xref: /openbmc/linux/block/blk-core.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time_ns = ktime_get_ns();
200 	rq->part = NULL;
201 }
202 EXPORT_SYMBOL(blk_rq_init);
203 
204 static const struct {
205 	int		errno;
206 	const char	*name;
207 } blk_errors[] = {
208 	[BLK_STS_OK]		= { 0,		"" },
209 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
210 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
211 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
212 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
213 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
214 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
215 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
216 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
217 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
218 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
219 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
220 
221 	/* device mapper special case, should not leak out: */
222 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
223 
224 	/* everything else not covered above: */
225 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
226 };
227 
228 blk_status_t errno_to_blk_status(int errno)
229 {
230 	int i;
231 
232 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 		if (blk_errors[i].errno == errno)
234 			return (__force blk_status_t)i;
235 	}
236 
237 	return BLK_STS_IOERR;
238 }
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
240 
241 int blk_status_to_errno(blk_status_t status)
242 {
243 	int idx = (__force int)status;
244 
245 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 		return -EIO;
247 	return blk_errors[idx].errno;
248 }
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
250 
251 static void print_req_error(struct request *req, blk_status_t status)
252 {
253 	int idx = (__force int)status;
254 
255 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 		return;
257 
258 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 			   __func__, blk_errors[idx].name, req->rq_disk ?
260 			   req->rq_disk->disk_name : "?",
261 			   (unsigned long long)blk_rq_pos(req));
262 }
263 
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 			  unsigned int nbytes, blk_status_t error)
266 {
267 	if (error)
268 		bio->bi_status = error;
269 
270 	if (unlikely(rq->rq_flags & RQF_QUIET))
271 		bio_set_flag(bio, BIO_QUIET);
272 
273 	bio_advance(bio, nbytes);
274 
275 	/* don't actually finish bio if it's part of flush sequence */
276 	/*
277 	 * XXX this code looks suspicious - it's not consistent with advancing
278 	 * req->bio in caller
279 	 */
280 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
281 		bio_endio(bio);
282 }
283 
284 void blk_dump_rq_flags(struct request *rq, char *msg)
285 {
286 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
287 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
288 		(unsigned long long) rq->cmd_flags);
289 
290 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
291 	       (unsigned long long)blk_rq_pos(rq),
292 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
293 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
294 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
295 }
296 EXPORT_SYMBOL(blk_dump_rq_flags);
297 
298 static void blk_delay_work(struct work_struct *work)
299 {
300 	struct request_queue *q;
301 
302 	q = container_of(work, struct request_queue, delay_work.work);
303 	spin_lock_irq(q->queue_lock);
304 	__blk_run_queue(q);
305 	spin_unlock_irq(q->queue_lock);
306 }
307 
308 /**
309  * blk_delay_queue - restart queueing after defined interval
310  * @q:		The &struct request_queue in question
311  * @msecs:	Delay in msecs
312  *
313  * Description:
314  *   Sometimes queueing needs to be postponed for a little while, to allow
315  *   resources to come back. This function will make sure that queueing is
316  *   restarted around the specified time.
317  */
318 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
319 {
320 	lockdep_assert_held(q->queue_lock);
321 	WARN_ON_ONCE(q->mq_ops);
322 
323 	if (likely(!blk_queue_dead(q)))
324 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
325 				   msecs_to_jiffies(msecs));
326 }
327 EXPORT_SYMBOL(blk_delay_queue);
328 
329 /**
330  * blk_start_queue_async - asynchronously restart a previously stopped queue
331  * @q:    The &struct request_queue in question
332  *
333  * Description:
334  *   blk_start_queue_async() will clear the stop flag on the queue, and
335  *   ensure that the request_fn for the queue is run from an async
336  *   context.
337  **/
338 void blk_start_queue_async(struct request_queue *q)
339 {
340 	lockdep_assert_held(q->queue_lock);
341 	WARN_ON_ONCE(q->mq_ops);
342 
343 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
344 	blk_run_queue_async(q);
345 }
346 EXPORT_SYMBOL(blk_start_queue_async);
347 
348 /**
349  * blk_start_queue - restart a previously stopped queue
350  * @q:    The &struct request_queue in question
351  *
352  * Description:
353  *   blk_start_queue() will clear the stop flag on the queue, and call
354  *   the request_fn for the queue if it was in a stopped state when
355  *   entered. Also see blk_stop_queue().
356  **/
357 void blk_start_queue(struct request_queue *q)
358 {
359 	lockdep_assert_held(q->queue_lock);
360 	WARN_ON_ONCE(q->mq_ops);
361 
362 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
363 	__blk_run_queue(q);
364 }
365 EXPORT_SYMBOL(blk_start_queue);
366 
367 /**
368  * blk_stop_queue - stop a queue
369  * @q:    The &struct request_queue in question
370  *
371  * Description:
372  *   The Linux block layer assumes that a block driver will consume all
373  *   entries on the request queue when the request_fn strategy is called.
374  *   Often this will not happen, because of hardware limitations (queue
375  *   depth settings). If a device driver gets a 'queue full' response,
376  *   or if it simply chooses not to queue more I/O at one point, it can
377  *   call this function to prevent the request_fn from being called until
378  *   the driver has signalled it's ready to go again. This happens by calling
379  *   blk_start_queue() to restart queue operations.
380  **/
381 void blk_stop_queue(struct request_queue *q)
382 {
383 	lockdep_assert_held(q->queue_lock);
384 	WARN_ON_ONCE(q->mq_ops);
385 
386 	cancel_delayed_work(&q->delay_work);
387 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
388 }
389 EXPORT_SYMBOL(blk_stop_queue);
390 
391 /**
392  * blk_sync_queue - cancel any pending callbacks on a queue
393  * @q: the queue
394  *
395  * Description:
396  *     The block layer may perform asynchronous callback activity
397  *     on a queue, such as calling the unplug function after a timeout.
398  *     A block device may call blk_sync_queue to ensure that any
399  *     such activity is cancelled, thus allowing it to release resources
400  *     that the callbacks might use. The caller must already have made sure
401  *     that its ->make_request_fn will not re-add plugging prior to calling
402  *     this function.
403  *
404  *     This function does not cancel any asynchronous activity arising
405  *     out of elevator or throttling code. That would require elevator_exit()
406  *     and blkcg_exit_queue() to be called with queue lock initialized.
407  *
408  */
409 void blk_sync_queue(struct request_queue *q)
410 {
411 	del_timer_sync(&q->timeout);
412 	cancel_work_sync(&q->timeout_work);
413 
414 	if (q->mq_ops) {
415 		struct blk_mq_hw_ctx *hctx;
416 		int i;
417 
418 		cancel_delayed_work_sync(&q->requeue_work);
419 		queue_for_each_hw_ctx(q, hctx, i)
420 			cancel_delayed_work_sync(&hctx->run_work);
421 	} else {
422 		cancel_delayed_work_sync(&q->delay_work);
423 	}
424 }
425 EXPORT_SYMBOL(blk_sync_queue);
426 
427 /**
428  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
429  * @q: request queue pointer
430  *
431  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
432  * set and 1 if the flag was already set.
433  */
434 int blk_set_preempt_only(struct request_queue *q)
435 {
436 	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
437 }
438 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
439 
440 void blk_clear_preempt_only(struct request_queue *q)
441 {
442 	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
443 	wake_up_all(&q->mq_freeze_wq);
444 }
445 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
446 
447 /**
448  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
449  * @q:	The queue to run
450  *
451  * Description:
452  *    Invoke request handling on a queue if there are any pending requests.
453  *    May be used to restart request handling after a request has completed.
454  *    This variant runs the queue whether or not the queue has been
455  *    stopped. Must be called with the queue lock held and interrupts
456  *    disabled. See also @blk_run_queue.
457  */
458 inline void __blk_run_queue_uncond(struct request_queue *q)
459 {
460 	lockdep_assert_held(q->queue_lock);
461 	WARN_ON_ONCE(q->mq_ops);
462 
463 	if (unlikely(blk_queue_dead(q)))
464 		return;
465 
466 	/*
467 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
468 	 * the queue lock internally. As a result multiple threads may be
469 	 * running such a request function concurrently. Keep track of the
470 	 * number of active request_fn invocations such that blk_drain_queue()
471 	 * can wait until all these request_fn calls have finished.
472 	 */
473 	q->request_fn_active++;
474 	q->request_fn(q);
475 	q->request_fn_active--;
476 }
477 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
478 
479 /**
480  * __blk_run_queue - run a single device queue
481  * @q:	The queue to run
482  *
483  * Description:
484  *    See @blk_run_queue.
485  */
486 void __blk_run_queue(struct request_queue *q)
487 {
488 	lockdep_assert_held(q->queue_lock);
489 	WARN_ON_ONCE(q->mq_ops);
490 
491 	if (unlikely(blk_queue_stopped(q)))
492 		return;
493 
494 	__blk_run_queue_uncond(q);
495 }
496 EXPORT_SYMBOL(__blk_run_queue);
497 
498 /**
499  * blk_run_queue_async - run a single device queue in workqueue context
500  * @q:	The queue to run
501  *
502  * Description:
503  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
504  *    of us.
505  *
506  * Note:
507  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
508  *    has canceled q->delay_work, callers must hold the queue lock to avoid
509  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
510  */
511 void blk_run_queue_async(struct request_queue *q)
512 {
513 	lockdep_assert_held(q->queue_lock);
514 	WARN_ON_ONCE(q->mq_ops);
515 
516 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
517 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
518 }
519 EXPORT_SYMBOL(blk_run_queue_async);
520 
521 /**
522  * blk_run_queue - run a single device queue
523  * @q: The queue to run
524  *
525  * Description:
526  *    Invoke request handling on this queue, if it has pending work to do.
527  *    May be used to restart queueing when a request has completed.
528  */
529 void blk_run_queue(struct request_queue *q)
530 {
531 	unsigned long flags;
532 
533 	WARN_ON_ONCE(q->mq_ops);
534 
535 	spin_lock_irqsave(q->queue_lock, flags);
536 	__blk_run_queue(q);
537 	spin_unlock_irqrestore(q->queue_lock, flags);
538 }
539 EXPORT_SYMBOL(blk_run_queue);
540 
541 void blk_put_queue(struct request_queue *q)
542 {
543 	kobject_put(&q->kobj);
544 }
545 EXPORT_SYMBOL(blk_put_queue);
546 
547 /**
548  * __blk_drain_queue - drain requests from request_queue
549  * @q: queue to drain
550  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
551  *
552  * Drain requests from @q.  If @drain_all is set, all requests are drained.
553  * If not, only ELVPRIV requests are drained.  The caller is responsible
554  * for ensuring that no new requests which need to be drained are queued.
555  */
556 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
557 	__releases(q->queue_lock)
558 	__acquires(q->queue_lock)
559 {
560 	int i;
561 
562 	lockdep_assert_held(q->queue_lock);
563 	WARN_ON_ONCE(q->mq_ops);
564 
565 	while (true) {
566 		bool drain = false;
567 
568 		/*
569 		 * The caller might be trying to drain @q before its
570 		 * elevator is initialized.
571 		 */
572 		if (q->elevator)
573 			elv_drain_elevator(q);
574 
575 		blkcg_drain_queue(q);
576 
577 		/*
578 		 * This function might be called on a queue which failed
579 		 * driver init after queue creation or is not yet fully
580 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
581 		 * in such cases.  Kick queue iff dispatch queue has
582 		 * something on it and @q has request_fn set.
583 		 */
584 		if (!list_empty(&q->queue_head) && q->request_fn)
585 			__blk_run_queue(q);
586 
587 		drain |= q->nr_rqs_elvpriv;
588 		drain |= q->request_fn_active;
589 
590 		/*
591 		 * Unfortunately, requests are queued at and tracked from
592 		 * multiple places and there's no single counter which can
593 		 * be drained.  Check all the queues and counters.
594 		 */
595 		if (drain_all) {
596 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
597 			drain |= !list_empty(&q->queue_head);
598 			for (i = 0; i < 2; i++) {
599 				drain |= q->nr_rqs[i];
600 				drain |= q->in_flight[i];
601 				if (fq)
602 				    drain |= !list_empty(&fq->flush_queue[i]);
603 			}
604 		}
605 
606 		if (!drain)
607 			break;
608 
609 		spin_unlock_irq(q->queue_lock);
610 
611 		msleep(10);
612 
613 		spin_lock_irq(q->queue_lock);
614 	}
615 
616 	/*
617 	 * With queue marked dead, any woken up waiter will fail the
618 	 * allocation path, so the wakeup chaining is lost and we're
619 	 * left with hung waiters. We need to wake up those waiters.
620 	 */
621 	if (q->request_fn) {
622 		struct request_list *rl;
623 
624 		blk_queue_for_each_rl(rl, q)
625 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
626 				wake_up_all(&rl->wait[i]);
627 	}
628 }
629 
630 void blk_drain_queue(struct request_queue *q)
631 {
632 	spin_lock_irq(q->queue_lock);
633 	__blk_drain_queue(q, true);
634 	spin_unlock_irq(q->queue_lock);
635 }
636 
637 /**
638  * blk_queue_bypass_start - enter queue bypass mode
639  * @q: queue of interest
640  *
641  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
642  * function makes @q enter bypass mode and drains all requests which were
643  * throttled or issued before.  On return, it's guaranteed that no request
644  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
645  * inside queue or RCU read lock.
646  */
647 void blk_queue_bypass_start(struct request_queue *q)
648 {
649 	WARN_ON_ONCE(q->mq_ops);
650 
651 	spin_lock_irq(q->queue_lock);
652 	q->bypass_depth++;
653 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
654 	spin_unlock_irq(q->queue_lock);
655 
656 	/*
657 	 * Queues start drained.  Skip actual draining till init is
658 	 * complete.  This avoids lenghty delays during queue init which
659 	 * can happen many times during boot.
660 	 */
661 	if (blk_queue_init_done(q)) {
662 		spin_lock_irq(q->queue_lock);
663 		__blk_drain_queue(q, false);
664 		spin_unlock_irq(q->queue_lock);
665 
666 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
667 		synchronize_rcu();
668 	}
669 }
670 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
671 
672 /**
673  * blk_queue_bypass_end - leave queue bypass mode
674  * @q: queue of interest
675  *
676  * Leave bypass mode and restore the normal queueing behavior.
677  *
678  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
679  * this function is called for both blk-sq and blk-mq queues.
680  */
681 void blk_queue_bypass_end(struct request_queue *q)
682 {
683 	spin_lock_irq(q->queue_lock);
684 	if (!--q->bypass_depth)
685 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
686 	WARN_ON_ONCE(q->bypass_depth < 0);
687 	spin_unlock_irq(q->queue_lock);
688 }
689 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
690 
691 void blk_set_queue_dying(struct request_queue *q)
692 {
693 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
694 
695 	/*
696 	 * When queue DYING flag is set, we need to block new req
697 	 * entering queue, so we call blk_freeze_queue_start() to
698 	 * prevent I/O from crossing blk_queue_enter().
699 	 */
700 	blk_freeze_queue_start(q);
701 
702 	if (q->mq_ops)
703 		blk_mq_wake_waiters(q);
704 	else {
705 		struct request_list *rl;
706 
707 		spin_lock_irq(q->queue_lock);
708 		blk_queue_for_each_rl(rl, q) {
709 			if (rl->rq_pool) {
710 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
711 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
712 			}
713 		}
714 		spin_unlock_irq(q->queue_lock);
715 	}
716 
717 	/* Make blk_queue_enter() reexamine the DYING flag. */
718 	wake_up_all(&q->mq_freeze_wq);
719 }
720 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
721 
722 /**
723  * blk_cleanup_queue - shutdown a request queue
724  * @q: request queue to shutdown
725  *
726  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
727  * put it.  All future requests will be failed immediately with -ENODEV.
728  */
729 void blk_cleanup_queue(struct request_queue *q)
730 {
731 	spinlock_t *lock = q->queue_lock;
732 
733 	/* mark @q DYING, no new request or merges will be allowed afterwards */
734 	mutex_lock(&q->sysfs_lock);
735 	blk_set_queue_dying(q);
736 	spin_lock_irq(lock);
737 
738 	/*
739 	 * A dying queue is permanently in bypass mode till released.  Note
740 	 * that, unlike blk_queue_bypass_start(), we aren't performing
741 	 * synchronize_rcu() after entering bypass mode to avoid the delay
742 	 * as some drivers create and destroy a lot of queues while
743 	 * probing.  This is still safe because blk_release_queue() will be
744 	 * called only after the queue refcnt drops to zero and nothing,
745 	 * RCU or not, would be traversing the queue by then.
746 	 */
747 	q->bypass_depth++;
748 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
749 
750 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
751 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
752 	queue_flag_set(QUEUE_FLAG_DYING, q);
753 	spin_unlock_irq(lock);
754 	mutex_unlock(&q->sysfs_lock);
755 
756 	/*
757 	 * Drain all requests queued before DYING marking. Set DEAD flag to
758 	 * prevent that q->request_fn() gets invoked after draining finished.
759 	 */
760 	blk_freeze_queue(q);
761 	spin_lock_irq(lock);
762 	queue_flag_set(QUEUE_FLAG_DEAD, q);
763 	spin_unlock_irq(lock);
764 
765 	/*
766 	 * make sure all in-progress dispatch are completed because
767 	 * blk_freeze_queue() can only complete all requests, and
768 	 * dispatch may still be in-progress since we dispatch requests
769 	 * from more than one contexts
770 	 */
771 	if (q->mq_ops)
772 		blk_mq_quiesce_queue(q);
773 
774 	/* for synchronous bio-based driver finish in-flight integrity i/o */
775 	blk_flush_integrity();
776 
777 	/* @q won't process any more request, flush async actions */
778 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
779 	blk_sync_queue(q);
780 
781 	/*
782 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
783 	 * has been removed.
784 	 */
785 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
786 
787 	/*
788 	 * Since the I/O scheduler exit code may access cgroup information,
789 	 * perform I/O scheduler exit before disassociating from the block
790 	 * cgroup controller.
791 	 */
792 	if (q->elevator) {
793 		ioc_clear_queue(q);
794 		elevator_exit(q, q->elevator);
795 		q->elevator = NULL;
796 	}
797 
798 	/*
799 	 * Remove all references to @q from the block cgroup controller before
800 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
801 	 * e.g. blkcg_print_blkgs() to crash.
802 	 */
803 	blkcg_exit_queue(q);
804 
805 	/*
806 	 * Since the cgroup code may dereference the @q->backing_dev_info
807 	 * pointer, only decrease its reference count after having removed the
808 	 * association with the block cgroup controller.
809 	 */
810 	bdi_put(q->backing_dev_info);
811 
812 	if (q->mq_ops)
813 		blk_mq_free_queue(q);
814 	percpu_ref_exit(&q->q_usage_counter);
815 
816 	spin_lock_irq(lock);
817 	if (q->queue_lock != &q->__queue_lock)
818 		q->queue_lock = &q->__queue_lock;
819 	spin_unlock_irq(lock);
820 
821 	/* @q is and will stay empty, shutdown and put */
822 	blk_put_queue(q);
823 }
824 EXPORT_SYMBOL(blk_cleanup_queue);
825 
826 /* Allocate memory local to the request queue */
827 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
828 {
829 	struct request_queue *q = data;
830 
831 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
832 }
833 
834 static void free_request_simple(void *element, void *data)
835 {
836 	kmem_cache_free(request_cachep, element);
837 }
838 
839 static void *alloc_request_size(gfp_t gfp_mask, void *data)
840 {
841 	struct request_queue *q = data;
842 	struct request *rq;
843 
844 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
845 			q->node);
846 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
847 		kfree(rq);
848 		rq = NULL;
849 	}
850 	return rq;
851 }
852 
853 static void free_request_size(void *element, void *data)
854 {
855 	struct request_queue *q = data;
856 
857 	if (q->exit_rq_fn)
858 		q->exit_rq_fn(q, element);
859 	kfree(element);
860 }
861 
862 int blk_init_rl(struct request_list *rl, struct request_queue *q,
863 		gfp_t gfp_mask)
864 {
865 	if (unlikely(rl->rq_pool) || q->mq_ops)
866 		return 0;
867 
868 	rl->q = q;
869 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
870 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
871 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
872 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
873 
874 	if (q->cmd_size) {
875 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 				alloc_request_size, free_request_size,
877 				q, gfp_mask, q->node);
878 	} else {
879 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
880 				alloc_request_simple, free_request_simple,
881 				q, gfp_mask, q->node);
882 	}
883 	if (!rl->rq_pool)
884 		return -ENOMEM;
885 
886 	if (rl != &q->root_rl)
887 		WARN_ON_ONCE(!blk_get_queue(q));
888 
889 	return 0;
890 }
891 
892 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
893 {
894 	if (rl->rq_pool) {
895 		mempool_destroy(rl->rq_pool);
896 		if (rl != &q->root_rl)
897 			blk_put_queue(q);
898 	}
899 }
900 
901 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
902 {
903 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
904 }
905 EXPORT_SYMBOL(blk_alloc_queue);
906 
907 /**
908  * blk_queue_enter() - try to increase q->q_usage_counter
909  * @q: request queue pointer
910  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
911  */
912 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
913 {
914 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
915 
916 	while (true) {
917 		bool success = false;
918 
919 		rcu_read_lock();
920 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
921 			/*
922 			 * The code that sets the PREEMPT_ONLY flag is
923 			 * responsible for ensuring that that flag is globally
924 			 * visible before the queue is unfrozen.
925 			 */
926 			if (preempt || !blk_queue_preempt_only(q)) {
927 				success = true;
928 			} else {
929 				percpu_ref_put(&q->q_usage_counter);
930 			}
931 		}
932 		rcu_read_unlock();
933 
934 		if (success)
935 			return 0;
936 
937 		if (flags & BLK_MQ_REQ_NOWAIT)
938 			return -EBUSY;
939 
940 		/*
941 		 * read pair of barrier in blk_freeze_queue_start(),
942 		 * we need to order reading __PERCPU_REF_DEAD flag of
943 		 * .q_usage_counter and reading .mq_freeze_depth or
944 		 * queue dying flag, otherwise the following wait may
945 		 * never return if the two reads are reordered.
946 		 */
947 		smp_rmb();
948 
949 		wait_event(q->mq_freeze_wq,
950 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
951 			    (preempt || !blk_queue_preempt_only(q))) ||
952 			   blk_queue_dying(q));
953 		if (blk_queue_dying(q))
954 			return -ENODEV;
955 	}
956 }
957 
958 void blk_queue_exit(struct request_queue *q)
959 {
960 	percpu_ref_put(&q->q_usage_counter);
961 }
962 
963 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
964 {
965 	struct request_queue *q =
966 		container_of(ref, struct request_queue, q_usage_counter);
967 
968 	wake_up_all(&q->mq_freeze_wq);
969 }
970 
971 static void blk_rq_timed_out_timer(struct timer_list *t)
972 {
973 	struct request_queue *q = from_timer(q, t, timeout);
974 
975 	kblockd_schedule_work(&q->timeout_work);
976 }
977 
978 /**
979  * blk_alloc_queue_node - allocate a request queue
980  * @gfp_mask: memory allocation flags
981  * @node_id: NUMA node to allocate memory from
982  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
983  *        serialize calls to the legacy .request_fn() callback. Ignored for
984  *	  blk-mq request queues.
985  *
986  * Note: pass the queue lock as the third argument to this function instead of
987  * setting the queue lock pointer explicitly to avoid triggering a sporadic
988  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
989  * the queue lock pointer must be set before blkcg_init_queue() is called.
990  */
991 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
992 					   spinlock_t *lock)
993 {
994 	struct request_queue *q;
995 	int ret;
996 
997 	q = kmem_cache_alloc_node(blk_requestq_cachep,
998 				gfp_mask | __GFP_ZERO, node_id);
999 	if (!q)
1000 		return NULL;
1001 
1002 	INIT_LIST_HEAD(&q->queue_head);
1003 	q->last_merge = NULL;
1004 	q->end_sector = 0;
1005 	q->boundary_rq = NULL;
1006 
1007 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1008 	if (q->id < 0)
1009 		goto fail_q;
1010 
1011 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1012 	if (ret)
1013 		goto fail_id;
1014 
1015 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1016 	if (!q->backing_dev_info)
1017 		goto fail_split;
1018 
1019 	q->stats = blk_alloc_queue_stats();
1020 	if (!q->stats)
1021 		goto fail_stats;
1022 
1023 	q->backing_dev_info->ra_pages =
1024 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1025 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1026 	q->backing_dev_info->name = "block";
1027 	q->node = node_id;
1028 
1029 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1030 		    laptop_mode_timer_fn, 0);
1031 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1032 	INIT_WORK(&q->timeout_work, NULL);
1033 	INIT_LIST_HEAD(&q->queue_head);
1034 	INIT_LIST_HEAD(&q->timeout_list);
1035 	INIT_LIST_HEAD(&q->icq_list);
1036 #ifdef CONFIG_BLK_CGROUP
1037 	INIT_LIST_HEAD(&q->blkg_list);
1038 #endif
1039 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1040 
1041 	kobject_init(&q->kobj, &blk_queue_ktype);
1042 
1043 #ifdef CONFIG_BLK_DEV_IO_TRACE
1044 	mutex_init(&q->blk_trace_mutex);
1045 #endif
1046 	mutex_init(&q->sysfs_lock);
1047 	spin_lock_init(&q->__queue_lock);
1048 
1049 	if (!q->mq_ops)
1050 		q->queue_lock = lock ? : &q->__queue_lock;
1051 
1052 	/*
1053 	 * A queue starts its life with bypass turned on to avoid
1054 	 * unnecessary bypass on/off overhead and nasty surprises during
1055 	 * init.  The initial bypass will be finished when the queue is
1056 	 * registered by blk_register_queue().
1057 	 */
1058 	q->bypass_depth = 1;
1059 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1060 
1061 	init_waitqueue_head(&q->mq_freeze_wq);
1062 
1063 	/*
1064 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1065 	 * See blk_register_queue() for details.
1066 	 */
1067 	if (percpu_ref_init(&q->q_usage_counter,
1068 				blk_queue_usage_counter_release,
1069 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1070 		goto fail_bdi;
1071 
1072 	if (blkcg_init_queue(q))
1073 		goto fail_ref;
1074 
1075 	return q;
1076 
1077 fail_ref:
1078 	percpu_ref_exit(&q->q_usage_counter);
1079 fail_bdi:
1080 	blk_free_queue_stats(q->stats);
1081 fail_stats:
1082 	bdi_put(q->backing_dev_info);
1083 fail_split:
1084 	bioset_exit(&q->bio_split);
1085 fail_id:
1086 	ida_simple_remove(&blk_queue_ida, q->id);
1087 fail_q:
1088 	kmem_cache_free(blk_requestq_cachep, q);
1089 	return NULL;
1090 }
1091 EXPORT_SYMBOL(blk_alloc_queue_node);
1092 
1093 /**
1094  * blk_init_queue  - prepare a request queue for use with a block device
1095  * @rfn:  The function to be called to process requests that have been
1096  *        placed on the queue.
1097  * @lock: Request queue spin lock
1098  *
1099  * Description:
1100  *    If a block device wishes to use the standard request handling procedures,
1101  *    which sorts requests and coalesces adjacent requests, then it must
1102  *    call blk_init_queue().  The function @rfn will be called when there
1103  *    are requests on the queue that need to be processed.  If the device
1104  *    supports plugging, then @rfn may not be called immediately when requests
1105  *    are available on the queue, but may be called at some time later instead.
1106  *    Plugged queues are generally unplugged when a buffer belonging to one
1107  *    of the requests on the queue is needed, or due to memory pressure.
1108  *
1109  *    @rfn is not required, or even expected, to remove all requests off the
1110  *    queue, but only as many as it can handle at a time.  If it does leave
1111  *    requests on the queue, it is responsible for arranging that the requests
1112  *    get dealt with eventually.
1113  *
1114  *    The queue spin lock must be held while manipulating the requests on the
1115  *    request queue; this lock will be taken also from interrupt context, so irq
1116  *    disabling is needed for it.
1117  *
1118  *    Function returns a pointer to the initialized request queue, or %NULL if
1119  *    it didn't succeed.
1120  *
1121  * Note:
1122  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1123  *    when the block device is deactivated (such as at module unload).
1124  **/
1125 
1126 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1127 {
1128 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1129 }
1130 EXPORT_SYMBOL(blk_init_queue);
1131 
1132 struct request_queue *
1133 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1134 {
1135 	struct request_queue *q;
1136 
1137 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1138 	if (!q)
1139 		return NULL;
1140 
1141 	q->request_fn = rfn;
1142 	if (blk_init_allocated_queue(q) < 0) {
1143 		blk_cleanup_queue(q);
1144 		return NULL;
1145 	}
1146 
1147 	return q;
1148 }
1149 EXPORT_SYMBOL(blk_init_queue_node);
1150 
1151 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1152 
1153 
1154 int blk_init_allocated_queue(struct request_queue *q)
1155 {
1156 	WARN_ON_ONCE(q->mq_ops);
1157 
1158 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1159 	if (!q->fq)
1160 		return -ENOMEM;
1161 
1162 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1163 		goto out_free_flush_queue;
1164 
1165 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1166 		goto out_exit_flush_rq;
1167 
1168 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1169 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1170 
1171 	/*
1172 	 * This also sets hw/phys segments, boundary and size
1173 	 */
1174 	blk_queue_make_request(q, blk_queue_bio);
1175 
1176 	q->sg_reserved_size = INT_MAX;
1177 
1178 	if (elevator_init(q))
1179 		goto out_exit_flush_rq;
1180 	return 0;
1181 
1182 out_exit_flush_rq:
1183 	if (q->exit_rq_fn)
1184 		q->exit_rq_fn(q, q->fq->flush_rq);
1185 out_free_flush_queue:
1186 	blk_free_flush_queue(q->fq);
1187 	return -ENOMEM;
1188 }
1189 EXPORT_SYMBOL(blk_init_allocated_queue);
1190 
1191 bool blk_get_queue(struct request_queue *q)
1192 {
1193 	if (likely(!blk_queue_dying(q))) {
1194 		__blk_get_queue(q);
1195 		return true;
1196 	}
1197 
1198 	return false;
1199 }
1200 EXPORT_SYMBOL(blk_get_queue);
1201 
1202 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1203 {
1204 	if (rq->rq_flags & RQF_ELVPRIV) {
1205 		elv_put_request(rl->q, rq);
1206 		if (rq->elv.icq)
1207 			put_io_context(rq->elv.icq->ioc);
1208 	}
1209 
1210 	mempool_free(rq, rl->rq_pool);
1211 }
1212 
1213 /*
1214  * ioc_batching returns true if the ioc is a valid batching request and
1215  * should be given priority access to a request.
1216  */
1217 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1218 {
1219 	if (!ioc)
1220 		return 0;
1221 
1222 	/*
1223 	 * Make sure the process is able to allocate at least 1 request
1224 	 * even if the batch times out, otherwise we could theoretically
1225 	 * lose wakeups.
1226 	 */
1227 	return ioc->nr_batch_requests == q->nr_batching ||
1228 		(ioc->nr_batch_requests > 0
1229 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1230 }
1231 
1232 /*
1233  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1234  * will cause the process to be a "batcher" on all queues in the system. This
1235  * is the behaviour we want though - once it gets a wakeup it should be given
1236  * a nice run.
1237  */
1238 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1239 {
1240 	if (!ioc || ioc_batching(q, ioc))
1241 		return;
1242 
1243 	ioc->nr_batch_requests = q->nr_batching;
1244 	ioc->last_waited = jiffies;
1245 }
1246 
1247 static void __freed_request(struct request_list *rl, int sync)
1248 {
1249 	struct request_queue *q = rl->q;
1250 
1251 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1252 		blk_clear_congested(rl, sync);
1253 
1254 	if (rl->count[sync] + 1 <= q->nr_requests) {
1255 		if (waitqueue_active(&rl->wait[sync]))
1256 			wake_up(&rl->wait[sync]);
1257 
1258 		blk_clear_rl_full(rl, sync);
1259 	}
1260 }
1261 
1262 /*
1263  * A request has just been released.  Account for it, update the full and
1264  * congestion status, wake up any waiters.   Called under q->queue_lock.
1265  */
1266 static void freed_request(struct request_list *rl, bool sync,
1267 		req_flags_t rq_flags)
1268 {
1269 	struct request_queue *q = rl->q;
1270 
1271 	q->nr_rqs[sync]--;
1272 	rl->count[sync]--;
1273 	if (rq_flags & RQF_ELVPRIV)
1274 		q->nr_rqs_elvpriv--;
1275 
1276 	__freed_request(rl, sync);
1277 
1278 	if (unlikely(rl->starved[sync ^ 1]))
1279 		__freed_request(rl, sync ^ 1);
1280 }
1281 
1282 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1283 {
1284 	struct request_list *rl;
1285 	int on_thresh, off_thresh;
1286 
1287 	WARN_ON_ONCE(q->mq_ops);
1288 
1289 	spin_lock_irq(q->queue_lock);
1290 	q->nr_requests = nr;
1291 	blk_queue_congestion_threshold(q);
1292 	on_thresh = queue_congestion_on_threshold(q);
1293 	off_thresh = queue_congestion_off_threshold(q);
1294 
1295 	blk_queue_for_each_rl(rl, q) {
1296 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1297 			blk_set_congested(rl, BLK_RW_SYNC);
1298 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1299 			blk_clear_congested(rl, BLK_RW_SYNC);
1300 
1301 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1302 			blk_set_congested(rl, BLK_RW_ASYNC);
1303 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1304 			blk_clear_congested(rl, BLK_RW_ASYNC);
1305 
1306 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1307 			blk_set_rl_full(rl, BLK_RW_SYNC);
1308 		} else {
1309 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1310 			wake_up(&rl->wait[BLK_RW_SYNC]);
1311 		}
1312 
1313 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1314 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1315 		} else {
1316 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1317 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1318 		}
1319 	}
1320 
1321 	spin_unlock_irq(q->queue_lock);
1322 	return 0;
1323 }
1324 
1325 /**
1326  * __get_request - get a free request
1327  * @rl: request list to allocate from
1328  * @op: operation and flags
1329  * @bio: bio to allocate request for (can be %NULL)
1330  * @flags: BLQ_MQ_REQ_* flags
1331  * @gfp_mask: allocator flags
1332  *
1333  * Get a free request from @q.  This function may fail under memory
1334  * pressure or if @q is dead.
1335  *
1336  * Must be called with @q->queue_lock held and,
1337  * Returns ERR_PTR on failure, with @q->queue_lock held.
1338  * Returns request pointer on success, with @q->queue_lock *not held*.
1339  */
1340 static struct request *__get_request(struct request_list *rl, unsigned int op,
1341 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1342 {
1343 	struct request_queue *q = rl->q;
1344 	struct request *rq;
1345 	struct elevator_type *et = q->elevator->type;
1346 	struct io_context *ioc = rq_ioc(bio);
1347 	struct io_cq *icq = NULL;
1348 	const bool is_sync = op_is_sync(op);
1349 	int may_queue;
1350 	req_flags_t rq_flags = RQF_ALLOCED;
1351 
1352 	lockdep_assert_held(q->queue_lock);
1353 
1354 	if (unlikely(blk_queue_dying(q)))
1355 		return ERR_PTR(-ENODEV);
1356 
1357 	may_queue = elv_may_queue(q, op);
1358 	if (may_queue == ELV_MQUEUE_NO)
1359 		goto rq_starved;
1360 
1361 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1362 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1363 			/*
1364 			 * The queue will fill after this allocation, so set
1365 			 * it as full, and mark this process as "batching".
1366 			 * This process will be allowed to complete a batch of
1367 			 * requests, others will be blocked.
1368 			 */
1369 			if (!blk_rl_full(rl, is_sync)) {
1370 				ioc_set_batching(q, ioc);
1371 				blk_set_rl_full(rl, is_sync);
1372 			} else {
1373 				if (may_queue != ELV_MQUEUE_MUST
1374 						&& !ioc_batching(q, ioc)) {
1375 					/*
1376 					 * The queue is full and the allocating
1377 					 * process is not a "batcher", and not
1378 					 * exempted by the IO scheduler
1379 					 */
1380 					return ERR_PTR(-ENOMEM);
1381 				}
1382 			}
1383 		}
1384 		blk_set_congested(rl, is_sync);
1385 	}
1386 
1387 	/*
1388 	 * Only allow batching queuers to allocate up to 50% over the defined
1389 	 * limit of requests, otherwise we could have thousands of requests
1390 	 * allocated with any setting of ->nr_requests
1391 	 */
1392 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1393 		return ERR_PTR(-ENOMEM);
1394 
1395 	q->nr_rqs[is_sync]++;
1396 	rl->count[is_sync]++;
1397 	rl->starved[is_sync] = 0;
1398 
1399 	/*
1400 	 * Decide whether the new request will be managed by elevator.  If
1401 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1402 	 * prevent the current elevator from being destroyed until the new
1403 	 * request is freed.  This guarantees icq's won't be destroyed and
1404 	 * makes creating new ones safe.
1405 	 *
1406 	 * Flush requests do not use the elevator so skip initialization.
1407 	 * This allows a request to share the flush and elevator data.
1408 	 *
1409 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1410 	 * it will be created after releasing queue_lock.
1411 	 */
1412 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1413 		rq_flags |= RQF_ELVPRIV;
1414 		q->nr_rqs_elvpriv++;
1415 		if (et->icq_cache && ioc)
1416 			icq = ioc_lookup_icq(ioc, q);
1417 	}
1418 
1419 	if (blk_queue_io_stat(q))
1420 		rq_flags |= RQF_IO_STAT;
1421 	spin_unlock_irq(q->queue_lock);
1422 
1423 	/* allocate and init request */
1424 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1425 	if (!rq)
1426 		goto fail_alloc;
1427 
1428 	blk_rq_init(q, rq);
1429 	blk_rq_set_rl(rq, rl);
1430 	rq->cmd_flags = op;
1431 	rq->rq_flags = rq_flags;
1432 	if (flags & BLK_MQ_REQ_PREEMPT)
1433 		rq->rq_flags |= RQF_PREEMPT;
1434 
1435 	/* init elvpriv */
1436 	if (rq_flags & RQF_ELVPRIV) {
1437 		if (unlikely(et->icq_cache && !icq)) {
1438 			if (ioc)
1439 				icq = ioc_create_icq(ioc, q, gfp_mask);
1440 			if (!icq)
1441 				goto fail_elvpriv;
1442 		}
1443 
1444 		rq->elv.icq = icq;
1445 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1446 			goto fail_elvpriv;
1447 
1448 		/* @rq->elv.icq holds io_context until @rq is freed */
1449 		if (icq)
1450 			get_io_context(icq->ioc);
1451 	}
1452 out:
1453 	/*
1454 	 * ioc may be NULL here, and ioc_batching will be false. That's
1455 	 * OK, if the queue is under the request limit then requests need
1456 	 * not count toward the nr_batch_requests limit. There will always
1457 	 * be some limit enforced by BLK_BATCH_TIME.
1458 	 */
1459 	if (ioc_batching(q, ioc))
1460 		ioc->nr_batch_requests--;
1461 
1462 	trace_block_getrq(q, bio, op);
1463 	return rq;
1464 
1465 fail_elvpriv:
1466 	/*
1467 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1468 	 * and may fail indefinitely under memory pressure and thus
1469 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1470 	 * disturb iosched and blkcg but weird is bettern than dead.
1471 	 */
1472 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1473 			   __func__, dev_name(q->backing_dev_info->dev));
1474 
1475 	rq->rq_flags &= ~RQF_ELVPRIV;
1476 	rq->elv.icq = NULL;
1477 
1478 	spin_lock_irq(q->queue_lock);
1479 	q->nr_rqs_elvpriv--;
1480 	spin_unlock_irq(q->queue_lock);
1481 	goto out;
1482 
1483 fail_alloc:
1484 	/*
1485 	 * Allocation failed presumably due to memory. Undo anything we
1486 	 * might have messed up.
1487 	 *
1488 	 * Allocating task should really be put onto the front of the wait
1489 	 * queue, but this is pretty rare.
1490 	 */
1491 	spin_lock_irq(q->queue_lock);
1492 	freed_request(rl, is_sync, rq_flags);
1493 
1494 	/*
1495 	 * in the very unlikely event that allocation failed and no
1496 	 * requests for this direction was pending, mark us starved so that
1497 	 * freeing of a request in the other direction will notice
1498 	 * us. another possible fix would be to split the rq mempool into
1499 	 * READ and WRITE
1500 	 */
1501 rq_starved:
1502 	if (unlikely(rl->count[is_sync] == 0))
1503 		rl->starved[is_sync] = 1;
1504 	return ERR_PTR(-ENOMEM);
1505 }
1506 
1507 /**
1508  * get_request - get a free request
1509  * @q: request_queue to allocate request from
1510  * @op: operation and flags
1511  * @bio: bio to allocate request for (can be %NULL)
1512  * @flags: BLK_MQ_REQ_* flags.
1513  * @gfp: allocator flags
1514  *
1515  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1516  * this function keeps retrying under memory pressure and fails iff @q is dead.
1517  *
1518  * Must be called with @q->queue_lock held and,
1519  * Returns ERR_PTR on failure, with @q->queue_lock held.
1520  * Returns request pointer on success, with @q->queue_lock *not held*.
1521  */
1522 static struct request *get_request(struct request_queue *q, unsigned int op,
1523 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1524 {
1525 	const bool is_sync = op_is_sync(op);
1526 	DEFINE_WAIT(wait);
1527 	struct request_list *rl;
1528 	struct request *rq;
1529 
1530 	lockdep_assert_held(q->queue_lock);
1531 	WARN_ON_ONCE(q->mq_ops);
1532 
1533 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1534 retry:
1535 	rq = __get_request(rl, op, bio, flags, gfp);
1536 	if (!IS_ERR(rq))
1537 		return rq;
1538 
1539 	if (op & REQ_NOWAIT) {
1540 		blk_put_rl(rl);
1541 		return ERR_PTR(-EAGAIN);
1542 	}
1543 
1544 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1545 		blk_put_rl(rl);
1546 		return rq;
1547 	}
1548 
1549 	/* wait on @rl and retry */
1550 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1551 				  TASK_UNINTERRUPTIBLE);
1552 
1553 	trace_block_sleeprq(q, bio, op);
1554 
1555 	spin_unlock_irq(q->queue_lock);
1556 	io_schedule();
1557 
1558 	/*
1559 	 * After sleeping, we become a "batching" process and will be able
1560 	 * to allocate at least one request, and up to a big batch of them
1561 	 * for a small period time.  See ioc_batching, ioc_set_batching
1562 	 */
1563 	ioc_set_batching(q, current->io_context);
1564 
1565 	spin_lock_irq(q->queue_lock);
1566 	finish_wait(&rl->wait[is_sync], &wait);
1567 
1568 	goto retry;
1569 }
1570 
1571 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1572 static struct request *blk_old_get_request(struct request_queue *q,
1573 				unsigned int op, blk_mq_req_flags_t flags)
1574 {
1575 	struct request *rq;
1576 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1577 	int ret = 0;
1578 
1579 	WARN_ON_ONCE(q->mq_ops);
1580 
1581 	/* create ioc upfront */
1582 	create_io_context(gfp_mask, q->node);
1583 
1584 	ret = blk_queue_enter(q, flags);
1585 	if (ret)
1586 		return ERR_PTR(ret);
1587 	spin_lock_irq(q->queue_lock);
1588 	rq = get_request(q, op, NULL, flags, gfp_mask);
1589 	if (IS_ERR(rq)) {
1590 		spin_unlock_irq(q->queue_lock);
1591 		blk_queue_exit(q);
1592 		return rq;
1593 	}
1594 
1595 	/* q->queue_lock is unlocked at this point */
1596 	rq->__data_len = 0;
1597 	rq->__sector = (sector_t) -1;
1598 	rq->bio = rq->biotail = NULL;
1599 	return rq;
1600 }
1601 
1602 /**
1603  * blk_get_request - allocate a request
1604  * @q: request queue to allocate a request for
1605  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1606  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1607  */
1608 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1609 				blk_mq_req_flags_t flags)
1610 {
1611 	struct request *req;
1612 
1613 	WARN_ON_ONCE(op & REQ_NOWAIT);
1614 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1615 
1616 	if (q->mq_ops) {
1617 		req = blk_mq_alloc_request(q, op, flags);
1618 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1619 			q->mq_ops->initialize_rq_fn(req);
1620 	} else {
1621 		req = blk_old_get_request(q, op, flags);
1622 		if (!IS_ERR(req) && q->initialize_rq_fn)
1623 			q->initialize_rq_fn(req);
1624 	}
1625 
1626 	return req;
1627 }
1628 EXPORT_SYMBOL(blk_get_request);
1629 
1630 /**
1631  * blk_requeue_request - put a request back on queue
1632  * @q:		request queue where request should be inserted
1633  * @rq:		request to be inserted
1634  *
1635  * Description:
1636  *    Drivers often keep queueing requests until the hardware cannot accept
1637  *    more, when that condition happens we need to put the request back
1638  *    on the queue. Must be called with queue lock held.
1639  */
1640 void blk_requeue_request(struct request_queue *q, struct request *rq)
1641 {
1642 	lockdep_assert_held(q->queue_lock);
1643 	WARN_ON_ONCE(q->mq_ops);
1644 
1645 	blk_delete_timer(rq);
1646 	blk_clear_rq_complete(rq);
1647 	trace_block_rq_requeue(q, rq);
1648 	wbt_requeue(q->rq_wb, rq);
1649 
1650 	if (rq->rq_flags & RQF_QUEUED)
1651 		blk_queue_end_tag(q, rq);
1652 
1653 	BUG_ON(blk_queued_rq(rq));
1654 
1655 	elv_requeue_request(q, rq);
1656 }
1657 EXPORT_SYMBOL(blk_requeue_request);
1658 
1659 static void add_acct_request(struct request_queue *q, struct request *rq,
1660 			     int where)
1661 {
1662 	blk_account_io_start(rq, true);
1663 	__elv_add_request(q, rq, where);
1664 }
1665 
1666 static void part_round_stats_single(struct request_queue *q, int cpu,
1667 				    struct hd_struct *part, unsigned long now,
1668 				    unsigned int inflight)
1669 {
1670 	if (inflight) {
1671 		__part_stat_add(cpu, part, time_in_queue,
1672 				inflight * (now - part->stamp));
1673 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1674 	}
1675 	part->stamp = now;
1676 }
1677 
1678 /**
1679  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1680  * @q: target block queue
1681  * @cpu: cpu number for stats access
1682  * @part: target partition
1683  *
1684  * The average IO queue length and utilisation statistics are maintained
1685  * by observing the current state of the queue length and the amount of
1686  * time it has been in this state for.
1687  *
1688  * Normally, that accounting is done on IO completion, but that can result
1689  * in more than a second's worth of IO being accounted for within any one
1690  * second, leading to >100% utilisation.  To deal with that, we call this
1691  * function to do a round-off before returning the results when reading
1692  * /proc/diskstats.  This accounts immediately for all queue usage up to
1693  * the current jiffies and restarts the counters again.
1694  */
1695 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1696 {
1697 	struct hd_struct *part2 = NULL;
1698 	unsigned long now = jiffies;
1699 	unsigned int inflight[2];
1700 	int stats = 0;
1701 
1702 	if (part->stamp != now)
1703 		stats |= 1;
1704 
1705 	if (part->partno) {
1706 		part2 = &part_to_disk(part)->part0;
1707 		if (part2->stamp != now)
1708 			stats |= 2;
1709 	}
1710 
1711 	if (!stats)
1712 		return;
1713 
1714 	part_in_flight(q, part, inflight);
1715 
1716 	if (stats & 2)
1717 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1718 	if (stats & 1)
1719 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1720 }
1721 EXPORT_SYMBOL_GPL(part_round_stats);
1722 
1723 #ifdef CONFIG_PM
1724 static void blk_pm_put_request(struct request *rq)
1725 {
1726 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1727 		pm_runtime_mark_last_busy(rq->q->dev);
1728 }
1729 #else
1730 static inline void blk_pm_put_request(struct request *rq) {}
1731 #endif
1732 
1733 void __blk_put_request(struct request_queue *q, struct request *req)
1734 {
1735 	req_flags_t rq_flags = req->rq_flags;
1736 
1737 	if (unlikely(!q))
1738 		return;
1739 
1740 	if (q->mq_ops) {
1741 		blk_mq_free_request(req);
1742 		return;
1743 	}
1744 
1745 	lockdep_assert_held(q->queue_lock);
1746 
1747 	blk_req_zone_write_unlock(req);
1748 	blk_pm_put_request(req);
1749 
1750 	elv_completed_request(q, req);
1751 
1752 	/* this is a bio leak */
1753 	WARN_ON(req->bio != NULL);
1754 
1755 	wbt_done(q->rq_wb, req);
1756 
1757 	/*
1758 	 * Request may not have originated from ll_rw_blk. if not,
1759 	 * it didn't come out of our reserved rq pools
1760 	 */
1761 	if (rq_flags & RQF_ALLOCED) {
1762 		struct request_list *rl = blk_rq_rl(req);
1763 		bool sync = op_is_sync(req->cmd_flags);
1764 
1765 		BUG_ON(!list_empty(&req->queuelist));
1766 		BUG_ON(ELV_ON_HASH(req));
1767 
1768 		blk_free_request(rl, req);
1769 		freed_request(rl, sync, rq_flags);
1770 		blk_put_rl(rl);
1771 		blk_queue_exit(q);
1772 	}
1773 }
1774 EXPORT_SYMBOL_GPL(__blk_put_request);
1775 
1776 void blk_put_request(struct request *req)
1777 {
1778 	struct request_queue *q = req->q;
1779 
1780 	if (q->mq_ops)
1781 		blk_mq_free_request(req);
1782 	else {
1783 		unsigned long flags;
1784 
1785 		spin_lock_irqsave(q->queue_lock, flags);
1786 		__blk_put_request(q, req);
1787 		spin_unlock_irqrestore(q->queue_lock, flags);
1788 	}
1789 }
1790 EXPORT_SYMBOL(blk_put_request);
1791 
1792 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1793 			    struct bio *bio)
1794 {
1795 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1796 
1797 	if (!ll_back_merge_fn(q, req, bio))
1798 		return false;
1799 
1800 	trace_block_bio_backmerge(q, req, bio);
1801 
1802 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1803 		blk_rq_set_mixed_merge(req);
1804 
1805 	req->biotail->bi_next = bio;
1806 	req->biotail = bio;
1807 	req->__data_len += bio->bi_iter.bi_size;
1808 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1809 
1810 	blk_account_io_start(req, false);
1811 	return true;
1812 }
1813 
1814 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1815 			     struct bio *bio)
1816 {
1817 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1818 
1819 	if (!ll_front_merge_fn(q, req, bio))
1820 		return false;
1821 
1822 	trace_block_bio_frontmerge(q, req, bio);
1823 
1824 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1825 		blk_rq_set_mixed_merge(req);
1826 
1827 	bio->bi_next = req->bio;
1828 	req->bio = bio;
1829 
1830 	req->__sector = bio->bi_iter.bi_sector;
1831 	req->__data_len += bio->bi_iter.bi_size;
1832 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1833 
1834 	blk_account_io_start(req, false);
1835 	return true;
1836 }
1837 
1838 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1839 		struct bio *bio)
1840 {
1841 	unsigned short segments = blk_rq_nr_discard_segments(req);
1842 
1843 	if (segments >= queue_max_discard_segments(q))
1844 		goto no_merge;
1845 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1846 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1847 		goto no_merge;
1848 
1849 	req->biotail->bi_next = bio;
1850 	req->biotail = bio;
1851 	req->__data_len += bio->bi_iter.bi_size;
1852 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1853 	req->nr_phys_segments = segments + 1;
1854 
1855 	blk_account_io_start(req, false);
1856 	return true;
1857 no_merge:
1858 	req_set_nomerge(q, req);
1859 	return false;
1860 }
1861 
1862 /**
1863  * blk_attempt_plug_merge - try to merge with %current's plugged list
1864  * @q: request_queue new bio is being queued at
1865  * @bio: new bio being queued
1866  * @request_count: out parameter for number of traversed plugged requests
1867  * @same_queue_rq: pointer to &struct request that gets filled in when
1868  * another request associated with @q is found on the plug list
1869  * (optional, may be %NULL)
1870  *
1871  * Determine whether @bio being queued on @q can be merged with a request
1872  * on %current's plugged list.  Returns %true if merge was successful,
1873  * otherwise %false.
1874  *
1875  * Plugging coalesces IOs from the same issuer for the same purpose without
1876  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1877  * than scheduling, and the request, while may have elvpriv data, is not
1878  * added on the elevator at this point.  In addition, we don't have
1879  * reliable access to the elevator outside queue lock.  Only check basic
1880  * merging parameters without querying the elevator.
1881  *
1882  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1883  */
1884 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1885 			    unsigned int *request_count,
1886 			    struct request **same_queue_rq)
1887 {
1888 	struct blk_plug *plug;
1889 	struct request *rq;
1890 	struct list_head *plug_list;
1891 
1892 	plug = current->plug;
1893 	if (!plug)
1894 		return false;
1895 	*request_count = 0;
1896 
1897 	if (q->mq_ops)
1898 		plug_list = &plug->mq_list;
1899 	else
1900 		plug_list = &plug->list;
1901 
1902 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1903 		bool merged = false;
1904 
1905 		if (rq->q == q) {
1906 			(*request_count)++;
1907 			/*
1908 			 * Only blk-mq multiple hardware queues case checks the
1909 			 * rq in the same queue, there should be only one such
1910 			 * rq in a queue
1911 			 **/
1912 			if (same_queue_rq)
1913 				*same_queue_rq = rq;
1914 		}
1915 
1916 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1917 			continue;
1918 
1919 		switch (blk_try_merge(rq, bio)) {
1920 		case ELEVATOR_BACK_MERGE:
1921 			merged = bio_attempt_back_merge(q, rq, bio);
1922 			break;
1923 		case ELEVATOR_FRONT_MERGE:
1924 			merged = bio_attempt_front_merge(q, rq, bio);
1925 			break;
1926 		case ELEVATOR_DISCARD_MERGE:
1927 			merged = bio_attempt_discard_merge(q, rq, bio);
1928 			break;
1929 		default:
1930 			break;
1931 		}
1932 
1933 		if (merged)
1934 			return true;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 unsigned int blk_plug_queued_count(struct request_queue *q)
1941 {
1942 	struct blk_plug *plug;
1943 	struct request *rq;
1944 	struct list_head *plug_list;
1945 	unsigned int ret = 0;
1946 
1947 	plug = current->plug;
1948 	if (!plug)
1949 		goto out;
1950 
1951 	if (q->mq_ops)
1952 		plug_list = &plug->mq_list;
1953 	else
1954 		plug_list = &plug->list;
1955 
1956 	list_for_each_entry(rq, plug_list, queuelist) {
1957 		if (rq->q == q)
1958 			ret++;
1959 	}
1960 out:
1961 	return ret;
1962 }
1963 
1964 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1965 {
1966 	struct io_context *ioc = rq_ioc(bio);
1967 
1968 	if (bio->bi_opf & REQ_RAHEAD)
1969 		req->cmd_flags |= REQ_FAILFAST_MASK;
1970 
1971 	req->__sector = bio->bi_iter.bi_sector;
1972 	if (ioprio_valid(bio_prio(bio)))
1973 		req->ioprio = bio_prio(bio);
1974 	else if (ioc)
1975 		req->ioprio = ioc->ioprio;
1976 	else
1977 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1978 	req->write_hint = bio->bi_write_hint;
1979 	blk_rq_bio_prep(req->q, req, bio);
1980 }
1981 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1982 
1983 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1984 {
1985 	struct blk_plug *plug;
1986 	int where = ELEVATOR_INSERT_SORT;
1987 	struct request *req, *free;
1988 	unsigned int request_count = 0;
1989 	unsigned int wb_acct;
1990 
1991 	/*
1992 	 * low level driver can indicate that it wants pages above a
1993 	 * certain limit bounced to low memory (ie for highmem, or even
1994 	 * ISA dma in theory)
1995 	 */
1996 	blk_queue_bounce(q, &bio);
1997 
1998 	blk_queue_split(q, &bio);
1999 
2000 	if (!bio_integrity_prep(bio))
2001 		return BLK_QC_T_NONE;
2002 
2003 	if (op_is_flush(bio->bi_opf)) {
2004 		spin_lock_irq(q->queue_lock);
2005 		where = ELEVATOR_INSERT_FLUSH;
2006 		goto get_rq;
2007 	}
2008 
2009 	/*
2010 	 * Check if we can merge with the plugged list before grabbing
2011 	 * any locks.
2012 	 */
2013 	if (!blk_queue_nomerges(q)) {
2014 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2015 			return BLK_QC_T_NONE;
2016 	} else
2017 		request_count = blk_plug_queued_count(q);
2018 
2019 	spin_lock_irq(q->queue_lock);
2020 
2021 	switch (elv_merge(q, &req, bio)) {
2022 	case ELEVATOR_BACK_MERGE:
2023 		if (!bio_attempt_back_merge(q, req, bio))
2024 			break;
2025 		elv_bio_merged(q, req, bio);
2026 		free = attempt_back_merge(q, req);
2027 		if (free)
2028 			__blk_put_request(q, free);
2029 		else
2030 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2031 		goto out_unlock;
2032 	case ELEVATOR_FRONT_MERGE:
2033 		if (!bio_attempt_front_merge(q, req, bio))
2034 			break;
2035 		elv_bio_merged(q, req, bio);
2036 		free = attempt_front_merge(q, req);
2037 		if (free)
2038 			__blk_put_request(q, free);
2039 		else
2040 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2041 		goto out_unlock;
2042 	default:
2043 		break;
2044 	}
2045 
2046 get_rq:
2047 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2048 
2049 	/*
2050 	 * Grab a free request. This is might sleep but can not fail.
2051 	 * Returns with the queue unlocked.
2052 	 */
2053 	blk_queue_enter_live(q);
2054 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2055 	if (IS_ERR(req)) {
2056 		blk_queue_exit(q);
2057 		__wbt_done(q->rq_wb, wb_acct);
2058 		if (PTR_ERR(req) == -ENOMEM)
2059 			bio->bi_status = BLK_STS_RESOURCE;
2060 		else
2061 			bio->bi_status = BLK_STS_IOERR;
2062 		bio_endio(bio);
2063 		goto out_unlock;
2064 	}
2065 
2066 	wbt_track(req, wb_acct);
2067 
2068 	/*
2069 	 * After dropping the lock and possibly sleeping here, our request
2070 	 * may now be mergeable after it had proven unmergeable (above).
2071 	 * We don't worry about that case for efficiency. It won't happen
2072 	 * often, and the elevators are able to handle it.
2073 	 */
2074 	blk_init_request_from_bio(req, bio);
2075 
2076 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2077 		req->cpu = raw_smp_processor_id();
2078 
2079 	plug = current->plug;
2080 	if (plug) {
2081 		/*
2082 		 * If this is the first request added after a plug, fire
2083 		 * of a plug trace.
2084 		 *
2085 		 * @request_count may become stale because of schedule
2086 		 * out, so check plug list again.
2087 		 */
2088 		if (!request_count || list_empty(&plug->list))
2089 			trace_block_plug(q);
2090 		else {
2091 			struct request *last = list_entry_rq(plug->list.prev);
2092 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2093 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2094 				blk_flush_plug_list(plug, false);
2095 				trace_block_plug(q);
2096 			}
2097 		}
2098 		list_add_tail(&req->queuelist, &plug->list);
2099 		blk_account_io_start(req, true);
2100 	} else {
2101 		spin_lock_irq(q->queue_lock);
2102 		add_acct_request(q, req, where);
2103 		__blk_run_queue(q);
2104 out_unlock:
2105 		spin_unlock_irq(q->queue_lock);
2106 	}
2107 
2108 	return BLK_QC_T_NONE;
2109 }
2110 
2111 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2112 {
2113 	char b[BDEVNAME_SIZE];
2114 
2115 	printk(KERN_INFO "attempt to access beyond end of device\n");
2116 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2117 			bio_devname(bio, b), bio->bi_opf,
2118 			(unsigned long long)bio_end_sector(bio),
2119 			(long long)maxsector);
2120 }
2121 
2122 #ifdef CONFIG_FAIL_MAKE_REQUEST
2123 
2124 static DECLARE_FAULT_ATTR(fail_make_request);
2125 
2126 static int __init setup_fail_make_request(char *str)
2127 {
2128 	return setup_fault_attr(&fail_make_request, str);
2129 }
2130 __setup("fail_make_request=", setup_fail_make_request);
2131 
2132 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2133 {
2134 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2135 }
2136 
2137 static int __init fail_make_request_debugfs(void)
2138 {
2139 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2140 						NULL, &fail_make_request);
2141 
2142 	return PTR_ERR_OR_ZERO(dir);
2143 }
2144 
2145 late_initcall(fail_make_request_debugfs);
2146 
2147 #else /* CONFIG_FAIL_MAKE_REQUEST */
2148 
2149 static inline bool should_fail_request(struct hd_struct *part,
2150 					unsigned int bytes)
2151 {
2152 	return false;
2153 }
2154 
2155 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2156 
2157 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2158 {
2159 	if (part->policy && op_is_write(bio_op(bio))) {
2160 		char b[BDEVNAME_SIZE];
2161 
2162 		printk(KERN_ERR
2163 		       "generic_make_request: Trying to write "
2164 			"to read-only block-device %s (partno %d)\n",
2165 			bio_devname(bio, b), part->partno);
2166 		return true;
2167 	}
2168 
2169 	return false;
2170 }
2171 
2172 static noinline int should_fail_bio(struct bio *bio)
2173 {
2174 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2175 		return -EIO;
2176 	return 0;
2177 }
2178 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2179 
2180 /*
2181  * Check whether this bio extends beyond the end of the device or partition.
2182  * This may well happen - the kernel calls bread() without checking the size of
2183  * the device, e.g., when mounting a file system.
2184  */
2185 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2186 {
2187 	unsigned int nr_sectors = bio_sectors(bio);
2188 
2189 	if (nr_sectors && maxsector &&
2190 	    (nr_sectors > maxsector ||
2191 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2192 		handle_bad_sector(bio, maxsector);
2193 		return -EIO;
2194 	}
2195 	return 0;
2196 }
2197 
2198 /*
2199  * Remap block n of partition p to block n+start(p) of the disk.
2200  */
2201 static inline int blk_partition_remap(struct bio *bio)
2202 {
2203 	struct hd_struct *p;
2204 	int ret = -EIO;
2205 
2206 	rcu_read_lock();
2207 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2208 	if (unlikely(!p))
2209 		goto out;
2210 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2211 		goto out;
2212 	if (unlikely(bio_check_ro(bio, p)))
2213 		goto out;
2214 
2215 	/*
2216 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2217 	 * Include a test for the reset op code and perform the remap if needed.
2218 	 */
2219 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2220 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2221 			goto out;
2222 		bio->bi_iter.bi_sector += p->start_sect;
2223 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2224 				      bio->bi_iter.bi_sector - p->start_sect);
2225 	}
2226 	bio->bi_partno = 0;
2227 	ret = 0;
2228 out:
2229 	rcu_read_unlock();
2230 	return ret;
2231 }
2232 
2233 static noinline_for_stack bool
2234 generic_make_request_checks(struct bio *bio)
2235 {
2236 	struct request_queue *q;
2237 	int nr_sectors = bio_sectors(bio);
2238 	blk_status_t status = BLK_STS_IOERR;
2239 	char b[BDEVNAME_SIZE];
2240 
2241 	might_sleep();
2242 
2243 	q = bio->bi_disk->queue;
2244 	if (unlikely(!q)) {
2245 		printk(KERN_ERR
2246 		       "generic_make_request: Trying to access "
2247 			"nonexistent block-device %s (%Lu)\n",
2248 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2249 		goto end_io;
2250 	}
2251 
2252 	/*
2253 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2254 	 * if queue is not a request based queue.
2255 	 */
2256 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2257 		goto not_supported;
2258 
2259 	if (should_fail_bio(bio))
2260 		goto end_io;
2261 
2262 	if (bio->bi_partno) {
2263 		if (unlikely(blk_partition_remap(bio)))
2264 			goto end_io;
2265 	} else {
2266 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2267 			goto end_io;
2268 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2269 			goto end_io;
2270 	}
2271 
2272 	/*
2273 	 * Filter flush bio's early so that make_request based
2274 	 * drivers without flush support don't have to worry
2275 	 * about them.
2276 	 */
2277 	if (op_is_flush(bio->bi_opf) &&
2278 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2279 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2280 		if (!nr_sectors) {
2281 			status = BLK_STS_OK;
2282 			goto end_io;
2283 		}
2284 	}
2285 
2286 	switch (bio_op(bio)) {
2287 	case REQ_OP_DISCARD:
2288 		if (!blk_queue_discard(q))
2289 			goto not_supported;
2290 		break;
2291 	case REQ_OP_SECURE_ERASE:
2292 		if (!blk_queue_secure_erase(q))
2293 			goto not_supported;
2294 		break;
2295 	case REQ_OP_WRITE_SAME:
2296 		if (!q->limits.max_write_same_sectors)
2297 			goto not_supported;
2298 		break;
2299 	case REQ_OP_ZONE_REPORT:
2300 	case REQ_OP_ZONE_RESET:
2301 		if (!blk_queue_is_zoned(q))
2302 			goto not_supported;
2303 		break;
2304 	case REQ_OP_WRITE_ZEROES:
2305 		if (!q->limits.max_write_zeroes_sectors)
2306 			goto not_supported;
2307 		break;
2308 	default:
2309 		break;
2310 	}
2311 
2312 	/*
2313 	 * Various block parts want %current->io_context and lazy ioc
2314 	 * allocation ends up trading a lot of pain for a small amount of
2315 	 * memory.  Just allocate it upfront.  This may fail and block
2316 	 * layer knows how to live with it.
2317 	 */
2318 	create_io_context(GFP_ATOMIC, q->node);
2319 
2320 	if (!blkcg_bio_issue_check(q, bio))
2321 		return false;
2322 
2323 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2324 		trace_block_bio_queue(q, bio);
2325 		/* Now that enqueuing has been traced, we need to trace
2326 		 * completion as well.
2327 		 */
2328 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2329 	}
2330 	return true;
2331 
2332 not_supported:
2333 	status = BLK_STS_NOTSUPP;
2334 end_io:
2335 	bio->bi_status = status;
2336 	bio_endio(bio);
2337 	return false;
2338 }
2339 
2340 /**
2341  * generic_make_request - hand a buffer to its device driver for I/O
2342  * @bio:  The bio describing the location in memory and on the device.
2343  *
2344  * generic_make_request() is used to make I/O requests of block
2345  * devices. It is passed a &struct bio, which describes the I/O that needs
2346  * to be done.
2347  *
2348  * generic_make_request() does not return any status.  The
2349  * success/failure status of the request, along with notification of
2350  * completion, is delivered asynchronously through the bio->bi_end_io
2351  * function described (one day) else where.
2352  *
2353  * The caller of generic_make_request must make sure that bi_io_vec
2354  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2355  * set to describe the device address, and the
2356  * bi_end_io and optionally bi_private are set to describe how
2357  * completion notification should be signaled.
2358  *
2359  * generic_make_request and the drivers it calls may use bi_next if this
2360  * bio happens to be merged with someone else, and may resubmit the bio to
2361  * a lower device by calling into generic_make_request recursively, which
2362  * means the bio should NOT be touched after the call to ->make_request_fn.
2363  */
2364 blk_qc_t generic_make_request(struct bio *bio)
2365 {
2366 	/*
2367 	 * bio_list_on_stack[0] contains bios submitted by the current
2368 	 * make_request_fn.
2369 	 * bio_list_on_stack[1] contains bios that were submitted before
2370 	 * the current make_request_fn, but that haven't been processed
2371 	 * yet.
2372 	 */
2373 	struct bio_list bio_list_on_stack[2];
2374 	blk_mq_req_flags_t flags = 0;
2375 	struct request_queue *q = bio->bi_disk->queue;
2376 	blk_qc_t ret = BLK_QC_T_NONE;
2377 
2378 	if (bio->bi_opf & REQ_NOWAIT)
2379 		flags = BLK_MQ_REQ_NOWAIT;
2380 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2381 		blk_queue_enter_live(q);
2382 	else if (blk_queue_enter(q, flags) < 0) {
2383 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2384 			bio_wouldblock_error(bio);
2385 		else
2386 			bio_io_error(bio);
2387 		return ret;
2388 	}
2389 
2390 	if (!generic_make_request_checks(bio))
2391 		goto out;
2392 
2393 	/*
2394 	 * We only want one ->make_request_fn to be active at a time, else
2395 	 * stack usage with stacked devices could be a problem.  So use
2396 	 * current->bio_list to keep a list of requests submited by a
2397 	 * make_request_fn function.  current->bio_list is also used as a
2398 	 * flag to say if generic_make_request is currently active in this
2399 	 * task or not.  If it is NULL, then no make_request is active.  If
2400 	 * it is non-NULL, then a make_request is active, and new requests
2401 	 * should be added at the tail
2402 	 */
2403 	if (current->bio_list) {
2404 		bio_list_add(&current->bio_list[0], bio);
2405 		goto out;
2406 	}
2407 
2408 	/* following loop may be a bit non-obvious, and so deserves some
2409 	 * explanation.
2410 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2411 	 * ensure that) so we have a list with a single bio.
2412 	 * We pretend that we have just taken it off a longer list, so
2413 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2414 	 * thus initialising the bio_list of new bios to be
2415 	 * added.  ->make_request() may indeed add some more bios
2416 	 * through a recursive call to generic_make_request.  If it
2417 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2418 	 * from the top.  In this case we really did just take the bio
2419 	 * of the top of the list (no pretending) and so remove it from
2420 	 * bio_list, and call into ->make_request() again.
2421 	 */
2422 	BUG_ON(bio->bi_next);
2423 	bio_list_init(&bio_list_on_stack[0]);
2424 	current->bio_list = bio_list_on_stack;
2425 	do {
2426 		bool enter_succeeded = true;
2427 
2428 		if (unlikely(q != bio->bi_disk->queue)) {
2429 			if (q)
2430 				blk_queue_exit(q);
2431 			q = bio->bi_disk->queue;
2432 			flags = 0;
2433 			if (bio->bi_opf & REQ_NOWAIT)
2434 				flags = BLK_MQ_REQ_NOWAIT;
2435 			if (blk_queue_enter(q, flags) < 0) {
2436 				enter_succeeded = false;
2437 				q = NULL;
2438 			}
2439 		}
2440 
2441 		if (enter_succeeded) {
2442 			struct bio_list lower, same;
2443 
2444 			/* Create a fresh bio_list for all subordinate requests */
2445 			bio_list_on_stack[1] = bio_list_on_stack[0];
2446 			bio_list_init(&bio_list_on_stack[0]);
2447 			ret = q->make_request_fn(q, bio);
2448 
2449 			/* sort new bios into those for a lower level
2450 			 * and those for the same level
2451 			 */
2452 			bio_list_init(&lower);
2453 			bio_list_init(&same);
2454 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2455 				if (q == bio->bi_disk->queue)
2456 					bio_list_add(&same, bio);
2457 				else
2458 					bio_list_add(&lower, bio);
2459 			/* now assemble so we handle the lowest level first */
2460 			bio_list_merge(&bio_list_on_stack[0], &lower);
2461 			bio_list_merge(&bio_list_on_stack[0], &same);
2462 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2463 		} else {
2464 			if (unlikely(!blk_queue_dying(q) &&
2465 					(bio->bi_opf & REQ_NOWAIT)))
2466 				bio_wouldblock_error(bio);
2467 			else
2468 				bio_io_error(bio);
2469 		}
2470 		bio = bio_list_pop(&bio_list_on_stack[0]);
2471 	} while (bio);
2472 	current->bio_list = NULL; /* deactivate */
2473 
2474 out:
2475 	if (q)
2476 		blk_queue_exit(q);
2477 	return ret;
2478 }
2479 EXPORT_SYMBOL(generic_make_request);
2480 
2481 /**
2482  * direct_make_request - hand a buffer directly to its device driver for I/O
2483  * @bio:  The bio describing the location in memory and on the device.
2484  *
2485  * This function behaves like generic_make_request(), but does not protect
2486  * against recursion.  Must only be used if the called driver is known
2487  * to not call generic_make_request (or direct_make_request) again from
2488  * its make_request function.  (Calling direct_make_request again from
2489  * a workqueue is perfectly fine as that doesn't recurse).
2490  */
2491 blk_qc_t direct_make_request(struct bio *bio)
2492 {
2493 	struct request_queue *q = bio->bi_disk->queue;
2494 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2495 	blk_qc_t ret;
2496 
2497 	if (!generic_make_request_checks(bio))
2498 		return BLK_QC_T_NONE;
2499 
2500 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2501 		if (nowait && !blk_queue_dying(q))
2502 			bio->bi_status = BLK_STS_AGAIN;
2503 		else
2504 			bio->bi_status = BLK_STS_IOERR;
2505 		bio_endio(bio);
2506 		return BLK_QC_T_NONE;
2507 	}
2508 
2509 	ret = q->make_request_fn(q, bio);
2510 	blk_queue_exit(q);
2511 	return ret;
2512 }
2513 EXPORT_SYMBOL_GPL(direct_make_request);
2514 
2515 /**
2516  * submit_bio - submit a bio to the block device layer for I/O
2517  * @bio: The &struct bio which describes the I/O
2518  *
2519  * submit_bio() is very similar in purpose to generic_make_request(), and
2520  * uses that function to do most of the work. Both are fairly rough
2521  * interfaces; @bio must be presetup and ready for I/O.
2522  *
2523  */
2524 blk_qc_t submit_bio(struct bio *bio)
2525 {
2526 	/*
2527 	 * If it's a regular read/write or a barrier with data attached,
2528 	 * go through the normal accounting stuff before submission.
2529 	 */
2530 	if (bio_has_data(bio)) {
2531 		unsigned int count;
2532 
2533 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2534 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2535 		else
2536 			count = bio_sectors(bio);
2537 
2538 		if (op_is_write(bio_op(bio))) {
2539 			count_vm_events(PGPGOUT, count);
2540 		} else {
2541 			task_io_account_read(bio->bi_iter.bi_size);
2542 			count_vm_events(PGPGIN, count);
2543 		}
2544 
2545 		if (unlikely(block_dump)) {
2546 			char b[BDEVNAME_SIZE];
2547 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2548 			current->comm, task_pid_nr(current),
2549 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2550 				(unsigned long long)bio->bi_iter.bi_sector,
2551 				bio_devname(bio, b), count);
2552 		}
2553 	}
2554 
2555 	return generic_make_request(bio);
2556 }
2557 EXPORT_SYMBOL(submit_bio);
2558 
2559 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2560 {
2561 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2562 		return false;
2563 
2564 	if (current->plug)
2565 		blk_flush_plug_list(current->plug, false);
2566 	return q->poll_fn(q, cookie);
2567 }
2568 EXPORT_SYMBOL_GPL(blk_poll);
2569 
2570 /**
2571  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2572  *                              for new the queue limits
2573  * @q:  the queue
2574  * @rq: the request being checked
2575  *
2576  * Description:
2577  *    @rq may have been made based on weaker limitations of upper-level queues
2578  *    in request stacking drivers, and it may violate the limitation of @q.
2579  *    Since the block layer and the underlying device driver trust @rq
2580  *    after it is inserted to @q, it should be checked against @q before
2581  *    the insertion using this generic function.
2582  *
2583  *    Request stacking drivers like request-based dm may change the queue
2584  *    limits when retrying requests on other queues. Those requests need
2585  *    to be checked against the new queue limits again during dispatch.
2586  */
2587 static int blk_cloned_rq_check_limits(struct request_queue *q,
2588 				      struct request *rq)
2589 {
2590 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2591 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2592 		return -EIO;
2593 	}
2594 
2595 	/*
2596 	 * queue's settings related to segment counting like q->bounce_pfn
2597 	 * may differ from that of other stacking queues.
2598 	 * Recalculate it to check the request correctly on this queue's
2599 	 * limitation.
2600 	 */
2601 	blk_recalc_rq_segments(rq);
2602 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2603 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2604 		return -EIO;
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 /**
2611  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2612  * @q:  the queue to submit the request
2613  * @rq: the request being queued
2614  */
2615 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2616 {
2617 	unsigned long flags;
2618 	int where = ELEVATOR_INSERT_BACK;
2619 
2620 	if (blk_cloned_rq_check_limits(q, rq))
2621 		return BLK_STS_IOERR;
2622 
2623 	if (rq->rq_disk &&
2624 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2625 		return BLK_STS_IOERR;
2626 
2627 	if (q->mq_ops) {
2628 		if (blk_queue_io_stat(q))
2629 			blk_account_io_start(rq, true);
2630 		/*
2631 		 * Since we have a scheduler attached on the top device,
2632 		 * bypass a potential scheduler on the bottom device for
2633 		 * insert.
2634 		 */
2635 		return blk_mq_request_issue_directly(rq);
2636 	}
2637 
2638 	spin_lock_irqsave(q->queue_lock, flags);
2639 	if (unlikely(blk_queue_dying(q))) {
2640 		spin_unlock_irqrestore(q->queue_lock, flags);
2641 		return BLK_STS_IOERR;
2642 	}
2643 
2644 	/*
2645 	 * Submitting request must be dequeued before calling this function
2646 	 * because it will be linked to another request_queue
2647 	 */
2648 	BUG_ON(blk_queued_rq(rq));
2649 
2650 	if (op_is_flush(rq->cmd_flags))
2651 		where = ELEVATOR_INSERT_FLUSH;
2652 
2653 	add_acct_request(q, rq, where);
2654 	if (where == ELEVATOR_INSERT_FLUSH)
2655 		__blk_run_queue(q);
2656 	spin_unlock_irqrestore(q->queue_lock, flags);
2657 
2658 	return BLK_STS_OK;
2659 }
2660 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2661 
2662 /**
2663  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2664  * @rq: request to examine
2665  *
2666  * Description:
2667  *     A request could be merge of IOs which require different failure
2668  *     handling.  This function determines the number of bytes which
2669  *     can be failed from the beginning of the request without
2670  *     crossing into area which need to be retried further.
2671  *
2672  * Return:
2673  *     The number of bytes to fail.
2674  */
2675 unsigned int blk_rq_err_bytes(const struct request *rq)
2676 {
2677 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2678 	unsigned int bytes = 0;
2679 	struct bio *bio;
2680 
2681 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2682 		return blk_rq_bytes(rq);
2683 
2684 	/*
2685 	 * Currently the only 'mixing' which can happen is between
2686 	 * different fastfail types.  We can safely fail portions
2687 	 * which have all the failfast bits that the first one has -
2688 	 * the ones which are at least as eager to fail as the first
2689 	 * one.
2690 	 */
2691 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2692 		if ((bio->bi_opf & ff) != ff)
2693 			break;
2694 		bytes += bio->bi_iter.bi_size;
2695 	}
2696 
2697 	/* this could lead to infinite loop */
2698 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2699 	return bytes;
2700 }
2701 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2702 
2703 void blk_account_io_completion(struct request *req, unsigned int bytes)
2704 {
2705 	if (blk_do_io_stat(req)) {
2706 		const int rw = rq_data_dir(req);
2707 		struct hd_struct *part;
2708 		int cpu;
2709 
2710 		cpu = part_stat_lock();
2711 		part = req->part;
2712 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2713 		part_stat_unlock();
2714 	}
2715 }
2716 
2717 void blk_account_io_done(struct request *req, u64 now)
2718 {
2719 	/*
2720 	 * Account IO completion.  flush_rq isn't accounted as a
2721 	 * normal IO on queueing nor completion.  Accounting the
2722 	 * containing request is enough.
2723 	 */
2724 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2725 		unsigned long duration;
2726 		const int rw = rq_data_dir(req);
2727 		struct hd_struct *part;
2728 		int cpu;
2729 
2730 		duration = nsecs_to_jiffies(now - req->start_time_ns);
2731 		cpu = part_stat_lock();
2732 		part = req->part;
2733 
2734 		part_stat_inc(cpu, part, ios[rw]);
2735 		part_stat_add(cpu, part, ticks[rw], duration);
2736 		part_round_stats(req->q, cpu, part);
2737 		part_dec_in_flight(req->q, part, rw);
2738 
2739 		hd_struct_put(part);
2740 		part_stat_unlock();
2741 	}
2742 }
2743 
2744 #ifdef CONFIG_PM
2745 /*
2746  * Don't process normal requests when queue is suspended
2747  * or in the process of suspending/resuming
2748  */
2749 static bool blk_pm_allow_request(struct request *rq)
2750 {
2751 	switch (rq->q->rpm_status) {
2752 	case RPM_RESUMING:
2753 	case RPM_SUSPENDING:
2754 		return rq->rq_flags & RQF_PM;
2755 	case RPM_SUSPENDED:
2756 		return false;
2757 	}
2758 
2759 	return true;
2760 }
2761 #else
2762 static bool blk_pm_allow_request(struct request *rq)
2763 {
2764 	return true;
2765 }
2766 #endif
2767 
2768 void blk_account_io_start(struct request *rq, bool new_io)
2769 {
2770 	struct hd_struct *part;
2771 	int rw = rq_data_dir(rq);
2772 	int cpu;
2773 
2774 	if (!blk_do_io_stat(rq))
2775 		return;
2776 
2777 	cpu = part_stat_lock();
2778 
2779 	if (!new_io) {
2780 		part = rq->part;
2781 		part_stat_inc(cpu, part, merges[rw]);
2782 	} else {
2783 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2784 		if (!hd_struct_try_get(part)) {
2785 			/*
2786 			 * The partition is already being removed,
2787 			 * the request will be accounted on the disk only
2788 			 *
2789 			 * We take a reference on disk->part0 although that
2790 			 * partition will never be deleted, so we can treat
2791 			 * it as any other partition.
2792 			 */
2793 			part = &rq->rq_disk->part0;
2794 			hd_struct_get(part);
2795 		}
2796 		part_round_stats(rq->q, cpu, part);
2797 		part_inc_in_flight(rq->q, part, rw);
2798 		rq->part = part;
2799 	}
2800 
2801 	part_stat_unlock();
2802 }
2803 
2804 static struct request *elv_next_request(struct request_queue *q)
2805 {
2806 	struct request *rq;
2807 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2808 
2809 	WARN_ON_ONCE(q->mq_ops);
2810 
2811 	while (1) {
2812 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2813 			if (blk_pm_allow_request(rq))
2814 				return rq;
2815 
2816 			if (rq->rq_flags & RQF_SOFTBARRIER)
2817 				break;
2818 		}
2819 
2820 		/*
2821 		 * Flush request is running and flush request isn't queueable
2822 		 * in the drive, we can hold the queue till flush request is
2823 		 * finished. Even we don't do this, driver can't dispatch next
2824 		 * requests and will requeue them. And this can improve
2825 		 * throughput too. For example, we have request flush1, write1,
2826 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2827 		 * isn't inserted to queue. After flush1 is finished, flush2
2828 		 * will be dispatched. Since disk cache is already clean,
2829 		 * flush2 will be finished very soon, so looks like flush2 is
2830 		 * folded to flush1.
2831 		 * Since the queue is hold, a flag is set to indicate the queue
2832 		 * should be restarted later. Please see flush_end_io() for
2833 		 * details.
2834 		 */
2835 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2836 				!queue_flush_queueable(q)) {
2837 			fq->flush_queue_delayed = 1;
2838 			return NULL;
2839 		}
2840 		if (unlikely(blk_queue_bypass(q)) ||
2841 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2842 			return NULL;
2843 	}
2844 }
2845 
2846 /**
2847  * blk_peek_request - peek at the top of a request queue
2848  * @q: request queue to peek at
2849  *
2850  * Description:
2851  *     Return the request at the top of @q.  The returned request
2852  *     should be started using blk_start_request() before LLD starts
2853  *     processing it.
2854  *
2855  * Return:
2856  *     Pointer to the request at the top of @q if available.  Null
2857  *     otherwise.
2858  */
2859 struct request *blk_peek_request(struct request_queue *q)
2860 {
2861 	struct request *rq;
2862 	int ret;
2863 
2864 	lockdep_assert_held(q->queue_lock);
2865 	WARN_ON_ONCE(q->mq_ops);
2866 
2867 	while ((rq = elv_next_request(q)) != NULL) {
2868 		if (!(rq->rq_flags & RQF_STARTED)) {
2869 			/*
2870 			 * This is the first time the device driver
2871 			 * sees this request (possibly after
2872 			 * requeueing).  Notify IO scheduler.
2873 			 */
2874 			if (rq->rq_flags & RQF_SORTED)
2875 				elv_activate_rq(q, rq);
2876 
2877 			/*
2878 			 * just mark as started even if we don't start
2879 			 * it, a request that has been delayed should
2880 			 * not be passed by new incoming requests
2881 			 */
2882 			rq->rq_flags |= RQF_STARTED;
2883 			trace_block_rq_issue(q, rq);
2884 		}
2885 
2886 		if (!q->boundary_rq || q->boundary_rq == rq) {
2887 			q->end_sector = rq_end_sector(rq);
2888 			q->boundary_rq = NULL;
2889 		}
2890 
2891 		if (rq->rq_flags & RQF_DONTPREP)
2892 			break;
2893 
2894 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2895 			/*
2896 			 * make sure space for the drain appears we
2897 			 * know we can do this because max_hw_segments
2898 			 * has been adjusted to be one fewer than the
2899 			 * device can handle
2900 			 */
2901 			rq->nr_phys_segments++;
2902 		}
2903 
2904 		if (!q->prep_rq_fn)
2905 			break;
2906 
2907 		ret = q->prep_rq_fn(q, rq);
2908 		if (ret == BLKPREP_OK) {
2909 			break;
2910 		} else if (ret == BLKPREP_DEFER) {
2911 			/*
2912 			 * the request may have been (partially) prepped.
2913 			 * we need to keep this request in the front to
2914 			 * avoid resource deadlock.  RQF_STARTED will
2915 			 * prevent other fs requests from passing this one.
2916 			 */
2917 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2918 			    !(rq->rq_flags & RQF_DONTPREP)) {
2919 				/*
2920 				 * remove the space for the drain we added
2921 				 * so that we don't add it again
2922 				 */
2923 				--rq->nr_phys_segments;
2924 			}
2925 
2926 			rq = NULL;
2927 			break;
2928 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2929 			rq->rq_flags |= RQF_QUIET;
2930 			/*
2931 			 * Mark this request as started so we don't trigger
2932 			 * any debug logic in the end I/O path.
2933 			 */
2934 			blk_start_request(rq);
2935 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2936 					BLK_STS_TARGET : BLK_STS_IOERR);
2937 		} else {
2938 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2939 			break;
2940 		}
2941 	}
2942 
2943 	return rq;
2944 }
2945 EXPORT_SYMBOL(blk_peek_request);
2946 
2947 static void blk_dequeue_request(struct request *rq)
2948 {
2949 	struct request_queue *q = rq->q;
2950 
2951 	BUG_ON(list_empty(&rq->queuelist));
2952 	BUG_ON(ELV_ON_HASH(rq));
2953 
2954 	list_del_init(&rq->queuelist);
2955 
2956 	/*
2957 	 * the time frame between a request being removed from the lists
2958 	 * and to it is freed is accounted as io that is in progress at
2959 	 * the driver side.
2960 	 */
2961 	if (blk_account_rq(rq))
2962 		q->in_flight[rq_is_sync(rq)]++;
2963 }
2964 
2965 /**
2966  * blk_start_request - start request processing on the driver
2967  * @req: request to dequeue
2968  *
2969  * Description:
2970  *     Dequeue @req and start timeout timer on it.  This hands off the
2971  *     request to the driver.
2972  */
2973 void blk_start_request(struct request *req)
2974 {
2975 	lockdep_assert_held(req->q->queue_lock);
2976 	WARN_ON_ONCE(req->q->mq_ops);
2977 
2978 	blk_dequeue_request(req);
2979 
2980 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2981 		req->io_start_time_ns = ktime_get_ns();
2982 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2983 		req->throtl_size = blk_rq_sectors(req);
2984 #endif
2985 		req->rq_flags |= RQF_STATS;
2986 		wbt_issue(req->q->rq_wb, req);
2987 	}
2988 
2989 	BUG_ON(blk_rq_is_complete(req));
2990 	blk_add_timer(req);
2991 }
2992 EXPORT_SYMBOL(blk_start_request);
2993 
2994 /**
2995  * blk_fetch_request - fetch a request from a request queue
2996  * @q: request queue to fetch a request from
2997  *
2998  * Description:
2999  *     Return the request at the top of @q.  The request is started on
3000  *     return and LLD can start processing it immediately.
3001  *
3002  * Return:
3003  *     Pointer to the request at the top of @q if available.  Null
3004  *     otherwise.
3005  */
3006 struct request *blk_fetch_request(struct request_queue *q)
3007 {
3008 	struct request *rq;
3009 
3010 	lockdep_assert_held(q->queue_lock);
3011 	WARN_ON_ONCE(q->mq_ops);
3012 
3013 	rq = blk_peek_request(q);
3014 	if (rq)
3015 		blk_start_request(rq);
3016 	return rq;
3017 }
3018 EXPORT_SYMBOL(blk_fetch_request);
3019 
3020 /*
3021  * Steal bios from a request and add them to a bio list.
3022  * The request must not have been partially completed before.
3023  */
3024 void blk_steal_bios(struct bio_list *list, struct request *rq)
3025 {
3026 	if (rq->bio) {
3027 		if (list->tail)
3028 			list->tail->bi_next = rq->bio;
3029 		else
3030 			list->head = rq->bio;
3031 		list->tail = rq->biotail;
3032 
3033 		rq->bio = NULL;
3034 		rq->biotail = NULL;
3035 	}
3036 
3037 	rq->__data_len = 0;
3038 }
3039 EXPORT_SYMBOL_GPL(blk_steal_bios);
3040 
3041 /**
3042  * blk_update_request - Special helper function for request stacking drivers
3043  * @req:      the request being processed
3044  * @error:    block status code
3045  * @nr_bytes: number of bytes to complete @req
3046  *
3047  * Description:
3048  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3049  *     the request structure even if @req doesn't have leftover.
3050  *     If @req has leftover, sets it up for the next range of segments.
3051  *
3052  *     This special helper function is only for request stacking drivers
3053  *     (e.g. request-based dm) so that they can handle partial completion.
3054  *     Actual device drivers should use blk_end_request instead.
3055  *
3056  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3057  *     %false return from this function.
3058  *
3059  * Return:
3060  *     %false - this request doesn't have any more data
3061  *     %true  - this request has more data
3062  **/
3063 bool blk_update_request(struct request *req, blk_status_t error,
3064 		unsigned int nr_bytes)
3065 {
3066 	int total_bytes;
3067 
3068 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3069 
3070 	if (!req->bio)
3071 		return false;
3072 
3073 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3074 		     !(req->rq_flags & RQF_QUIET)))
3075 		print_req_error(req, error);
3076 
3077 	blk_account_io_completion(req, nr_bytes);
3078 
3079 	total_bytes = 0;
3080 	while (req->bio) {
3081 		struct bio *bio = req->bio;
3082 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3083 
3084 		if (bio_bytes == bio->bi_iter.bi_size) {
3085 			req->bio = bio->bi_next;
3086 			bio->bi_next = NULL;
3087 		}
3088 
3089 		/* Completion has already been traced */
3090 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3091 		req_bio_endio(req, bio, bio_bytes, error);
3092 
3093 		total_bytes += bio_bytes;
3094 		nr_bytes -= bio_bytes;
3095 
3096 		if (!nr_bytes)
3097 			break;
3098 	}
3099 
3100 	/*
3101 	 * completely done
3102 	 */
3103 	if (!req->bio) {
3104 		/*
3105 		 * Reset counters so that the request stacking driver
3106 		 * can find how many bytes remain in the request
3107 		 * later.
3108 		 */
3109 		req->__data_len = 0;
3110 		return false;
3111 	}
3112 
3113 	req->__data_len -= total_bytes;
3114 
3115 	/* update sector only for requests with clear definition of sector */
3116 	if (!blk_rq_is_passthrough(req))
3117 		req->__sector += total_bytes >> 9;
3118 
3119 	/* mixed attributes always follow the first bio */
3120 	if (req->rq_flags & RQF_MIXED_MERGE) {
3121 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3122 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3123 	}
3124 
3125 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3126 		/*
3127 		 * If total number of sectors is less than the first segment
3128 		 * size, something has gone terribly wrong.
3129 		 */
3130 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3131 			blk_dump_rq_flags(req, "request botched");
3132 			req->__data_len = blk_rq_cur_bytes(req);
3133 		}
3134 
3135 		/* recalculate the number of segments */
3136 		blk_recalc_rq_segments(req);
3137 	}
3138 
3139 	return true;
3140 }
3141 EXPORT_SYMBOL_GPL(blk_update_request);
3142 
3143 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3144 				    unsigned int nr_bytes,
3145 				    unsigned int bidi_bytes)
3146 {
3147 	if (blk_update_request(rq, error, nr_bytes))
3148 		return true;
3149 
3150 	/* Bidi request must be completed as a whole */
3151 	if (unlikely(blk_bidi_rq(rq)) &&
3152 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3153 		return true;
3154 
3155 	if (blk_queue_add_random(rq->q))
3156 		add_disk_randomness(rq->rq_disk);
3157 
3158 	return false;
3159 }
3160 
3161 /**
3162  * blk_unprep_request - unprepare a request
3163  * @req:	the request
3164  *
3165  * This function makes a request ready for complete resubmission (or
3166  * completion).  It happens only after all error handling is complete,
3167  * so represents the appropriate moment to deallocate any resources
3168  * that were allocated to the request in the prep_rq_fn.  The queue
3169  * lock is held when calling this.
3170  */
3171 void blk_unprep_request(struct request *req)
3172 {
3173 	struct request_queue *q = req->q;
3174 
3175 	req->rq_flags &= ~RQF_DONTPREP;
3176 	if (q->unprep_rq_fn)
3177 		q->unprep_rq_fn(q, req);
3178 }
3179 EXPORT_SYMBOL_GPL(blk_unprep_request);
3180 
3181 void blk_finish_request(struct request *req, blk_status_t error)
3182 {
3183 	struct request_queue *q = req->q;
3184 	u64 now = ktime_get_ns();
3185 
3186 	lockdep_assert_held(req->q->queue_lock);
3187 	WARN_ON_ONCE(q->mq_ops);
3188 
3189 	if (req->rq_flags & RQF_STATS)
3190 		blk_stat_add(req, now);
3191 
3192 	if (req->rq_flags & RQF_QUEUED)
3193 		blk_queue_end_tag(q, req);
3194 
3195 	BUG_ON(blk_queued_rq(req));
3196 
3197 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3198 		laptop_io_completion(req->q->backing_dev_info);
3199 
3200 	blk_delete_timer(req);
3201 
3202 	if (req->rq_flags & RQF_DONTPREP)
3203 		blk_unprep_request(req);
3204 
3205 	blk_account_io_done(req, now);
3206 
3207 	if (req->end_io) {
3208 		wbt_done(req->q->rq_wb, req);
3209 		req->end_io(req, error);
3210 	} else {
3211 		if (blk_bidi_rq(req))
3212 			__blk_put_request(req->next_rq->q, req->next_rq);
3213 
3214 		__blk_put_request(q, req);
3215 	}
3216 }
3217 EXPORT_SYMBOL(blk_finish_request);
3218 
3219 /**
3220  * blk_end_bidi_request - Complete a bidi request
3221  * @rq:         the request to complete
3222  * @error:      block status code
3223  * @nr_bytes:   number of bytes to complete @rq
3224  * @bidi_bytes: number of bytes to complete @rq->next_rq
3225  *
3226  * Description:
3227  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3228  *     Drivers that supports bidi can safely call this member for any
3229  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3230  *     just ignored.
3231  *
3232  * Return:
3233  *     %false - we are done with this request
3234  *     %true  - still buffers pending for this request
3235  **/
3236 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3237 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3238 {
3239 	struct request_queue *q = rq->q;
3240 	unsigned long flags;
3241 
3242 	WARN_ON_ONCE(q->mq_ops);
3243 
3244 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3245 		return true;
3246 
3247 	spin_lock_irqsave(q->queue_lock, flags);
3248 	blk_finish_request(rq, error);
3249 	spin_unlock_irqrestore(q->queue_lock, flags);
3250 
3251 	return false;
3252 }
3253 
3254 /**
3255  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3256  * @rq:         the request to complete
3257  * @error:      block status code
3258  * @nr_bytes:   number of bytes to complete @rq
3259  * @bidi_bytes: number of bytes to complete @rq->next_rq
3260  *
3261  * Description:
3262  *     Identical to blk_end_bidi_request() except that queue lock is
3263  *     assumed to be locked on entry and remains so on return.
3264  *
3265  * Return:
3266  *     %false - we are done with this request
3267  *     %true  - still buffers pending for this request
3268  **/
3269 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3270 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3271 {
3272 	lockdep_assert_held(rq->q->queue_lock);
3273 	WARN_ON_ONCE(rq->q->mq_ops);
3274 
3275 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3276 		return true;
3277 
3278 	blk_finish_request(rq, error);
3279 
3280 	return false;
3281 }
3282 
3283 /**
3284  * blk_end_request - Helper function for drivers to complete the request.
3285  * @rq:       the request being processed
3286  * @error:    block status code
3287  * @nr_bytes: number of bytes to complete
3288  *
3289  * Description:
3290  *     Ends I/O on a number of bytes attached to @rq.
3291  *     If @rq has leftover, sets it up for the next range of segments.
3292  *
3293  * Return:
3294  *     %false - we are done with this request
3295  *     %true  - still buffers pending for this request
3296  **/
3297 bool blk_end_request(struct request *rq, blk_status_t error,
3298 		unsigned int nr_bytes)
3299 {
3300 	WARN_ON_ONCE(rq->q->mq_ops);
3301 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3302 }
3303 EXPORT_SYMBOL(blk_end_request);
3304 
3305 /**
3306  * blk_end_request_all - Helper function for drives to finish the request.
3307  * @rq: the request to finish
3308  * @error: block status code
3309  *
3310  * Description:
3311  *     Completely finish @rq.
3312  */
3313 void blk_end_request_all(struct request *rq, blk_status_t error)
3314 {
3315 	bool pending;
3316 	unsigned int bidi_bytes = 0;
3317 
3318 	if (unlikely(blk_bidi_rq(rq)))
3319 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3320 
3321 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3322 	BUG_ON(pending);
3323 }
3324 EXPORT_SYMBOL(blk_end_request_all);
3325 
3326 /**
3327  * __blk_end_request - Helper function for drivers to complete the request.
3328  * @rq:       the request being processed
3329  * @error:    block status code
3330  * @nr_bytes: number of bytes to complete
3331  *
3332  * Description:
3333  *     Must be called with queue lock held unlike blk_end_request().
3334  *
3335  * Return:
3336  *     %false - we are done with this request
3337  *     %true  - still buffers pending for this request
3338  **/
3339 bool __blk_end_request(struct request *rq, blk_status_t error,
3340 		unsigned int nr_bytes)
3341 {
3342 	lockdep_assert_held(rq->q->queue_lock);
3343 	WARN_ON_ONCE(rq->q->mq_ops);
3344 
3345 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3346 }
3347 EXPORT_SYMBOL(__blk_end_request);
3348 
3349 /**
3350  * __blk_end_request_all - Helper function for drives to finish the request.
3351  * @rq: the request to finish
3352  * @error:    block status code
3353  *
3354  * Description:
3355  *     Completely finish @rq.  Must be called with queue lock held.
3356  */
3357 void __blk_end_request_all(struct request *rq, blk_status_t error)
3358 {
3359 	bool pending;
3360 	unsigned int bidi_bytes = 0;
3361 
3362 	lockdep_assert_held(rq->q->queue_lock);
3363 	WARN_ON_ONCE(rq->q->mq_ops);
3364 
3365 	if (unlikely(blk_bidi_rq(rq)))
3366 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3367 
3368 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3369 	BUG_ON(pending);
3370 }
3371 EXPORT_SYMBOL(__blk_end_request_all);
3372 
3373 /**
3374  * __blk_end_request_cur - Helper function to finish the current request chunk.
3375  * @rq: the request to finish the current chunk for
3376  * @error:    block status code
3377  *
3378  * Description:
3379  *     Complete the current consecutively mapped chunk from @rq.  Must
3380  *     be called with queue lock held.
3381  *
3382  * Return:
3383  *     %false - we are done with this request
3384  *     %true  - still buffers pending for this request
3385  */
3386 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3387 {
3388 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3389 }
3390 EXPORT_SYMBOL(__blk_end_request_cur);
3391 
3392 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3393 		     struct bio *bio)
3394 {
3395 	if (bio_has_data(bio))
3396 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3397 	else if (bio_op(bio) == REQ_OP_DISCARD)
3398 		rq->nr_phys_segments = 1;
3399 
3400 	rq->__data_len = bio->bi_iter.bi_size;
3401 	rq->bio = rq->biotail = bio;
3402 
3403 	if (bio->bi_disk)
3404 		rq->rq_disk = bio->bi_disk;
3405 }
3406 
3407 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3408 /**
3409  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3410  * @rq: the request to be flushed
3411  *
3412  * Description:
3413  *     Flush all pages in @rq.
3414  */
3415 void rq_flush_dcache_pages(struct request *rq)
3416 {
3417 	struct req_iterator iter;
3418 	struct bio_vec bvec;
3419 
3420 	rq_for_each_segment(bvec, rq, iter)
3421 		flush_dcache_page(bvec.bv_page);
3422 }
3423 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3424 #endif
3425 
3426 /**
3427  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3428  * @q : the queue of the device being checked
3429  *
3430  * Description:
3431  *    Check if underlying low-level drivers of a device are busy.
3432  *    If the drivers want to export their busy state, they must set own
3433  *    exporting function using blk_queue_lld_busy() first.
3434  *
3435  *    Basically, this function is used only by request stacking drivers
3436  *    to stop dispatching requests to underlying devices when underlying
3437  *    devices are busy.  This behavior helps more I/O merging on the queue
3438  *    of the request stacking driver and prevents I/O throughput regression
3439  *    on burst I/O load.
3440  *
3441  * Return:
3442  *    0 - Not busy (The request stacking driver should dispatch request)
3443  *    1 - Busy (The request stacking driver should stop dispatching request)
3444  */
3445 int blk_lld_busy(struct request_queue *q)
3446 {
3447 	if (q->lld_busy_fn)
3448 		return q->lld_busy_fn(q);
3449 
3450 	return 0;
3451 }
3452 EXPORT_SYMBOL_GPL(blk_lld_busy);
3453 
3454 /**
3455  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3456  * @rq: the clone request to be cleaned up
3457  *
3458  * Description:
3459  *     Free all bios in @rq for a cloned request.
3460  */
3461 void blk_rq_unprep_clone(struct request *rq)
3462 {
3463 	struct bio *bio;
3464 
3465 	while ((bio = rq->bio) != NULL) {
3466 		rq->bio = bio->bi_next;
3467 
3468 		bio_put(bio);
3469 	}
3470 }
3471 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3472 
3473 /*
3474  * Copy attributes of the original request to the clone request.
3475  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3476  */
3477 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3478 {
3479 	dst->cpu = src->cpu;
3480 	dst->__sector = blk_rq_pos(src);
3481 	dst->__data_len = blk_rq_bytes(src);
3482 	dst->nr_phys_segments = src->nr_phys_segments;
3483 	dst->ioprio = src->ioprio;
3484 	dst->extra_len = src->extra_len;
3485 }
3486 
3487 /**
3488  * blk_rq_prep_clone - Helper function to setup clone request
3489  * @rq: the request to be setup
3490  * @rq_src: original request to be cloned
3491  * @bs: bio_set that bios for clone are allocated from
3492  * @gfp_mask: memory allocation mask for bio
3493  * @bio_ctr: setup function to be called for each clone bio.
3494  *           Returns %0 for success, non %0 for failure.
3495  * @data: private data to be passed to @bio_ctr
3496  *
3497  * Description:
3498  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3499  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3500  *     are not copied, and copying such parts is the caller's responsibility.
3501  *     Also, pages which the original bios are pointing to are not copied
3502  *     and the cloned bios just point same pages.
3503  *     So cloned bios must be completed before original bios, which means
3504  *     the caller must complete @rq before @rq_src.
3505  */
3506 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3507 		      struct bio_set *bs, gfp_t gfp_mask,
3508 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3509 		      void *data)
3510 {
3511 	struct bio *bio, *bio_src;
3512 
3513 	if (!bs)
3514 		bs = &fs_bio_set;
3515 
3516 	__rq_for_each_bio(bio_src, rq_src) {
3517 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3518 		if (!bio)
3519 			goto free_and_out;
3520 
3521 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3522 			goto free_and_out;
3523 
3524 		if (rq->bio) {
3525 			rq->biotail->bi_next = bio;
3526 			rq->biotail = bio;
3527 		} else
3528 			rq->bio = rq->biotail = bio;
3529 	}
3530 
3531 	__blk_rq_prep_clone(rq, rq_src);
3532 
3533 	return 0;
3534 
3535 free_and_out:
3536 	if (bio)
3537 		bio_put(bio);
3538 	blk_rq_unprep_clone(rq);
3539 
3540 	return -ENOMEM;
3541 }
3542 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3543 
3544 int kblockd_schedule_work(struct work_struct *work)
3545 {
3546 	return queue_work(kblockd_workqueue, work);
3547 }
3548 EXPORT_SYMBOL(kblockd_schedule_work);
3549 
3550 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3551 {
3552 	return queue_work_on(cpu, kblockd_workqueue, work);
3553 }
3554 EXPORT_SYMBOL(kblockd_schedule_work_on);
3555 
3556 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3557 				unsigned long delay)
3558 {
3559 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3560 }
3561 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3562 
3563 /**
3564  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3565  * @plug:	The &struct blk_plug that needs to be initialized
3566  *
3567  * Description:
3568  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3569  *   pending I/O should the task end up blocking between blk_start_plug() and
3570  *   blk_finish_plug(). This is important from a performance perspective, but
3571  *   also ensures that we don't deadlock. For instance, if the task is blocking
3572  *   for a memory allocation, memory reclaim could end up wanting to free a
3573  *   page belonging to that request that is currently residing in our private
3574  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3575  *   this kind of deadlock.
3576  */
3577 void blk_start_plug(struct blk_plug *plug)
3578 {
3579 	struct task_struct *tsk = current;
3580 
3581 	/*
3582 	 * If this is a nested plug, don't actually assign it.
3583 	 */
3584 	if (tsk->plug)
3585 		return;
3586 
3587 	INIT_LIST_HEAD(&plug->list);
3588 	INIT_LIST_HEAD(&plug->mq_list);
3589 	INIT_LIST_HEAD(&plug->cb_list);
3590 	/*
3591 	 * Store ordering should not be needed here, since a potential
3592 	 * preempt will imply a full memory barrier
3593 	 */
3594 	tsk->plug = plug;
3595 }
3596 EXPORT_SYMBOL(blk_start_plug);
3597 
3598 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3599 {
3600 	struct request *rqa = container_of(a, struct request, queuelist);
3601 	struct request *rqb = container_of(b, struct request, queuelist);
3602 
3603 	return !(rqa->q < rqb->q ||
3604 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3605 }
3606 
3607 /*
3608  * If 'from_schedule' is true, then postpone the dispatch of requests
3609  * until a safe kblockd context. We due this to avoid accidental big
3610  * additional stack usage in driver dispatch, in places where the originally
3611  * plugger did not intend it.
3612  */
3613 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3614 			    bool from_schedule)
3615 	__releases(q->queue_lock)
3616 {
3617 	lockdep_assert_held(q->queue_lock);
3618 
3619 	trace_block_unplug(q, depth, !from_schedule);
3620 
3621 	if (from_schedule)
3622 		blk_run_queue_async(q);
3623 	else
3624 		__blk_run_queue(q);
3625 	spin_unlock_irq(q->queue_lock);
3626 }
3627 
3628 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3629 {
3630 	LIST_HEAD(callbacks);
3631 
3632 	while (!list_empty(&plug->cb_list)) {
3633 		list_splice_init(&plug->cb_list, &callbacks);
3634 
3635 		while (!list_empty(&callbacks)) {
3636 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3637 							  struct blk_plug_cb,
3638 							  list);
3639 			list_del(&cb->list);
3640 			cb->callback(cb, from_schedule);
3641 		}
3642 	}
3643 }
3644 
3645 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3646 				      int size)
3647 {
3648 	struct blk_plug *plug = current->plug;
3649 	struct blk_plug_cb *cb;
3650 
3651 	if (!plug)
3652 		return NULL;
3653 
3654 	list_for_each_entry(cb, &plug->cb_list, list)
3655 		if (cb->callback == unplug && cb->data == data)
3656 			return cb;
3657 
3658 	/* Not currently on the callback list */
3659 	BUG_ON(size < sizeof(*cb));
3660 	cb = kzalloc(size, GFP_ATOMIC);
3661 	if (cb) {
3662 		cb->data = data;
3663 		cb->callback = unplug;
3664 		list_add(&cb->list, &plug->cb_list);
3665 	}
3666 	return cb;
3667 }
3668 EXPORT_SYMBOL(blk_check_plugged);
3669 
3670 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3671 {
3672 	struct request_queue *q;
3673 	struct request *rq;
3674 	LIST_HEAD(list);
3675 	unsigned int depth;
3676 
3677 	flush_plug_callbacks(plug, from_schedule);
3678 
3679 	if (!list_empty(&plug->mq_list))
3680 		blk_mq_flush_plug_list(plug, from_schedule);
3681 
3682 	if (list_empty(&plug->list))
3683 		return;
3684 
3685 	list_splice_init(&plug->list, &list);
3686 
3687 	list_sort(NULL, &list, plug_rq_cmp);
3688 
3689 	q = NULL;
3690 	depth = 0;
3691 
3692 	while (!list_empty(&list)) {
3693 		rq = list_entry_rq(list.next);
3694 		list_del_init(&rq->queuelist);
3695 		BUG_ON(!rq->q);
3696 		if (rq->q != q) {
3697 			/*
3698 			 * This drops the queue lock
3699 			 */
3700 			if (q)
3701 				queue_unplugged(q, depth, from_schedule);
3702 			q = rq->q;
3703 			depth = 0;
3704 			spin_lock_irq(q->queue_lock);
3705 		}
3706 
3707 		/*
3708 		 * Short-circuit if @q is dead
3709 		 */
3710 		if (unlikely(blk_queue_dying(q))) {
3711 			__blk_end_request_all(rq, BLK_STS_IOERR);
3712 			continue;
3713 		}
3714 
3715 		/*
3716 		 * rq is already accounted, so use raw insert
3717 		 */
3718 		if (op_is_flush(rq->cmd_flags))
3719 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3720 		else
3721 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3722 
3723 		depth++;
3724 	}
3725 
3726 	/*
3727 	 * This drops the queue lock
3728 	 */
3729 	if (q)
3730 		queue_unplugged(q, depth, from_schedule);
3731 }
3732 
3733 void blk_finish_plug(struct blk_plug *plug)
3734 {
3735 	if (plug != current->plug)
3736 		return;
3737 	blk_flush_plug_list(plug, false);
3738 
3739 	current->plug = NULL;
3740 }
3741 EXPORT_SYMBOL(blk_finish_plug);
3742 
3743 #ifdef CONFIG_PM
3744 /**
3745  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3746  * @q: the queue of the device
3747  * @dev: the device the queue belongs to
3748  *
3749  * Description:
3750  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3751  *    @dev. Drivers that want to take advantage of request-based runtime PM
3752  *    should call this function after @dev has been initialized, and its
3753  *    request queue @q has been allocated, and runtime PM for it can not happen
3754  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3755  *    cases, driver should call this function before any I/O has taken place.
3756  *
3757  *    This function takes care of setting up using auto suspend for the device,
3758  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3759  *    until an updated value is either set by user or by driver. Drivers do
3760  *    not need to touch other autosuspend settings.
3761  *
3762  *    The block layer runtime PM is request based, so only works for drivers
3763  *    that use request as their IO unit instead of those directly use bio's.
3764  */
3765 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3766 {
3767 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3768 	if (q->mq_ops)
3769 		return;
3770 
3771 	q->dev = dev;
3772 	q->rpm_status = RPM_ACTIVE;
3773 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3774 	pm_runtime_use_autosuspend(q->dev);
3775 }
3776 EXPORT_SYMBOL(blk_pm_runtime_init);
3777 
3778 /**
3779  * blk_pre_runtime_suspend - Pre runtime suspend check
3780  * @q: the queue of the device
3781  *
3782  * Description:
3783  *    This function will check if runtime suspend is allowed for the device
3784  *    by examining if there are any requests pending in the queue. If there
3785  *    are requests pending, the device can not be runtime suspended; otherwise,
3786  *    the queue's status will be updated to SUSPENDING and the driver can
3787  *    proceed to suspend the device.
3788  *
3789  *    For the not allowed case, we mark last busy for the device so that
3790  *    runtime PM core will try to autosuspend it some time later.
3791  *
3792  *    This function should be called near the start of the device's
3793  *    runtime_suspend callback.
3794  *
3795  * Return:
3796  *    0		- OK to runtime suspend the device
3797  *    -EBUSY	- Device should not be runtime suspended
3798  */
3799 int blk_pre_runtime_suspend(struct request_queue *q)
3800 {
3801 	int ret = 0;
3802 
3803 	if (!q->dev)
3804 		return ret;
3805 
3806 	spin_lock_irq(q->queue_lock);
3807 	if (q->nr_pending) {
3808 		ret = -EBUSY;
3809 		pm_runtime_mark_last_busy(q->dev);
3810 	} else {
3811 		q->rpm_status = RPM_SUSPENDING;
3812 	}
3813 	spin_unlock_irq(q->queue_lock);
3814 	return ret;
3815 }
3816 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3817 
3818 /**
3819  * blk_post_runtime_suspend - Post runtime suspend processing
3820  * @q: the queue of the device
3821  * @err: return value of the device's runtime_suspend function
3822  *
3823  * Description:
3824  *    Update the queue's runtime status according to the return value of the
3825  *    device's runtime suspend function and mark last busy for the device so
3826  *    that PM core will try to auto suspend the device at a later time.
3827  *
3828  *    This function should be called near the end of the device's
3829  *    runtime_suspend callback.
3830  */
3831 void blk_post_runtime_suspend(struct request_queue *q, int err)
3832 {
3833 	if (!q->dev)
3834 		return;
3835 
3836 	spin_lock_irq(q->queue_lock);
3837 	if (!err) {
3838 		q->rpm_status = RPM_SUSPENDED;
3839 	} else {
3840 		q->rpm_status = RPM_ACTIVE;
3841 		pm_runtime_mark_last_busy(q->dev);
3842 	}
3843 	spin_unlock_irq(q->queue_lock);
3844 }
3845 EXPORT_SYMBOL(blk_post_runtime_suspend);
3846 
3847 /**
3848  * blk_pre_runtime_resume - Pre runtime resume processing
3849  * @q: the queue of the device
3850  *
3851  * Description:
3852  *    Update the queue's runtime status to RESUMING in preparation for the
3853  *    runtime resume of the device.
3854  *
3855  *    This function should be called near the start of the device's
3856  *    runtime_resume callback.
3857  */
3858 void blk_pre_runtime_resume(struct request_queue *q)
3859 {
3860 	if (!q->dev)
3861 		return;
3862 
3863 	spin_lock_irq(q->queue_lock);
3864 	q->rpm_status = RPM_RESUMING;
3865 	spin_unlock_irq(q->queue_lock);
3866 }
3867 EXPORT_SYMBOL(blk_pre_runtime_resume);
3868 
3869 /**
3870  * blk_post_runtime_resume - Post runtime resume processing
3871  * @q: the queue of the device
3872  * @err: return value of the device's runtime_resume function
3873  *
3874  * Description:
3875  *    Update the queue's runtime status according to the return value of the
3876  *    device's runtime_resume function. If it is successfully resumed, process
3877  *    the requests that are queued into the device's queue when it is resuming
3878  *    and then mark last busy and initiate autosuspend for it.
3879  *
3880  *    This function should be called near the end of the device's
3881  *    runtime_resume callback.
3882  */
3883 void blk_post_runtime_resume(struct request_queue *q, int err)
3884 {
3885 	if (!q->dev)
3886 		return;
3887 
3888 	spin_lock_irq(q->queue_lock);
3889 	if (!err) {
3890 		q->rpm_status = RPM_ACTIVE;
3891 		__blk_run_queue(q);
3892 		pm_runtime_mark_last_busy(q->dev);
3893 		pm_request_autosuspend(q->dev);
3894 	} else {
3895 		q->rpm_status = RPM_SUSPENDED;
3896 	}
3897 	spin_unlock_irq(q->queue_lock);
3898 }
3899 EXPORT_SYMBOL(blk_post_runtime_resume);
3900 
3901 /**
3902  * blk_set_runtime_active - Force runtime status of the queue to be active
3903  * @q: the queue of the device
3904  *
3905  * If the device is left runtime suspended during system suspend the resume
3906  * hook typically resumes the device and corrects runtime status
3907  * accordingly. However, that does not affect the queue runtime PM status
3908  * which is still "suspended". This prevents processing requests from the
3909  * queue.
3910  *
3911  * This function can be used in driver's resume hook to correct queue
3912  * runtime PM status and re-enable peeking requests from the queue. It
3913  * should be called before first request is added to the queue.
3914  */
3915 void blk_set_runtime_active(struct request_queue *q)
3916 {
3917 	spin_lock_irq(q->queue_lock);
3918 	q->rpm_status = RPM_ACTIVE;
3919 	pm_runtime_mark_last_busy(q->dev);
3920 	pm_request_autosuspend(q->dev);
3921 	spin_unlock_irq(q->queue_lock);
3922 }
3923 EXPORT_SYMBOL(blk_set_runtime_active);
3924 #endif
3925 
3926 int __init blk_dev_init(void)
3927 {
3928 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3929 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3930 			FIELD_SIZEOF(struct request, cmd_flags));
3931 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3932 			FIELD_SIZEOF(struct bio, bi_opf));
3933 
3934 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3935 	kblockd_workqueue = alloc_workqueue("kblockd",
3936 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3937 	if (!kblockd_workqueue)
3938 		panic("Failed to create kblockd\n");
3939 
3940 	request_cachep = kmem_cache_create("blkdev_requests",
3941 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3942 
3943 	blk_requestq_cachep = kmem_cache_create("request_queue",
3944 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3945 
3946 #ifdef CONFIG_DEBUG_FS
3947 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3948 #endif
3949 
3950 	return 0;
3951 }
3952