1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/blk-pm.h> 22 #include <linux/highmem.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/string.h> 27 #include <linux/init.h> 28 #include <linux/completion.h> 29 #include <linux/slab.h> 30 #include <linux/swap.h> 31 #include <linux/writeback.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/fault-inject.h> 34 #include <linux/list_sort.h> 35 #include <linux/delay.h> 36 #include <linux/ratelimit.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 #include <linux/t10-pi.h> 40 #include <linux/debugfs.h> 41 #include <linux/bpf.h> 42 #include <linux/psi.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/blk-crypto.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/block.h> 48 49 #include "blk.h" 50 #include "blk-mq.h" 51 #include "blk-mq-sched.h" 52 #include "blk-pm.h" 53 #include "blk-rq-qos.h" 54 55 struct dentry *blk_debugfs_root; 56 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 63 64 DEFINE_IDA(blk_queue_ida); 65 66 /* 67 * For queue allocation 68 */ 69 struct kmem_cache *blk_requestq_cachep; 70 71 /* 72 * Controlling structure to kblockd 73 */ 74 static struct workqueue_struct *kblockd_workqueue; 75 76 /** 77 * blk_queue_flag_set - atomically set a queue flag 78 * @flag: flag to be set 79 * @q: request queue 80 */ 81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 82 { 83 set_bit(flag, &q->queue_flags); 84 } 85 EXPORT_SYMBOL(blk_queue_flag_set); 86 87 /** 88 * blk_queue_flag_clear - atomically clear a queue flag 89 * @flag: flag to be cleared 90 * @q: request queue 91 */ 92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 93 { 94 clear_bit(flag, &q->queue_flags); 95 } 96 EXPORT_SYMBOL(blk_queue_flag_clear); 97 98 /** 99 * blk_queue_flag_test_and_set - atomically test and set a queue flag 100 * @flag: flag to be set 101 * @q: request queue 102 * 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 104 * the flag was already set. 105 */ 106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 107 { 108 return test_and_set_bit(flag, &q->queue_flags); 109 } 110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 111 112 void blk_rq_init(struct request_queue *q, struct request *rq) 113 { 114 memset(rq, 0, sizeof(*rq)); 115 116 INIT_LIST_HEAD(&rq->queuelist); 117 rq->q = q; 118 rq->__sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->tag = BLK_MQ_NO_TAG; 122 rq->internal_tag = BLK_MQ_NO_TAG; 123 rq->start_time_ns = ktime_get_ns(); 124 rq->part = NULL; 125 refcount_set(&rq->ref, 1); 126 blk_crypto_rq_set_defaults(rq); 127 } 128 EXPORT_SYMBOL(blk_rq_init); 129 130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 131 static const char *const blk_op_name[] = { 132 REQ_OP_NAME(READ), 133 REQ_OP_NAME(WRITE), 134 REQ_OP_NAME(FLUSH), 135 REQ_OP_NAME(DISCARD), 136 REQ_OP_NAME(SECURE_ERASE), 137 REQ_OP_NAME(ZONE_RESET), 138 REQ_OP_NAME(ZONE_RESET_ALL), 139 REQ_OP_NAME(ZONE_OPEN), 140 REQ_OP_NAME(ZONE_CLOSE), 141 REQ_OP_NAME(ZONE_FINISH), 142 REQ_OP_NAME(ZONE_APPEND), 143 REQ_OP_NAME(WRITE_SAME), 144 REQ_OP_NAME(WRITE_ZEROES), 145 REQ_OP_NAME(DRV_IN), 146 REQ_OP_NAME(DRV_OUT), 147 }; 148 #undef REQ_OP_NAME 149 150 /** 151 * blk_op_str - Return string XXX in the REQ_OP_XXX. 152 * @op: REQ_OP_XXX. 153 * 154 * Description: Centralize block layer function to convert REQ_OP_XXX into 155 * string format. Useful in the debugging and tracing bio or request. For 156 * invalid REQ_OP_XXX it returns string "UNKNOWN". 157 */ 158 inline const char *blk_op_str(unsigned int op) 159 { 160 const char *op_str = "UNKNOWN"; 161 162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 163 op_str = blk_op_name[op]; 164 165 return op_str; 166 } 167 EXPORT_SYMBOL_GPL(blk_op_str); 168 169 static const struct { 170 int errno; 171 const char *name; 172 } blk_errors[] = { 173 [BLK_STS_OK] = { 0, "" }, 174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 185 186 /* device mapper special case, should not leak out: */ 187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 188 189 /* zone device specific errors */ 190 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 191 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 192 193 /* everything else not covered above: */ 194 [BLK_STS_IOERR] = { -EIO, "I/O" }, 195 }; 196 197 blk_status_t errno_to_blk_status(int errno) 198 { 199 int i; 200 201 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 202 if (blk_errors[i].errno == errno) 203 return (__force blk_status_t)i; 204 } 205 206 return BLK_STS_IOERR; 207 } 208 EXPORT_SYMBOL_GPL(errno_to_blk_status); 209 210 int blk_status_to_errno(blk_status_t status) 211 { 212 int idx = (__force int)status; 213 214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 215 return -EIO; 216 return blk_errors[idx].errno; 217 } 218 EXPORT_SYMBOL_GPL(blk_status_to_errno); 219 220 static void print_req_error(struct request *req, blk_status_t status, 221 const char *caller) 222 { 223 int idx = (__force int)status; 224 225 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 226 return; 227 228 printk_ratelimited(KERN_ERR 229 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 230 "phys_seg %u prio class %u\n", 231 caller, blk_errors[idx].name, 232 req->rq_disk ? req->rq_disk->disk_name : "?", 233 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 234 req->cmd_flags & ~REQ_OP_MASK, 235 req->nr_phys_segments, 236 IOPRIO_PRIO_CLASS(req->ioprio)); 237 } 238 239 static void req_bio_endio(struct request *rq, struct bio *bio, 240 unsigned int nbytes, blk_status_t error) 241 { 242 if (error) 243 bio->bi_status = error; 244 245 if (unlikely(rq->rq_flags & RQF_QUIET)) 246 bio_set_flag(bio, BIO_QUIET); 247 248 bio_advance(bio, nbytes); 249 250 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 251 /* 252 * Partial zone append completions cannot be supported as the 253 * BIO fragments may end up not being written sequentially. 254 */ 255 if (bio->bi_iter.bi_size) 256 bio->bi_status = BLK_STS_IOERR; 257 else 258 bio->bi_iter.bi_sector = rq->__sector; 259 } 260 261 /* don't actually finish bio if it's part of flush sequence */ 262 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 263 bio_endio(bio); 264 } 265 266 void blk_dump_rq_flags(struct request *rq, char *msg) 267 { 268 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 269 rq->rq_disk ? rq->rq_disk->disk_name : "?", 270 (unsigned long long) rq->cmd_flags); 271 272 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 273 (unsigned long long)blk_rq_pos(rq), 274 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 275 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 276 rq->bio, rq->biotail, blk_rq_bytes(rq)); 277 } 278 EXPORT_SYMBOL(blk_dump_rq_flags); 279 280 /** 281 * blk_sync_queue - cancel any pending callbacks on a queue 282 * @q: the queue 283 * 284 * Description: 285 * The block layer may perform asynchronous callback activity 286 * on a queue, such as calling the unplug function after a timeout. 287 * A block device may call blk_sync_queue to ensure that any 288 * such activity is cancelled, thus allowing it to release resources 289 * that the callbacks might use. The caller must already have made sure 290 * that its ->submit_bio will not re-add plugging prior to calling 291 * this function. 292 * 293 * This function does not cancel any asynchronous activity arising 294 * out of elevator or throttling code. That would require elevator_exit() 295 * and blkcg_exit_queue() to be called with queue lock initialized. 296 * 297 */ 298 void blk_sync_queue(struct request_queue *q) 299 { 300 del_timer_sync(&q->timeout); 301 cancel_work_sync(&q->timeout_work); 302 } 303 EXPORT_SYMBOL(blk_sync_queue); 304 305 /** 306 * blk_set_pm_only - increment pm_only counter 307 * @q: request queue pointer 308 */ 309 void blk_set_pm_only(struct request_queue *q) 310 { 311 atomic_inc(&q->pm_only); 312 } 313 EXPORT_SYMBOL_GPL(blk_set_pm_only); 314 315 void blk_clear_pm_only(struct request_queue *q) 316 { 317 int pm_only; 318 319 pm_only = atomic_dec_return(&q->pm_only); 320 WARN_ON_ONCE(pm_only < 0); 321 if (pm_only == 0) 322 wake_up_all(&q->mq_freeze_wq); 323 } 324 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 325 326 /** 327 * blk_put_queue - decrement the request_queue refcount 328 * @q: the request_queue structure to decrement the refcount for 329 * 330 * Decrements the refcount of the request_queue kobject. When this reaches 0 331 * we'll have blk_release_queue() called. 332 * 333 * Context: Any context, but the last reference must not be dropped from 334 * atomic context. 335 */ 336 void blk_put_queue(struct request_queue *q) 337 { 338 kobject_put(&q->kobj); 339 } 340 EXPORT_SYMBOL(blk_put_queue); 341 342 void blk_set_queue_dying(struct request_queue *q) 343 { 344 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 345 346 /* 347 * When queue DYING flag is set, we need to block new req 348 * entering queue, so we call blk_freeze_queue_start() to 349 * prevent I/O from crossing blk_queue_enter(). 350 */ 351 blk_freeze_queue_start(q); 352 353 if (queue_is_mq(q)) 354 blk_mq_wake_waiters(q); 355 356 /* Make blk_queue_enter() reexamine the DYING flag. */ 357 wake_up_all(&q->mq_freeze_wq); 358 } 359 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 360 361 /** 362 * blk_cleanup_queue - shutdown a request queue 363 * @q: request queue to shutdown 364 * 365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 366 * put it. All future requests will be failed immediately with -ENODEV. 367 * 368 * Context: can sleep 369 */ 370 void blk_cleanup_queue(struct request_queue *q) 371 { 372 /* cannot be called from atomic context */ 373 might_sleep(); 374 375 WARN_ON_ONCE(blk_queue_registered(q)); 376 377 /* mark @q DYING, no new request or merges will be allowed afterwards */ 378 blk_set_queue_dying(q); 379 380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 382 383 /* 384 * Drain all requests queued before DYING marking. Set DEAD flag to 385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 386 * after draining finished. 387 */ 388 blk_freeze_queue(q); 389 390 rq_qos_exit(q); 391 392 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 393 394 /* for synchronous bio-based driver finish in-flight integrity i/o */ 395 blk_flush_integrity(); 396 397 /* @q won't process any more request, flush async actions */ 398 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 399 blk_sync_queue(q); 400 401 if (queue_is_mq(q)) 402 blk_mq_exit_queue(q); 403 404 /* 405 * In theory, request pool of sched_tags belongs to request queue. 406 * However, the current implementation requires tag_set for freeing 407 * requests, so free the pool now. 408 * 409 * Queue has become frozen, there can't be any in-queue requests, so 410 * it is safe to free requests now. 411 */ 412 mutex_lock(&q->sysfs_lock); 413 if (q->elevator) 414 blk_mq_sched_free_requests(q); 415 mutex_unlock(&q->sysfs_lock); 416 417 percpu_ref_exit(&q->q_usage_counter); 418 419 /* @q is and will stay empty, shutdown and put */ 420 blk_put_queue(q); 421 } 422 EXPORT_SYMBOL(blk_cleanup_queue); 423 424 /** 425 * blk_queue_enter() - try to increase q->q_usage_counter 426 * @q: request queue pointer 427 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 428 */ 429 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 430 { 431 const bool pm = flags & BLK_MQ_REQ_PM; 432 433 while (true) { 434 bool success = false; 435 436 rcu_read_lock(); 437 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 438 /* 439 * The code that increments the pm_only counter is 440 * responsible for ensuring that that counter is 441 * globally visible before the queue is unfrozen. 442 */ 443 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) || 444 !blk_queue_pm_only(q)) { 445 success = true; 446 } else { 447 percpu_ref_put(&q->q_usage_counter); 448 } 449 } 450 rcu_read_unlock(); 451 452 if (success) 453 return 0; 454 455 if (flags & BLK_MQ_REQ_NOWAIT) 456 return -EBUSY; 457 458 /* 459 * read pair of barrier in blk_freeze_queue_start(), 460 * we need to order reading __PERCPU_REF_DEAD flag of 461 * .q_usage_counter and reading .mq_freeze_depth or 462 * queue dying flag, otherwise the following wait may 463 * never return if the two reads are reordered. 464 */ 465 smp_rmb(); 466 467 wait_event(q->mq_freeze_wq, 468 (!q->mq_freeze_depth && 469 blk_pm_resume_queue(pm, q)) || 470 blk_queue_dying(q)); 471 if (blk_queue_dying(q)) 472 return -ENODEV; 473 } 474 } 475 476 static inline int bio_queue_enter(struct bio *bio) 477 { 478 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 479 bool nowait = bio->bi_opf & REQ_NOWAIT; 480 int ret; 481 482 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 483 if (unlikely(ret)) { 484 if (nowait && !blk_queue_dying(q)) 485 bio_wouldblock_error(bio); 486 else 487 bio_io_error(bio); 488 } 489 490 return ret; 491 } 492 493 void blk_queue_exit(struct request_queue *q) 494 { 495 percpu_ref_put(&q->q_usage_counter); 496 } 497 498 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 499 { 500 struct request_queue *q = 501 container_of(ref, struct request_queue, q_usage_counter); 502 503 wake_up_all(&q->mq_freeze_wq); 504 } 505 506 static void blk_rq_timed_out_timer(struct timer_list *t) 507 { 508 struct request_queue *q = from_timer(q, t, timeout); 509 510 kblockd_schedule_work(&q->timeout_work); 511 } 512 513 static void blk_timeout_work(struct work_struct *work) 514 { 515 } 516 517 struct request_queue *blk_alloc_queue(int node_id) 518 { 519 struct request_queue *q; 520 int ret; 521 522 q = kmem_cache_alloc_node(blk_requestq_cachep, 523 GFP_KERNEL | __GFP_ZERO, node_id); 524 if (!q) 525 return NULL; 526 527 q->last_merge = NULL; 528 529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 530 if (q->id < 0) 531 goto fail_q; 532 533 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0); 534 if (ret) 535 goto fail_id; 536 537 q->backing_dev_info = bdi_alloc(node_id); 538 if (!q->backing_dev_info) 539 goto fail_split; 540 541 q->stats = blk_alloc_queue_stats(); 542 if (!q->stats) 543 goto fail_stats; 544 545 q->node = node_id; 546 547 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 548 549 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 550 laptop_mode_timer_fn, 0); 551 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 552 INIT_WORK(&q->timeout_work, blk_timeout_work); 553 INIT_LIST_HEAD(&q->icq_list); 554 #ifdef CONFIG_BLK_CGROUP 555 INIT_LIST_HEAD(&q->blkg_list); 556 #endif 557 558 kobject_init(&q->kobj, &blk_queue_ktype); 559 560 mutex_init(&q->debugfs_mutex); 561 mutex_init(&q->sysfs_lock); 562 mutex_init(&q->sysfs_dir_lock); 563 spin_lock_init(&q->queue_lock); 564 565 init_waitqueue_head(&q->mq_freeze_wq); 566 mutex_init(&q->mq_freeze_lock); 567 568 /* 569 * Init percpu_ref in atomic mode so that it's faster to shutdown. 570 * See blk_register_queue() for details. 571 */ 572 if (percpu_ref_init(&q->q_usage_counter, 573 blk_queue_usage_counter_release, 574 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 575 goto fail_bdi; 576 577 if (blkcg_init_queue(q)) 578 goto fail_ref; 579 580 blk_queue_dma_alignment(q, 511); 581 blk_set_default_limits(&q->limits); 582 q->nr_requests = BLKDEV_MAX_RQ; 583 584 return q; 585 586 fail_ref: 587 percpu_ref_exit(&q->q_usage_counter); 588 fail_bdi: 589 blk_free_queue_stats(q->stats); 590 fail_stats: 591 bdi_put(q->backing_dev_info); 592 fail_split: 593 bioset_exit(&q->bio_split); 594 fail_id: 595 ida_simple_remove(&blk_queue_ida, q->id); 596 fail_q: 597 kmem_cache_free(blk_requestq_cachep, q); 598 return NULL; 599 } 600 601 /** 602 * blk_get_queue - increment the request_queue refcount 603 * @q: the request_queue structure to increment the refcount for 604 * 605 * Increment the refcount of the request_queue kobject. 606 * 607 * Context: Any context. 608 */ 609 bool blk_get_queue(struct request_queue *q) 610 { 611 if (likely(!blk_queue_dying(q))) { 612 __blk_get_queue(q); 613 return true; 614 } 615 616 return false; 617 } 618 EXPORT_SYMBOL(blk_get_queue); 619 620 /** 621 * blk_get_request - allocate a request 622 * @q: request queue to allocate a request for 623 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 624 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 625 */ 626 struct request *blk_get_request(struct request_queue *q, unsigned int op, 627 blk_mq_req_flags_t flags) 628 { 629 struct request *req; 630 631 WARN_ON_ONCE(op & REQ_NOWAIT); 632 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM)); 633 634 req = blk_mq_alloc_request(q, op, flags); 635 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 636 q->mq_ops->initialize_rq_fn(req); 637 638 return req; 639 } 640 EXPORT_SYMBOL(blk_get_request); 641 642 void blk_put_request(struct request *req) 643 { 644 blk_mq_free_request(req); 645 } 646 EXPORT_SYMBOL(blk_put_request); 647 648 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 649 { 650 char b[BDEVNAME_SIZE]; 651 652 pr_info_ratelimited("attempt to access beyond end of device\n" 653 "%s: rw=%d, want=%llu, limit=%llu\n", 654 bio_devname(bio, b), bio->bi_opf, 655 bio_end_sector(bio), maxsector); 656 } 657 658 #ifdef CONFIG_FAIL_MAKE_REQUEST 659 660 static DECLARE_FAULT_ATTR(fail_make_request); 661 662 static int __init setup_fail_make_request(char *str) 663 { 664 return setup_fault_attr(&fail_make_request, str); 665 } 666 __setup("fail_make_request=", setup_fail_make_request); 667 668 static bool should_fail_request(struct block_device *part, unsigned int bytes) 669 { 670 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 671 } 672 673 static int __init fail_make_request_debugfs(void) 674 { 675 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 676 NULL, &fail_make_request); 677 678 return PTR_ERR_OR_ZERO(dir); 679 } 680 681 late_initcall(fail_make_request_debugfs); 682 683 #else /* CONFIG_FAIL_MAKE_REQUEST */ 684 685 static inline bool should_fail_request(struct block_device *part, 686 unsigned int bytes) 687 { 688 return false; 689 } 690 691 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 692 693 static inline bool bio_check_ro(struct bio *bio) 694 { 695 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 696 char b[BDEVNAME_SIZE]; 697 698 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 699 return false; 700 701 WARN_ONCE(1, 702 "Trying to write to read-only block-device %s (partno %d)\n", 703 bio_devname(bio, b), bio->bi_bdev->bd_partno); 704 /* Older lvm-tools actually trigger this */ 705 return false; 706 } 707 708 return false; 709 } 710 711 static noinline int should_fail_bio(struct bio *bio) 712 { 713 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 714 return -EIO; 715 return 0; 716 } 717 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 718 719 /* 720 * Check whether this bio extends beyond the end of the device or partition. 721 * This may well happen - the kernel calls bread() without checking the size of 722 * the device, e.g., when mounting a file system. 723 */ 724 static inline int bio_check_eod(struct bio *bio) 725 { 726 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 727 unsigned int nr_sectors = bio_sectors(bio); 728 729 if (nr_sectors && maxsector && 730 (nr_sectors > maxsector || 731 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 732 handle_bad_sector(bio, maxsector); 733 return -EIO; 734 } 735 return 0; 736 } 737 738 /* 739 * Remap block n of partition p to block n+start(p) of the disk. 740 */ 741 static int blk_partition_remap(struct bio *bio) 742 { 743 struct block_device *p = bio->bi_bdev; 744 745 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 746 return -EIO; 747 if (bio_sectors(bio)) { 748 bio->bi_iter.bi_sector += p->bd_start_sect; 749 trace_block_bio_remap(bio, p->bd_dev, 750 bio->bi_iter.bi_sector - 751 p->bd_start_sect); 752 } 753 bio_set_flag(bio, BIO_REMAPPED); 754 return 0; 755 } 756 757 /* 758 * Check write append to a zoned block device. 759 */ 760 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 761 struct bio *bio) 762 { 763 sector_t pos = bio->bi_iter.bi_sector; 764 int nr_sectors = bio_sectors(bio); 765 766 /* Only applicable to zoned block devices */ 767 if (!blk_queue_is_zoned(q)) 768 return BLK_STS_NOTSUPP; 769 770 /* The bio sector must point to the start of a sequential zone */ 771 if (pos & (blk_queue_zone_sectors(q) - 1) || 772 !blk_queue_zone_is_seq(q, pos)) 773 return BLK_STS_IOERR; 774 775 /* 776 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 777 * split and could result in non-contiguous sectors being written in 778 * different zones. 779 */ 780 if (nr_sectors > q->limits.chunk_sectors) 781 return BLK_STS_IOERR; 782 783 /* Make sure the BIO is small enough and will not get split */ 784 if (nr_sectors > q->limits.max_zone_append_sectors) 785 return BLK_STS_IOERR; 786 787 bio->bi_opf |= REQ_NOMERGE; 788 789 return BLK_STS_OK; 790 } 791 792 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 793 { 794 struct block_device *bdev = bio->bi_bdev; 795 struct request_queue *q = bdev->bd_disk->queue; 796 blk_status_t status = BLK_STS_IOERR; 797 struct blk_plug *plug; 798 799 might_sleep(); 800 801 plug = blk_mq_plug(q, bio); 802 if (plug && plug->nowait) 803 bio->bi_opf |= REQ_NOWAIT; 804 805 /* 806 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 807 * if queue does not support NOWAIT. 808 */ 809 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 810 goto not_supported; 811 812 if (should_fail_bio(bio)) 813 goto end_io; 814 if (unlikely(bio_check_ro(bio))) 815 goto end_io; 816 if (!bio_flagged(bio, BIO_REMAPPED)) { 817 if (unlikely(bio_check_eod(bio))) 818 goto end_io; 819 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 820 goto end_io; 821 } 822 823 /* 824 * Filter flush bio's early so that bio based drivers without flush 825 * support don't have to worry about them. 826 */ 827 if (op_is_flush(bio->bi_opf) && 828 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 829 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 830 if (!bio_sectors(bio)) { 831 status = BLK_STS_OK; 832 goto end_io; 833 } 834 } 835 836 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 837 bio->bi_opf &= ~REQ_HIPRI; 838 839 switch (bio_op(bio)) { 840 case REQ_OP_DISCARD: 841 if (!blk_queue_discard(q)) 842 goto not_supported; 843 break; 844 case REQ_OP_SECURE_ERASE: 845 if (!blk_queue_secure_erase(q)) 846 goto not_supported; 847 break; 848 case REQ_OP_WRITE_SAME: 849 if (!q->limits.max_write_same_sectors) 850 goto not_supported; 851 break; 852 case REQ_OP_ZONE_APPEND: 853 status = blk_check_zone_append(q, bio); 854 if (status != BLK_STS_OK) 855 goto end_io; 856 break; 857 case REQ_OP_ZONE_RESET: 858 case REQ_OP_ZONE_OPEN: 859 case REQ_OP_ZONE_CLOSE: 860 case REQ_OP_ZONE_FINISH: 861 if (!blk_queue_is_zoned(q)) 862 goto not_supported; 863 break; 864 case REQ_OP_ZONE_RESET_ALL: 865 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 866 goto not_supported; 867 break; 868 case REQ_OP_WRITE_ZEROES: 869 if (!q->limits.max_write_zeroes_sectors) 870 goto not_supported; 871 break; 872 default: 873 break; 874 } 875 876 /* 877 * Various block parts want %current->io_context, so allocate it up 878 * front rather than dealing with lots of pain to allocate it only 879 * where needed. This may fail and the block layer knows how to live 880 * with it. 881 */ 882 if (unlikely(!current->io_context)) 883 create_task_io_context(current, GFP_ATOMIC, q->node); 884 885 if (blk_throtl_bio(bio)) { 886 blkcg_bio_issue_init(bio); 887 return false; 888 } 889 890 blk_cgroup_bio_start(bio); 891 blkcg_bio_issue_init(bio); 892 893 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 894 trace_block_bio_queue(bio); 895 /* Now that enqueuing has been traced, we need to trace 896 * completion as well. 897 */ 898 bio_set_flag(bio, BIO_TRACE_COMPLETION); 899 } 900 return true; 901 902 not_supported: 903 status = BLK_STS_NOTSUPP; 904 end_io: 905 bio->bi_status = status; 906 bio_endio(bio); 907 return false; 908 } 909 910 static blk_qc_t __submit_bio(struct bio *bio) 911 { 912 struct gendisk *disk = bio->bi_bdev->bd_disk; 913 blk_qc_t ret = BLK_QC_T_NONE; 914 915 if (blk_crypto_bio_prep(&bio)) { 916 if (!disk->fops->submit_bio) 917 return blk_mq_submit_bio(bio); 918 ret = disk->fops->submit_bio(bio); 919 } 920 blk_queue_exit(disk->queue); 921 return ret; 922 } 923 924 /* 925 * The loop in this function may be a bit non-obvious, and so deserves some 926 * explanation: 927 * 928 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 929 * that), so we have a list with a single bio. 930 * - We pretend that we have just taken it off a longer list, so we assign 931 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 932 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 933 * bios through a recursive call to submit_bio_noacct. If it did, we find a 934 * non-NULL value in bio_list and re-enter the loop from the top. 935 * - In this case we really did just take the bio of the top of the list (no 936 * pretending) and so remove it from bio_list, and call into ->submit_bio() 937 * again. 938 * 939 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 940 * bio_list_on_stack[1] contains bios that were submitted before the current 941 * ->submit_bio_bio, but that haven't been processed yet. 942 */ 943 static blk_qc_t __submit_bio_noacct(struct bio *bio) 944 { 945 struct bio_list bio_list_on_stack[2]; 946 blk_qc_t ret = BLK_QC_T_NONE; 947 948 BUG_ON(bio->bi_next); 949 950 bio_list_init(&bio_list_on_stack[0]); 951 current->bio_list = bio_list_on_stack; 952 953 do { 954 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 955 struct bio_list lower, same; 956 957 if (unlikely(bio_queue_enter(bio) != 0)) 958 continue; 959 960 /* 961 * Create a fresh bio_list for all subordinate requests. 962 */ 963 bio_list_on_stack[1] = bio_list_on_stack[0]; 964 bio_list_init(&bio_list_on_stack[0]); 965 966 ret = __submit_bio(bio); 967 968 /* 969 * Sort new bios into those for a lower level and those for the 970 * same level. 971 */ 972 bio_list_init(&lower); 973 bio_list_init(&same); 974 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 975 if (q == bio->bi_bdev->bd_disk->queue) 976 bio_list_add(&same, bio); 977 else 978 bio_list_add(&lower, bio); 979 980 /* 981 * Now assemble so we handle the lowest level first. 982 */ 983 bio_list_merge(&bio_list_on_stack[0], &lower); 984 bio_list_merge(&bio_list_on_stack[0], &same); 985 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 986 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 987 988 current->bio_list = NULL; 989 return ret; 990 } 991 992 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 993 { 994 struct bio_list bio_list[2] = { }; 995 blk_qc_t ret = BLK_QC_T_NONE; 996 997 current->bio_list = bio_list; 998 999 do { 1000 struct gendisk *disk = bio->bi_bdev->bd_disk; 1001 1002 if (unlikely(bio_queue_enter(bio) != 0)) 1003 continue; 1004 1005 if (!blk_crypto_bio_prep(&bio)) { 1006 blk_queue_exit(disk->queue); 1007 ret = BLK_QC_T_NONE; 1008 continue; 1009 } 1010 1011 ret = blk_mq_submit_bio(bio); 1012 } while ((bio = bio_list_pop(&bio_list[0]))); 1013 1014 current->bio_list = NULL; 1015 return ret; 1016 } 1017 1018 /** 1019 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1020 * @bio: The bio describing the location in memory and on the device. 1021 * 1022 * This is a version of submit_bio() that shall only be used for I/O that is 1023 * resubmitted to lower level drivers by stacking block drivers. All file 1024 * systems and other upper level users of the block layer should use 1025 * submit_bio() instead. 1026 */ 1027 blk_qc_t submit_bio_noacct(struct bio *bio) 1028 { 1029 if (!submit_bio_checks(bio)) 1030 return BLK_QC_T_NONE; 1031 1032 /* 1033 * We only want one ->submit_bio to be active at a time, else stack 1034 * usage with stacked devices could be a problem. Use current->bio_list 1035 * to collect a list of requests submited by a ->submit_bio method while 1036 * it is active, and then process them after it returned. 1037 */ 1038 if (current->bio_list) { 1039 bio_list_add(¤t->bio_list[0], bio); 1040 return BLK_QC_T_NONE; 1041 } 1042 1043 if (!bio->bi_bdev->bd_disk->fops->submit_bio) 1044 return __submit_bio_noacct_mq(bio); 1045 return __submit_bio_noacct(bio); 1046 } 1047 EXPORT_SYMBOL(submit_bio_noacct); 1048 1049 /** 1050 * submit_bio - submit a bio to the block device layer for I/O 1051 * @bio: The &struct bio which describes the I/O 1052 * 1053 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1054 * fully set up &struct bio that describes the I/O that needs to be done. The 1055 * bio will be send to the device described by the bi_bdev field. 1056 * 1057 * The success/failure status of the request, along with notification of 1058 * completion, is delivered asynchronously through the ->bi_end_io() callback 1059 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1060 * been called. 1061 */ 1062 blk_qc_t submit_bio(struct bio *bio) 1063 { 1064 if (blkcg_punt_bio_submit(bio)) 1065 return BLK_QC_T_NONE; 1066 1067 /* 1068 * If it's a regular read/write or a barrier with data attached, 1069 * go through the normal accounting stuff before submission. 1070 */ 1071 if (bio_has_data(bio)) { 1072 unsigned int count; 1073 1074 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1075 count = queue_logical_block_size( 1076 bio->bi_bdev->bd_disk->queue) >> 9; 1077 else 1078 count = bio_sectors(bio); 1079 1080 if (op_is_write(bio_op(bio))) { 1081 count_vm_events(PGPGOUT, count); 1082 } else { 1083 task_io_account_read(bio->bi_iter.bi_size); 1084 count_vm_events(PGPGIN, count); 1085 } 1086 } 1087 1088 /* 1089 * If we're reading data that is part of the userspace workingset, count 1090 * submission time as memory stall. When the device is congested, or 1091 * the submitting cgroup IO-throttled, submission can be a significant 1092 * part of overall IO time. 1093 */ 1094 if (unlikely(bio_op(bio) == REQ_OP_READ && 1095 bio_flagged(bio, BIO_WORKINGSET))) { 1096 unsigned long pflags; 1097 blk_qc_t ret; 1098 1099 psi_memstall_enter(&pflags); 1100 ret = submit_bio_noacct(bio); 1101 psi_memstall_leave(&pflags); 1102 1103 return ret; 1104 } 1105 1106 return submit_bio_noacct(bio); 1107 } 1108 EXPORT_SYMBOL(submit_bio); 1109 1110 /** 1111 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1112 * for the new queue limits 1113 * @q: the queue 1114 * @rq: the request being checked 1115 * 1116 * Description: 1117 * @rq may have been made based on weaker limitations of upper-level queues 1118 * in request stacking drivers, and it may violate the limitation of @q. 1119 * Since the block layer and the underlying device driver trust @rq 1120 * after it is inserted to @q, it should be checked against @q before 1121 * the insertion using this generic function. 1122 * 1123 * Request stacking drivers like request-based dm may change the queue 1124 * limits when retrying requests on other queues. Those requests need 1125 * to be checked against the new queue limits again during dispatch. 1126 */ 1127 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1128 struct request *rq) 1129 { 1130 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1131 1132 if (blk_rq_sectors(rq) > max_sectors) { 1133 /* 1134 * SCSI device does not have a good way to return if 1135 * Write Same/Zero is actually supported. If a device rejects 1136 * a non-read/write command (discard, write same,etc.) the 1137 * low-level device driver will set the relevant queue limit to 1138 * 0 to prevent blk-lib from issuing more of the offending 1139 * operations. Commands queued prior to the queue limit being 1140 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1141 * errors being propagated to upper layers. 1142 */ 1143 if (max_sectors == 0) 1144 return BLK_STS_NOTSUPP; 1145 1146 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1147 __func__, blk_rq_sectors(rq), max_sectors); 1148 return BLK_STS_IOERR; 1149 } 1150 1151 /* 1152 * The queue settings related to segment counting may differ from the 1153 * original queue. 1154 */ 1155 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1156 if (rq->nr_phys_segments > queue_max_segments(q)) { 1157 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1158 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1159 return BLK_STS_IOERR; 1160 } 1161 1162 return BLK_STS_OK; 1163 } 1164 1165 /** 1166 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1167 * @q: the queue to submit the request 1168 * @rq: the request being queued 1169 */ 1170 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1171 { 1172 blk_status_t ret; 1173 1174 ret = blk_cloned_rq_check_limits(q, rq); 1175 if (ret != BLK_STS_OK) 1176 return ret; 1177 1178 if (rq->rq_disk && 1179 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1180 return BLK_STS_IOERR; 1181 1182 if (blk_crypto_insert_cloned_request(rq)) 1183 return BLK_STS_IOERR; 1184 1185 if (blk_queue_io_stat(q)) 1186 blk_account_io_start(rq); 1187 1188 /* 1189 * Since we have a scheduler attached on the top device, 1190 * bypass a potential scheduler on the bottom device for 1191 * insert. 1192 */ 1193 return blk_mq_request_issue_directly(rq, true); 1194 } 1195 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1196 1197 /** 1198 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1199 * @rq: request to examine 1200 * 1201 * Description: 1202 * A request could be merge of IOs which require different failure 1203 * handling. This function determines the number of bytes which 1204 * can be failed from the beginning of the request without 1205 * crossing into area which need to be retried further. 1206 * 1207 * Return: 1208 * The number of bytes to fail. 1209 */ 1210 unsigned int blk_rq_err_bytes(const struct request *rq) 1211 { 1212 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1213 unsigned int bytes = 0; 1214 struct bio *bio; 1215 1216 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1217 return blk_rq_bytes(rq); 1218 1219 /* 1220 * Currently the only 'mixing' which can happen is between 1221 * different fastfail types. We can safely fail portions 1222 * which have all the failfast bits that the first one has - 1223 * the ones which are at least as eager to fail as the first 1224 * one. 1225 */ 1226 for (bio = rq->bio; bio; bio = bio->bi_next) { 1227 if ((bio->bi_opf & ff) != ff) 1228 break; 1229 bytes += bio->bi_iter.bi_size; 1230 } 1231 1232 /* this could lead to infinite loop */ 1233 BUG_ON(blk_rq_bytes(rq) && !bytes); 1234 return bytes; 1235 } 1236 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1237 1238 static void update_io_ticks(struct block_device *part, unsigned long now, 1239 bool end) 1240 { 1241 unsigned long stamp; 1242 again: 1243 stamp = READ_ONCE(part->bd_stamp); 1244 if (unlikely(time_after(now, stamp))) { 1245 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1246 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1247 } 1248 if (part->bd_partno) { 1249 part = bdev_whole(part); 1250 goto again; 1251 } 1252 } 1253 1254 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1255 { 1256 if (req->part && blk_do_io_stat(req)) { 1257 const int sgrp = op_stat_group(req_op(req)); 1258 1259 part_stat_lock(); 1260 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 1261 part_stat_unlock(); 1262 } 1263 } 1264 1265 void blk_account_io_done(struct request *req, u64 now) 1266 { 1267 /* 1268 * Account IO completion. flush_rq isn't accounted as a 1269 * normal IO on queueing nor completion. Accounting the 1270 * containing request is enough. 1271 */ 1272 if (req->part && blk_do_io_stat(req) && 1273 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1274 const int sgrp = op_stat_group(req_op(req)); 1275 1276 part_stat_lock(); 1277 update_io_ticks(req->part, jiffies, true); 1278 part_stat_inc(req->part, ios[sgrp]); 1279 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1280 part_stat_unlock(); 1281 } 1282 } 1283 1284 void blk_account_io_start(struct request *rq) 1285 { 1286 if (!blk_do_io_stat(rq)) 1287 return; 1288 1289 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 1290 if (rq->bio && rq->bio->bi_bdev) 1291 rq->part = rq->bio->bi_bdev; 1292 else 1293 rq->part = rq->rq_disk->part0; 1294 1295 part_stat_lock(); 1296 update_io_ticks(rq->part, jiffies, false); 1297 part_stat_unlock(); 1298 } 1299 1300 static unsigned long __part_start_io_acct(struct block_device *part, 1301 unsigned int sectors, unsigned int op) 1302 { 1303 const int sgrp = op_stat_group(op); 1304 unsigned long now = READ_ONCE(jiffies); 1305 1306 part_stat_lock(); 1307 update_io_ticks(part, now, false); 1308 part_stat_inc(part, ios[sgrp]); 1309 part_stat_add(part, sectors[sgrp], sectors); 1310 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1311 part_stat_unlock(); 1312 1313 return now; 1314 } 1315 1316 /** 1317 * bio_start_io_acct - start I/O accounting for bio based drivers 1318 * @bio: bio to start account for 1319 * 1320 * Returns the start time that should be passed back to bio_end_io_acct(). 1321 */ 1322 unsigned long bio_start_io_acct(struct bio *bio) 1323 { 1324 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio)); 1325 } 1326 EXPORT_SYMBOL_GPL(bio_start_io_acct); 1327 1328 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1329 unsigned int op) 1330 { 1331 return __part_start_io_acct(disk->part0, sectors, op); 1332 } 1333 EXPORT_SYMBOL(disk_start_io_acct); 1334 1335 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1336 unsigned long start_time) 1337 { 1338 const int sgrp = op_stat_group(op); 1339 unsigned long now = READ_ONCE(jiffies); 1340 unsigned long duration = now - start_time; 1341 1342 part_stat_lock(); 1343 update_io_ticks(part, now, true); 1344 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1345 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1346 part_stat_unlock(); 1347 } 1348 1349 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1350 struct block_device *orig_bdev) 1351 { 1352 __part_end_io_acct(orig_bdev, bio_op(bio), start_time); 1353 } 1354 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1355 1356 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1357 unsigned long start_time) 1358 { 1359 __part_end_io_acct(disk->part0, op, start_time); 1360 } 1361 EXPORT_SYMBOL(disk_end_io_acct); 1362 1363 /* 1364 * Steal bios from a request and add them to a bio list. 1365 * The request must not have been partially completed before. 1366 */ 1367 void blk_steal_bios(struct bio_list *list, struct request *rq) 1368 { 1369 if (rq->bio) { 1370 if (list->tail) 1371 list->tail->bi_next = rq->bio; 1372 else 1373 list->head = rq->bio; 1374 list->tail = rq->biotail; 1375 1376 rq->bio = NULL; 1377 rq->biotail = NULL; 1378 } 1379 1380 rq->__data_len = 0; 1381 } 1382 EXPORT_SYMBOL_GPL(blk_steal_bios); 1383 1384 /** 1385 * blk_update_request - Complete multiple bytes without completing the request 1386 * @req: the request being processed 1387 * @error: block status code 1388 * @nr_bytes: number of bytes to complete for @req 1389 * 1390 * Description: 1391 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1392 * the request structure even if @req doesn't have leftover. 1393 * If @req has leftover, sets it up for the next range of segments. 1394 * 1395 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1396 * %false return from this function. 1397 * 1398 * Note: 1399 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 1400 * except in the consistency check at the end of this function. 1401 * 1402 * Return: 1403 * %false - this request doesn't have any more data 1404 * %true - this request has more data 1405 **/ 1406 bool blk_update_request(struct request *req, blk_status_t error, 1407 unsigned int nr_bytes) 1408 { 1409 int total_bytes; 1410 1411 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1412 1413 if (!req->bio) 1414 return false; 1415 1416 #ifdef CONFIG_BLK_DEV_INTEGRITY 1417 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1418 error == BLK_STS_OK) 1419 req->q->integrity.profile->complete_fn(req, nr_bytes); 1420 #endif 1421 1422 if (unlikely(error && !blk_rq_is_passthrough(req) && 1423 !(req->rq_flags & RQF_QUIET))) 1424 print_req_error(req, error, __func__); 1425 1426 blk_account_io_completion(req, nr_bytes); 1427 1428 total_bytes = 0; 1429 while (req->bio) { 1430 struct bio *bio = req->bio; 1431 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1432 1433 if (bio_bytes == bio->bi_iter.bi_size) 1434 req->bio = bio->bi_next; 1435 1436 /* Completion has already been traced */ 1437 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1438 req_bio_endio(req, bio, bio_bytes, error); 1439 1440 total_bytes += bio_bytes; 1441 nr_bytes -= bio_bytes; 1442 1443 if (!nr_bytes) 1444 break; 1445 } 1446 1447 /* 1448 * completely done 1449 */ 1450 if (!req->bio) { 1451 /* 1452 * Reset counters so that the request stacking driver 1453 * can find how many bytes remain in the request 1454 * later. 1455 */ 1456 req->__data_len = 0; 1457 return false; 1458 } 1459 1460 req->__data_len -= total_bytes; 1461 1462 /* update sector only for requests with clear definition of sector */ 1463 if (!blk_rq_is_passthrough(req)) 1464 req->__sector += total_bytes >> 9; 1465 1466 /* mixed attributes always follow the first bio */ 1467 if (req->rq_flags & RQF_MIXED_MERGE) { 1468 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1469 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1470 } 1471 1472 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1473 /* 1474 * If total number of sectors is less than the first segment 1475 * size, something has gone terribly wrong. 1476 */ 1477 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1478 blk_dump_rq_flags(req, "request botched"); 1479 req->__data_len = blk_rq_cur_bytes(req); 1480 } 1481 1482 /* recalculate the number of segments */ 1483 req->nr_phys_segments = blk_recalc_rq_segments(req); 1484 } 1485 1486 return true; 1487 } 1488 EXPORT_SYMBOL_GPL(blk_update_request); 1489 1490 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1491 /** 1492 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1493 * @rq: the request to be flushed 1494 * 1495 * Description: 1496 * Flush all pages in @rq. 1497 */ 1498 void rq_flush_dcache_pages(struct request *rq) 1499 { 1500 struct req_iterator iter; 1501 struct bio_vec bvec; 1502 1503 rq_for_each_segment(bvec, rq, iter) 1504 flush_dcache_page(bvec.bv_page); 1505 } 1506 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1507 #endif 1508 1509 /** 1510 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1511 * @q : the queue of the device being checked 1512 * 1513 * Description: 1514 * Check if underlying low-level drivers of a device are busy. 1515 * If the drivers want to export their busy state, they must set own 1516 * exporting function using blk_queue_lld_busy() first. 1517 * 1518 * Basically, this function is used only by request stacking drivers 1519 * to stop dispatching requests to underlying devices when underlying 1520 * devices are busy. This behavior helps more I/O merging on the queue 1521 * of the request stacking driver and prevents I/O throughput regression 1522 * on burst I/O load. 1523 * 1524 * Return: 1525 * 0 - Not busy (The request stacking driver should dispatch request) 1526 * 1 - Busy (The request stacking driver should stop dispatching request) 1527 */ 1528 int blk_lld_busy(struct request_queue *q) 1529 { 1530 if (queue_is_mq(q) && q->mq_ops->busy) 1531 return q->mq_ops->busy(q); 1532 1533 return 0; 1534 } 1535 EXPORT_SYMBOL_GPL(blk_lld_busy); 1536 1537 /** 1538 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1539 * @rq: the clone request to be cleaned up 1540 * 1541 * Description: 1542 * Free all bios in @rq for a cloned request. 1543 */ 1544 void blk_rq_unprep_clone(struct request *rq) 1545 { 1546 struct bio *bio; 1547 1548 while ((bio = rq->bio) != NULL) { 1549 rq->bio = bio->bi_next; 1550 1551 bio_put(bio); 1552 } 1553 } 1554 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1555 1556 /** 1557 * blk_rq_prep_clone - Helper function to setup clone request 1558 * @rq: the request to be setup 1559 * @rq_src: original request to be cloned 1560 * @bs: bio_set that bios for clone are allocated from 1561 * @gfp_mask: memory allocation mask for bio 1562 * @bio_ctr: setup function to be called for each clone bio. 1563 * Returns %0 for success, non %0 for failure. 1564 * @data: private data to be passed to @bio_ctr 1565 * 1566 * Description: 1567 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1568 * Also, pages which the original bios are pointing to are not copied 1569 * and the cloned bios just point same pages. 1570 * So cloned bios must be completed before original bios, which means 1571 * the caller must complete @rq before @rq_src. 1572 */ 1573 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1574 struct bio_set *bs, gfp_t gfp_mask, 1575 int (*bio_ctr)(struct bio *, struct bio *, void *), 1576 void *data) 1577 { 1578 struct bio *bio, *bio_src; 1579 1580 if (!bs) 1581 bs = &fs_bio_set; 1582 1583 __rq_for_each_bio(bio_src, rq_src) { 1584 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1585 if (!bio) 1586 goto free_and_out; 1587 1588 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1589 goto free_and_out; 1590 1591 if (rq->bio) { 1592 rq->biotail->bi_next = bio; 1593 rq->biotail = bio; 1594 } else { 1595 rq->bio = rq->biotail = bio; 1596 } 1597 bio = NULL; 1598 } 1599 1600 /* Copy attributes of the original request to the clone request. */ 1601 rq->__sector = blk_rq_pos(rq_src); 1602 rq->__data_len = blk_rq_bytes(rq_src); 1603 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1604 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1605 rq->special_vec = rq_src->special_vec; 1606 } 1607 rq->nr_phys_segments = rq_src->nr_phys_segments; 1608 rq->ioprio = rq_src->ioprio; 1609 1610 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1611 goto free_and_out; 1612 1613 return 0; 1614 1615 free_and_out: 1616 if (bio) 1617 bio_put(bio); 1618 blk_rq_unprep_clone(rq); 1619 1620 return -ENOMEM; 1621 } 1622 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1623 1624 int kblockd_schedule_work(struct work_struct *work) 1625 { 1626 return queue_work(kblockd_workqueue, work); 1627 } 1628 EXPORT_SYMBOL(kblockd_schedule_work); 1629 1630 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1631 unsigned long delay) 1632 { 1633 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1634 } 1635 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1636 1637 /** 1638 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1639 * @plug: The &struct blk_plug that needs to be initialized 1640 * 1641 * Description: 1642 * blk_start_plug() indicates to the block layer an intent by the caller 1643 * to submit multiple I/O requests in a batch. The block layer may use 1644 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1645 * is called. However, the block layer may choose to submit requests 1646 * before a call to blk_finish_plug() if the number of queued I/Os 1647 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1648 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1649 * the task schedules (see below). 1650 * 1651 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1652 * pending I/O should the task end up blocking between blk_start_plug() and 1653 * blk_finish_plug(). This is important from a performance perspective, but 1654 * also ensures that we don't deadlock. For instance, if the task is blocking 1655 * for a memory allocation, memory reclaim could end up wanting to free a 1656 * page belonging to that request that is currently residing in our private 1657 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1658 * this kind of deadlock. 1659 */ 1660 void blk_start_plug(struct blk_plug *plug) 1661 { 1662 struct task_struct *tsk = current; 1663 1664 /* 1665 * If this is a nested plug, don't actually assign it. 1666 */ 1667 if (tsk->plug) 1668 return; 1669 1670 INIT_LIST_HEAD(&plug->mq_list); 1671 INIT_LIST_HEAD(&plug->cb_list); 1672 plug->rq_count = 0; 1673 plug->multiple_queues = false; 1674 plug->nowait = false; 1675 1676 /* 1677 * Store ordering should not be needed here, since a potential 1678 * preempt will imply a full memory barrier 1679 */ 1680 tsk->plug = plug; 1681 } 1682 EXPORT_SYMBOL(blk_start_plug); 1683 1684 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1685 { 1686 LIST_HEAD(callbacks); 1687 1688 while (!list_empty(&plug->cb_list)) { 1689 list_splice_init(&plug->cb_list, &callbacks); 1690 1691 while (!list_empty(&callbacks)) { 1692 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1693 struct blk_plug_cb, 1694 list); 1695 list_del(&cb->list); 1696 cb->callback(cb, from_schedule); 1697 } 1698 } 1699 } 1700 1701 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1702 int size) 1703 { 1704 struct blk_plug *plug = current->plug; 1705 struct blk_plug_cb *cb; 1706 1707 if (!plug) 1708 return NULL; 1709 1710 list_for_each_entry(cb, &plug->cb_list, list) 1711 if (cb->callback == unplug && cb->data == data) 1712 return cb; 1713 1714 /* Not currently on the callback list */ 1715 BUG_ON(size < sizeof(*cb)); 1716 cb = kzalloc(size, GFP_ATOMIC); 1717 if (cb) { 1718 cb->data = data; 1719 cb->callback = unplug; 1720 list_add(&cb->list, &plug->cb_list); 1721 } 1722 return cb; 1723 } 1724 EXPORT_SYMBOL(blk_check_plugged); 1725 1726 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1727 { 1728 flush_plug_callbacks(plug, from_schedule); 1729 1730 if (!list_empty(&plug->mq_list)) 1731 blk_mq_flush_plug_list(plug, from_schedule); 1732 } 1733 1734 /** 1735 * blk_finish_plug - mark the end of a batch of submitted I/O 1736 * @plug: The &struct blk_plug passed to blk_start_plug() 1737 * 1738 * Description: 1739 * Indicate that a batch of I/O submissions is complete. This function 1740 * must be paired with an initial call to blk_start_plug(). The intent 1741 * is to allow the block layer to optimize I/O submission. See the 1742 * documentation for blk_start_plug() for more information. 1743 */ 1744 void blk_finish_plug(struct blk_plug *plug) 1745 { 1746 if (plug != current->plug) 1747 return; 1748 blk_flush_plug_list(plug, false); 1749 1750 current->plug = NULL; 1751 } 1752 EXPORT_SYMBOL(blk_finish_plug); 1753 1754 void blk_io_schedule(void) 1755 { 1756 /* Prevent hang_check timer from firing at us during very long I/O */ 1757 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1758 1759 if (timeout) 1760 io_schedule_timeout(timeout); 1761 else 1762 io_schedule(); 1763 } 1764 EXPORT_SYMBOL_GPL(blk_io_schedule); 1765 1766 int __init blk_dev_init(void) 1767 { 1768 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1769 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1770 sizeof_field(struct request, cmd_flags)); 1771 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1772 sizeof_field(struct bio, bi_opf)); 1773 1774 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1775 kblockd_workqueue = alloc_workqueue("kblockd", 1776 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1777 if (!kblockd_workqueue) 1778 panic("Failed to create kblockd\n"); 1779 1780 blk_requestq_cachep = kmem_cache_create("request_queue", 1781 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1782 1783 blk_debugfs_root = debugfs_create_dir("block", NULL); 1784 1785 return 0; 1786 } 1787