1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 #include "blk-wbt.h" 43 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 49 50 DEFINE_IDA(blk_queue_ida); 51 52 /* 53 * For the allocated request tables 54 */ 55 struct kmem_cache *request_cachep; 56 57 /* 58 * For queue allocation 59 */ 60 struct kmem_cache *blk_requestq_cachep; 61 62 /* 63 * Controlling structure to kblockd 64 */ 65 static struct workqueue_struct *kblockd_workqueue; 66 67 static void blk_clear_congested(struct request_list *rl, int sync) 68 { 69 #ifdef CONFIG_CGROUP_WRITEBACK 70 clear_wb_congested(rl->blkg->wb_congested, sync); 71 #else 72 /* 73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 74 * flip its congestion state for events on other blkcgs. 75 */ 76 if (rl == &rl->q->root_rl) 77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 78 #endif 79 } 80 81 static void blk_set_congested(struct request_list *rl, int sync) 82 { 83 #ifdef CONFIG_CGROUP_WRITEBACK 84 set_wb_congested(rl->blkg->wb_congested, sync); 85 #else 86 /* see blk_clear_congested() */ 87 if (rl == &rl->q->root_rl) 88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 89 #endif 90 } 91 92 void blk_queue_congestion_threshold(struct request_queue *q) 93 { 94 int nr; 95 96 nr = q->nr_requests - (q->nr_requests / 8) + 1; 97 if (nr > q->nr_requests) 98 nr = q->nr_requests; 99 q->nr_congestion_on = nr; 100 101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 102 if (nr < 1) 103 nr = 1; 104 q->nr_congestion_off = nr; 105 } 106 107 /** 108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 109 * @bdev: device 110 * 111 * Locates the passed device's request queue and returns the address of its 112 * backing_dev_info. This function can only be called if @bdev is opened 113 * and the return value is never NULL. 114 */ 115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 116 { 117 struct request_queue *q = bdev_get_queue(bdev); 118 119 return &q->backing_dev_info; 120 } 121 EXPORT_SYMBOL(blk_get_backing_dev_info); 122 123 void blk_rq_init(struct request_queue *q, struct request *rq) 124 { 125 memset(rq, 0, sizeof(*rq)); 126 127 INIT_LIST_HEAD(&rq->queuelist); 128 INIT_LIST_HEAD(&rq->timeout_list); 129 rq->cpu = -1; 130 rq->q = q; 131 rq->__sector = (sector_t) -1; 132 INIT_HLIST_NODE(&rq->hash); 133 RB_CLEAR_NODE(&rq->rb_node); 134 rq->cmd = rq->__cmd; 135 rq->cmd_len = BLK_MAX_CDB; 136 rq->tag = -1; 137 rq->start_time = jiffies; 138 set_start_time_ns(rq); 139 rq->part = NULL; 140 } 141 EXPORT_SYMBOL(blk_rq_init); 142 143 static void req_bio_endio(struct request *rq, struct bio *bio, 144 unsigned int nbytes, int error) 145 { 146 if (error) 147 bio->bi_error = error; 148 149 if (unlikely(rq->rq_flags & RQF_QUIET)) 150 bio_set_flag(bio, BIO_QUIET); 151 152 bio_advance(bio, nbytes); 153 154 /* don't actually finish bio if it's part of flush sequence */ 155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 156 bio_endio(bio); 157 } 158 159 void blk_dump_rq_flags(struct request *rq, char *msg) 160 { 161 int bit; 162 163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 165 (unsigned long long) rq->cmd_flags); 166 167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 168 (unsigned long long)blk_rq_pos(rq), 169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 170 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 171 rq->bio, rq->biotail, blk_rq_bytes(rq)); 172 173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 174 printk(KERN_INFO " cdb: "); 175 for (bit = 0; bit < BLK_MAX_CDB; bit++) 176 printk("%02x ", rq->cmd[bit]); 177 printk("\n"); 178 } 179 } 180 EXPORT_SYMBOL(blk_dump_rq_flags); 181 182 static void blk_delay_work(struct work_struct *work) 183 { 184 struct request_queue *q; 185 186 q = container_of(work, struct request_queue, delay_work.work); 187 spin_lock_irq(q->queue_lock); 188 __blk_run_queue(q); 189 spin_unlock_irq(q->queue_lock); 190 } 191 192 /** 193 * blk_delay_queue - restart queueing after defined interval 194 * @q: The &struct request_queue in question 195 * @msecs: Delay in msecs 196 * 197 * Description: 198 * Sometimes queueing needs to be postponed for a little while, to allow 199 * resources to come back. This function will make sure that queueing is 200 * restarted around the specified time. Queue lock must be held. 201 */ 202 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 203 { 204 if (likely(!blk_queue_dead(q))) 205 queue_delayed_work(kblockd_workqueue, &q->delay_work, 206 msecs_to_jiffies(msecs)); 207 } 208 EXPORT_SYMBOL(blk_delay_queue); 209 210 /** 211 * blk_start_queue_async - asynchronously restart a previously stopped queue 212 * @q: The &struct request_queue in question 213 * 214 * Description: 215 * blk_start_queue_async() will clear the stop flag on the queue, and 216 * ensure that the request_fn for the queue is run from an async 217 * context. 218 **/ 219 void blk_start_queue_async(struct request_queue *q) 220 { 221 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 222 blk_run_queue_async(q); 223 } 224 EXPORT_SYMBOL(blk_start_queue_async); 225 226 /** 227 * blk_start_queue - restart a previously stopped queue 228 * @q: The &struct request_queue in question 229 * 230 * Description: 231 * blk_start_queue() will clear the stop flag on the queue, and call 232 * the request_fn for the queue if it was in a stopped state when 233 * entered. Also see blk_stop_queue(). Queue lock must be held. 234 **/ 235 void blk_start_queue(struct request_queue *q) 236 { 237 WARN_ON(!irqs_disabled()); 238 239 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 240 __blk_run_queue(q); 241 } 242 EXPORT_SYMBOL(blk_start_queue); 243 244 /** 245 * blk_stop_queue - stop a queue 246 * @q: The &struct request_queue in question 247 * 248 * Description: 249 * The Linux block layer assumes that a block driver will consume all 250 * entries on the request queue when the request_fn strategy is called. 251 * Often this will not happen, because of hardware limitations (queue 252 * depth settings). If a device driver gets a 'queue full' response, 253 * or if it simply chooses not to queue more I/O at one point, it can 254 * call this function to prevent the request_fn from being called until 255 * the driver has signalled it's ready to go again. This happens by calling 256 * blk_start_queue() to restart queue operations. Queue lock must be held. 257 **/ 258 void blk_stop_queue(struct request_queue *q) 259 { 260 cancel_delayed_work(&q->delay_work); 261 queue_flag_set(QUEUE_FLAG_STOPPED, q); 262 } 263 EXPORT_SYMBOL(blk_stop_queue); 264 265 /** 266 * blk_sync_queue - cancel any pending callbacks on a queue 267 * @q: the queue 268 * 269 * Description: 270 * The block layer may perform asynchronous callback activity 271 * on a queue, such as calling the unplug function after a timeout. 272 * A block device may call blk_sync_queue to ensure that any 273 * such activity is cancelled, thus allowing it to release resources 274 * that the callbacks might use. The caller must already have made sure 275 * that its ->make_request_fn will not re-add plugging prior to calling 276 * this function. 277 * 278 * This function does not cancel any asynchronous activity arising 279 * out of elevator or throttling code. That would require elevator_exit() 280 * and blkcg_exit_queue() to be called with queue lock initialized. 281 * 282 */ 283 void blk_sync_queue(struct request_queue *q) 284 { 285 del_timer_sync(&q->timeout); 286 287 if (q->mq_ops) { 288 struct blk_mq_hw_ctx *hctx; 289 int i; 290 291 queue_for_each_hw_ctx(q, hctx, i) { 292 cancel_work_sync(&hctx->run_work); 293 cancel_delayed_work_sync(&hctx->delay_work); 294 } 295 } else { 296 cancel_delayed_work_sync(&q->delay_work); 297 } 298 } 299 EXPORT_SYMBOL(blk_sync_queue); 300 301 /** 302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 303 * @q: The queue to run 304 * 305 * Description: 306 * Invoke request handling on a queue if there are any pending requests. 307 * May be used to restart request handling after a request has completed. 308 * This variant runs the queue whether or not the queue has been 309 * stopped. Must be called with the queue lock held and interrupts 310 * disabled. See also @blk_run_queue. 311 */ 312 inline void __blk_run_queue_uncond(struct request_queue *q) 313 { 314 if (unlikely(blk_queue_dead(q))) 315 return; 316 317 /* 318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 319 * the queue lock internally. As a result multiple threads may be 320 * running such a request function concurrently. Keep track of the 321 * number of active request_fn invocations such that blk_drain_queue() 322 * can wait until all these request_fn calls have finished. 323 */ 324 q->request_fn_active++; 325 q->request_fn(q); 326 q->request_fn_active--; 327 } 328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 329 330 /** 331 * __blk_run_queue - run a single device queue 332 * @q: The queue to run 333 * 334 * Description: 335 * See @blk_run_queue. This variant must be called with the queue lock 336 * held and interrupts disabled. 337 */ 338 void __blk_run_queue(struct request_queue *q) 339 { 340 if (unlikely(blk_queue_stopped(q))) 341 return; 342 343 __blk_run_queue_uncond(q); 344 } 345 EXPORT_SYMBOL(__blk_run_queue); 346 347 /** 348 * blk_run_queue_async - run a single device queue in workqueue context 349 * @q: The queue to run 350 * 351 * Description: 352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 353 * of us. The caller must hold the queue lock. 354 */ 355 void blk_run_queue_async(struct request_queue *q) 356 { 357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 359 } 360 EXPORT_SYMBOL(blk_run_queue_async); 361 362 /** 363 * blk_run_queue - run a single device queue 364 * @q: The queue to run 365 * 366 * Description: 367 * Invoke request handling on this queue, if it has pending work to do. 368 * May be used to restart queueing when a request has completed. 369 */ 370 void blk_run_queue(struct request_queue *q) 371 { 372 unsigned long flags; 373 374 spin_lock_irqsave(q->queue_lock, flags); 375 __blk_run_queue(q); 376 spin_unlock_irqrestore(q->queue_lock, flags); 377 } 378 EXPORT_SYMBOL(blk_run_queue); 379 380 void blk_put_queue(struct request_queue *q) 381 { 382 kobject_put(&q->kobj); 383 } 384 EXPORT_SYMBOL(blk_put_queue); 385 386 /** 387 * __blk_drain_queue - drain requests from request_queue 388 * @q: queue to drain 389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 390 * 391 * Drain requests from @q. If @drain_all is set, all requests are drained. 392 * If not, only ELVPRIV requests are drained. The caller is responsible 393 * for ensuring that no new requests which need to be drained are queued. 394 */ 395 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 396 __releases(q->queue_lock) 397 __acquires(q->queue_lock) 398 { 399 int i; 400 401 lockdep_assert_held(q->queue_lock); 402 403 while (true) { 404 bool drain = false; 405 406 /* 407 * The caller might be trying to drain @q before its 408 * elevator is initialized. 409 */ 410 if (q->elevator) 411 elv_drain_elevator(q); 412 413 blkcg_drain_queue(q); 414 415 /* 416 * This function might be called on a queue which failed 417 * driver init after queue creation or is not yet fully 418 * active yet. Some drivers (e.g. fd and loop) get unhappy 419 * in such cases. Kick queue iff dispatch queue has 420 * something on it and @q has request_fn set. 421 */ 422 if (!list_empty(&q->queue_head) && q->request_fn) 423 __blk_run_queue(q); 424 425 drain |= q->nr_rqs_elvpriv; 426 drain |= q->request_fn_active; 427 428 /* 429 * Unfortunately, requests are queued at and tracked from 430 * multiple places and there's no single counter which can 431 * be drained. Check all the queues and counters. 432 */ 433 if (drain_all) { 434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 435 drain |= !list_empty(&q->queue_head); 436 for (i = 0; i < 2; i++) { 437 drain |= q->nr_rqs[i]; 438 drain |= q->in_flight[i]; 439 if (fq) 440 drain |= !list_empty(&fq->flush_queue[i]); 441 } 442 } 443 444 if (!drain) 445 break; 446 447 spin_unlock_irq(q->queue_lock); 448 449 msleep(10); 450 451 spin_lock_irq(q->queue_lock); 452 } 453 454 /* 455 * With queue marked dead, any woken up waiter will fail the 456 * allocation path, so the wakeup chaining is lost and we're 457 * left with hung waiters. We need to wake up those waiters. 458 */ 459 if (q->request_fn) { 460 struct request_list *rl; 461 462 blk_queue_for_each_rl(rl, q) 463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 464 wake_up_all(&rl->wait[i]); 465 } 466 } 467 468 /** 469 * blk_queue_bypass_start - enter queue bypass mode 470 * @q: queue of interest 471 * 472 * In bypass mode, only the dispatch FIFO queue of @q is used. This 473 * function makes @q enter bypass mode and drains all requests which were 474 * throttled or issued before. On return, it's guaranteed that no request 475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 476 * inside queue or RCU read lock. 477 */ 478 void blk_queue_bypass_start(struct request_queue *q) 479 { 480 spin_lock_irq(q->queue_lock); 481 q->bypass_depth++; 482 queue_flag_set(QUEUE_FLAG_BYPASS, q); 483 spin_unlock_irq(q->queue_lock); 484 485 /* 486 * Queues start drained. Skip actual draining till init is 487 * complete. This avoids lenghty delays during queue init which 488 * can happen many times during boot. 489 */ 490 if (blk_queue_init_done(q)) { 491 spin_lock_irq(q->queue_lock); 492 __blk_drain_queue(q, false); 493 spin_unlock_irq(q->queue_lock); 494 495 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 496 synchronize_rcu(); 497 } 498 } 499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 500 501 /** 502 * blk_queue_bypass_end - leave queue bypass mode 503 * @q: queue of interest 504 * 505 * Leave bypass mode and restore the normal queueing behavior. 506 */ 507 void blk_queue_bypass_end(struct request_queue *q) 508 { 509 spin_lock_irq(q->queue_lock); 510 if (!--q->bypass_depth) 511 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 512 WARN_ON_ONCE(q->bypass_depth < 0); 513 spin_unlock_irq(q->queue_lock); 514 } 515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 516 517 void blk_set_queue_dying(struct request_queue *q) 518 { 519 spin_lock_irq(q->queue_lock); 520 queue_flag_set(QUEUE_FLAG_DYING, q); 521 spin_unlock_irq(q->queue_lock); 522 523 if (q->mq_ops) 524 blk_mq_wake_waiters(q); 525 else { 526 struct request_list *rl; 527 528 blk_queue_for_each_rl(rl, q) { 529 if (rl->rq_pool) { 530 wake_up(&rl->wait[BLK_RW_SYNC]); 531 wake_up(&rl->wait[BLK_RW_ASYNC]); 532 } 533 } 534 } 535 } 536 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 537 538 /** 539 * blk_cleanup_queue - shutdown a request queue 540 * @q: request queue to shutdown 541 * 542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 543 * put it. All future requests will be failed immediately with -ENODEV. 544 */ 545 void blk_cleanup_queue(struct request_queue *q) 546 { 547 spinlock_t *lock = q->queue_lock; 548 549 /* mark @q DYING, no new request or merges will be allowed afterwards */ 550 mutex_lock(&q->sysfs_lock); 551 blk_set_queue_dying(q); 552 spin_lock_irq(lock); 553 554 /* 555 * A dying queue is permanently in bypass mode till released. Note 556 * that, unlike blk_queue_bypass_start(), we aren't performing 557 * synchronize_rcu() after entering bypass mode to avoid the delay 558 * as some drivers create and destroy a lot of queues while 559 * probing. This is still safe because blk_release_queue() will be 560 * called only after the queue refcnt drops to zero and nothing, 561 * RCU or not, would be traversing the queue by then. 562 */ 563 q->bypass_depth++; 564 queue_flag_set(QUEUE_FLAG_BYPASS, q); 565 566 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 568 queue_flag_set(QUEUE_FLAG_DYING, q); 569 spin_unlock_irq(lock); 570 mutex_unlock(&q->sysfs_lock); 571 572 /* 573 * Drain all requests queued before DYING marking. Set DEAD flag to 574 * prevent that q->request_fn() gets invoked after draining finished. 575 */ 576 blk_freeze_queue(q); 577 spin_lock_irq(lock); 578 if (!q->mq_ops) 579 __blk_drain_queue(q, true); 580 queue_flag_set(QUEUE_FLAG_DEAD, q); 581 spin_unlock_irq(lock); 582 583 /* for synchronous bio-based driver finish in-flight integrity i/o */ 584 blk_flush_integrity(); 585 586 /* @q won't process any more request, flush async actions */ 587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 588 blk_sync_queue(q); 589 590 if (q->mq_ops) 591 blk_mq_free_queue(q); 592 percpu_ref_exit(&q->q_usage_counter); 593 594 spin_lock_irq(lock); 595 if (q->queue_lock != &q->__queue_lock) 596 q->queue_lock = &q->__queue_lock; 597 spin_unlock_irq(lock); 598 599 bdi_unregister(&q->backing_dev_info); 600 601 /* @q is and will stay empty, shutdown and put */ 602 blk_put_queue(q); 603 } 604 EXPORT_SYMBOL(blk_cleanup_queue); 605 606 /* Allocate memory local to the request queue */ 607 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 608 { 609 int nid = (int)(long)data; 610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 611 } 612 613 static void free_request_struct(void *element, void *unused) 614 { 615 kmem_cache_free(request_cachep, element); 616 } 617 618 int blk_init_rl(struct request_list *rl, struct request_queue *q, 619 gfp_t gfp_mask) 620 { 621 if (unlikely(rl->rq_pool)) 622 return 0; 623 624 rl->q = q; 625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 629 630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 631 free_request_struct, 632 (void *)(long)q->node, gfp_mask, 633 q->node); 634 if (!rl->rq_pool) 635 return -ENOMEM; 636 637 return 0; 638 } 639 640 void blk_exit_rl(struct request_list *rl) 641 { 642 if (rl->rq_pool) 643 mempool_destroy(rl->rq_pool); 644 } 645 646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 647 { 648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 649 } 650 EXPORT_SYMBOL(blk_alloc_queue); 651 652 int blk_queue_enter(struct request_queue *q, bool nowait) 653 { 654 while (true) { 655 int ret; 656 657 if (percpu_ref_tryget_live(&q->q_usage_counter)) 658 return 0; 659 660 if (nowait) 661 return -EBUSY; 662 663 ret = wait_event_interruptible(q->mq_freeze_wq, 664 !atomic_read(&q->mq_freeze_depth) || 665 blk_queue_dying(q)); 666 if (blk_queue_dying(q)) 667 return -ENODEV; 668 if (ret) 669 return ret; 670 } 671 } 672 673 void blk_queue_exit(struct request_queue *q) 674 { 675 percpu_ref_put(&q->q_usage_counter); 676 } 677 678 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 679 { 680 struct request_queue *q = 681 container_of(ref, struct request_queue, q_usage_counter); 682 683 wake_up_all(&q->mq_freeze_wq); 684 } 685 686 static void blk_rq_timed_out_timer(unsigned long data) 687 { 688 struct request_queue *q = (struct request_queue *)data; 689 690 kblockd_schedule_work(&q->timeout_work); 691 } 692 693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 694 { 695 struct request_queue *q; 696 int err; 697 698 q = kmem_cache_alloc_node(blk_requestq_cachep, 699 gfp_mask | __GFP_ZERO, node_id); 700 if (!q) 701 return NULL; 702 703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 704 if (q->id < 0) 705 goto fail_q; 706 707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 708 if (!q->bio_split) 709 goto fail_id; 710 711 q->backing_dev_info.ra_pages = 712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 714 q->backing_dev_info.name = "block"; 715 q->node = node_id; 716 717 err = bdi_init(&q->backing_dev_info); 718 if (err) 719 goto fail_split; 720 721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 722 laptop_mode_timer_fn, (unsigned long) q); 723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 724 INIT_LIST_HEAD(&q->queue_head); 725 INIT_LIST_HEAD(&q->timeout_list); 726 INIT_LIST_HEAD(&q->icq_list); 727 #ifdef CONFIG_BLK_CGROUP 728 INIT_LIST_HEAD(&q->blkg_list); 729 #endif 730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 731 732 kobject_init(&q->kobj, &blk_queue_ktype); 733 734 mutex_init(&q->sysfs_lock); 735 spin_lock_init(&q->__queue_lock); 736 737 /* 738 * By default initialize queue_lock to internal lock and driver can 739 * override it later if need be. 740 */ 741 q->queue_lock = &q->__queue_lock; 742 743 /* 744 * A queue starts its life with bypass turned on to avoid 745 * unnecessary bypass on/off overhead and nasty surprises during 746 * init. The initial bypass will be finished when the queue is 747 * registered by blk_register_queue(). 748 */ 749 q->bypass_depth = 1; 750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 751 752 init_waitqueue_head(&q->mq_freeze_wq); 753 754 /* 755 * Init percpu_ref in atomic mode so that it's faster to shutdown. 756 * See blk_register_queue() for details. 757 */ 758 if (percpu_ref_init(&q->q_usage_counter, 759 blk_queue_usage_counter_release, 760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 761 goto fail_bdi; 762 763 if (blkcg_init_queue(q)) 764 goto fail_ref; 765 766 return q; 767 768 fail_ref: 769 percpu_ref_exit(&q->q_usage_counter); 770 fail_bdi: 771 bdi_destroy(&q->backing_dev_info); 772 fail_split: 773 bioset_free(q->bio_split); 774 fail_id: 775 ida_simple_remove(&blk_queue_ida, q->id); 776 fail_q: 777 kmem_cache_free(blk_requestq_cachep, q); 778 return NULL; 779 } 780 EXPORT_SYMBOL(blk_alloc_queue_node); 781 782 /** 783 * blk_init_queue - prepare a request queue for use with a block device 784 * @rfn: The function to be called to process requests that have been 785 * placed on the queue. 786 * @lock: Request queue spin lock 787 * 788 * Description: 789 * If a block device wishes to use the standard request handling procedures, 790 * which sorts requests and coalesces adjacent requests, then it must 791 * call blk_init_queue(). The function @rfn will be called when there 792 * are requests on the queue that need to be processed. If the device 793 * supports plugging, then @rfn may not be called immediately when requests 794 * are available on the queue, but may be called at some time later instead. 795 * Plugged queues are generally unplugged when a buffer belonging to one 796 * of the requests on the queue is needed, or due to memory pressure. 797 * 798 * @rfn is not required, or even expected, to remove all requests off the 799 * queue, but only as many as it can handle at a time. If it does leave 800 * requests on the queue, it is responsible for arranging that the requests 801 * get dealt with eventually. 802 * 803 * The queue spin lock must be held while manipulating the requests on the 804 * request queue; this lock will be taken also from interrupt context, so irq 805 * disabling is needed for it. 806 * 807 * Function returns a pointer to the initialized request queue, or %NULL if 808 * it didn't succeed. 809 * 810 * Note: 811 * blk_init_queue() must be paired with a blk_cleanup_queue() call 812 * when the block device is deactivated (such as at module unload). 813 **/ 814 815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 816 { 817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 818 } 819 EXPORT_SYMBOL(blk_init_queue); 820 821 struct request_queue * 822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 823 { 824 struct request_queue *uninit_q, *q; 825 826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 827 if (!uninit_q) 828 return NULL; 829 830 q = blk_init_allocated_queue(uninit_q, rfn, lock); 831 if (!q) 832 blk_cleanup_queue(uninit_q); 833 834 return q; 835 } 836 EXPORT_SYMBOL(blk_init_queue_node); 837 838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 839 840 struct request_queue * 841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 842 spinlock_t *lock) 843 { 844 if (!q) 845 return NULL; 846 847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 848 if (!q->fq) 849 return NULL; 850 851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 852 goto fail; 853 854 INIT_WORK(&q->timeout_work, blk_timeout_work); 855 q->request_fn = rfn; 856 q->prep_rq_fn = NULL; 857 q->unprep_rq_fn = NULL; 858 q->queue_flags |= QUEUE_FLAG_DEFAULT; 859 860 /* Override internal queue lock with supplied lock pointer */ 861 if (lock) 862 q->queue_lock = lock; 863 864 /* 865 * This also sets hw/phys segments, boundary and size 866 */ 867 blk_queue_make_request(q, blk_queue_bio); 868 869 q->sg_reserved_size = INT_MAX; 870 871 /* Protect q->elevator from elevator_change */ 872 mutex_lock(&q->sysfs_lock); 873 874 /* init elevator */ 875 if (elevator_init(q, NULL)) { 876 mutex_unlock(&q->sysfs_lock); 877 goto fail; 878 } 879 880 mutex_unlock(&q->sysfs_lock); 881 882 return q; 883 884 fail: 885 blk_free_flush_queue(q->fq); 886 wbt_exit(q); 887 return NULL; 888 } 889 EXPORT_SYMBOL(blk_init_allocated_queue); 890 891 bool blk_get_queue(struct request_queue *q) 892 { 893 if (likely(!blk_queue_dying(q))) { 894 __blk_get_queue(q); 895 return true; 896 } 897 898 return false; 899 } 900 EXPORT_SYMBOL(blk_get_queue); 901 902 static inline void blk_free_request(struct request_list *rl, struct request *rq) 903 { 904 if (rq->rq_flags & RQF_ELVPRIV) { 905 elv_put_request(rl->q, rq); 906 if (rq->elv.icq) 907 put_io_context(rq->elv.icq->ioc); 908 } 909 910 mempool_free(rq, rl->rq_pool); 911 } 912 913 /* 914 * ioc_batching returns true if the ioc is a valid batching request and 915 * should be given priority access to a request. 916 */ 917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 918 { 919 if (!ioc) 920 return 0; 921 922 /* 923 * Make sure the process is able to allocate at least 1 request 924 * even if the batch times out, otherwise we could theoretically 925 * lose wakeups. 926 */ 927 return ioc->nr_batch_requests == q->nr_batching || 928 (ioc->nr_batch_requests > 0 929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 930 } 931 932 /* 933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 934 * will cause the process to be a "batcher" on all queues in the system. This 935 * is the behaviour we want though - once it gets a wakeup it should be given 936 * a nice run. 937 */ 938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 939 { 940 if (!ioc || ioc_batching(q, ioc)) 941 return; 942 943 ioc->nr_batch_requests = q->nr_batching; 944 ioc->last_waited = jiffies; 945 } 946 947 static void __freed_request(struct request_list *rl, int sync) 948 { 949 struct request_queue *q = rl->q; 950 951 if (rl->count[sync] < queue_congestion_off_threshold(q)) 952 blk_clear_congested(rl, sync); 953 954 if (rl->count[sync] + 1 <= q->nr_requests) { 955 if (waitqueue_active(&rl->wait[sync])) 956 wake_up(&rl->wait[sync]); 957 958 blk_clear_rl_full(rl, sync); 959 } 960 } 961 962 /* 963 * A request has just been released. Account for it, update the full and 964 * congestion status, wake up any waiters. Called under q->queue_lock. 965 */ 966 static void freed_request(struct request_list *rl, bool sync, 967 req_flags_t rq_flags) 968 { 969 struct request_queue *q = rl->q; 970 971 q->nr_rqs[sync]--; 972 rl->count[sync]--; 973 if (rq_flags & RQF_ELVPRIV) 974 q->nr_rqs_elvpriv--; 975 976 __freed_request(rl, sync); 977 978 if (unlikely(rl->starved[sync ^ 1])) 979 __freed_request(rl, sync ^ 1); 980 } 981 982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 983 { 984 struct request_list *rl; 985 int on_thresh, off_thresh; 986 987 spin_lock_irq(q->queue_lock); 988 q->nr_requests = nr; 989 blk_queue_congestion_threshold(q); 990 on_thresh = queue_congestion_on_threshold(q); 991 off_thresh = queue_congestion_off_threshold(q); 992 993 blk_queue_for_each_rl(rl, q) { 994 if (rl->count[BLK_RW_SYNC] >= on_thresh) 995 blk_set_congested(rl, BLK_RW_SYNC); 996 else if (rl->count[BLK_RW_SYNC] < off_thresh) 997 blk_clear_congested(rl, BLK_RW_SYNC); 998 999 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1000 blk_set_congested(rl, BLK_RW_ASYNC); 1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1002 blk_clear_congested(rl, BLK_RW_ASYNC); 1003 1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1005 blk_set_rl_full(rl, BLK_RW_SYNC); 1006 } else { 1007 blk_clear_rl_full(rl, BLK_RW_SYNC); 1008 wake_up(&rl->wait[BLK_RW_SYNC]); 1009 } 1010 1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1012 blk_set_rl_full(rl, BLK_RW_ASYNC); 1013 } else { 1014 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1015 wake_up(&rl->wait[BLK_RW_ASYNC]); 1016 } 1017 } 1018 1019 spin_unlock_irq(q->queue_lock); 1020 return 0; 1021 } 1022 1023 /* 1024 * Determine if elevator data should be initialized when allocating the 1025 * request associated with @bio. 1026 */ 1027 static bool blk_rq_should_init_elevator(struct bio *bio) 1028 { 1029 if (!bio) 1030 return true; 1031 1032 /* 1033 * Flush requests do not use the elevator so skip initialization. 1034 * This allows a request to share the flush and elevator data. 1035 */ 1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) 1037 return false; 1038 1039 return true; 1040 } 1041 1042 /** 1043 * rq_ioc - determine io_context for request allocation 1044 * @bio: request being allocated is for this bio (can be %NULL) 1045 * 1046 * Determine io_context to use for request allocation for @bio. May return 1047 * %NULL if %current->io_context doesn't exist. 1048 */ 1049 static struct io_context *rq_ioc(struct bio *bio) 1050 { 1051 #ifdef CONFIG_BLK_CGROUP 1052 if (bio && bio->bi_ioc) 1053 return bio->bi_ioc; 1054 #endif 1055 return current->io_context; 1056 } 1057 1058 /** 1059 * __get_request - get a free request 1060 * @rl: request list to allocate from 1061 * @op: operation and flags 1062 * @bio: bio to allocate request for (can be %NULL) 1063 * @gfp_mask: allocation mask 1064 * 1065 * Get a free request from @q. This function may fail under memory 1066 * pressure or if @q is dead. 1067 * 1068 * Must be called with @q->queue_lock held and, 1069 * Returns ERR_PTR on failure, with @q->queue_lock held. 1070 * Returns request pointer on success, with @q->queue_lock *not held*. 1071 */ 1072 static struct request *__get_request(struct request_list *rl, unsigned int op, 1073 struct bio *bio, gfp_t gfp_mask) 1074 { 1075 struct request_queue *q = rl->q; 1076 struct request *rq; 1077 struct elevator_type *et = q->elevator->type; 1078 struct io_context *ioc = rq_ioc(bio); 1079 struct io_cq *icq = NULL; 1080 const bool is_sync = op_is_sync(op); 1081 int may_queue; 1082 req_flags_t rq_flags = RQF_ALLOCED; 1083 1084 if (unlikely(blk_queue_dying(q))) 1085 return ERR_PTR(-ENODEV); 1086 1087 may_queue = elv_may_queue(q, op); 1088 if (may_queue == ELV_MQUEUE_NO) 1089 goto rq_starved; 1090 1091 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1092 if (rl->count[is_sync]+1 >= q->nr_requests) { 1093 /* 1094 * The queue will fill after this allocation, so set 1095 * it as full, and mark this process as "batching". 1096 * This process will be allowed to complete a batch of 1097 * requests, others will be blocked. 1098 */ 1099 if (!blk_rl_full(rl, is_sync)) { 1100 ioc_set_batching(q, ioc); 1101 blk_set_rl_full(rl, is_sync); 1102 } else { 1103 if (may_queue != ELV_MQUEUE_MUST 1104 && !ioc_batching(q, ioc)) { 1105 /* 1106 * The queue is full and the allocating 1107 * process is not a "batcher", and not 1108 * exempted by the IO scheduler 1109 */ 1110 return ERR_PTR(-ENOMEM); 1111 } 1112 } 1113 } 1114 blk_set_congested(rl, is_sync); 1115 } 1116 1117 /* 1118 * Only allow batching queuers to allocate up to 50% over the defined 1119 * limit of requests, otherwise we could have thousands of requests 1120 * allocated with any setting of ->nr_requests 1121 */ 1122 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1123 return ERR_PTR(-ENOMEM); 1124 1125 q->nr_rqs[is_sync]++; 1126 rl->count[is_sync]++; 1127 rl->starved[is_sync] = 0; 1128 1129 /* 1130 * Decide whether the new request will be managed by elevator. If 1131 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1132 * prevent the current elevator from being destroyed until the new 1133 * request is freed. This guarantees icq's won't be destroyed and 1134 * makes creating new ones safe. 1135 * 1136 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1137 * it will be created after releasing queue_lock. 1138 */ 1139 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1140 rq_flags |= RQF_ELVPRIV; 1141 q->nr_rqs_elvpriv++; 1142 if (et->icq_cache && ioc) 1143 icq = ioc_lookup_icq(ioc, q); 1144 } 1145 1146 if (blk_queue_io_stat(q)) 1147 rq_flags |= RQF_IO_STAT; 1148 spin_unlock_irq(q->queue_lock); 1149 1150 /* allocate and init request */ 1151 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1152 if (!rq) 1153 goto fail_alloc; 1154 1155 blk_rq_init(q, rq); 1156 blk_rq_set_rl(rq, rl); 1157 blk_rq_set_prio(rq, ioc); 1158 rq->cmd_flags = op; 1159 rq->rq_flags = rq_flags; 1160 1161 /* init elvpriv */ 1162 if (rq_flags & RQF_ELVPRIV) { 1163 if (unlikely(et->icq_cache && !icq)) { 1164 if (ioc) 1165 icq = ioc_create_icq(ioc, q, gfp_mask); 1166 if (!icq) 1167 goto fail_elvpriv; 1168 } 1169 1170 rq->elv.icq = icq; 1171 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1172 goto fail_elvpriv; 1173 1174 /* @rq->elv.icq holds io_context until @rq is freed */ 1175 if (icq) 1176 get_io_context(icq->ioc); 1177 } 1178 out: 1179 /* 1180 * ioc may be NULL here, and ioc_batching will be false. That's 1181 * OK, if the queue is under the request limit then requests need 1182 * not count toward the nr_batch_requests limit. There will always 1183 * be some limit enforced by BLK_BATCH_TIME. 1184 */ 1185 if (ioc_batching(q, ioc)) 1186 ioc->nr_batch_requests--; 1187 1188 trace_block_getrq(q, bio, op); 1189 return rq; 1190 1191 fail_elvpriv: 1192 /* 1193 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1194 * and may fail indefinitely under memory pressure and thus 1195 * shouldn't stall IO. Treat this request as !elvpriv. This will 1196 * disturb iosched and blkcg but weird is bettern than dead. 1197 */ 1198 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1199 __func__, dev_name(q->backing_dev_info.dev)); 1200 1201 rq->rq_flags &= ~RQF_ELVPRIV; 1202 rq->elv.icq = NULL; 1203 1204 spin_lock_irq(q->queue_lock); 1205 q->nr_rqs_elvpriv--; 1206 spin_unlock_irq(q->queue_lock); 1207 goto out; 1208 1209 fail_alloc: 1210 /* 1211 * Allocation failed presumably due to memory. Undo anything we 1212 * might have messed up. 1213 * 1214 * Allocating task should really be put onto the front of the wait 1215 * queue, but this is pretty rare. 1216 */ 1217 spin_lock_irq(q->queue_lock); 1218 freed_request(rl, is_sync, rq_flags); 1219 1220 /* 1221 * in the very unlikely event that allocation failed and no 1222 * requests for this direction was pending, mark us starved so that 1223 * freeing of a request in the other direction will notice 1224 * us. another possible fix would be to split the rq mempool into 1225 * READ and WRITE 1226 */ 1227 rq_starved: 1228 if (unlikely(rl->count[is_sync] == 0)) 1229 rl->starved[is_sync] = 1; 1230 return ERR_PTR(-ENOMEM); 1231 } 1232 1233 /** 1234 * get_request - get a free request 1235 * @q: request_queue to allocate request from 1236 * @op: operation and flags 1237 * @bio: bio to allocate request for (can be %NULL) 1238 * @gfp_mask: allocation mask 1239 * 1240 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1241 * this function keeps retrying under memory pressure and fails iff @q is dead. 1242 * 1243 * Must be called with @q->queue_lock held and, 1244 * Returns ERR_PTR on failure, with @q->queue_lock held. 1245 * Returns request pointer on success, with @q->queue_lock *not held*. 1246 */ 1247 static struct request *get_request(struct request_queue *q, unsigned int op, 1248 struct bio *bio, gfp_t gfp_mask) 1249 { 1250 const bool is_sync = op_is_sync(op); 1251 DEFINE_WAIT(wait); 1252 struct request_list *rl; 1253 struct request *rq; 1254 1255 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1256 retry: 1257 rq = __get_request(rl, op, bio, gfp_mask); 1258 if (!IS_ERR(rq)) 1259 return rq; 1260 1261 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1262 blk_put_rl(rl); 1263 return rq; 1264 } 1265 1266 /* wait on @rl and retry */ 1267 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1268 TASK_UNINTERRUPTIBLE); 1269 1270 trace_block_sleeprq(q, bio, op); 1271 1272 spin_unlock_irq(q->queue_lock); 1273 io_schedule(); 1274 1275 /* 1276 * After sleeping, we become a "batching" process and will be able 1277 * to allocate at least one request, and up to a big batch of them 1278 * for a small period time. See ioc_batching, ioc_set_batching 1279 */ 1280 ioc_set_batching(q, current->io_context); 1281 1282 spin_lock_irq(q->queue_lock); 1283 finish_wait(&rl->wait[is_sync], &wait); 1284 1285 goto retry; 1286 } 1287 1288 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1289 gfp_t gfp_mask) 1290 { 1291 struct request *rq; 1292 1293 BUG_ON(rw != READ && rw != WRITE); 1294 1295 /* create ioc upfront */ 1296 create_io_context(gfp_mask, q->node); 1297 1298 spin_lock_irq(q->queue_lock); 1299 rq = get_request(q, rw, NULL, gfp_mask); 1300 if (IS_ERR(rq)) { 1301 spin_unlock_irq(q->queue_lock); 1302 return rq; 1303 } 1304 1305 /* q->queue_lock is unlocked at this point */ 1306 rq->__data_len = 0; 1307 rq->__sector = (sector_t) -1; 1308 rq->bio = rq->biotail = NULL; 1309 return rq; 1310 } 1311 1312 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1313 { 1314 if (q->mq_ops) 1315 return blk_mq_alloc_request(q, rw, 1316 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1317 0 : BLK_MQ_REQ_NOWAIT); 1318 else 1319 return blk_old_get_request(q, rw, gfp_mask); 1320 } 1321 EXPORT_SYMBOL(blk_get_request); 1322 1323 /** 1324 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1325 * @rq: request to be initialized 1326 * 1327 */ 1328 void blk_rq_set_block_pc(struct request *rq) 1329 { 1330 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1331 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1332 } 1333 EXPORT_SYMBOL(blk_rq_set_block_pc); 1334 1335 /** 1336 * blk_requeue_request - put a request back on queue 1337 * @q: request queue where request should be inserted 1338 * @rq: request to be inserted 1339 * 1340 * Description: 1341 * Drivers often keep queueing requests until the hardware cannot accept 1342 * more, when that condition happens we need to put the request back 1343 * on the queue. Must be called with queue lock held. 1344 */ 1345 void blk_requeue_request(struct request_queue *q, struct request *rq) 1346 { 1347 blk_delete_timer(rq); 1348 blk_clear_rq_complete(rq); 1349 trace_block_rq_requeue(q, rq); 1350 wbt_requeue(q->rq_wb, &rq->issue_stat); 1351 1352 if (rq->rq_flags & RQF_QUEUED) 1353 blk_queue_end_tag(q, rq); 1354 1355 BUG_ON(blk_queued_rq(rq)); 1356 1357 elv_requeue_request(q, rq); 1358 } 1359 EXPORT_SYMBOL(blk_requeue_request); 1360 1361 static void add_acct_request(struct request_queue *q, struct request *rq, 1362 int where) 1363 { 1364 blk_account_io_start(rq, true); 1365 __elv_add_request(q, rq, where); 1366 } 1367 1368 static void part_round_stats_single(int cpu, struct hd_struct *part, 1369 unsigned long now) 1370 { 1371 int inflight; 1372 1373 if (now == part->stamp) 1374 return; 1375 1376 inflight = part_in_flight(part); 1377 if (inflight) { 1378 __part_stat_add(cpu, part, time_in_queue, 1379 inflight * (now - part->stamp)); 1380 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1381 } 1382 part->stamp = now; 1383 } 1384 1385 /** 1386 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1387 * @cpu: cpu number for stats access 1388 * @part: target partition 1389 * 1390 * The average IO queue length and utilisation statistics are maintained 1391 * by observing the current state of the queue length and the amount of 1392 * time it has been in this state for. 1393 * 1394 * Normally, that accounting is done on IO completion, but that can result 1395 * in more than a second's worth of IO being accounted for within any one 1396 * second, leading to >100% utilisation. To deal with that, we call this 1397 * function to do a round-off before returning the results when reading 1398 * /proc/diskstats. This accounts immediately for all queue usage up to 1399 * the current jiffies and restarts the counters again. 1400 */ 1401 void part_round_stats(int cpu, struct hd_struct *part) 1402 { 1403 unsigned long now = jiffies; 1404 1405 if (part->partno) 1406 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1407 part_round_stats_single(cpu, part, now); 1408 } 1409 EXPORT_SYMBOL_GPL(part_round_stats); 1410 1411 #ifdef CONFIG_PM 1412 static void blk_pm_put_request(struct request *rq) 1413 { 1414 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1415 pm_runtime_mark_last_busy(rq->q->dev); 1416 } 1417 #else 1418 static inline void blk_pm_put_request(struct request *rq) {} 1419 #endif 1420 1421 /* 1422 * queue lock must be held 1423 */ 1424 void __blk_put_request(struct request_queue *q, struct request *req) 1425 { 1426 req_flags_t rq_flags = req->rq_flags; 1427 1428 if (unlikely(!q)) 1429 return; 1430 1431 if (q->mq_ops) { 1432 blk_mq_free_request(req); 1433 return; 1434 } 1435 1436 blk_pm_put_request(req); 1437 1438 elv_completed_request(q, req); 1439 1440 /* this is a bio leak */ 1441 WARN_ON(req->bio != NULL); 1442 1443 wbt_done(q->rq_wb, &req->issue_stat); 1444 1445 /* 1446 * Request may not have originated from ll_rw_blk. if not, 1447 * it didn't come out of our reserved rq pools 1448 */ 1449 if (rq_flags & RQF_ALLOCED) { 1450 struct request_list *rl = blk_rq_rl(req); 1451 bool sync = op_is_sync(req->cmd_flags); 1452 1453 BUG_ON(!list_empty(&req->queuelist)); 1454 BUG_ON(ELV_ON_HASH(req)); 1455 1456 blk_free_request(rl, req); 1457 freed_request(rl, sync, rq_flags); 1458 blk_put_rl(rl); 1459 } 1460 } 1461 EXPORT_SYMBOL_GPL(__blk_put_request); 1462 1463 void blk_put_request(struct request *req) 1464 { 1465 struct request_queue *q = req->q; 1466 1467 if (q->mq_ops) 1468 blk_mq_free_request(req); 1469 else { 1470 unsigned long flags; 1471 1472 spin_lock_irqsave(q->queue_lock, flags); 1473 __blk_put_request(q, req); 1474 spin_unlock_irqrestore(q->queue_lock, flags); 1475 } 1476 } 1477 EXPORT_SYMBOL(blk_put_request); 1478 1479 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1480 struct bio *bio) 1481 { 1482 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1483 1484 if (!ll_back_merge_fn(q, req, bio)) 1485 return false; 1486 1487 trace_block_bio_backmerge(q, req, bio); 1488 1489 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1490 blk_rq_set_mixed_merge(req); 1491 1492 req->biotail->bi_next = bio; 1493 req->biotail = bio; 1494 req->__data_len += bio->bi_iter.bi_size; 1495 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1496 1497 blk_account_io_start(req, false); 1498 return true; 1499 } 1500 1501 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1502 struct bio *bio) 1503 { 1504 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1505 1506 if (!ll_front_merge_fn(q, req, bio)) 1507 return false; 1508 1509 trace_block_bio_frontmerge(q, req, bio); 1510 1511 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1512 blk_rq_set_mixed_merge(req); 1513 1514 bio->bi_next = req->bio; 1515 req->bio = bio; 1516 1517 req->__sector = bio->bi_iter.bi_sector; 1518 req->__data_len += bio->bi_iter.bi_size; 1519 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1520 1521 blk_account_io_start(req, false); 1522 return true; 1523 } 1524 1525 /** 1526 * blk_attempt_plug_merge - try to merge with %current's plugged list 1527 * @q: request_queue new bio is being queued at 1528 * @bio: new bio being queued 1529 * @request_count: out parameter for number of traversed plugged requests 1530 * @same_queue_rq: pointer to &struct request that gets filled in when 1531 * another request associated with @q is found on the plug list 1532 * (optional, may be %NULL) 1533 * 1534 * Determine whether @bio being queued on @q can be merged with a request 1535 * on %current's plugged list. Returns %true if merge was successful, 1536 * otherwise %false. 1537 * 1538 * Plugging coalesces IOs from the same issuer for the same purpose without 1539 * going through @q->queue_lock. As such it's more of an issuing mechanism 1540 * than scheduling, and the request, while may have elvpriv data, is not 1541 * added on the elevator at this point. In addition, we don't have 1542 * reliable access to the elevator outside queue lock. Only check basic 1543 * merging parameters without querying the elevator. 1544 * 1545 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1546 */ 1547 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1548 unsigned int *request_count, 1549 struct request **same_queue_rq) 1550 { 1551 struct blk_plug *plug; 1552 struct request *rq; 1553 bool ret = false; 1554 struct list_head *plug_list; 1555 1556 plug = current->plug; 1557 if (!plug) 1558 goto out; 1559 *request_count = 0; 1560 1561 if (q->mq_ops) 1562 plug_list = &plug->mq_list; 1563 else 1564 plug_list = &plug->list; 1565 1566 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1567 int el_ret; 1568 1569 if (rq->q == q) { 1570 (*request_count)++; 1571 /* 1572 * Only blk-mq multiple hardware queues case checks the 1573 * rq in the same queue, there should be only one such 1574 * rq in a queue 1575 **/ 1576 if (same_queue_rq) 1577 *same_queue_rq = rq; 1578 } 1579 1580 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1581 continue; 1582 1583 el_ret = blk_try_merge(rq, bio); 1584 if (el_ret == ELEVATOR_BACK_MERGE) { 1585 ret = bio_attempt_back_merge(q, rq, bio); 1586 if (ret) 1587 break; 1588 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1589 ret = bio_attempt_front_merge(q, rq, bio); 1590 if (ret) 1591 break; 1592 } 1593 } 1594 out: 1595 return ret; 1596 } 1597 1598 unsigned int blk_plug_queued_count(struct request_queue *q) 1599 { 1600 struct blk_plug *plug; 1601 struct request *rq; 1602 struct list_head *plug_list; 1603 unsigned int ret = 0; 1604 1605 plug = current->plug; 1606 if (!plug) 1607 goto out; 1608 1609 if (q->mq_ops) 1610 plug_list = &plug->mq_list; 1611 else 1612 plug_list = &plug->list; 1613 1614 list_for_each_entry(rq, plug_list, queuelist) { 1615 if (rq->q == q) 1616 ret++; 1617 } 1618 out: 1619 return ret; 1620 } 1621 1622 void init_request_from_bio(struct request *req, struct bio *bio) 1623 { 1624 req->cmd_type = REQ_TYPE_FS; 1625 if (bio->bi_opf & REQ_RAHEAD) 1626 req->cmd_flags |= REQ_FAILFAST_MASK; 1627 1628 req->errors = 0; 1629 req->__sector = bio->bi_iter.bi_sector; 1630 if (ioprio_valid(bio_prio(bio))) 1631 req->ioprio = bio_prio(bio); 1632 blk_rq_bio_prep(req->q, req, bio); 1633 } 1634 1635 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1636 { 1637 struct blk_plug *plug; 1638 int el_ret, where = ELEVATOR_INSERT_SORT; 1639 struct request *req; 1640 unsigned int request_count = 0; 1641 unsigned int wb_acct; 1642 1643 /* 1644 * low level driver can indicate that it wants pages above a 1645 * certain limit bounced to low memory (ie for highmem, or even 1646 * ISA dma in theory) 1647 */ 1648 blk_queue_bounce(q, &bio); 1649 1650 blk_queue_split(q, &bio, q->bio_split); 1651 1652 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1653 bio->bi_error = -EIO; 1654 bio_endio(bio); 1655 return BLK_QC_T_NONE; 1656 } 1657 1658 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) { 1659 spin_lock_irq(q->queue_lock); 1660 where = ELEVATOR_INSERT_FLUSH; 1661 goto get_rq; 1662 } 1663 1664 /* 1665 * Check if we can merge with the plugged list before grabbing 1666 * any locks. 1667 */ 1668 if (!blk_queue_nomerges(q)) { 1669 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1670 return BLK_QC_T_NONE; 1671 } else 1672 request_count = blk_plug_queued_count(q); 1673 1674 spin_lock_irq(q->queue_lock); 1675 1676 el_ret = elv_merge(q, &req, bio); 1677 if (el_ret == ELEVATOR_BACK_MERGE) { 1678 if (bio_attempt_back_merge(q, req, bio)) { 1679 elv_bio_merged(q, req, bio); 1680 if (!attempt_back_merge(q, req)) 1681 elv_merged_request(q, req, el_ret); 1682 goto out_unlock; 1683 } 1684 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1685 if (bio_attempt_front_merge(q, req, bio)) { 1686 elv_bio_merged(q, req, bio); 1687 if (!attempt_front_merge(q, req)) 1688 elv_merged_request(q, req, el_ret); 1689 goto out_unlock; 1690 } 1691 } 1692 1693 get_rq: 1694 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1695 1696 /* 1697 * Grab a free request. This is might sleep but can not fail. 1698 * Returns with the queue unlocked. 1699 */ 1700 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1701 if (IS_ERR(req)) { 1702 __wbt_done(q->rq_wb, wb_acct); 1703 bio->bi_error = PTR_ERR(req); 1704 bio_endio(bio); 1705 goto out_unlock; 1706 } 1707 1708 wbt_track(&req->issue_stat, wb_acct); 1709 1710 /* 1711 * After dropping the lock and possibly sleeping here, our request 1712 * may now be mergeable after it had proven unmergeable (above). 1713 * We don't worry about that case for efficiency. It won't happen 1714 * often, and the elevators are able to handle it. 1715 */ 1716 init_request_from_bio(req, bio); 1717 1718 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1719 req->cpu = raw_smp_processor_id(); 1720 1721 plug = current->plug; 1722 if (plug) { 1723 /* 1724 * If this is the first request added after a plug, fire 1725 * of a plug trace. 1726 * 1727 * @request_count may become stale because of schedule 1728 * out, so check plug list again. 1729 */ 1730 if (!request_count || list_empty(&plug->list)) 1731 trace_block_plug(q); 1732 else { 1733 struct request *last = list_entry_rq(plug->list.prev); 1734 if (request_count >= BLK_MAX_REQUEST_COUNT || 1735 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1736 blk_flush_plug_list(plug, false); 1737 trace_block_plug(q); 1738 } 1739 } 1740 list_add_tail(&req->queuelist, &plug->list); 1741 blk_account_io_start(req, true); 1742 } else { 1743 spin_lock_irq(q->queue_lock); 1744 add_acct_request(q, req, where); 1745 __blk_run_queue(q); 1746 out_unlock: 1747 spin_unlock_irq(q->queue_lock); 1748 } 1749 1750 return BLK_QC_T_NONE; 1751 } 1752 1753 /* 1754 * If bio->bi_dev is a partition, remap the location 1755 */ 1756 static inline void blk_partition_remap(struct bio *bio) 1757 { 1758 struct block_device *bdev = bio->bi_bdev; 1759 1760 /* 1761 * Zone reset does not include bi_size so bio_sectors() is always 0. 1762 * Include a test for the reset op code and perform the remap if needed. 1763 */ 1764 if (bdev != bdev->bd_contains && 1765 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1766 struct hd_struct *p = bdev->bd_part; 1767 1768 bio->bi_iter.bi_sector += p->start_sect; 1769 bio->bi_bdev = bdev->bd_contains; 1770 1771 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1772 bdev->bd_dev, 1773 bio->bi_iter.bi_sector - p->start_sect); 1774 } 1775 } 1776 1777 static void handle_bad_sector(struct bio *bio) 1778 { 1779 char b[BDEVNAME_SIZE]; 1780 1781 printk(KERN_INFO "attempt to access beyond end of device\n"); 1782 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1783 bdevname(bio->bi_bdev, b), 1784 bio->bi_opf, 1785 (unsigned long long)bio_end_sector(bio), 1786 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1787 } 1788 1789 #ifdef CONFIG_FAIL_MAKE_REQUEST 1790 1791 static DECLARE_FAULT_ATTR(fail_make_request); 1792 1793 static int __init setup_fail_make_request(char *str) 1794 { 1795 return setup_fault_attr(&fail_make_request, str); 1796 } 1797 __setup("fail_make_request=", setup_fail_make_request); 1798 1799 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1800 { 1801 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1802 } 1803 1804 static int __init fail_make_request_debugfs(void) 1805 { 1806 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1807 NULL, &fail_make_request); 1808 1809 return PTR_ERR_OR_ZERO(dir); 1810 } 1811 1812 late_initcall(fail_make_request_debugfs); 1813 1814 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1815 1816 static inline bool should_fail_request(struct hd_struct *part, 1817 unsigned int bytes) 1818 { 1819 return false; 1820 } 1821 1822 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1823 1824 /* 1825 * Check whether this bio extends beyond the end of the device. 1826 */ 1827 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1828 { 1829 sector_t maxsector; 1830 1831 if (!nr_sectors) 1832 return 0; 1833 1834 /* Test device or partition size, when known. */ 1835 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1836 if (maxsector) { 1837 sector_t sector = bio->bi_iter.bi_sector; 1838 1839 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1840 /* 1841 * This may well happen - the kernel calls bread() 1842 * without checking the size of the device, e.g., when 1843 * mounting a device. 1844 */ 1845 handle_bad_sector(bio); 1846 return 1; 1847 } 1848 } 1849 1850 return 0; 1851 } 1852 1853 static noinline_for_stack bool 1854 generic_make_request_checks(struct bio *bio) 1855 { 1856 struct request_queue *q; 1857 int nr_sectors = bio_sectors(bio); 1858 int err = -EIO; 1859 char b[BDEVNAME_SIZE]; 1860 struct hd_struct *part; 1861 1862 might_sleep(); 1863 1864 if (bio_check_eod(bio, nr_sectors)) 1865 goto end_io; 1866 1867 q = bdev_get_queue(bio->bi_bdev); 1868 if (unlikely(!q)) { 1869 printk(KERN_ERR 1870 "generic_make_request: Trying to access " 1871 "nonexistent block-device %s (%Lu)\n", 1872 bdevname(bio->bi_bdev, b), 1873 (long long) bio->bi_iter.bi_sector); 1874 goto end_io; 1875 } 1876 1877 part = bio->bi_bdev->bd_part; 1878 if (should_fail_request(part, bio->bi_iter.bi_size) || 1879 should_fail_request(&part_to_disk(part)->part0, 1880 bio->bi_iter.bi_size)) 1881 goto end_io; 1882 1883 /* 1884 * If this device has partitions, remap block n 1885 * of partition p to block n+start(p) of the disk. 1886 */ 1887 blk_partition_remap(bio); 1888 1889 if (bio_check_eod(bio, nr_sectors)) 1890 goto end_io; 1891 1892 /* 1893 * Filter flush bio's early so that make_request based 1894 * drivers without flush support don't have to worry 1895 * about them. 1896 */ 1897 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) && 1898 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1899 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1900 if (!nr_sectors) { 1901 err = 0; 1902 goto end_io; 1903 } 1904 } 1905 1906 switch (bio_op(bio)) { 1907 case REQ_OP_DISCARD: 1908 if (!blk_queue_discard(q)) 1909 goto not_supported; 1910 break; 1911 case REQ_OP_SECURE_ERASE: 1912 if (!blk_queue_secure_erase(q)) 1913 goto not_supported; 1914 break; 1915 case REQ_OP_WRITE_SAME: 1916 if (!bdev_write_same(bio->bi_bdev)) 1917 goto not_supported; 1918 break; 1919 case REQ_OP_ZONE_REPORT: 1920 case REQ_OP_ZONE_RESET: 1921 if (!bdev_is_zoned(bio->bi_bdev)) 1922 goto not_supported; 1923 break; 1924 case REQ_OP_WRITE_ZEROES: 1925 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 1926 goto not_supported; 1927 break; 1928 default: 1929 break; 1930 } 1931 1932 /* 1933 * Various block parts want %current->io_context and lazy ioc 1934 * allocation ends up trading a lot of pain for a small amount of 1935 * memory. Just allocate it upfront. This may fail and block 1936 * layer knows how to live with it. 1937 */ 1938 create_io_context(GFP_ATOMIC, q->node); 1939 1940 if (!blkcg_bio_issue_check(q, bio)) 1941 return false; 1942 1943 trace_block_bio_queue(q, bio); 1944 return true; 1945 1946 not_supported: 1947 err = -EOPNOTSUPP; 1948 end_io: 1949 bio->bi_error = err; 1950 bio_endio(bio); 1951 return false; 1952 } 1953 1954 /** 1955 * generic_make_request - hand a buffer to its device driver for I/O 1956 * @bio: The bio describing the location in memory and on the device. 1957 * 1958 * generic_make_request() is used to make I/O requests of block 1959 * devices. It is passed a &struct bio, which describes the I/O that needs 1960 * to be done. 1961 * 1962 * generic_make_request() does not return any status. The 1963 * success/failure status of the request, along with notification of 1964 * completion, is delivered asynchronously through the bio->bi_end_io 1965 * function described (one day) else where. 1966 * 1967 * The caller of generic_make_request must make sure that bi_io_vec 1968 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1969 * set to describe the device address, and the 1970 * bi_end_io and optionally bi_private are set to describe how 1971 * completion notification should be signaled. 1972 * 1973 * generic_make_request and the drivers it calls may use bi_next if this 1974 * bio happens to be merged with someone else, and may resubmit the bio to 1975 * a lower device by calling into generic_make_request recursively, which 1976 * means the bio should NOT be touched after the call to ->make_request_fn. 1977 */ 1978 blk_qc_t generic_make_request(struct bio *bio) 1979 { 1980 struct bio_list bio_list_on_stack; 1981 blk_qc_t ret = BLK_QC_T_NONE; 1982 1983 if (!generic_make_request_checks(bio)) 1984 goto out; 1985 1986 /* 1987 * We only want one ->make_request_fn to be active at a time, else 1988 * stack usage with stacked devices could be a problem. So use 1989 * current->bio_list to keep a list of requests submited by a 1990 * make_request_fn function. current->bio_list is also used as a 1991 * flag to say if generic_make_request is currently active in this 1992 * task or not. If it is NULL, then no make_request is active. If 1993 * it is non-NULL, then a make_request is active, and new requests 1994 * should be added at the tail 1995 */ 1996 if (current->bio_list) { 1997 bio_list_add(current->bio_list, bio); 1998 goto out; 1999 } 2000 2001 /* following loop may be a bit non-obvious, and so deserves some 2002 * explanation. 2003 * Before entering the loop, bio->bi_next is NULL (as all callers 2004 * ensure that) so we have a list with a single bio. 2005 * We pretend that we have just taken it off a longer list, so 2006 * we assign bio_list to a pointer to the bio_list_on_stack, 2007 * thus initialising the bio_list of new bios to be 2008 * added. ->make_request() may indeed add some more bios 2009 * through a recursive call to generic_make_request. If it 2010 * did, we find a non-NULL value in bio_list and re-enter the loop 2011 * from the top. In this case we really did just take the bio 2012 * of the top of the list (no pretending) and so remove it from 2013 * bio_list, and call into ->make_request() again. 2014 */ 2015 BUG_ON(bio->bi_next); 2016 bio_list_init(&bio_list_on_stack); 2017 current->bio_list = &bio_list_on_stack; 2018 do { 2019 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2020 2021 if (likely(blk_queue_enter(q, false) == 0)) { 2022 ret = q->make_request_fn(q, bio); 2023 2024 blk_queue_exit(q); 2025 2026 bio = bio_list_pop(current->bio_list); 2027 } else { 2028 struct bio *bio_next = bio_list_pop(current->bio_list); 2029 2030 bio_io_error(bio); 2031 bio = bio_next; 2032 } 2033 } while (bio); 2034 current->bio_list = NULL; /* deactivate */ 2035 2036 out: 2037 return ret; 2038 } 2039 EXPORT_SYMBOL(generic_make_request); 2040 2041 /** 2042 * submit_bio - submit a bio to the block device layer for I/O 2043 * @bio: The &struct bio which describes the I/O 2044 * 2045 * submit_bio() is very similar in purpose to generic_make_request(), and 2046 * uses that function to do most of the work. Both are fairly rough 2047 * interfaces; @bio must be presetup and ready for I/O. 2048 * 2049 */ 2050 blk_qc_t submit_bio(struct bio *bio) 2051 { 2052 /* 2053 * If it's a regular read/write or a barrier with data attached, 2054 * go through the normal accounting stuff before submission. 2055 */ 2056 if (bio_has_data(bio)) { 2057 unsigned int count; 2058 2059 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2060 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2061 else 2062 count = bio_sectors(bio); 2063 2064 if (op_is_write(bio_op(bio))) { 2065 count_vm_events(PGPGOUT, count); 2066 } else { 2067 task_io_account_read(bio->bi_iter.bi_size); 2068 count_vm_events(PGPGIN, count); 2069 } 2070 2071 if (unlikely(block_dump)) { 2072 char b[BDEVNAME_SIZE]; 2073 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2074 current->comm, task_pid_nr(current), 2075 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2076 (unsigned long long)bio->bi_iter.bi_sector, 2077 bdevname(bio->bi_bdev, b), 2078 count); 2079 } 2080 } 2081 2082 return generic_make_request(bio); 2083 } 2084 EXPORT_SYMBOL(submit_bio); 2085 2086 /** 2087 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2088 * for new the queue limits 2089 * @q: the queue 2090 * @rq: the request being checked 2091 * 2092 * Description: 2093 * @rq may have been made based on weaker limitations of upper-level queues 2094 * in request stacking drivers, and it may violate the limitation of @q. 2095 * Since the block layer and the underlying device driver trust @rq 2096 * after it is inserted to @q, it should be checked against @q before 2097 * the insertion using this generic function. 2098 * 2099 * Request stacking drivers like request-based dm may change the queue 2100 * limits when retrying requests on other queues. Those requests need 2101 * to be checked against the new queue limits again during dispatch. 2102 */ 2103 static int blk_cloned_rq_check_limits(struct request_queue *q, 2104 struct request *rq) 2105 { 2106 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2107 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2108 return -EIO; 2109 } 2110 2111 /* 2112 * queue's settings related to segment counting like q->bounce_pfn 2113 * may differ from that of other stacking queues. 2114 * Recalculate it to check the request correctly on this queue's 2115 * limitation. 2116 */ 2117 blk_recalc_rq_segments(rq); 2118 if (rq->nr_phys_segments > queue_max_segments(q)) { 2119 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2120 return -EIO; 2121 } 2122 2123 return 0; 2124 } 2125 2126 /** 2127 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2128 * @q: the queue to submit the request 2129 * @rq: the request being queued 2130 */ 2131 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2132 { 2133 unsigned long flags; 2134 int where = ELEVATOR_INSERT_BACK; 2135 2136 if (blk_cloned_rq_check_limits(q, rq)) 2137 return -EIO; 2138 2139 if (rq->rq_disk && 2140 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2141 return -EIO; 2142 2143 if (q->mq_ops) { 2144 if (blk_queue_io_stat(q)) 2145 blk_account_io_start(rq, true); 2146 blk_mq_insert_request(rq, false, true, false); 2147 return 0; 2148 } 2149 2150 spin_lock_irqsave(q->queue_lock, flags); 2151 if (unlikely(blk_queue_dying(q))) { 2152 spin_unlock_irqrestore(q->queue_lock, flags); 2153 return -ENODEV; 2154 } 2155 2156 /* 2157 * Submitting request must be dequeued before calling this function 2158 * because it will be linked to another request_queue 2159 */ 2160 BUG_ON(blk_queued_rq(rq)); 2161 2162 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA)) 2163 where = ELEVATOR_INSERT_FLUSH; 2164 2165 add_acct_request(q, rq, where); 2166 if (where == ELEVATOR_INSERT_FLUSH) 2167 __blk_run_queue(q); 2168 spin_unlock_irqrestore(q->queue_lock, flags); 2169 2170 return 0; 2171 } 2172 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2173 2174 /** 2175 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2176 * @rq: request to examine 2177 * 2178 * Description: 2179 * A request could be merge of IOs which require different failure 2180 * handling. This function determines the number of bytes which 2181 * can be failed from the beginning of the request without 2182 * crossing into area which need to be retried further. 2183 * 2184 * Return: 2185 * The number of bytes to fail. 2186 * 2187 * Context: 2188 * queue_lock must be held. 2189 */ 2190 unsigned int blk_rq_err_bytes(const struct request *rq) 2191 { 2192 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2193 unsigned int bytes = 0; 2194 struct bio *bio; 2195 2196 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2197 return blk_rq_bytes(rq); 2198 2199 /* 2200 * Currently the only 'mixing' which can happen is between 2201 * different fastfail types. We can safely fail portions 2202 * which have all the failfast bits that the first one has - 2203 * the ones which are at least as eager to fail as the first 2204 * one. 2205 */ 2206 for (bio = rq->bio; bio; bio = bio->bi_next) { 2207 if ((bio->bi_opf & ff) != ff) 2208 break; 2209 bytes += bio->bi_iter.bi_size; 2210 } 2211 2212 /* this could lead to infinite loop */ 2213 BUG_ON(blk_rq_bytes(rq) && !bytes); 2214 return bytes; 2215 } 2216 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2217 2218 void blk_account_io_completion(struct request *req, unsigned int bytes) 2219 { 2220 if (blk_do_io_stat(req)) { 2221 const int rw = rq_data_dir(req); 2222 struct hd_struct *part; 2223 int cpu; 2224 2225 cpu = part_stat_lock(); 2226 part = req->part; 2227 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2228 part_stat_unlock(); 2229 } 2230 } 2231 2232 void blk_account_io_done(struct request *req) 2233 { 2234 /* 2235 * Account IO completion. flush_rq isn't accounted as a 2236 * normal IO on queueing nor completion. Accounting the 2237 * containing request is enough. 2238 */ 2239 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2240 unsigned long duration = jiffies - req->start_time; 2241 const int rw = rq_data_dir(req); 2242 struct hd_struct *part; 2243 int cpu; 2244 2245 cpu = part_stat_lock(); 2246 part = req->part; 2247 2248 part_stat_inc(cpu, part, ios[rw]); 2249 part_stat_add(cpu, part, ticks[rw], duration); 2250 part_round_stats(cpu, part); 2251 part_dec_in_flight(part, rw); 2252 2253 hd_struct_put(part); 2254 part_stat_unlock(); 2255 } 2256 } 2257 2258 #ifdef CONFIG_PM 2259 /* 2260 * Don't process normal requests when queue is suspended 2261 * or in the process of suspending/resuming 2262 */ 2263 static struct request *blk_pm_peek_request(struct request_queue *q, 2264 struct request *rq) 2265 { 2266 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2267 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2268 return NULL; 2269 else 2270 return rq; 2271 } 2272 #else 2273 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2274 struct request *rq) 2275 { 2276 return rq; 2277 } 2278 #endif 2279 2280 void blk_account_io_start(struct request *rq, bool new_io) 2281 { 2282 struct hd_struct *part; 2283 int rw = rq_data_dir(rq); 2284 int cpu; 2285 2286 if (!blk_do_io_stat(rq)) 2287 return; 2288 2289 cpu = part_stat_lock(); 2290 2291 if (!new_io) { 2292 part = rq->part; 2293 part_stat_inc(cpu, part, merges[rw]); 2294 } else { 2295 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2296 if (!hd_struct_try_get(part)) { 2297 /* 2298 * The partition is already being removed, 2299 * the request will be accounted on the disk only 2300 * 2301 * We take a reference on disk->part0 although that 2302 * partition will never be deleted, so we can treat 2303 * it as any other partition. 2304 */ 2305 part = &rq->rq_disk->part0; 2306 hd_struct_get(part); 2307 } 2308 part_round_stats(cpu, part); 2309 part_inc_in_flight(part, rw); 2310 rq->part = part; 2311 } 2312 2313 part_stat_unlock(); 2314 } 2315 2316 /** 2317 * blk_peek_request - peek at the top of a request queue 2318 * @q: request queue to peek at 2319 * 2320 * Description: 2321 * Return the request at the top of @q. The returned request 2322 * should be started using blk_start_request() before LLD starts 2323 * processing it. 2324 * 2325 * Return: 2326 * Pointer to the request at the top of @q if available. Null 2327 * otherwise. 2328 * 2329 * Context: 2330 * queue_lock must be held. 2331 */ 2332 struct request *blk_peek_request(struct request_queue *q) 2333 { 2334 struct request *rq; 2335 int ret; 2336 2337 while ((rq = __elv_next_request(q)) != NULL) { 2338 2339 rq = blk_pm_peek_request(q, rq); 2340 if (!rq) 2341 break; 2342 2343 if (!(rq->rq_flags & RQF_STARTED)) { 2344 /* 2345 * This is the first time the device driver 2346 * sees this request (possibly after 2347 * requeueing). Notify IO scheduler. 2348 */ 2349 if (rq->rq_flags & RQF_SORTED) 2350 elv_activate_rq(q, rq); 2351 2352 /* 2353 * just mark as started even if we don't start 2354 * it, a request that has been delayed should 2355 * not be passed by new incoming requests 2356 */ 2357 rq->rq_flags |= RQF_STARTED; 2358 trace_block_rq_issue(q, rq); 2359 } 2360 2361 if (!q->boundary_rq || q->boundary_rq == rq) { 2362 q->end_sector = rq_end_sector(rq); 2363 q->boundary_rq = NULL; 2364 } 2365 2366 if (rq->rq_flags & RQF_DONTPREP) 2367 break; 2368 2369 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2370 /* 2371 * make sure space for the drain appears we 2372 * know we can do this because max_hw_segments 2373 * has been adjusted to be one fewer than the 2374 * device can handle 2375 */ 2376 rq->nr_phys_segments++; 2377 } 2378 2379 if (!q->prep_rq_fn) 2380 break; 2381 2382 ret = q->prep_rq_fn(q, rq); 2383 if (ret == BLKPREP_OK) { 2384 break; 2385 } else if (ret == BLKPREP_DEFER) { 2386 /* 2387 * the request may have been (partially) prepped. 2388 * we need to keep this request in the front to 2389 * avoid resource deadlock. RQF_STARTED will 2390 * prevent other fs requests from passing this one. 2391 */ 2392 if (q->dma_drain_size && blk_rq_bytes(rq) && 2393 !(rq->rq_flags & RQF_DONTPREP)) { 2394 /* 2395 * remove the space for the drain we added 2396 * so that we don't add it again 2397 */ 2398 --rq->nr_phys_segments; 2399 } 2400 2401 rq = NULL; 2402 break; 2403 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2404 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2405 2406 rq->rq_flags |= RQF_QUIET; 2407 /* 2408 * Mark this request as started so we don't trigger 2409 * any debug logic in the end I/O path. 2410 */ 2411 blk_start_request(rq); 2412 __blk_end_request_all(rq, err); 2413 } else { 2414 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2415 break; 2416 } 2417 } 2418 2419 return rq; 2420 } 2421 EXPORT_SYMBOL(blk_peek_request); 2422 2423 void blk_dequeue_request(struct request *rq) 2424 { 2425 struct request_queue *q = rq->q; 2426 2427 BUG_ON(list_empty(&rq->queuelist)); 2428 BUG_ON(ELV_ON_HASH(rq)); 2429 2430 list_del_init(&rq->queuelist); 2431 2432 /* 2433 * the time frame between a request being removed from the lists 2434 * and to it is freed is accounted as io that is in progress at 2435 * the driver side. 2436 */ 2437 if (blk_account_rq(rq)) { 2438 q->in_flight[rq_is_sync(rq)]++; 2439 set_io_start_time_ns(rq); 2440 } 2441 } 2442 2443 /** 2444 * blk_start_request - start request processing on the driver 2445 * @req: request to dequeue 2446 * 2447 * Description: 2448 * Dequeue @req and start timeout timer on it. This hands off the 2449 * request to the driver. 2450 * 2451 * Block internal functions which don't want to start timer should 2452 * call blk_dequeue_request(). 2453 * 2454 * Context: 2455 * queue_lock must be held. 2456 */ 2457 void blk_start_request(struct request *req) 2458 { 2459 blk_dequeue_request(req); 2460 2461 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2462 blk_stat_set_issue_time(&req->issue_stat); 2463 req->rq_flags |= RQF_STATS; 2464 wbt_issue(req->q->rq_wb, &req->issue_stat); 2465 } 2466 2467 /* 2468 * We are now handing the request to the hardware, initialize 2469 * resid_len to full count and add the timeout handler. 2470 */ 2471 req->resid_len = blk_rq_bytes(req); 2472 if (unlikely(blk_bidi_rq(req))) 2473 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2474 2475 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2476 blk_add_timer(req); 2477 } 2478 EXPORT_SYMBOL(blk_start_request); 2479 2480 /** 2481 * blk_fetch_request - fetch a request from a request queue 2482 * @q: request queue to fetch a request from 2483 * 2484 * Description: 2485 * Return the request at the top of @q. The request is started on 2486 * return and LLD can start processing it immediately. 2487 * 2488 * Return: 2489 * Pointer to the request at the top of @q if available. Null 2490 * otherwise. 2491 * 2492 * Context: 2493 * queue_lock must be held. 2494 */ 2495 struct request *blk_fetch_request(struct request_queue *q) 2496 { 2497 struct request *rq; 2498 2499 rq = blk_peek_request(q); 2500 if (rq) 2501 blk_start_request(rq); 2502 return rq; 2503 } 2504 EXPORT_SYMBOL(blk_fetch_request); 2505 2506 /** 2507 * blk_update_request - Special helper function for request stacking drivers 2508 * @req: the request being processed 2509 * @error: %0 for success, < %0 for error 2510 * @nr_bytes: number of bytes to complete @req 2511 * 2512 * Description: 2513 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2514 * the request structure even if @req doesn't have leftover. 2515 * If @req has leftover, sets it up for the next range of segments. 2516 * 2517 * This special helper function is only for request stacking drivers 2518 * (e.g. request-based dm) so that they can handle partial completion. 2519 * Actual device drivers should use blk_end_request instead. 2520 * 2521 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2522 * %false return from this function. 2523 * 2524 * Return: 2525 * %false - this request doesn't have any more data 2526 * %true - this request has more data 2527 **/ 2528 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2529 { 2530 int total_bytes; 2531 2532 trace_block_rq_complete(req->q, req, nr_bytes); 2533 2534 if (!req->bio) 2535 return false; 2536 2537 /* 2538 * For fs requests, rq is just carrier of independent bio's 2539 * and each partial completion should be handled separately. 2540 * Reset per-request error on each partial completion. 2541 * 2542 * TODO: tj: This is too subtle. It would be better to let 2543 * low level drivers do what they see fit. 2544 */ 2545 if (req->cmd_type == REQ_TYPE_FS) 2546 req->errors = 0; 2547 2548 if (error && req->cmd_type == REQ_TYPE_FS && 2549 !(req->rq_flags & RQF_QUIET)) { 2550 char *error_type; 2551 2552 switch (error) { 2553 case -ENOLINK: 2554 error_type = "recoverable transport"; 2555 break; 2556 case -EREMOTEIO: 2557 error_type = "critical target"; 2558 break; 2559 case -EBADE: 2560 error_type = "critical nexus"; 2561 break; 2562 case -ETIMEDOUT: 2563 error_type = "timeout"; 2564 break; 2565 case -ENOSPC: 2566 error_type = "critical space allocation"; 2567 break; 2568 case -ENODATA: 2569 error_type = "critical medium"; 2570 break; 2571 case -EIO: 2572 default: 2573 error_type = "I/O"; 2574 break; 2575 } 2576 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2577 __func__, error_type, req->rq_disk ? 2578 req->rq_disk->disk_name : "?", 2579 (unsigned long long)blk_rq_pos(req)); 2580 2581 } 2582 2583 blk_account_io_completion(req, nr_bytes); 2584 2585 total_bytes = 0; 2586 while (req->bio) { 2587 struct bio *bio = req->bio; 2588 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2589 2590 if (bio_bytes == bio->bi_iter.bi_size) 2591 req->bio = bio->bi_next; 2592 2593 req_bio_endio(req, bio, bio_bytes, error); 2594 2595 total_bytes += bio_bytes; 2596 nr_bytes -= bio_bytes; 2597 2598 if (!nr_bytes) 2599 break; 2600 } 2601 2602 /* 2603 * completely done 2604 */ 2605 if (!req->bio) { 2606 /* 2607 * Reset counters so that the request stacking driver 2608 * can find how many bytes remain in the request 2609 * later. 2610 */ 2611 req->__data_len = 0; 2612 return false; 2613 } 2614 2615 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD); 2616 2617 req->__data_len -= total_bytes; 2618 2619 /* update sector only for requests with clear definition of sector */ 2620 if (req->cmd_type == REQ_TYPE_FS) 2621 req->__sector += total_bytes >> 9; 2622 2623 /* mixed attributes always follow the first bio */ 2624 if (req->rq_flags & RQF_MIXED_MERGE) { 2625 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2626 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2627 } 2628 2629 /* 2630 * If total number of sectors is less than the first segment 2631 * size, something has gone terribly wrong. 2632 */ 2633 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2634 blk_dump_rq_flags(req, "request botched"); 2635 req->__data_len = blk_rq_cur_bytes(req); 2636 } 2637 2638 /* recalculate the number of segments */ 2639 blk_recalc_rq_segments(req); 2640 2641 return true; 2642 } 2643 EXPORT_SYMBOL_GPL(blk_update_request); 2644 2645 static bool blk_update_bidi_request(struct request *rq, int error, 2646 unsigned int nr_bytes, 2647 unsigned int bidi_bytes) 2648 { 2649 if (blk_update_request(rq, error, nr_bytes)) 2650 return true; 2651 2652 /* Bidi request must be completed as a whole */ 2653 if (unlikely(blk_bidi_rq(rq)) && 2654 blk_update_request(rq->next_rq, error, bidi_bytes)) 2655 return true; 2656 2657 if (blk_queue_add_random(rq->q)) 2658 add_disk_randomness(rq->rq_disk); 2659 2660 return false; 2661 } 2662 2663 /** 2664 * blk_unprep_request - unprepare a request 2665 * @req: the request 2666 * 2667 * This function makes a request ready for complete resubmission (or 2668 * completion). It happens only after all error handling is complete, 2669 * so represents the appropriate moment to deallocate any resources 2670 * that were allocated to the request in the prep_rq_fn. The queue 2671 * lock is held when calling this. 2672 */ 2673 void blk_unprep_request(struct request *req) 2674 { 2675 struct request_queue *q = req->q; 2676 2677 req->rq_flags &= ~RQF_DONTPREP; 2678 if (q->unprep_rq_fn) 2679 q->unprep_rq_fn(q, req); 2680 } 2681 EXPORT_SYMBOL_GPL(blk_unprep_request); 2682 2683 /* 2684 * queue lock must be held 2685 */ 2686 void blk_finish_request(struct request *req, int error) 2687 { 2688 struct request_queue *q = req->q; 2689 2690 if (req->rq_flags & RQF_STATS) 2691 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req); 2692 2693 if (req->rq_flags & RQF_QUEUED) 2694 blk_queue_end_tag(q, req); 2695 2696 BUG_ON(blk_queued_rq(req)); 2697 2698 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2699 laptop_io_completion(&req->q->backing_dev_info); 2700 2701 blk_delete_timer(req); 2702 2703 if (req->rq_flags & RQF_DONTPREP) 2704 blk_unprep_request(req); 2705 2706 blk_account_io_done(req); 2707 2708 if (req->end_io) { 2709 wbt_done(req->q->rq_wb, &req->issue_stat); 2710 req->end_io(req, error); 2711 } else { 2712 if (blk_bidi_rq(req)) 2713 __blk_put_request(req->next_rq->q, req->next_rq); 2714 2715 __blk_put_request(q, req); 2716 } 2717 } 2718 EXPORT_SYMBOL(blk_finish_request); 2719 2720 /** 2721 * blk_end_bidi_request - Complete a bidi request 2722 * @rq: the request to complete 2723 * @error: %0 for success, < %0 for error 2724 * @nr_bytes: number of bytes to complete @rq 2725 * @bidi_bytes: number of bytes to complete @rq->next_rq 2726 * 2727 * Description: 2728 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2729 * Drivers that supports bidi can safely call this member for any 2730 * type of request, bidi or uni. In the later case @bidi_bytes is 2731 * just ignored. 2732 * 2733 * Return: 2734 * %false - we are done with this request 2735 * %true - still buffers pending for this request 2736 **/ 2737 static bool blk_end_bidi_request(struct request *rq, int error, 2738 unsigned int nr_bytes, unsigned int bidi_bytes) 2739 { 2740 struct request_queue *q = rq->q; 2741 unsigned long flags; 2742 2743 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2744 return true; 2745 2746 spin_lock_irqsave(q->queue_lock, flags); 2747 blk_finish_request(rq, error); 2748 spin_unlock_irqrestore(q->queue_lock, flags); 2749 2750 return false; 2751 } 2752 2753 /** 2754 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2755 * @rq: the request to complete 2756 * @error: %0 for success, < %0 for error 2757 * @nr_bytes: number of bytes to complete @rq 2758 * @bidi_bytes: number of bytes to complete @rq->next_rq 2759 * 2760 * Description: 2761 * Identical to blk_end_bidi_request() except that queue lock is 2762 * assumed to be locked on entry and remains so on return. 2763 * 2764 * Return: 2765 * %false - we are done with this request 2766 * %true - still buffers pending for this request 2767 **/ 2768 bool __blk_end_bidi_request(struct request *rq, int error, 2769 unsigned int nr_bytes, unsigned int bidi_bytes) 2770 { 2771 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2772 return true; 2773 2774 blk_finish_request(rq, error); 2775 2776 return false; 2777 } 2778 2779 /** 2780 * blk_end_request - Helper function for drivers to complete the request. 2781 * @rq: the request being processed 2782 * @error: %0 for success, < %0 for error 2783 * @nr_bytes: number of bytes to complete 2784 * 2785 * Description: 2786 * Ends I/O on a number of bytes attached to @rq. 2787 * If @rq has leftover, sets it up for the next range of segments. 2788 * 2789 * Return: 2790 * %false - we are done with this request 2791 * %true - still buffers pending for this request 2792 **/ 2793 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2794 { 2795 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2796 } 2797 EXPORT_SYMBOL(blk_end_request); 2798 2799 /** 2800 * blk_end_request_all - Helper function for drives to finish the request. 2801 * @rq: the request to finish 2802 * @error: %0 for success, < %0 for error 2803 * 2804 * Description: 2805 * Completely finish @rq. 2806 */ 2807 void blk_end_request_all(struct request *rq, int error) 2808 { 2809 bool pending; 2810 unsigned int bidi_bytes = 0; 2811 2812 if (unlikely(blk_bidi_rq(rq))) 2813 bidi_bytes = blk_rq_bytes(rq->next_rq); 2814 2815 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2816 BUG_ON(pending); 2817 } 2818 EXPORT_SYMBOL(blk_end_request_all); 2819 2820 /** 2821 * blk_end_request_cur - Helper function to finish the current request chunk. 2822 * @rq: the request to finish the current chunk for 2823 * @error: %0 for success, < %0 for error 2824 * 2825 * Description: 2826 * Complete the current consecutively mapped chunk from @rq. 2827 * 2828 * Return: 2829 * %false - we are done with this request 2830 * %true - still buffers pending for this request 2831 */ 2832 bool blk_end_request_cur(struct request *rq, int error) 2833 { 2834 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2835 } 2836 EXPORT_SYMBOL(blk_end_request_cur); 2837 2838 /** 2839 * blk_end_request_err - Finish a request till the next failure boundary. 2840 * @rq: the request to finish till the next failure boundary for 2841 * @error: must be negative errno 2842 * 2843 * Description: 2844 * Complete @rq till the next failure boundary. 2845 * 2846 * Return: 2847 * %false - we are done with this request 2848 * %true - still buffers pending for this request 2849 */ 2850 bool blk_end_request_err(struct request *rq, int error) 2851 { 2852 WARN_ON(error >= 0); 2853 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2854 } 2855 EXPORT_SYMBOL_GPL(blk_end_request_err); 2856 2857 /** 2858 * __blk_end_request - Helper function for drivers to complete the request. 2859 * @rq: the request being processed 2860 * @error: %0 for success, < %0 for error 2861 * @nr_bytes: number of bytes to complete 2862 * 2863 * Description: 2864 * Must be called with queue lock held unlike blk_end_request(). 2865 * 2866 * Return: 2867 * %false - we are done with this request 2868 * %true - still buffers pending for this request 2869 **/ 2870 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2871 { 2872 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2873 } 2874 EXPORT_SYMBOL(__blk_end_request); 2875 2876 /** 2877 * __blk_end_request_all - Helper function for drives to finish the request. 2878 * @rq: the request to finish 2879 * @error: %0 for success, < %0 for error 2880 * 2881 * Description: 2882 * Completely finish @rq. Must be called with queue lock held. 2883 */ 2884 void __blk_end_request_all(struct request *rq, int error) 2885 { 2886 bool pending; 2887 unsigned int bidi_bytes = 0; 2888 2889 if (unlikely(blk_bidi_rq(rq))) 2890 bidi_bytes = blk_rq_bytes(rq->next_rq); 2891 2892 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2893 BUG_ON(pending); 2894 } 2895 EXPORT_SYMBOL(__blk_end_request_all); 2896 2897 /** 2898 * __blk_end_request_cur - Helper function to finish the current request chunk. 2899 * @rq: the request to finish the current chunk for 2900 * @error: %0 for success, < %0 for error 2901 * 2902 * Description: 2903 * Complete the current consecutively mapped chunk from @rq. Must 2904 * be called with queue lock held. 2905 * 2906 * Return: 2907 * %false - we are done with this request 2908 * %true - still buffers pending for this request 2909 */ 2910 bool __blk_end_request_cur(struct request *rq, int error) 2911 { 2912 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2913 } 2914 EXPORT_SYMBOL(__blk_end_request_cur); 2915 2916 /** 2917 * __blk_end_request_err - Finish a request till the next failure boundary. 2918 * @rq: the request to finish till the next failure boundary for 2919 * @error: must be negative errno 2920 * 2921 * Description: 2922 * Complete @rq till the next failure boundary. Must be called 2923 * with queue lock held. 2924 * 2925 * Return: 2926 * %false - we are done with this request 2927 * %true - still buffers pending for this request 2928 */ 2929 bool __blk_end_request_err(struct request *rq, int error) 2930 { 2931 WARN_ON(error >= 0); 2932 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2933 } 2934 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2935 2936 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2937 struct bio *bio) 2938 { 2939 if (bio_has_data(bio)) 2940 rq->nr_phys_segments = bio_phys_segments(q, bio); 2941 2942 rq->__data_len = bio->bi_iter.bi_size; 2943 rq->bio = rq->biotail = bio; 2944 2945 if (bio->bi_bdev) 2946 rq->rq_disk = bio->bi_bdev->bd_disk; 2947 } 2948 2949 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2950 /** 2951 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2952 * @rq: the request to be flushed 2953 * 2954 * Description: 2955 * Flush all pages in @rq. 2956 */ 2957 void rq_flush_dcache_pages(struct request *rq) 2958 { 2959 struct req_iterator iter; 2960 struct bio_vec bvec; 2961 2962 rq_for_each_segment(bvec, rq, iter) 2963 flush_dcache_page(bvec.bv_page); 2964 } 2965 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2966 #endif 2967 2968 /** 2969 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2970 * @q : the queue of the device being checked 2971 * 2972 * Description: 2973 * Check if underlying low-level drivers of a device are busy. 2974 * If the drivers want to export their busy state, they must set own 2975 * exporting function using blk_queue_lld_busy() first. 2976 * 2977 * Basically, this function is used only by request stacking drivers 2978 * to stop dispatching requests to underlying devices when underlying 2979 * devices are busy. This behavior helps more I/O merging on the queue 2980 * of the request stacking driver and prevents I/O throughput regression 2981 * on burst I/O load. 2982 * 2983 * Return: 2984 * 0 - Not busy (The request stacking driver should dispatch request) 2985 * 1 - Busy (The request stacking driver should stop dispatching request) 2986 */ 2987 int blk_lld_busy(struct request_queue *q) 2988 { 2989 if (q->lld_busy_fn) 2990 return q->lld_busy_fn(q); 2991 2992 return 0; 2993 } 2994 EXPORT_SYMBOL_GPL(blk_lld_busy); 2995 2996 /** 2997 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2998 * @rq: the clone request to be cleaned up 2999 * 3000 * Description: 3001 * Free all bios in @rq for a cloned request. 3002 */ 3003 void blk_rq_unprep_clone(struct request *rq) 3004 { 3005 struct bio *bio; 3006 3007 while ((bio = rq->bio) != NULL) { 3008 rq->bio = bio->bi_next; 3009 3010 bio_put(bio); 3011 } 3012 } 3013 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3014 3015 /* 3016 * Copy attributes of the original request to the clone request. 3017 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3018 */ 3019 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3020 { 3021 dst->cpu = src->cpu; 3022 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE; 3023 dst->cmd_type = src->cmd_type; 3024 dst->__sector = blk_rq_pos(src); 3025 dst->__data_len = blk_rq_bytes(src); 3026 dst->nr_phys_segments = src->nr_phys_segments; 3027 dst->ioprio = src->ioprio; 3028 dst->extra_len = src->extra_len; 3029 } 3030 3031 /** 3032 * blk_rq_prep_clone - Helper function to setup clone request 3033 * @rq: the request to be setup 3034 * @rq_src: original request to be cloned 3035 * @bs: bio_set that bios for clone are allocated from 3036 * @gfp_mask: memory allocation mask for bio 3037 * @bio_ctr: setup function to be called for each clone bio. 3038 * Returns %0 for success, non %0 for failure. 3039 * @data: private data to be passed to @bio_ctr 3040 * 3041 * Description: 3042 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3043 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3044 * are not copied, and copying such parts is the caller's responsibility. 3045 * Also, pages which the original bios are pointing to are not copied 3046 * and the cloned bios just point same pages. 3047 * So cloned bios must be completed before original bios, which means 3048 * the caller must complete @rq before @rq_src. 3049 */ 3050 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3051 struct bio_set *bs, gfp_t gfp_mask, 3052 int (*bio_ctr)(struct bio *, struct bio *, void *), 3053 void *data) 3054 { 3055 struct bio *bio, *bio_src; 3056 3057 if (!bs) 3058 bs = fs_bio_set; 3059 3060 __rq_for_each_bio(bio_src, rq_src) { 3061 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3062 if (!bio) 3063 goto free_and_out; 3064 3065 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3066 goto free_and_out; 3067 3068 if (rq->bio) { 3069 rq->biotail->bi_next = bio; 3070 rq->biotail = bio; 3071 } else 3072 rq->bio = rq->biotail = bio; 3073 } 3074 3075 __blk_rq_prep_clone(rq, rq_src); 3076 3077 return 0; 3078 3079 free_and_out: 3080 if (bio) 3081 bio_put(bio); 3082 blk_rq_unprep_clone(rq); 3083 3084 return -ENOMEM; 3085 } 3086 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3087 3088 int kblockd_schedule_work(struct work_struct *work) 3089 { 3090 return queue_work(kblockd_workqueue, work); 3091 } 3092 EXPORT_SYMBOL(kblockd_schedule_work); 3093 3094 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3095 { 3096 return queue_work_on(cpu, kblockd_workqueue, work); 3097 } 3098 EXPORT_SYMBOL(kblockd_schedule_work_on); 3099 3100 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3101 unsigned long delay) 3102 { 3103 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3104 } 3105 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3106 3107 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3108 unsigned long delay) 3109 { 3110 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3111 } 3112 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3113 3114 /** 3115 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3116 * @plug: The &struct blk_plug that needs to be initialized 3117 * 3118 * Description: 3119 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3120 * pending I/O should the task end up blocking between blk_start_plug() and 3121 * blk_finish_plug(). This is important from a performance perspective, but 3122 * also ensures that we don't deadlock. For instance, if the task is blocking 3123 * for a memory allocation, memory reclaim could end up wanting to free a 3124 * page belonging to that request that is currently residing in our private 3125 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3126 * this kind of deadlock. 3127 */ 3128 void blk_start_plug(struct blk_plug *plug) 3129 { 3130 struct task_struct *tsk = current; 3131 3132 /* 3133 * If this is a nested plug, don't actually assign it. 3134 */ 3135 if (tsk->plug) 3136 return; 3137 3138 INIT_LIST_HEAD(&plug->list); 3139 INIT_LIST_HEAD(&plug->mq_list); 3140 INIT_LIST_HEAD(&plug->cb_list); 3141 /* 3142 * Store ordering should not be needed here, since a potential 3143 * preempt will imply a full memory barrier 3144 */ 3145 tsk->plug = plug; 3146 } 3147 EXPORT_SYMBOL(blk_start_plug); 3148 3149 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3150 { 3151 struct request *rqa = container_of(a, struct request, queuelist); 3152 struct request *rqb = container_of(b, struct request, queuelist); 3153 3154 return !(rqa->q < rqb->q || 3155 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3156 } 3157 3158 /* 3159 * If 'from_schedule' is true, then postpone the dispatch of requests 3160 * until a safe kblockd context. We due this to avoid accidental big 3161 * additional stack usage in driver dispatch, in places where the originally 3162 * plugger did not intend it. 3163 */ 3164 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3165 bool from_schedule) 3166 __releases(q->queue_lock) 3167 { 3168 trace_block_unplug(q, depth, !from_schedule); 3169 3170 if (from_schedule) 3171 blk_run_queue_async(q); 3172 else 3173 __blk_run_queue(q); 3174 spin_unlock(q->queue_lock); 3175 } 3176 3177 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3178 { 3179 LIST_HEAD(callbacks); 3180 3181 while (!list_empty(&plug->cb_list)) { 3182 list_splice_init(&plug->cb_list, &callbacks); 3183 3184 while (!list_empty(&callbacks)) { 3185 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3186 struct blk_plug_cb, 3187 list); 3188 list_del(&cb->list); 3189 cb->callback(cb, from_schedule); 3190 } 3191 } 3192 } 3193 3194 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3195 int size) 3196 { 3197 struct blk_plug *plug = current->plug; 3198 struct blk_plug_cb *cb; 3199 3200 if (!plug) 3201 return NULL; 3202 3203 list_for_each_entry(cb, &plug->cb_list, list) 3204 if (cb->callback == unplug && cb->data == data) 3205 return cb; 3206 3207 /* Not currently on the callback list */ 3208 BUG_ON(size < sizeof(*cb)); 3209 cb = kzalloc(size, GFP_ATOMIC); 3210 if (cb) { 3211 cb->data = data; 3212 cb->callback = unplug; 3213 list_add(&cb->list, &plug->cb_list); 3214 } 3215 return cb; 3216 } 3217 EXPORT_SYMBOL(blk_check_plugged); 3218 3219 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3220 { 3221 struct request_queue *q; 3222 unsigned long flags; 3223 struct request *rq; 3224 LIST_HEAD(list); 3225 unsigned int depth; 3226 3227 flush_plug_callbacks(plug, from_schedule); 3228 3229 if (!list_empty(&plug->mq_list)) 3230 blk_mq_flush_plug_list(plug, from_schedule); 3231 3232 if (list_empty(&plug->list)) 3233 return; 3234 3235 list_splice_init(&plug->list, &list); 3236 3237 list_sort(NULL, &list, plug_rq_cmp); 3238 3239 q = NULL; 3240 depth = 0; 3241 3242 /* 3243 * Save and disable interrupts here, to avoid doing it for every 3244 * queue lock we have to take. 3245 */ 3246 local_irq_save(flags); 3247 while (!list_empty(&list)) { 3248 rq = list_entry_rq(list.next); 3249 list_del_init(&rq->queuelist); 3250 BUG_ON(!rq->q); 3251 if (rq->q != q) { 3252 /* 3253 * This drops the queue lock 3254 */ 3255 if (q) 3256 queue_unplugged(q, depth, from_schedule); 3257 q = rq->q; 3258 depth = 0; 3259 spin_lock(q->queue_lock); 3260 } 3261 3262 /* 3263 * Short-circuit if @q is dead 3264 */ 3265 if (unlikely(blk_queue_dying(q))) { 3266 __blk_end_request_all(rq, -ENODEV); 3267 continue; 3268 } 3269 3270 /* 3271 * rq is already accounted, so use raw insert 3272 */ 3273 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA)) 3274 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3275 else 3276 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3277 3278 depth++; 3279 } 3280 3281 /* 3282 * This drops the queue lock 3283 */ 3284 if (q) 3285 queue_unplugged(q, depth, from_schedule); 3286 3287 local_irq_restore(flags); 3288 } 3289 3290 void blk_finish_plug(struct blk_plug *plug) 3291 { 3292 if (plug != current->plug) 3293 return; 3294 blk_flush_plug_list(plug, false); 3295 3296 current->plug = NULL; 3297 } 3298 EXPORT_SYMBOL(blk_finish_plug); 3299 3300 #ifdef CONFIG_PM 3301 /** 3302 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3303 * @q: the queue of the device 3304 * @dev: the device the queue belongs to 3305 * 3306 * Description: 3307 * Initialize runtime-PM-related fields for @q and start auto suspend for 3308 * @dev. Drivers that want to take advantage of request-based runtime PM 3309 * should call this function after @dev has been initialized, and its 3310 * request queue @q has been allocated, and runtime PM for it can not happen 3311 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3312 * cases, driver should call this function before any I/O has taken place. 3313 * 3314 * This function takes care of setting up using auto suspend for the device, 3315 * the autosuspend delay is set to -1 to make runtime suspend impossible 3316 * until an updated value is either set by user or by driver. Drivers do 3317 * not need to touch other autosuspend settings. 3318 * 3319 * The block layer runtime PM is request based, so only works for drivers 3320 * that use request as their IO unit instead of those directly use bio's. 3321 */ 3322 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3323 { 3324 q->dev = dev; 3325 q->rpm_status = RPM_ACTIVE; 3326 pm_runtime_set_autosuspend_delay(q->dev, -1); 3327 pm_runtime_use_autosuspend(q->dev); 3328 } 3329 EXPORT_SYMBOL(blk_pm_runtime_init); 3330 3331 /** 3332 * blk_pre_runtime_suspend - Pre runtime suspend check 3333 * @q: the queue of the device 3334 * 3335 * Description: 3336 * This function will check if runtime suspend is allowed for the device 3337 * by examining if there are any requests pending in the queue. If there 3338 * are requests pending, the device can not be runtime suspended; otherwise, 3339 * the queue's status will be updated to SUSPENDING and the driver can 3340 * proceed to suspend the device. 3341 * 3342 * For the not allowed case, we mark last busy for the device so that 3343 * runtime PM core will try to autosuspend it some time later. 3344 * 3345 * This function should be called near the start of the device's 3346 * runtime_suspend callback. 3347 * 3348 * Return: 3349 * 0 - OK to runtime suspend the device 3350 * -EBUSY - Device should not be runtime suspended 3351 */ 3352 int blk_pre_runtime_suspend(struct request_queue *q) 3353 { 3354 int ret = 0; 3355 3356 if (!q->dev) 3357 return ret; 3358 3359 spin_lock_irq(q->queue_lock); 3360 if (q->nr_pending) { 3361 ret = -EBUSY; 3362 pm_runtime_mark_last_busy(q->dev); 3363 } else { 3364 q->rpm_status = RPM_SUSPENDING; 3365 } 3366 spin_unlock_irq(q->queue_lock); 3367 return ret; 3368 } 3369 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3370 3371 /** 3372 * blk_post_runtime_suspend - Post runtime suspend processing 3373 * @q: the queue of the device 3374 * @err: return value of the device's runtime_suspend function 3375 * 3376 * Description: 3377 * Update the queue's runtime status according to the return value of the 3378 * device's runtime suspend function and mark last busy for the device so 3379 * that PM core will try to auto suspend the device at a later time. 3380 * 3381 * This function should be called near the end of the device's 3382 * runtime_suspend callback. 3383 */ 3384 void blk_post_runtime_suspend(struct request_queue *q, int err) 3385 { 3386 if (!q->dev) 3387 return; 3388 3389 spin_lock_irq(q->queue_lock); 3390 if (!err) { 3391 q->rpm_status = RPM_SUSPENDED; 3392 } else { 3393 q->rpm_status = RPM_ACTIVE; 3394 pm_runtime_mark_last_busy(q->dev); 3395 } 3396 spin_unlock_irq(q->queue_lock); 3397 } 3398 EXPORT_SYMBOL(blk_post_runtime_suspend); 3399 3400 /** 3401 * blk_pre_runtime_resume - Pre runtime resume processing 3402 * @q: the queue of the device 3403 * 3404 * Description: 3405 * Update the queue's runtime status to RESUMING in preparation for the 3406 * runtime resume of the device. 3407 * 3408 * This function should be called near the start of the device's 3409 * runtime_resume callback. 3410 */ 3411 void blk_pre_runtime_resume(struct request_queue *q) 3412 { 3413 if (!q->dev) 3414 return; 3415 3416 spin_lock_irq(q->queue_lock); 3417 q->rpm_status = RPM_RESUMING; 3418 spin_unlock_irq(q->queue_lock); 3419 } 3420 EXPORT_SYMBOL(blk_pre_runtime_resume); 3421 3422 /** 3423 * blk_post_runtime_resume - Post runtime resume processing 3424 * @q: the queue of the device 3425 * @err: return value of the device's runtime_resume function 3426 * 3427 * Description: 3428 * Update the queue's runtime status according to the return value of the 3429 * device's runtime_resume function. If it is successfully resumed, process 3430 * the requests that are queued into the device's queue when it is resuming 3431 * and then mark last busy and initiate autosuspend for it. 3432 * 3433 * This function should be called near the end of the device's 3434 * runtime_resume callback. 3435 */ 3436 void blk_post_runtime_resume(struct request_queue *q, int err) 3437 { 3438 if (!q->dev) 3439 return; 3440 3441 spin_lock_irq(q->queue_lock); 3442 if (!err) { 3443 q->rpm_status = RPM_ACTIVE; 3444 __blk_run_queue(q); 3445 pm_runtime_mark_last_busy(q->dev); 3446 pm_request_autosuspend(q->dev); 3447 } else { 3448 q->rpm_status = RPM_SUSPENDED; 3449 } 3450 spin_unlock_irq(q->queue_lock); 3451 } 3452 EXPORT_SYMBOL(blk_post_runtime_resume); 3453 3454 /** 3455 * blk_set_runtime_active - Force runtime status of the queue to be active 3456 * @q: the queue of the device 3457 * 3458 * If the device is left runtime suspended during system suspend the resume 3459 * hook typically resumes the device and corrects runtime status 3460 * accordingly. However, that does not affect the queue runtime PM status 3461 * which is still "suspended". This prevents processing requests from the 3462 * queue. 3463 * 3464 * This function can be used in driver's resume hook to correct queue 3465 * runtime PM status and re-enable peeking requests from the queue. It 3466 * should be called before first request is added to the queue. 3467 */ 3468 void blk_set_runtime_active(struct request_queue *q) 3469 { 3470 spin_lock_irq(q->queue_lock); 3471 q->rpm_status = RPM_ACTIVE; 3472 pm_runtime_mark_last_busy(q->dev); 3473 pm_request_autosuspend(q->dev); 3474 spin_unlock_irq(q->queue_lock); 3475 } 3476 EXPORT_SYMBOL(blk_set_runtime_active); 3477 #endif 3478 3479 int __init blk_dev_init(void) 3480 { 3481 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3482 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3483 FIELD_SIZEOF(struct request, cmd_flags)); 3484 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3485 FIELD_SIZEOF(struct bio, bi_opf)); 3486 3487 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3488 kblockd_workqueue = alloc_workqueue("kblockd", 3489 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3490 if (!kblockd_workqueue) 3491 panic("Failed to create kblockd\n"); 3492 3493 request_cachep = kmem_cache_create("blkdev_requests", 3494 sizeof(struct request), 0, SLAB_PANIC, NULL); 3495 3496 blk_requestq_cachep = kmem_cache_create("request_queue", 3497 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3498 3499 return 0; 3500 } 3501