xref: /openbmc/linux/block/blk-core.c (revision e657c18a)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47 
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51 
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 
58 DEFINE_IDA(blk_queue_ida);
59 
60 /*
61  * For queue allocation
62  */
63 struct kmem_cache *blk_requestq_cachep;
64 
65 /*
66  * Controlling structure to kblockd
67  */
68 static struct workqueue_struct *kblockd_workqueue;
69 
70 /**
71  * blk_queue_flag_set - atomically set a queue flag
72  * @flag: flag to be set
73  * @q: request queue
74  */
75 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76 {
77 	set_bit(flag, &q->queue_flags);
78 }
79 EXPORT_SYMBOL(blk_queue_flag_set);
80 
81 /**
82  * blk_queue_flag_clear - atomically clear a queue flag
83  * @flag: flag to be cleared
84  * @q: request queue
85  */
86 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87 {
88 	clear_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_clear);
91 
92 /**
93  * blk_queue_flag_test_and_set - atomically test and set a queue flag
94  * @flag: flag to be set
95  * @q: request queue
96  *
97  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98  * the flag was already set.
99  */
100 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101 {
102 	return test_and_set_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105 
106 void blk_rq_init(struct request_queue *q, struct request *rq)
107 {
108 	memset(rq, 0, sizeof(*rq));
109 
110 	INIT_LIST_HEAD(&rq->queuelist);
111 	rq->q = q;
112 	rq->__sector = (sector_t) -1;
113 	INIT_HLIST_NODE(&rq->hash);
114 	RB_CLEAR_NODE(&rq->rb_node);
115 	rq->tag = -1;
116 	rq->internal_tag = -1;
117 	rq->start_time_ns = ktime_get_ns();
118 	rq->part = NULL;
119 }
120 EXPORT_SYMBOL(blk_rq_init);
121 
122 static const struct {
123 	int		errno;
124 	const char	*name;
125 } blk_errors[] = {
126 	[BLK_STS_OK]		= { 0,		"" },
127 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
128 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
129 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
130 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
131 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
132 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
133 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
134 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
135 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
136 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
137 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
138 
139 	/* device mapper special case, should not leak out: */
140 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
141 
142 	/* everything else not covered above: */
143 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
144 };
145 
146 blk_status_t errno_to_blk_status(int errno)
147 {
148 	int i;
149 
150 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 		if (blk_errors[i].errno == errno)
152 			return (__force blk_status_t)i;
153 	}
154 
155 	return BLK_STS_IOERR;
156 }
157 EXPORT_SYMBOL_GPL(errno_to_blk_status);
158 
159 int blk_status_to_errno(blk_status_t status)
160 {
161 	int idx = (__force int)status;
162 
163 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
164 		return -EIO;
165 	return blk_errors[idx].errno;
166 }
167 EXPORT_SYMBOL_GPL(blk_status_to_errno);
168 
169 static void print_req_error(struct request *req, blk_status_t status)
170 {
171 	int idx = (__force int)status;
172 
173 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 		return;
175 
176 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 				__func__, blk_errors[idx].name,
178 				req->rq_disk ?  req->rq_disk->disk_name : "?",
179 				(unsigned long long)blk_rq_pos(req),
180 				req->cmd_flags);
181 }
182 
183 static void req_bio_endio(struct request *rq, struct bio *bio,
184 			  unsigned int nbytes, blk_status_t error)
185 {
186 	if (error)
187 		bio->bi_status = error;
188 
189 	if (unlikely(rq->rq_flags & RQF_QUIET))
190 		bio_set_flag(bio, BIO_QUIET);
191 
192 	bio_advance(bio, nbytes);
193 
194 	/* don't actually finish bio if it's part of flush sequence */
195 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
196 		bio_endio(bio);
197 }
198 
199 void blk_dump_rq_flags(struct request *rq, char *msg)
200 {
201 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
203 		(unsigned long long) rq->cmd_flags);
204 
205 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
206 	       (unsigned long long)blk_rq_pos(rq),
207 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
208 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
209 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
210 }
211 EXPORT_SYMBOL(blk_dump_rq_flags);
212 
213 /**
214  * blk_sync_queue - cancel any pending callbacks on a queue
215  * @q: the queue
216  *
217  * Description:
218  *     The block layer may perform asynchronous callback activity
219  *     on a queue, such as calling the unplug function after a timeout.
220  *     A block device may call blk_sync_queue to ensure that any
221  *     such activity is cancelled, thus allowing it to release resources
222  *     that the callbacks might use. The caller must already have made sure
223  *     that its ->make_request_fn will not re-add plugging prior to calling
224  *     this function.
225  *
226  *     This function does not cancel any asynchronous activity arising
227  *     out of elevator or throttling code. That would require elevator_exit()
228  *     and blkcg_exit_queue() to be called with queue lock initialized.
229  *
230  */
231 void blk_sync_queue(struct request_queue *q)
232 {
233 	del_timer_sync(&q->timeout);
234 	cancel_work_sync(&q->timeout_work);
235 
236 	if (queue_is_mq(q)) {
237 		struct blk_mq_hw_ctx *hctx;
238 		int i;
239 
240 		cancel_delayed_work_sync(&q->requeue_work);
241 		queue_for_each_hw_ctx(q, hctx, i)
242 			cancel_delayed_work_sync(&hctx->run_work);
243 	}
244 }
245 EXPORT_SYMBOL(blk_sync_queue);
246 
247 /**
248  * blk_set_pm_only - increment pm_only counter
249  * @q: request queue pointer
250  */
251 void blk_set_pm_only(struct request_queue *q)
252 {
253 	atomic_inc(&q->pm_only);
254 }
255 EXPORT_SYMBOL_GPL(blk_set_pm_only);
256 
257 void blk_clear_pm_only(struct request_queue *q)
258 {
259 	int pm_only;
260 
261 	pm_only = atomic_dec_return(&q->pm_only);
262 	WARN_ON_ONCE(pm_only < 0);
263 	if (pm_only == 0)
264 		wake_up_all(&q->mq_freeze_wq);
265 }
266 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
267 
268 void blk_put_queue(struct request_queue *q)
269 {
270 	kobject_put(&q->kobj);
271 }
272 EXPORT_SYMBOL(blk_put_queue);
273 
274 void blk_set_queue_dying(struct request_queue *q)
275 {
276 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
277 
278 	/*
279 	 * When queue DYING flag is set, we need to block new req
280 	 * entering queue, so we call blk_freeze_queue_start() to
281 	 * prevent I/O from crossing blk_queue_enter().
282 	 */
283 	blk_freeze_queue_start(q);
284 
285 	if (queue_is_mq(q))
286 		blk_mq_wake_waiters(q);
287 
288 	/* Make blk_queue_enter() reexamine the DYING flag. */
289 	wake_up_all(&q->mq_freeze_wq);
290 }
291 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
292 
293 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294 void blk_exit_queue(struct request_queue *q)
295 {
296 	/*
297 	 * Since the I/O scheduler exit code may access cgroup information,
298 	 * perform I/O scheduler exit before disassociating from the block
299 	 * cgroup controller.
300 	 */
301 	if (q->elevator) {
302 		ioc_clear_queue(q);
303 		elevator_exit(q, q->elevator);
304 		q->elevator = NULL;
305 	}
306 
307 	/*
308 	 * Remove all references to @q from the block cgroup controller before
309 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 	 * e.g. blkcg_print_blkgs() to crash.
311 	 */
312 	blkcg_exit_queue(q);
313 
314 	/*
315 	 * Since the cgroup code may dereference the @q->backing_dev_info
316 	 * pointer, only decrease its reference count after having removed the
317 	 * association with the block cgroup controller.
318 	 */
319 	bdi_put(q->backing_dev_info);
320 }
321 
322 /**
323  * blk_cleanup_queue - shutdown a request queue
324  * @q: request queue to shutdown
325  *
326  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327  * put it.  All future requests will be failed immediately with -ENODEV.
328  */
329 void blk_cleanup_queue(struct request_queue *q)
330 {
331 	/* mark @q DYING, no new request or merges will be allowed afterwards */
332 	mutex_lock(&q->sysfs_lock);
333 	blk_set_queue_dying(q);
334 
335 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
336 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
337 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
338 	mutex_unlock(&q->sysfs_lock);
339 
340 	/*
341 	 * Drain all requests queued before DYING marking. Set DEAD flag to
342 	 * prevent that q->request_fn() gets invoked after draining finished.
343 	 */
344 	blk_freeze_queue(q);
345 
346 	rq_qos_exit(q);
347 
348 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
349 
350 	/*
351 	 * make sure all in-progress dispatch are completed because
352 	 * blk_freeze_queue() can only complete all requests, and
353 	 * dispatch may still be in-progress since we dispatch requests
354 	 * from more than one contexts.
355 	 *
356 	 * We rely on driver to deal with the race in case that queue
357 	 * initialization isn't done.
358 	 */
359 	if (queue_is_mq(q) && blk_queue_init_done(q))
360 		blk_mq_quiesce_queue(q);
361 
362 	/* for synchronous bio-based driver finish in-flight integrity i/o */
363 	blk_flush_integrity();
364 
365 	/* @q won't process any more request, flush async actions */
366 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 	blk_sync_queue(q);
368 
369 	/*
370 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
371 	 * has been removed.
372 	 */
373 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
374 
375 	blk_exit_queue(q);
376 
377 	if (queue_is_mq(q))
378 		blk_mq_free_queue(q);
379 
380 	percpu_ref_exit(&q->q_usage_counter);
381 
382 	/* @q is and will stay empty, shutdown and put */
383 	blk_put_queue(q);
384 }
385 EXPORT_SYMBOL(blk_cleanup_queue);
386 
387 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
388 {
389 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
390 }
391 EXPORT_SYMBOL(blk_alloc_queue);
392 
393 /**
394  * blk_queue_enter() - try to increase q->q_usage_counter
395  * @q: request queue pointer
396  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
397  */
398 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
399 {
400 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
401 
402 	while (true) {
403 		bool success = false;
404 
405 		rcu_read_lock();
406 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
407 			/*
408 			 * The code that increments the pm_only counter is
409 			 * responsible for ensuring that that counter is
410 			 * globally visible before the queue is unfrozen.
411 			 */
412 			if (pm || !blk_queue_pm_only(q)) {
413 				success = true;
414 			} else {
415 				percpu_ref_put(&q->q_usage_counter);
416 			}
417 		}
418 		rcu_read_unlock();
419 
420 		if (success)
421 			return 0;
422 
423 		if (flags & BLK_MQ_REQ_NOWAIT)
424 			return -EBUSY;
425 
426 		/*
427 		 * read pair of barrier in blk_freeze_queue_start(),
428 		 * we need to order reading __PERCPU_REF_DEAD flag of
429 		 * .q_usage_counter and reading .mq_freeze_depth or
430 		 * queue dying flag, otherwise the following wait may
431 		 * never return if the two reads are reordered.
432 		 */
433 		smp_rmb();
434 
435 		wait_event(q->mq_freeze_wq,
436 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
437 			    (pm || (blk_pm_request_resume(q),
438 				    !blk_queue_pm_only(q)))) ||
439 			   blk_queue_dying(q));
440 		if (blk_queue_dying(q))
441 			return -ENODEV;
442 	}
443 }
444 
445 void blk_queue_exit(struct request_queue *q)
446 {
447 	percpu_ref_put(&q->q_usage_counter);
448 }
449 
450 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
451 {
452 	struct request_queue *q =
453 		container_of(ref, struct request_queue, q_usage_counter);
454 
455 	wake_up_all(&q->mq_freeze_wq);
456 }
457 
458 static void blk_rq_timed_out_timer(struct timer_list *t)
459 {
460 	struct request_queue *q = from_timer(q, t, timeout);
461 
462 	kblockd_schedule_work(&q->timeout_work);
463 }
464 
465 static void blk_timeout_work(struct work_struct *work)
466 {
467 }
468 
469 /**
470  * blk_alloc_queue_node - allocate a request queue
471  * @gfp_mask: memory allocation flags
472  * @node_id: NUMA node to allocate memory from
473  */
474 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
475 {
476 	struct request_queue *q;
477 	int ret;
478 
479 	q = kmem_cache_alloc_node(blk_requestq_cachep,
480 				gfp_mask | __GFP_ZERO, node_id);
481 	if (!q)
482 		return NULL;
483 
484 	INIT_LIST_HEAD(&q->queue_head);
485 	q->last_merge = NULL;
486 
487 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
488 	if (q->id < 0)
489 		goto fail_q;
490 
491 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
492 	if (ret)
493 		goto fail_id;
494 
495 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
496 	if (!q->backing_dev_info)
497 		goto fail_split;
498 
499 	q->stats = blk_alloc_queue_stats();
500 	if (!q->stats)
501 		goto fail_stats;
502 
503 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
504 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
505 	q->backing_dev_info->name = "block";
506 	q->node = node_id;
507 
508 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
509 		    laptop_mode_timer_fn, 0);
510 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
511 	INIT_WORK(&q->timeout_work, blk_timeout_work);
512 	INIT_LIST_HEAD(&q->icq_list);
513 #ifdef CONFIG_BLK_CGROUP
514 	INIT_LIST_HEAD(&q->blkg_list);
515 #endif
516 
517 	kobject_init(&q->kobj, &blk_queue_ktype);
518 
519 #ifdef CONFIG_BLK_DEV_IO_TRACE
520 	mutex_init(&q->blk_trace_mutex);
521 #endif
522 	mutex_init(&q->sysfs_lock);
523 	spin_lock_init(&q->queue_lock);
524 
525 	init_waitqueue_head(&q->mq_freeze_wq);
526 
527 	/*
528 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
529 	 * See blk_register_queue() for details.
530 	 */
531 	if (percpu_ref_init(&q->q_usage_counter,
532 				blk_queue_usage_counter_release,
533 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
534 		goto fail_bdi;
535 
536 	if (blkcg_init_queue(q))
537 		goto fail_ref;
538 
539 	return q;
540 
541 fail_ref:
542 	percpu_ref_exit(&q->q_usage_counter);
543 fail_bdi:
544 	blk_free_queue_stats(q->stats);
545 fail_stats:
546 	bdi_put(q->backing_dev_info);
547 fail_split:
548 	bioset_exit(&q->bio_split);
549 fail_id:
550 	ida_simple_remove(&blk_queue_ida, q->id);
551 fail_q:
552 	kmem_cache_free(blk_requestq_cachep, q);
553 	return NULL;
554 }
555 EXPORT_SYMBOL(blk_alloc_queue_node);
556 
557 bool blk_get_queue(struct request_queue *q)
558 {
559 	if (likely(!blk_queue_dying(q))) {
560 		__blk_get_queue(q);
561 		return true;
562 	}
563 
564 	return false;
565 }
566 EXPORT_SYMBOL(blk_get_queue);
567 
568 /**
569  * blk_get_request - allocate a request
570  * @q: request queue to allocate a request for
571  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
572  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
573  */
574 struct request *blk_get_request(struct request_queue *q, unsigned int op,
575 				blk_mq_req_flags_t flags)
576 {
577 	struct request *req;
578 
579 	WARN_ON_ONCE(op & REQ_NOWAIT);
580 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
581 
582 	req = blk_mq_alloc_request(q, op, flags);
583 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
584 		q->mq_ops->initialize_rq_fn(req);
585 
586 	return req;
587 }
588 EXPORT_SYMBOL(blk_get_request);
589 
590 void blk_put_request(struct request *req)
591 {
592 	blk_mq_free_request(req);
593 }
594 EXPORT_SYMBOL(blk_put_request);
595 
596 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
597 			    struct bio *bio)
598 {
599 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
600 
601 	if (!ll_back_merge_fn(q, req, bio))
602 		return false;
603 
604 	trace_block_bio_backmerge(q, req, bio);
605 
606 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
607 		blk_rq_set_mixed_merge(req);
608 
609 	req->biotail->bi_next = bio;
610 	req->biotail = bio;
611 	req->__data_len += bio->bi_iter.bi_size;
612 
613 	blk_account_io_start(req, false);
614 	return true;
615 }
616 
617 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
618 			     struct bio *bio)
619 {
620 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
621 
622 	if (!ll_front_merge_fn(q, req, bio))
623 		return false;
624 
625 	trace_block_bio_frontmerge(q, req, bio);
626 
627 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
628 		blk_rq_set_mixed_merge(req);
629 
630 	bio->bi_next = req->bio;
631 	req->bio = bio;
632 
633 	req->__sector = bio->bi_iter.bi_sector;
634 	req->__data_len += bio->bi_iter.bi_size;
635 
636 	blk_account_io_start(req, false);
637 	return true;
638 }
639 
640 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
641 		struct bio *bio)
642 {
643 	unsigned short segments = blk_rq_nr_discard_segments(req);
644 
645 	if (segments >= queue_max_discard_segments(q))
646 		goto no_merge;
647 	if (blk_rq_sectors(req) + bio_sectors(bio) >
648 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
649 		goto no_merge;
650 
651 	req->biotail->bi_next = bio;
652 	req->biotail = bio;
653 	req->__data_len += bio->bi_iter.bi_size;
654 	req->nr_phys_segments = segments + 1;
655 
656 	blk_account_io_start(req, false);
657 	return true;
658 no_merge:
659 	req_set_nomerge(q, req);
660 	return false;
661 }
662 
663 /**
664  * blk_attempt_plug_merge - try to merge with %current's plugged list
665  * @q: request_queue new bio is being queued at
666  * @bio: new bio being queued
667  * @same_queue_rq: pointer to &struct request that gets filled in when
668  * another request associated with @q is found on the plug list
669  * (optional, may be %NULL)
670  *
671  * Determine whether @bio being queued on @q can be merged with a request
672  * on %current's plugged list.  Returns %true if merge was successful,
673  * otherwise %false.
674  *
675  * Plugging coalesces IOs from the same issuer for the same purpose without
676  * going through @q->queue_lock.  As such it's more of an issuing mechanism
677  * than scheduling, and the request, while may have elvpriv data, is not
678  * added on the elevator at this point.  In addition, we don't have
679  * reliable access to the elevator outside queue lock.  Only check basic
680  * merging parameters without querying the elevator.
681  *
682  * Caller must ensure !blk_queue_nomerges(q) beforehand.
683  */
684 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
685 			    struct request **same_queue_rq)
686 {
687 	struct blk_plug *plug;
688 	struct request *rq;
689 	struct list_head *plug_list;
690 
691 	plug = current->plug;
692 	if (!plug)
693 		return false;
694 
695 	plug_list = &plug->mq_list;
696 
697 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
698 		bool merged = false;
699 
700 		if (rq->q == q && same_queue_rq) {
701 			/*
702 			 * Only blk-mq multiple hardware queues case checks the
703 			 * rq in the same queue, there should be only one such
704 			 * rq in a queue
705 			 **/
706 			*same_queue_rq = rq;
707 		}
708 
709 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
710 			continue;
711 
712 		switch (blk_try_merge(rq, bio)) {
713 		case ELEVATOR_BACK_MERGE:
714 			merged = bio_attempt_back_merge(q, rq, bio);
715 			break;
716 		case ELEVATOR_FRONT_MERGE:
717 			merged = bio_attempt_front_merge(q, rq, bio);
718 			break;
719 		case ELEVATOR_DISCARD_MERGE:
720 			merged = bio_attempt_discard_merge(q, rq, bio);
721 			break;
722 		default:
723 			break;
724 		}
725 
726 		if (merged)
727 			return true;
728 	}
729 
730 	return false;
731 }
732 
733 void blk_init_request_from_bio(struct request *req, struct bio *bio)
734 {
735 	if (bio->bi_opf & REQ_RAHEAD)
736 		req->cmd_flags |= REQ_FAILFAST_MASK;
737 
738 	req->__sector = bio->bi_iter.bi_sector;
739 	req->ioprio = bio_prio(bio);
740 	req->write_hint = bio->bi_write_hint;
741 	blk_rq_bio_prep(req->q, req, bio);
742 }
743 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
744 
745 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
746 {
747 	char b[BDEVNAME_SIZE];
748 
749 	printk(KERN_INFO "attempt to access beyond end of device\n");
750 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
751 			bio_devname(bio, b), bio->bi_opf,
752 			(unsigned long long)bio_end_sector(bio),
753 			(long long)maxsector);
754 }
755 
756 #ifdef CONFIG_FAIL_MAKE_REQUEST
757 
758 static DECLARE_FAULT_ATTR(fail_make_request);
759 
760 static int __init setup_fail_make_request(char *str)
761 {
762 	return setup_fault_attr(&fail_make_request, str);
763 }
764 __setup("fail_make_request=", setup_fail_make_request);
765 
766 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
767 {
768 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
769 }
770 
771 static int __init fail_make_request_debugfs(void)
772 {
773 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
774 						NULL, &fail_make_request);
775 
776 	return PTR_ERR_OR_ZERO(dir);
777 }
778 
779 late_initcall(fail_make_request_debugfs);
780 
781 #else /* CONFIG_FAIL_MAKE_REQUEST */
782 
783 static inline bool should_fail_request(struct hd_struct *part,
784 					unsigned int bytes)
785 {
786 	return false;
787 }
788 
789 #endif /* CONFIG_FAIL_MAKE_REQUEST */
790 
791 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
792 {
793 	const int op = bio_op(bio);
794 
795 	if (part->policy && op_is_write(op)) {
796 		char b[BDEVNAME_SIZE];
797 
798 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
799 			return false;
800 
801 		WARN_ONCE(1,
802 		       "generic_make_request: Trying to write "
803 			"to read-only block-device %s (partno %d)\n",
804 			bio_devname(bio, b), part->partno);
805 		/* Older lvm-tools actually trigger this */
806 		return false;
807 	}
808 
809 	return false;
810 }
811 
812 static noinline int should_fail_bio(struct bio *bio)
813 {
814 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
815 		return -EIO;
816 	return 0;
817 }
818 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
819 
820 /*
821  * Check whether this bio extends beyond the end of the device or partition.
822  * This may well happen - the kernel calls bread() without checking the size of
823  * the device, e.g., when mounting a file system.
824  */
825 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
826 {
827 	unsigned int nr_sectors = bio_sectors(bio);
828 
829 	if (nr_sectors && maxsector &&
830 	    (nr_sectors > maxsector ||
831 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
832 		handle_bad_sector(bio, maxsector);
833 		return -EIO;
834 	}
835 	return 0;
836 }
837 
838 /*
839  * Remap block n of partition p to block n+start(p) of the disk.
840  */
841 static inline int blk_partition_remap(struct bio *bio)
842 {
843 	struct hd_struct *p;
844 	int ret = -EIO;
845 
846 	rcu_read_lock();
847 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
848 	if (unlikely(!p))
849 		goto out;
850 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
851 		goto out;
852 	if (unlikely(bio_check_ro(bio, p)))
853 		goto out;
854 
855 	/*
856 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
857 	 * Include a test for the reset op code and perform the remap if needed.
858 	 */
859 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
860 		if (bio_check_eod(bio, part_nr_sects_read(p)))
861 			goto out;
862 		bio->bi_iter.bi_sector += p->start_sect;
863 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
864 				      bio->bi_iter.bi_sector - p->start_sect);
865 	}
866 	bio->bi_partno = 0;
867 	ret = 0;
868 out:
869 	rcu_read_unlock();
870 	return ret;
871 }
872 
873 static noinline_for_stack bool
874 generic_make_request_checks(struct bio *bio)
875 {
876 	struct request_queue *q;
877 	int nr_sectors = bio_sectors(bio);
878 	blk_status_t status = BLK_STS_IOERR;
879 	char b[BDEVNAME_SIZE];
880 
881 	might_sleep();
882 
883 	q = bio->bi_disk->queue;
884 	if (unlikely(!q)) {
885 		printk(KERN_ERR
886 		       "generic_make_request: Trying to access "
887 			"nonexistent block-device %s (%Lu)\n",
888 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
889 		goto end_io;
890 	}
891 
892 	/*
893 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
894 	 * if queue is not a request based queue.
895 	 */
896 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
897 		goto not_supported;
898 
899 	if (should_fail_bio(bio))
900 		goto end_io;
901 
902 	if (bio->bi_partno) {
903 		if (unlikely(blk_partition_remap(bio)))
904 			goto end_io;
905 	} else {
906 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
907 			goto end_io;
908 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
909 			goto end_io;
910 	}
911 
912 	/*
913 	 * Filter flush bio's early so that make_request based
914 	 * drivers without flush support don't have to worry
915 	 * about them.
916 	 */
917 	if (op_is_flush(bio->bi_opf) &&
918 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
919 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
920 		if (!nr_sectors) {
921 			status = BLK_STS_OK;
922 			goto end_io;
923 		}
924 	}
925 
926 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
927 		bio->bi_opf &= ~REQ_HIPRI;
928 
929 	switch (bio_op(bio)) {
930 	case REQ_OP_DISCARD:
931 		if (!blk_queue_discard(q))
932 			goto not_supported;
933 		break;
934 	case REQ_OP_SECURE_ERASE:
935 		if (!blk_queue_secure_erase(q))
936 			goto not_supported;
937 		break;
938 	case REQ_OP_WRITE_SAME:
939 		if (!q->limits.max_write_same_sectors)
940 			goto not_supported;
941 		break;
942 	case REQ_OP_ZONE_RESET:
943 		if (!blk_queue_is_zoned(q))
944 			goto not_supported;
945 		break;
946 	case REQ_OP_WRITE_ZEROES:
947 		if (!q->limits.max_write_zeroes_sectors)
948 			goto not_supported;
949 		break;
950 	default:
951 		break;
952 	}
953 
954 	/*
955 	 * Various block parts want %current->io_context and lazy ioc
956 	 * allocation ends up trading a lot of pain for a small amount of
957 	 * memory.  Just allocate it upfront.  This may fail and block
958 	 * layer knows how to live with it.
959 	 */
960 	create_io_context(GFP_ATOMIC, q->node);
961 
962 	if (!blkcg_bio_issue_check(q, bio))
963 		return false;
964 
965 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
966 		trace_block_bio_queue(q, bio);
967 		/* Now that enqueuing has been traced, we need to trace
968 		 * completion as well.
969 		 */
970 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
971 	}
972 	return true;
973 
974 not_supported:
975 	status = BLK_STS_NOTSUPP;
976 end_io:
977 	bio->bi_status = status;
978 	bio_endio(bio);
979 	return false;
980 }
981 
982 /**
983  * generic_make_request - hand a buffer to its device driver for I/O
984  * @bio:  The bio describing the location in memory and on the device.
985  *
986  * generic_make_request() is used to make I/O requests of block
987  * devices. It is passed a &struct bio, which describes the I/O that needs
988  * to be done.
989  *
990  * generic_make_request() does not return any status.  The
991  * success/failure status of the request, along with notification of
992  * completion, is delivered asynchronously through the bio->bi_end_io
993  * function described (one day) else where.
994  *
995  * The caller of generic_make_request must make sure that bi_io_vec
996  * are set to describe the memory buffer, and that bi_dev and bi_sector are
997  * set to describe the device address, and the
998  * bi_end_io and optionally bi_private are set to describe how
999  * completion notification should be signaled.
1000  *
1001  * generic_make_request and the drivers it calls may use bi_next if this
1002  * bio happens to be merged with someone else, and may resubmit the bio to
1003  * a lower device by calling into generic_make_request recursively, which
1004  * means the bio should NOT be touched after the call to ->make_request_fn.
1005  */
1006 blk_qc_t generic_make_request(struct bio *bio)
1007 {
1008 	/*
1009 	 * bio_list_on_stack[0] contains bios submitted by the current
1010 	 * make_request_fn.
1011 	 * bio_list_on_stack[1] contains bios that were submitted before
1012 	 * the current make_request_fn, but that haven't been processed
1013 	 * yet.
1014 	 */
1015 	struct bio_list bio_list_on_stack[2];
1016 	blk_mq_req_flags_t flags = 0;
1017 	struct request_queue *q = bio->bi_disk->queue;
1018 	blk_qc_t ret = BLK_QC_T_NONE;
1019 
1020 	if (bio->bi_opf & REQ_NOWAIT)
1021 		flags = BLK_MQ_REQ_NOWAIT;
1022 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1023 		blk_queue_enter_live(q);
1024 	else if (blk_queue_enter(q, flags) < 0) {
1025 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1026 			bio_wouldblock_error(bio);
1027 		else
1028 			bio_io_error(bio);
1029 		return ret;
1030 	}
1031 
1032 	if (!generic_make_request_checks(bio))
1033 		goto out;
1034 
1035 	/*
1036 	 * We only want one ->make_request_fn to be active at a time, else
1037 	 * stack usage with stacked devices could be a problem.  So use
1038 	 * current->bio_list to keep a list of requests submited by a
1039 	 * make_request_fn function.  current->bio_list is also used as a
1040 	 * flag to say if generic_make_request is currently active in this
1041 	 * task or not.  If it is NULL, then no make_request is active.  If
1042 	 * it is non-NULL, then a make_request is active, and new requests
1043 	 * should be added at the tail
1044 	 */
1045 	if (current->bio_list) {
1046 		bio_list_add(&current->bio_list[0], bio);
1047 		goto out;
1048 	}
1049 
1050 	/* following loop may be a bit non-obvious, and so deserves some
1051 	 * explanation.
1052 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1053 	 * ensure that) so we have a list with a single bio.
1054 	 * We pretend that we have just taken it off a longer list, so
1055 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1056 	 * thus initialising the bio_list of new bios to be
1057 	 * added.  ->make_request() may indeed add some more bios
1058 	 * through a recursive call to generic_make_request.  If it
1059 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1060 	 * from the top.  In this case we really did just take the bio
1061 	 * of the top of the list (no pretending) and so remove it from
1062 	 * bio_list, and call into ->make_request() again.
1063 	 */
1064 	BUG_ON(bio->bi_next);
1065 	bio_list_init(&bio_list_on_stack[0]);
1066 	current->bio_list = bio_list_on_stack;
1067 	do {
1068 		bool enter_succeeded = true;
1069 
1070 		if (unlikely(q != bio->bi_disk->queue)) {
1071 			if (q)
1072 				blk_queue_exit(q);
1073 			q = bio->bi_disk->queue;
1074 			flags = 0;
1075 			if (bio->bi_opf & REQ_NOWAIT)
1076 				flags = BLK_MQ_REQ_NOWAIT;
1077 			if (blk_queue_enter(q, flags) < 0) {
1078 				enter_succeeded = false;
1079 				q = NULL;
1080 			}
1081 		}
1082 
1083 		if (enter_succeeded) {
1084 			struct bio_list lower, same;
1085 
1086 			/* Create a fresh bio_list for all subordinate requests */
1087 			bio_list_on_stack[1] = bio_list_on_stack[0];
1088 			bio_list_init(&bio_list_on_stack[0]);
1089 			ret = q->make_request_fn(q, bio);
1090 
1091 			/* sort new bios into those for a lower level
1092 			 * and those for the same level
1093 			 */
1094 			bio_list_init(&lower);
1095 			bio_list_init(&same);
1096 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1097 				if (q == bio->bi_disk->queue)
1098 					bio_list_add(&same, bio);
1099 				else
1100 					bio_list_add(&lower, bio);
1101 			/* now assemble so we handle the lowest level first */
1102 			bio_list_merge(&bio_list_on_stack[0], &lower);
1103 			bio_list_merge(&bio_list_on_stack[0], &same);
1104 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1105 		} else {
1106 			if (unlikely(!blk_queue_dying(q) &&
1107 					(bio->bi_opf & REQ_NOWAIT)))
1108 				bio_wouldblock_error(bio);
1109 			else
1110 				bio_io_error(bio);
1111 		}
1112 		bio = bio_list_pop(&bio_list_on_stack[0]);
1113 	} while (bio);
1114 	current->bio_list = NULL; /* deactivate */
1115 
1116 out:
1117 	if (q)
1118 		blk_queue_exit(q);
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL(generic_make_request);
1122 
1123 /**
1124  * direct_make_request - hand a buffer directly to its device driver for I/O
1125  * @bio:  The bio describing the location in memory and on the device.
1126  *
1127  * This function behaves like generic_make_request(), but does not protect
1128  * against recursion.  Must only be used if the called driver is known
1129  * to not call generic_make_request (or direct_make_request) again from
1130  * its make_request function.  (Calling direct_make_request again from
1131  * a workqueue is perfectly fine as that doesn't recurse).
1132  */
1133 blk_qc_t direct_make_request(struct bio *bio)
1134 {
1135 	struct request_queue *q = bio->bi_disk->queue;
1136 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1137 	blk_qc_t ret;
1138 
1139 	if (!generic_make_request_checks(bio))
1140 		return BLK_QC_T_NONE;
1141 
1142 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1143 		if (nowait && !blk_queue_dying(q))
1144 			bio->bi_status = BLK_STS_AGAIN;
1145 		else
1146 			bio->bi_status = BLK_STS_IOERR;
1147 		bio_endio(bio);
1148 		return BLK_QC_T_NONE;
1149 	}
1150 
1151 	ret = q->make_request_fn(q, bio);
1152 	blk_queue_exit(q);
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL_GPL(direct_make_request);
1156 
1157 /**
1158  * submit_bio - submit a bio to the block device layer for I/O
1159  * @bio: The &struct bio which describes the I/O
1160  *
1161  * submit_bio() is very similar in purpose to generic_make_request(), and
1162  * uses that function to do most of the work. Both are fairly rough
1163  * interfaces; @bio must be presetup and ready for I/O.
1164  *
1165  */
1166 blk_qc_t submit_bio(struct bio *bio)
1167 {
1168 	/*
1169 	 * If it's a regular read/write or a barrier with data attached,
1170 	 * go through the normal accounting stuff before submission.
1171 	 */
1172 	if (bio_has_data(bio)) {
1173 		unsigned int count;
1174 
1175 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1176 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1177 		else
1178 			count = bio_sectors(bio);
1179 
1180 		if (op_is_write(bio_op(bio))) {
1181 			count_vm_events(PGPGOUT, count);
1182 		} else {
1183 			task_io_account_read(bio->bi_iter.bi_size);
1184 			count_vm_events(PGPGIN, count);
1185 		}
1186 
1187 		if (unlikely(block_dump)) {
1188 			char b[BDEVNAME_SIZE];
1189 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1190 			current->comm, task_pid_nr(current),
1191 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1192 				(unsigned long long)bio->bi_iter.bi_sector,
1193 				bio_devname(bio, b), count);
1194 		}
1195 	}
1196 
1197 	return generic_make_request(bio);
1198 }
1199 EXPORT_SYMBOL(submit_bio);
1200 
1201 /**
1202  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1203  *                              for new the queue limits
1204  * @q:  the queue
1205  * @rq: the request being checked
1206  *
1207  * Description:
1208  *    @rq may have been made based on weaker limitations of upper-level queues
1209  *    in request stacking drivers, and it may violate the limitation of @q.
1210  *    Since the block layer and the underlying device driver trust @rq
1211  *    after it is inserted to @q, it should be checked against @q before
1212  *    the insertion using this generic function.
1213  *
1214  *    Request stacking drivers like request-based dm may change the queue
1215  *    limits when retrying requests on other queues. Those requests need
1216  *    to be checked against the new queue limits again during dispatch.
1217  */
1218 static int blk_cloned_rq_check_limits(struct request_queue *q,
1219 				      struct request *rq)
1220 {
1221 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1222 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1223 		return -EIO;
1224 	}
1225 
1226 	/*
1227 	 * queue's settings related to segment counting like q->bounce_pfn
1228 	 * may differ from that of other stacking queues.
1229 	 * Recalculate it to check the request correctly on this queue's
1230 	 * limitation.
1231 	 */
1232 	blk_recalc_rq_segments(rq);
1233 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1234 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1235 		return -EIO;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1243  * @q:  the queue to submit the request
1244  * @rq: the request being queued
1245  */
1246 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1247 {
1248 	blk_qc_t unused;
1249 
1250 	if (blk_cloned_rq_check_limits(q, rq))
1251 		return BLK_STS_IOERR;
1252 
1253 	if (rq->rq_disk &&
1254 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1255 		return BLK_STS_IOERR;
1256 
1257 	if (blk_queue_io_stat(q))
1258 		blk_account_io_start(rq, true);
1259 
1260 	/*
1261 	 * Since we have a scheduler attached on the top device,
1262 	 * bypass a potential scheduler on the bottom device for
1263 	 * insert.
1264 	 */
1265 	return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true);
1266 }
1267 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1268 
1269 /**
1270  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1271  * @rq: request to examine
1272  *
1273  * Description:
1274  *     A request could be merge of IOs which require different failure
1275  *     handling.  This function determines the number of bytes which
1276  *     can be failed from the beginning of the request without
1277  *     crossing into area which need to be retried further.
1278  *
1279  * Return:
1280  *     The number of bytes to fail.
1281  */
1282 unsigned int blk_rq_err_bytes(const struct request *rq)
1283 {
1284 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1285 	unsigned int bytes = 0;
1286 	struct bio *bio;
1287 
1288 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1289 		return blk_rq_bytes(rq);
1290 
1291 	/*
1292 	 * Currently the only 'mixing' which can happen is between
1293 	 * different fastfail types.  We can safely fail portions
1294 	 * which have all the failfast bits that the first one has -
1295 	 * the ones which are at least as eager to fail as the first
1296 	 * one.
1297 	 */
1298 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1299 		if ((bio->bi_opf & ff) != ff)
1300 			break;
1301 		bytes += bio->bi_iter.bi_size;
1302 	}
1303 
1304 	/* this could lead to infinite loop */
1305 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1306 	return bytes;
1307 }
1308 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1309 
1310 void blk_account_io_completion(struct request *req, unsigned int bytes)
1311 {
1312 	if (blk_do_io_stat(req)) {
1313 		const int sgrp = op_stat_group(req_op(req));
1314 		struct hd_struct *part;
1315 
1316 		part_stat_lock();
1317 		part = req->part;
1318 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1319 		part_stat_unlock();
1320 	}
1321 }
1322 
1323 void blk_account_io_done(struct request *req, u64 now)
1324 {
1325 	/*
1326 	 * Account IO completion.  flush_rq isn't accounted as a
1327 	 * normal IO on queueing nor completion.  Accounting the
1328 	 * containing request is enough.
1329 	 */
1330 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1331 		const int sgrp = op_stat_group(req_op(req));
1332 		struct hd_struct *part;
1333 
1334 		part_stat_lock();
1335 		part = req->part;
1336 
1337 		update_io_ticks(part, jiffies);
1338 		part_stat_inc(part, ios[sgrp]);
1339 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1340 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1341 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1342 
1343 		hd_struct_put(part);
1344 		part_stat_unlock();
1345 	}
1346 }
1347 
1348 void blk_account_io_start(struct request *rq, bool new_io)
1349 {
1350 	struct hd_struct *part;
1351 	int rw = rq_data_dir(rq);
1352 
1353 	if (!blk_do_io_stat(rq))
1354 		return;
1355 
1356 	part_stat_lock();
1357 
1358 	if (!new_io) {
1359 		part = rq->part;
1360 		part_stat_inc(part, merges[rw]);
1361 	} else {
1362 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1363 		if (!hd_struct_try_get(part)) {
1364 			/*
1365 			 * The partition is already being removed,
1366 			 * the request will be accounted on the disk only
1367 			 *
1368 			 * We take a reference on disk->part0 although that
1369 			 * partition will never be deleted, so we can treat
1370 			 * it as any other partition.
1371 			 */
1372 			part = &rq->rq_disk->part0;
1373 			hd_struct_get(part);
1374 		}
1375 		part_inc_in_flight(rq->q, part, rw);
1376 		rq->part = part;
1377 	}
1378 
1379 	update_io_ticks(part, jiffies);
1380 
1381 	part_stat_unlock();
1382 }
1383 
1384 /*
1385  * Steal bios from a request and add them to a bio list.
1386  * The request must not have been partially completed before.
1387  */
1388 void blk_steal_bios(struct bio_list *list, struct request *rq)
1389 {
1390 	if (rq->bio) {
1391 		if (list->tail)
1392 			list->tail->bi_next = rq->bio;
1393 		else
1394 			list->head = rq->bio;
1395 		list->tail = rq->biotail;
1396 
1397 		rq->bio = NULL;
1398 		rq->biotail = NULL;
1399 	}
1400 
1401 	rq->__data_len = 0;
1402 }
1403 EXPORT_SYMBOL_GPL(blk_steal_bios);
1404 
1405 /**
1406  * blk_update_request - Special helper function for request stacking drivers
1407  * @req:      the request being processed
1408  * @error:    block status code
1409  * @nr_bytes: number of bytes to complete @req
1410  *
1411  * Description:
1412  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1413  *     the request structure even if @req doesn't have leftover.
1414  *     If @req has leftover, sets it up for the next range of segments.
1415  *
1416  *     This special helper function is only for request stacking drivers
1417  *     (e.g. request-based dm) so that they can handle partial completion.
1418  *     Actual device drivers should use blk_end_request instead.
1419  *
1420  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1421  *     %false return from this function.
1422  *
1423  * Note:
1424  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1425  *	blk_rq_bytes() and in blk_update_request().
1426  *
1427  * Return:
1428  *     %false - this request doesn't have any more data
1429  *     %true  - this request has more data
1430  **/
1431 bool blk_update_request(struct request *req, blk_status_t error,
1432 		unsigned int nr_bytes)
1433 {
1434 	int total_bytes;
1435 
1436 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1437 
1438 	if (!req->bio)
1439 		return false;
1440 
1441 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1442 		     !(req->rq_flags & RQF_QUIET)))
1443 		print_req_error(req, error);
1444 
1445 	blk_account_io_completion(req, nr_bytes);
1446 
1447 	total_bytes = 0;
1448 	while (req->bio) {
1449 		struct bio *bio = req->bio;
1450 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1451 
1452 		if (bio_bytes == bio->bi_iter.bi_size)
1453 			req->bio = bio->bi_next;
1454 
1455 		/* Completion has already been traced */
1456 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1457 		req_bio_endio(req, bio, bio_bytes, error);
1458 
1459 		total_bytes += bio_bytes;
1460 		nr_bytes -= bio_bytes;
1461 
1462 		if (!nr_bytes)
1463 			break;
1464 	}
1465 
1466 	/*
1467 	 * completely done
1468 	 */
1469 	if (!req->bio) {
1470 		/*
1471 		 * Reset counters so that the request stacking driver
1472 		 * can find how many bytes remain in the request
1473 		 * later.
1474 		 */
1475 		req->__data_len = 0;
1476 		return false;
1477 	}
1478 
1479 	req->__data_len -= total_bytes;
1480 
1481 	/* update sector only for requests with clear definition of sector */
1482 	if (!blk_rq_is_passthrough(req))
1483 		req->__sector += total_bytes >> 9;
1484 
1485 	/* mixed attributes always follow the first bio */
1486 	if (req->rq_flags & RQF_MIXED_MERGE) {
1487 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1488 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1489 	}
1490 
1491 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1492 		/*
1493 		 * If total number of sectors is less than the first segment
1494 		 * size, something has gone terribly wrong.
1495 		 */
1496 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1497 			blk_dump_rq_flags(req, "request botched");
1498 			req->__data_len = blk_rq_cur_bytes(req);
1499 		}
1500 
1501 		/* recalculate the number of segments */
1502 		blk_recalc_rq_segments(req);
1503 	}
1504 
1505 	return true;
1506 }
1507 EXPORT_SYMBOL_GPL(blk_update_request);
1508 
1509 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1510 		     struct bio *bio)
1511 {
1512 	if (bio_has_data(bio))
1513 		rq->nr_phys_segments = bio_phys_segments(q, bio);
1514 	else if (bio_op(bio) == REQ_OP_DISCARD)
1515 		rq->nr_phys_segments = 1;
1516 
1517 	rq->__data_len = bio->bi_iter.bi_size;
1518 	rq->bio = rq->biotail = bio;
1519 
1520 	if (bio->bi_disk)
1521 		rq->rq_disk = bio->bi_disk;
1522 }
1523 
1524 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1525 /**
1526  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1527  * @rq: the request to be flushed
1528  *
1529  * Description:
1530  *     Flush all pages in @rq.
1531  */
1532 void rq_flush_dcache_pages(struct request *rq)
1533 {
1534 	struct req_iterator iter;
1535 	struct bio_vec bvec;
1536 
1537 	rq_for_each_segment(bvec, rq, iter)
1538 		flush_dcache_page(bvec.bv_page);
1539 }
1540 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1541 #endif
1542 
1543 /**
1544  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1545  * @q : the queue of the device being checked
1546  *
1547  * Description:
1548  *    Check if underlying low-level drivers of a device are busy.
1549  *    If the drivers want to export their busy state, they must set own
1550  *    exporting function using blk_queue_lld_busy() first.
1551  *
1552  *    Basically, this function is used only by request stacking drivers
1553  *    to stop dispatching requests to underlying devices when underlying
1554  *    devices are busy.  This behavior helps more I/O merging on the queue
1555  *    of the request stacking driver and prevents I/O throughput regression
1556  *    on burst I/O load.
1557  *
1558  * Return:
1559  *    0 - Not busy (The request stacking driver should dispatch request)
1560  *    1 - Busy (The request stacking driver should stop dispatching request)
1561  */
1562 int blk_lld_busy(struct request_queue *q)
1563 {
1564 	if (queue_is_mq(q) && q->mq_ops->busy)
1565 		return q->mq_ops->busy(q);
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(blk_lld_busy);
1570 
1571 /**
1572  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1573  * @rq: the clone request to be cleaned up
1574  *
1575  * Description:
1576  *     Free all bios in @rq for a cloned request.
1577  */
1578 void blk_rq_unprep_clone(struct request *rq)
1579 {
1580 	struct bio *bio;
1581 
1582 	while ((bio = rq->bio) != NULL) {
1583 		rq->bio = bio->bi_next;
1584 
1585 		bio_put(bio);
1586 	}
1587 }
1588 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1589 
1590 /*
1591  * Copy attributes of the original request to the clone request.
1592  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1593  */
1594 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1595 {
1596 	dst->__sector = blk_rq_pos(src);
1597 	dst->__data_len = blk_rq_bytes(src);
1598 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1599 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1600 		dst->special_vec = src->special_vec;
1601 	}
1602 	dst->nr_phys_segments = src->nr_phys_segments;
1603 	dst->ioprio = src->ioprio;
1604 	dst->extra_len = src->extra_len;
1605 }
1606 
1607 /**
1608  * blk_rq_prep_clone - Helper function to setup clone request
1609  * @rq: the request to be setup
1610  * @rq_src: original request to be cloned
1611  * @bs: bio_set that bios for clone are allocated from
1612  * @gfp_mask: memory allocation mask for bio
1613  * @bio_ctr: setup function to be called for each clone bio.
1614  *           Returns %0 for success, non %0 for failure.
1615  * @data: private data to be passed to @bio_ctr
1616  *
1617  * Description:
1618  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1619  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1620  *     are not copied, and copying such parts is the caller's responsibility.
1621  *     Also, pages which the original bios are pointing to are not copied
1622  *     and the cloned bios just point same pages.
1623  *     So cloned bios must be completed before original bios, which means
1624  *     the caller must complete @rq before @rq_src.
1625  */
1626 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1627 		      struct bio_set *bs, gfp_t gfp_mask,
1628 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1629 		      void *data)
1630 {
1631 	struct bio *bio, *bio_src;
1632 
1633 	if (!bs)
1634 		bs = &fs_bio_set;
1635 
1636 	__rq_for_each_bio(bio_src, rq_src) {
1637 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1638 		if (!bio)
1639 			goto free_and_out;
1640 
1641 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1642 			goto free_and_out;
1643 
1644 		if (rq->bio) {
1645 			rq->biotail->bi_next = bio;
1646 			rq->biotail = bio;
1647 		} else
1648 			rq->bio = rq->biotail = bio;
1649 	}
1650 
1651 	__blk_rq_prep_clone(rq, rq_src);
1652 
1653 	return 0;
1654 
1655 free_and_out:
1656 	if (bio)
1657 		bio_put(bio);
1658 	blk_rq_unprep_clone(rq);
1659 
1660 	return -ENOMEM;
1661 }
1662 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1663 
1664 int kblockd_schedule_work(struct work_struct *work)
1665 {
1666 	return queue_work(kblockd_workqueue, work);
1667 }
1668 EXPORT_SYMBOL(kblockd_schedule_work);
1669 
1670 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1671 {
1672 	return queue_work_on(cpu, kblockd_workqueue, work);
1673 }
1674 EXPORT_SYMBOL(kblockd_schedule_work_on);
1675 
1676 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1677 				unsigned long delay)
1678 {
1679 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1680 }
1681 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1682 
1683 /**
1684  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1685  * @plug:	The &struct blk_plug that needs to be initialized
1686  *
1687  * Description:
1688  *   blk_start_plug() indicates to the block layer an intent by the caller
1689  *   to submit multiple I/O requests in a batch.  The block layer may use
1690  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1691  *   is called.  However, the block layer may choose to submit requests
1692  *   before a call to blk_finish_plug() if the number of queued I/Os
1693  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1694  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1695  *   the task schedules (see below).
1696  *
1697  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1698  *   pending I/O should the task end up blocking between blk_start_plug() and
1699  *   blk_finish_plug(). This is important from a performance perspective, but
1700  *   also ensures that we don't deadlock. For instance, if the task is blocking
1701  *   for a memory allocation, memory reclaim could end up wanting to free a
1702  *   page belonging to that request that is currently residing in our private
1703  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1704  *   this kind of deadlock.
1705  */
1706 void blk_start_plug(struct blk_plug *plug)
1707 {
1708 	struct task_struct *tsk = current;
1709 
1710 	/*
1711 	 * If this is a nested plug, don't actually assign it.
1712 	 */
1713 	if (tsk->plug)
1714 		return;
1715 
1716 	INIT_LIST_HEAD(&plug->mq_list);
1717 	INIT_LIST_HEAD(&plug->cb_list);
1718 	plug->rq_count = 0;
1719 	plug->multiple_queues = false;
1720 
1721 	/*
1722 	 * Store ordering should not be needed here, since a potential
1723 	 * preempt will imply a full memory barrier
1724 	 */
1725 	tsk->plug = plug;
1726 }
1727 EXPORT_SYMBOL(blk_start_plug);
1728 
1729 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1730 {
1731 	LIST_HEAD(callbacks);
1732 
1733 	while (!list_empty(&plug->cb_list)) {
1734 		list_splice_init(&plug->cb_list, &callbacks);
1735 
1736 		while (!list_empty(&callbacks)) {
1737 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1738 							  struct blk_plug_cb,
1739 							  list);
1740 			list_del(&cb->list);
1741 			cb->callback(cb, from_schedule);
1742 		}
1743 	}
1744 }
1745 
1746 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1747 				      int size)
1748 {
1749 	struct blk_plug *plug = current->plug;
1750 	struct blk_plug_cb *cb;
1751 
1752 	if (!plug)
1753 		return NULL;
1754 
1755 	list_for_each_entry(cb, &plug->cb_list, list)
1756 		if (cb->callback == unplug && cb->data == data)
1757 			return cb;
1758 
1759 	/* Not currently on the callback list */
1760 	BUG_ON(size < sizeof(*cb));
1761 	cb = kzalloc(size, GFP_ATOMIC);
1762 	if (cb) {
1763 		cb->data = data;
1764 		cb->callback = unplug;
1765 		list_add(&cb->list, &plug->cb_list);
1766 	}
1767 	return cb;
1768 }
1769 EXPORT_SYMBOL(blk_check_plugged);
1770 
1771 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1772 {
1773 	flush_plug_callbacks(plug, from_schedule);
1774 
1775 	if (!list_empty(&plug->mq_list))
1776 		blk_mq_flush_plug_list(plug, from_schedule);
1777 }
1778 
1779 /**
1780  * blk_finish_plug - mark the end of a batch of submitted I/O
1781  * @plug:	The &struct blk_plug passed to blk_start_plug()
1782  *
1783  * Description:
1784  * Indicate that a batch of I/O submissions is complete.  This function
1785  * must be paired with an initial call to blk_start_plug().  The intent
1786  * is to allow the block layer to optimize I/O submission.  See the
1787  * documentation for blk_start_plug() for more information.
1788  */
1789 void blk_finish_plug(struct blk_plug *plug)
1790 {
1791 	if (plug != current->plug)
1792 		return;
1793 	blk_flush_plug_list(plug, false);
1794 
1795 	current->plug = NULL;
1796 }
1797 EXPORT_SYMBOL(blk_finish_plug);
1798 
1799 int __init blk_dev_init(void)
1800 {
1801 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1802 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1803 			FIELD_SIZEOF(struct request, cmd_flags));
1804 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1805 			FIELD_SIZEOF(struct bio, bi_opf));
1806 
1807 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1808 	kblockd_workqueue = alloc_workqueue("kblockd",
1809 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1810 	if (!kblockd_workqueue)
1811 		panic("Failed to create kblockd\n");
1812 
1813 	blk_requestq_cachep = kmem_cache_create("request_queue",
1814 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1815 
1816 #ifdef CONFIG_DEBUG_FS
1817 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1818 #endif
1819 
1820 	return 0;
1821 }
1822