core will try to autosuspend it some time later. 3271 * 3272 * This function should be called near the start of the device's 3273 * runtime_suspend callback. 3274 * 3275 * Return: 3276 * 0 - OK to runtime suspend the device 3277 * -EBUSY - Device should not be runtime suspended 3278 */ 3279 int blk_pre_runtime_suspend(struct request_queue *q) 3280 { 3281 int ret = 0; 3282 3283 spin_lock_irq(q->queue_lock); 3284 if (q->nr_pending) { 3285 ret = -EBUSY; 3286 pm_runtime_mark_last_busy(q->dev); 3287 } else { 3288 q->rpm_status = RPM_SUSPENDING; 3289 } 3290 spin_unlock_irq(q->queue_lock); 3291 return ret; 3292 } 3293 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3294 3295 /** 3296 * blk_post_runtime_suspend - Post runtime suspend processing 3297 * @q: the queue of the device 3298 * @err: return value of the device's runtime_suspend function 3299 * 3300 * Description: 3301 * Update the queue's runtime status according to the return value of the 3302 * device's runtime suspend function and mark last busy for the device so 3303 * that PM core will try to auto suspend the device at a later time. 3304 * 3305 * This function should be called near the end of the device's 3306 * runtime_suspend callback. 3307 */ 3308 void blk_post_runtime_suspend(struct request_queue *q, int err) 3309 { 3310 spin_lock_irq(q->queue_lock); 3311 if (!err) { 3312 q->rpm_status = RPM_SUSPENDED; 3313 } else { 3314 q->rpm_status = RPM_ACTIVE; 3315 pm_runtime_mark_last_busy(q->dev); 3316 } 3317 spin_unlock_irq(q->queue_lock); 3318 } 3319 EXPORT_SYMBOL(blk_post_runtime_suspend); 3320 3321 /** 3322 * blk_pre_runtime_resume - Pre runtime resume processing 3323 * @q: the queue of the device 3324 * 3325 * Description: 3326 * Update the queue's runtime status to RESUMING in preparation for the 3327 * runtime resume of the device. 3328 * 3329 * This function should be called near the start of the device's 3330 * runtime_resume callback. 3331 */ 3332 void blk_pre_runtime_resume(struct request_queue *q) 3333 { 3334 spin_lock_irq(q->queue_lock); 3335 q->rpm_status = RPM_RESUMING; 3336 spin_unlock_irq(q->queue_lock); 3337 } 3338 EXPORT_SYMBOL(blk_pre_runtime_resume); 3339 3340 /** 3341 * blk_post_runtime_resume - Post runtime resume processing 3342 * @q: the queue of the device 3343 * @err: return value of the device's runtime_resume function 3344 * 3345 * Description: 3346 * Update the queue's runtime status according to the return value of the 3347 * device's runtime_resume function. If it is successfully resumed, process 3348 * the requests that are queued into the device's queue when it is resuming 3349 * and then mark last busy and initiate autosuspend for it. 3350 * 3351 * This function should be called near the end of the device's 3352 * runtime_resume callback. 3353 */ 3354 void blk_post_runtime_resume(struct request_queue *q, int err) 3355 { 3356 spin_lock_irq(q->queue_lock); 3357 if (!err) { 3358 q->rpm_status = RPM_ACTIVE; 3359 __blk_run_queue(q); 3360 pm_runtime_mark_last_busy(q->dev); 3361 pm_request_autosuspend(q->dev); 3362 } else { 3363 q->rpm_status = RPM_SUSPENDED; 3364 } 3365 spin_unlock_irq(q->queue_lock); 3366 } 3367 EXPORT_SYMBOL(blk_post_runtime_resume); 3368 #endif 3369 3370 int __init blk_dev_init(void) 3371 { 3372 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3373 FIELD_SIZEOF(struct request, cmd_flags)); 3374 3375 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3376 kblockd_workqueue = alloc_workqueue("kblockd", 3377 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3378 if (!kblockd_workqueue) 3379 panic("Failed to create kblockd\n"); 3380 3381 request_cachep = kmem_cache_create("blkdev_requests", 3382 sizeof(struct request), 0, SLAB_PANIC, NULL); 3383 3384 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3385 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3386 3387 return 0; 3388 } 3389