xref: /openbmc/linux/block/blk-core.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-wbt.h"
43 
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 
50 DEFINE_IDA(blk_queue_ida);
51 
52 /*
53  * For the allocated request tables
54  */
55 struct kmem_cache *request_cachep;
56 
57 /*
58  * For queue allocation
59  */
60 struct kmem_cache *blk_requestq_cachep;
61 
62 /*
63  * Controlling structure to kblockd
64  */
65 static struct workqueue_struct *kblockd_workqueue;
66 
67 static void blk_clear_congested(struct request_list *rl, int sync)
68 {
69 #ifdef CONFIG_CGROUP_WRITEBACK
70 	clear_wb_congested(rl->blkg->wb_congested, sync);
71 #else
72 	/*
73 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 	 * flip its congestion state for events on other blkcgs.
75 	 */
76 	if (rl == &rl->q->root_rl)
77 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
78 #endif
79 }
80 
81 static void blk_set_congested(struct request_list *rl, int sync)
82 {
83 #ifdef CONFIG_CGROUP_WRITEBACK
84 	set_wb_congested(rl->blkg->wb_congested, sync);
85 #else
86 	/* see blk_clear_congested() */
87 	if (rl == &rl->q->root_rl)
88 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
89 #endif
90 }
91 
92 void blk_queue_congestion_threshold(struct request_queue *q)
93 {
94 	int nr;
95 
96 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 	if (nr > q->nr_requests)
98 		nr = q->nr_requests;
99 	q->nr_congestion_on = nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 	if (nr < 1)
103 		nr = 1;
104 	q->nr_congestion_off = nr;
105 }
106 
107 /**
108  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109  * @bdev:	device
110  *
111  * Locates the passed device's request queue and returns the address of its
112  * backing_dev_info.  This function can only be called if @bdev is opened
113  * and the return value is never NULL.
114  */
115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 {
117 	struct request_queue *q = bdev_get_queue(bdev);
118 
119 	return &q->backing_dev_info;
120 }
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 
123 void blk_rq_init(struct request_queue *q, struct request *rq)
124 {
125 	memset(rq, 0, sizeof(*rq));
126 
127 	INIT_LIST_HEAD(&rq->queuelist);
128 	INIT_LIST_HEAD(&rq->timeout_list);
129 	rq->cpu = -1;
130 	rq->q = q;
131 	rq->__sector = (sector_t) -1;
132 	INIT_HLIST_NODE(&rq->hash);
133 	RB_CLEAR_NODE(&rq->rb_node);
134 	rq->cmd = rq->__cmd;
135 	rq->cmd_len = BLK_MAX_CDB;
136 	rq->tag = -1;
137 	rq->start_time = jiffies;
138 	set_start_time_ns(rq);
139 	rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142 
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 			  unsigned int nbytes, int error)
145 {
146 	if (error)
147 		bio->bi_error = error;
148 
149 	if (unlikely(rq->rq_flags & RQF_QUIET))
150 		bio_set_flag(bio, BIO_QUIET);
151 
152 	bio_advance(bio, nbytes);
153 
154 	/* don't actually finish bio if it's part of flush sequence */
155 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 		bio_endio(bio);
157 }
158 
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 	int bit;
162 
163 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
164 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 		(unsigned long long) rq->cmd_flags);
166 
167 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
168 	       (unsigned long long)blk_rq_pos(rq),
169 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
170 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
171 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
172 
173 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
174 		printk(KERN_INFO "  cdb: ");
175 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
176 			printk("%02x ", rq->cmd[bit]);
177 		printk("\n");
178 	}
179 }
180 EXPORT_SYMBOL(blk_dump_rq_flags);
181 
182 static void blk_delay_work(struct work_struct *work)
183 {
184 	struct request_queue *q;
185 
186 	q = container_of(work, struct request_queue, delay_work.work);
187 	spin_lock_irq(q->queue_lock);
188 	__blk_run_queue(q);
189 	spin_unlock_irq(q->queue_lock);
190 }
191 
192 /**
193  * blk_delay_queue - restart queueing after defined interval
194  * @q:		The &struct request_queue in question
195  * @msecs:	Delay in msecs
196  *
197  * Description:
198  *   Sometimes queueing needs to be postponed for a little while, to allow
199  *   resources to come back. This function will make sure that queueing is
200  *   restarted around the specified time. Queue lock must be held.
201  */
202 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 {
204 	if (likely(!blk_queue_dead(q)))
205 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 				   msecs_to_jiffies(msecs));
207 }
208 EXPORT_SYMBOL(blk_delay_queue);
209 
210 /**
211  * blk_start_queue_async - asynchronously restart a previously stopped queue
212  * @q:    The &struct request_queue in question
213  *
214  * Description:
215  *   blk_start_queue_async() will clear the stop flag on the queue, and
216  *   ensure that the request_fn for the queue is run from an async
217  *   context.
218  **/
219 void blk_start_queue_async(struct request_queue *q)
220 {
221 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 	blk_run_queue_async(q);
223 }
224 EXPORT_SYMBOL(blk_start_queue_async);
225 
226 /**
227  * blk_start_queue - restart a previously stopped queue
228  * @q:    The &struct request_queue in question
229  *
230  * Description:
231  *   blk_start_queue() will clear the stop flag on the queue, and call
232  *   the request_fn for the queue if it was in a stopped state when
233  *   entered. Also see blk_stop_queue(). Queue lock must be held.
234  **/
235 void blk_start_queue(struct request_queue *q)
236 {
237 	WARN_ON(!irqs_disabled());
238 
239 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
240 	__blk_run_queue(q);
241 }
242 EXPORT_SYMBOL(blk_start_queue);
243 
244 /**
245  * blk_stop_queue - stop a queue
246  * @q:    The &struct request_queue in question
247  *
248  * Description:
249  *   The Linux block layer assumes that a block driver will consume all
250  *   entries on the request queue when the request_fn strategy is called.
251  *   Often this will not happen, because of hardware limitations (queue
252  *   depth settings). If a device driver gets a 'queue full' response,
253  *   or if it simply chooses not to queue more I/O at one point, it can
254  *   call this function to prevent the request_fn from being called until
255  *   the driver has signalled it's ready to go again. This happens by calling
256  *   blk_start_queue() to restart queue operations. Queue lock must be held.
257  **/
258 void blk_stop_queue(struct request_queue *q)
259 {
260 	cancel_delayed_work(&q->delay_work);
261 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 }
263 EXPORT_SYMBOL(blk_stop_queue);
264 
265 /**
266  * blk_sync_queue - cancel any pending callbacks on a queue
267  * @q: the queue
268  *
269  * Description:
270  *     The block layer may perform asynchronous callback activity
271  *     on a queue, such as calling the unplug function after a timeout.
272  *     A block device may call blk_sync_queue to ensure that any
273  *     such activity is cancelled, thus allowing it to release resources
274  *     that the callbacks might use. The caller must already have made sure
275  *     that its ->make_request_fn will not re-add plugging prior to calling
276  *     this function.
277  *
278  *     This function does not cancel any asynchronous activity arising
279  *     out of elevator or throttling code. That would require elevator_exit()
280  *     and blkcg_exit_queue() to be called with queue lock initialized.
281  *
282  */
283 void blk_sync_queue(struct request_queue *q)
284 {
285 	del_timer_sync(&q->timeout);
286 
287 	if (q->mq_ops) {
288 		struct blk_mq_hw_ctx *hctx;
289 		int i;
290 
291 		queue_for_each_hw_ctx(q, hctx, i) {
292 			cancel_work_sync(&hctx->run_work);
293 			cancel_delayed_work_sync(&hctx->delay_work);
294 		}
295 	} else {
296 		cancel_delayed_work_sync(&q->delay_work);
297 	}
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300 
301 /**
302  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303  * @q:	The queue to run
304  *
305  * Description:
306  *    Invoke request handling on a queue if there are any pending requests.
307  *    May be used to restart request handling after a request has completed.
308  *    This variant runs the queue whether or not the queue has been
309  *    stopped. Must be called with the queue lock held and interrupts
310  *    disabled. See also @blk_run_queue.
311  */
312 inline void __blk_run_queue_uncond(struct request_queue *q)
313 {
314 	if (unlikely(blk_queue_dead(q)))
315 		return;
316 
317 	/*
318 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 	 * the queue lock internally. As a result multiple threads may be
320 	 * running such a request function concurrently. Keep track of the
321 	 * number of active request_fn invocations such that blk_drain_queue()
322 	 * can wait until all these request_fn calls have finished.
323 	 */
324 	q->request_fn_active++;
325 	q->request_fn(q);
326 	q->request_fn_active--;
327 }
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
329 
330 /**
331  * __blk_run_queue - run a single device queue
332  * @q:	The queue to run
333  *
334  * Description:
335  *    See @blk_run_queue. This variant must be called with the queue lock
336  *    held and interrupts disabled.
337  */
338 void __blk_run_queue(struct request_queue *q)
339 {
340 	if (unlikely(blk_queue_stopped(q)))
341 		return;
342 
343 	__blk_run_queue_uncond(q);
344 }
345 EXPORT_SYMBOL(__blk_run_queue);
346 
347 /**
348  * blk_run_queue_async - run a single device queue in workqueue context
349  * @q:	The queue to run
350  *
351  * Description:
352  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353  *    of us. The caller must hold the queue lock.
354  */
355 void blk_run_queue_async(struct request_queue *q)
356 {
357 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
359 }
360 EXPORT_SYMBOL(blk_run_queue_async);
361 
362 /**
363  * blk_run_queue - run a single device queue
364  * @q: The queue to run
365  *
366  * Description:
367  *    Invoke request handling on this queue, if it has pending work to do.
368  *    May be used to restart queueing when a request has completed.
369  */
370 void blk_run_queue(struct request_queue *q)
371 {
372 	unsigned long flags;
373 
374 	spin_lock_irqsave(q->queue_lock, flags);
375 	__blk_run_queue(q);
376 	spin_unlock_irqrestore(q->queue_lock, flags);
377 }
378 EXPORT_SYMBOL(blk_run_queue);
379 
380 void blk_put_queue(struct request_queue *q)
381 {
382 	kobject_put(&q->kobj);
383 }
384 EXPORT_SYMBOL(blk_put_queue);
385 
386 /**
387  * __blk_drain_queue - drain requests from request_queue
388  * @q: queue to drain
389  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
390  *
391  * Drain requests from @q.  If @drain_all is set, all requests are drained.
392  * If not, only ELVPRIV requests are drained.  The caller is responsible
393  * for ensuring that no new requests which need to be drained are queued.
394  */
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 	__releases(q->queue_lock)
397 	__acquires(q->queue_lock)
398 {
399 	int i;
400 
401 	lockdep_assert_held(q->queue_lock);
402 
403 	while (true) {
404 		bool drain = false;
405 
406 		/*
407 		 * The caller might be trying to drain @q before its
408 		 * elevator is initialized.
409 		 */
410 		if (q->elevator)
411 			elv_drain_elevator(q);
412 
413 		blkcg_drain_queue(q);
414 
415 		/*
416 		 * This function might be called on a queue which failed
417 		 * driver init after queue creation or is not yet fully
418 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
419 		 * in such cases.  Kick queue iff dispatch queue has
420 		 * something on it and @q has request_fn set.
421 		 */
422 		if (!list_empty(&q->queue_head) && q->request_fn)
423 			__blk_run_queue(q);
424 
425 		drain |= q->nr_rqs_elvpriv;
426 		drain |= q->request_fn_active;
427 
428 		/*
429 		 * Unfortunately, requests are queued at and tracked from
430 		 * multiple places and there's no single counter which can
431 		 * be drained.  Check all the queues and counters.
432 		 */
433 		if (drain_all) {
434 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 			drain |= !list_empty(&q->queue_head);
436 			for (i = 0; i < 2; i++) {
437 				drain |= q->nr_rqs[i];
438 				drain |= q->in_flight[i];
439 				if (fq)
440 				    drain |= !list_empty(&fq->flush_queue[i]);
441 			}
442 		}
443 
444 		if (!drain)
445 			break;
446 
447 		spin_unlock_irq(q->queue_lock);
448 
449 		msleep(10);
450 
451 		spin_lock_irq(q->queue_lock);
452 	}
453 
454 	/*
455 	 * With queue marked dead, any woken up waiter will fail the
456 	 * allocation path, so the wakeup chaining is lost and we're
457 	 * left with hung waiters. We need to wake up those waiters.
458 	 */
459 	if (q->request_fn) {
460 		struct request_list *rl;
461 
462 		blk_queue_for_each_rl(rl, q)
463 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 				wake_up_all(&rl->wait[i]);
465 	}
466 }
467 
468 /**
469  * blk_queue_bypass_start - enter queue bypass mode
470  * @q: queue of interest
471  *
472  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
473  * function makes @q enter bypass mode and drains all requests which were
474  * throttled or issued before.  On return, it's guaranteed that no request
475  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476  * inside queue or RCU read lock.
477  */
478 void blk_queue_bypass_start(struct request_queue *q)
479 {
480 	spin_lock_irq(q->queue_lock);
481 	q->bypass_depth++;
482 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 	spin_unlock_irq(q->queue_lock);
484 
485 	/*
486 	 * Queues start drained.  Skip actual draining till init is
487 	 * complete.  This avoids lenghty delays during queue init which
488 	 * can happen many times during boot.
489 	 */
490 	if (blk_queue_init_done(q)) {
491 		spin_lock_irq(q->queue_lock);
492 		__blk_drain_queue(q, false);
493 		spin_unlock_irq(q->queue_lock);
494 
495 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
496 		synchronize_rcu();
497 	}
498 }
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500 
501 /**
502  * blk_queue_bypass_end - leave queue bypass mode
503  * @q: queue of interest
504  *
505  * Leave bypass mode and restore the normal queueing behavior.
506  */
507 void blk_queue_bypass_end(struct request_queue *q)
508 {
509 	spin_lock_irq(q->queue_lock);
510 	if (!--q->bypass_depth)
511 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 	WARN_ON_ONCE(q->bypass_depth < 0);
513 	spin_unlock_irq(q->queue_lock);
514 }
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516 
517 void blk_set_queue_dying(struct request_queue *q)
518 {
519 	spin_lock_irq(q->queue_lock);
520 	queue_flag_set(QUEUE_FLAG_DYING, q);
521 	spin_unlock_irq(q->queue_lock);
522 
523 	if (q->mq_ops)
524 		blk_mq_wake_waiters(q);
525 	else {
526 		struct request_list *rl;
527 
528 		blk_queue_for_each_rl(rl, q) {
529 			if (rl->rq_pool) {
530 				wake_up(&rl->wait[BLK_RW_SYNC]);
531 				wake_up(&rl->wait[BLK_RW_ASYNC]);
532 			}
533 		}
534 	}
535 }
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537 
538 /**
539  * blk_cleanup_queue - shutdown a request queue
540  * @q: request queue to shutdown
541  *
542  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543  * put it.  All future requests will be failed immediately with -ENODEV.
544  */
545 void blk_cleanup_queue(struct request_queue *q)
546 {
547 	spinlock_t *lock = q->queue_lock;
548 
549 	/* mark @q DYING, no new request or merges will be allowed afterwards */
550 	mutex_lock(&q->sysfs_lock);
551 	blk_set_queue_dying(q);
552 	spin_lock_irq(lock);
553 
554 	/*
555 	 * A dying queue is permanently in bypass mode till released.  Note
556 	 * that, unlike blk_queue_bypass_start(), we aren't performing
557 	 * synchronize_rcu() after entering bypass mode to avoid the delay
558 	 * as some drivers create and destroy a lot of queues while
559 	 * probing.  This is still safe because blk_release_queue() will be
560 	 * called only after the queue refcnt drops to zero and nothing,
561 	 * RCU or not, would be traversing the queue by then.
562 	 */
563 	q->bypass_depth++;
564 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
565 
566 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 	queue_flag_set(QUEUE_FLAG_DYING, q);
569 	spin_unlock_irq(lock);
570 	mutex_unlock(&q->sysfs_lock);
571 
572 	/*
573 	 * Drain all requests queued before DYING marking. Set DEAD flag to
574 	 * prevent that q->request_fn() gets invoked after draining finished.
575 	 */
576 	blk_freeze_queue(q);
577 	spin_lock_irq(lock);
578 	if (!q->mq_ops)
579 		__blk_drain_queue(q, true);
580 	queue_flag_set(QUEUE_FLAG_DEAD, q);
581 	spin_unlock_irq(lock);
582 
583 	/* for synchronous bio-based driver finish in-flight integrity i/o */
584 	blk_flush_integrity();
585 
586 	/* @q won't process any more request, flush async actions */
587 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 	blk_sync_queue(q);
589 
590 	if (q->mq_ops)
591 		blk_mq_free_queue(q);
592 	percpu_ref_exit(&q->q_usage_counter);
593 
594 	spin_lock_irq(lock);
595 	if (q->queue_lock != &q->__queue_lock)
596 		q->queue_lock = &q->__queue_lock;
597 	spin_unlock_irq(lock);
598 
599 	bdi_unregister(&q->backing_dev_info);
600 
601 	/* @q is and will stay empty, shutdown and put */
602 	blk_put_queue(q);
603 }
604 EXPORT_SYMBOL(blk_cleanup_queue);
605 
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608 {
609 	int nid = (int)(long)data;
610 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611 }
612 
613 static void free_request_struct(void *element, void *unused)
614 {
615 	kmem_cache_free(request_cachep, element);
616 }
617 
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 		gfp_t gfp_mask)
620 {
621 	if (unlikely(rl->rq_pool))
622 		return 0;
623 
624 	rl->q = q;
625 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
629 
630 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 					  free_request_struct,
632 					  (void *)(long)q->node, gfp_mask,
633 					  q->node);
634 	if (!rl->rq_pool)
635 		return -ENOMEM;
636 
637 	return 0;
638 }
639 
640 void blk_exit_rl(struct request_list *rl)
641 {
642 	if (rl->rq_pool)
643 		mempool_destroy(rl->rq_pool);
644 }
645 
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
647 {
648 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
649 }
650 EXPORT_SYMBOL(blk_alloc_queue);
651 
652 int blk_queue_enter(struct request_queue *q, bool nowait)
653 {
654 	while (true) {
655 		int ret;
656 
657 		if (percpu_ref_tryget_live(&q->q_usage_counter))
658 			return 0;
659 
660 		if (nowait)
661 			return -EBUSY;
662 
663 		ret = wait_event_interruptible(q->mq_freeze_wq,
664 				!atomic_read(&q->mq_freeze_depth) ||
665 				blk_queue_dying(q));
666 		if (blk_queue_dying(q))
667 			return -ENODEV;
668 		if (ret)
669 			return ret;
670 	}
671 }
672 
673 void blk_queue_exit(struct request_queue *q)
674 {
675 	percpu_ref_put(&q->q_usage_counter);
676 }
677 
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679 {
680 	struct request_queue *q =
681 		container_of(ref, struct request_queue, q_usage_counter);
682 
683 	wake_up_all(&q->mq_freeze_wq);
684 }
685 
686 static void blk_rq_timed_out_timer(unsigned long data)
687 {
688 	struct request_queue *q = (struct request_queue *)data;
689 
690 	kblockd_schedule_work(&q->timeout_work);
691 }
692 
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
694 {
695 	struct request_queue *q;
696 	int err;
697 
698 	q = kmem_cache_alloc_node(blk_requestq_cachep,
699 				gfp_mask | __GFP_ZERO, node_id);
700 	if (!q)
701 		return NULL;
702 
703 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
704 	if (q->id < 0)
705 		goto fail_q;
706 
707 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 	if (!q->bio_split)
709 		goto fail_id;
710 
711 	q->backing_dev_info.ra_pages =
712 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 	q->backing_dev_info.name = "block";
715 	q->node = node_id;
716 
717 	err = bdi_init(&q->backing_dev_info);
718 	if (err)
719 		goto fail_split;
720 
721 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 		    laptop_mode_timer_fn, (unsigned long) q);
723 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 	INIT_LIST_HEAD(&q->queue_head);
725 	INIT_LIST_HEAD(&q->timeout_list);
726 	INIT_LIST_HEAD(&q->icq_list);
727 #ifdef CONFIG_BLK_CGROUP
728 	INIT_LIST_HEAD(&q->blkg_list);
729 #endif
730 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
731 
732 	kobject_init(&q->kobj, &blk_queue_ktype);
733 
734 	mutex_init(&q->sysfs_lock);
735 	spin_lock_init(&q->__queue_lock);
736 
737 	/*
738 	 * By default initialize queue_lock to internal lock and driver can
739 	 * override it later if need be.
740 	 */
741 	q->queue_lock = &q->__queue_lock;
742 
743 	/*
744 	 * A queue starts its life with bypass turned on to avoid
745 	 * unnecessary bypass on/off overhead and nasty surprises during
746 	 * init.  The initial bypass will be finished when the queue is
747 	 * registered by blk_register_queue().
748 	 */
749 	q->bypass_depth = 1;
750 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751 
752 	init_waitqueue_head(&q->mq_freeze_wq);
753 
754 	/*
755 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 	 * See blk_register_queue() for details.
757 	 */
758 	if (percpu_ref_init(&q->q_usage_counter,
759 				blk_queue_usage_counter_release,
760 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
761 		goto fail_bdi;
762 
763 	if (blkcg_init_queue(q))
764 		goto fail_ref;
765 
766 	return q;
767 
768 fail_ref:
769 	percpu_ref_exit(&q->q_usage_counter);
770 fail_bdi:
771 	bdi_destroy(&q->backing_dev_info);
772 fail_split:
773 	bioset_free(q->bio_split);
774 fail_id:
775 	ida_simple_remove(&blk_queue_ida, q->id);
776 fail_q:
777 	kmem_cache_free(blk_requestq_cachep, q);
778 	return NULL;
779 }
780 EXPORT_SYMBOL(blk_alloc_queue_node);
781 
782 /**
783  * blk_init_queue  - prepare a request queue for use with a block device
784  * @rfn:  The function to be called to process requests that have been
785  *        placed on the queue.
786  * @lock: Request queue spin lock
787  *
788  * Description:
789  *    If a block device wishes to use the standard request handling procedures,
790  *    which sorts requests and coalesces adjacent requests, then it must
791  *    call blk_init_queue().  The function @rfn will be called when there
792  *    are requests on the queue that need to be processed.  If the device
793  *    supports plugging, then @rfn may not be called immediately when requests
794  *    are available on the queue, but may be called at some time later instead.
795  *    Plugged queues are generally unplugged when a buffer belonging to one
796  *    of the requests on the queue is needed, or due to memory pressure.
797  *
798  *    @rfn is not required, or even expected, to remove all requests off the
799  *    queue, but only as many as it can handle at a time.  If it does leave
800  *    requests on the queue, it is responsible for arranging that the requests
801  *    get dealt with eventually.
802  *
803  *    The queue spin lock must be held while manipulating the requests on the
804  *    request queue; this lock will be taken also from interrupt context, so irq
805  *    disabling is needed for it.
806  *
807  *    Function returns a pointer to the initialized request queue, or %NULL if
808  *    it didn't succeed.
809  *
810  * Note:
811  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
812  *    when the block device is deactivated (such as at module unload).
813  **/
814 
815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
816 {
817 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
818 }
819 EXPORT_SYMBOL(blk_init_queue);
820 
821 struct request_queue *
822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823 {
824 	struct request_queue *uninit_q, *q;
825 
826 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 	if (!uninit_q)
828 		return NULL;
829 
830 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
831 	if (!q)
832 		blk_cleanup_queue(uninit_q);
833 
834 	return q;
835 }
836 EXPORT_SYMBOL(blk_init_queue_node);
837 
838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
839 
840 struct request_queue *
841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 			 spinlock_t *lock)
843 {
844 	if (!q)
845 		return NULL;
846 
847 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
848 	if (!q->fq)
849 		return NULL;
850 
851 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
852 		goto fail;
853 
854 	INIT_WORK(&q->timeout_work, blk_timeout_work);
855 	q->request_fn		= rfn;
856 	q->prep_rq_fn		= NULL;
857 	q->unprep_rq_fn		= NULL;
858 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
859 
860 	/* Override internal queue lock with supplied lock pointer */
861 	if (lock)
862 		q->queue_lock		= lock;
863 
864 	/*
865 	 * This also sets hw/phys segments, boundary and size
866 	 */
867 	blk_queue_make_request(q, blk_queue_bio);
868 
869 	q->sg_reserved_size = INT_MAX;
870 
871 	/* Protect q->elevator from elevator_change */
872 	mutex_lock(&q->sysfs_lock);
873 
874 	/* init elevator */
875 	if (elevator_init(q, NULL)) {
876 		mutex_unlock(&q->sysfs_lock);
877 		goto fail;
878 	}
879 
880 	mutex_unlock(&q->sysfs_lock);
881 
882 	return q;
883 
884 fail:
885 	blk_free_flush_queue(q->fq);
886 	wbt_exit(q);
887 	return NULL;
888 }
889 EXPORT_SYMBOL(blk_init_allocated_queue);
890 
891 bool blk_get_queue(struct request_queue *q)
892 {
893 	if (likely(!blk_queue_dying(q))) {
894 		__blk_get_queue(q);
895 		return true;
896 	}
897 
898 	return false;
899 }
900 EXPORT_SYMBOL(blk_get_queue);
901 
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
903 {
904 	if (rq->rq_flags & RQF_ELVPRIV) {
905 		elv_put_request(rl->q, rq);
906 		if (rq->elv.icq)
907 			put_io_context(rq->elv.icq->ioc);
908 	}
909 
910 	mempool_free(rq, rl->rq_pool);
911 }
912 
913 /*
914  * ioc_batching returns true if the ioc is a valid batching request and
915  * should be given priority access to a request.
916  */
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
918 {
919 	if (!ioc)
920 		return 0;
921 
922 	/*
923 	 * Make sure the process is able to allocate at least 1 request
924 	 * even if the batch times out, otherwise we could theoretically
925 	 * lose wakeups.
926 	 */
927 	return ioc->nr_batch_requests == q->nr_batching ||
928 		(ioc->nr_batch_requests > 0
929 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930 }
931 
932 /*
933  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934  * will cause the process to be a "batcher" on all queues in the system. This
935  * is the behaviour we want though - once it gets a wakeup it should be given
936  * a nice run.
937  */
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
939 {
940 	if (!ioc || ioc_batching(q, ioc))
941 		return;
942 
943 	ioc->nr_batch_requests = q->nr_batching;
944 	ioc->last_waited = jiffies;
945 }
946 
947 static void __freed_request(struct request_list *rl, int sync)
948 {
949 	struct request_queue *q = rl->q;
950 
951 	if (rl->count[sync] < queue_congestion_off_threshold(q))
952 		blk_clear_congested(rl, sync);
953 
954 	if (rl->count[sync] + 1 <= q->nr_requests) {
955 		if (waitqueue_active(&rl->wait[sync]))
956 			wake_up(&rl->wait[sync]);
957 
958 		blk_clear_rl_full(rl, sync);
959 	}
960 }
961 
962 /*
963  * A request has just been released.  Account for it, update the full and
964  * congestion status, wake up any waiters.   Called under q->queue_lock.
965  */
966 static void freed_request(struct request_list *rl, bool sync,
967 		req_flags_t rq_flags)
968 {
969 	struct request_queue *q = rl->q;
970 
971 	q->nr_rqs[sync]--;
972 	rl->count[sync]--;
973 	if (rq_flags & RQF_ELVPRIV)
974 		q->nr_rqs_elvpriv--;
975 
976 	__freed_request(rl, sync);
977 
978 	if (unlikely(rl->starved[sync ^ 1]))
979 		__freed_request(rl, sync ^ 1);
980 }
981 
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983 {
984 	struct request_list *rl;
985 	int on_thresh, off_thresh;
986 
987 	spin_lock_irq(q->queue_lock);
988 	q->nr_requests = nr;
989 	blk_queue_congestion_threshold(q);
990 	on_thresh = queue_congestion_on_threshold(q);
991 	off_thresh = queue_congestion_off_threshold(q);
992 
993 	blk_queue_for_each_rl(rl, q) {
994 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 			blk_set_congested(rl, BLK_RW_SYNC);
996 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 			blk_clear_congested(rl, BLK_RW_SYNC);
998 
999 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 			blk_set_congested(rl, BLK_RW_ASYNC);
1001 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 			blk_clear_congested(rl, BLK_RW_ASYNC);
1003 
1004 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 			blk_set_rl_full(rl, BLK_RW_SYNC);
1006 		} else {
1007 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 			wake_up(&rl->wait[BLK_RW_SYNC]);
1009 		}
1010 
1011 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 		} else {
1014 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 		}
1017 	}
1018 
1019 	spin_unlock_irq(q->queue_lock);
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Determine if elevator data should be initialized when allocating the
1025  * request associated with @bio.
1026  */
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1028 {
1029 	if (!bio)
1030 		return true;
1031 
1032 	/*
1033 	 * Flush requests do not use the elevator so skip initialization.
1034 	 * This allows a request to share the flush and elevator data.
1035 	 */
1036 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037 		return false;
1038 
1039 	return true;
1040 }
1041 
1042 /**
1043  * rq_ioc - determine io_context for request allocation
1044  * @bio: request being allocated is for this bio (can be %NULL)
1045  *
1046  * Determine io_context to use for request allocation for @bio.  May return
1047  * %NULL if %current->io_context doesn't exist.
1048  */
1049 static struct io_context *rq_ioc(struct bio *bio)
1050 {
1051 #ifdef CONFIG_BLK_CGROUP
1052 	if (bio && bio->bi_ioc)
1053 		return bio->bi_ioc;
1054 #endif
1055 	return current->io_context;
1056 }
1057 
1058 /**
1059  * __get_request - get a free request
1060  * @rl: request list to allocate from
1061  * @op: operation and flags
1062  * @bio: bio to allocate request for (can be %NULL)
1063  * @gfp_mask: allocation mask
1064  *
1065  * Get a free request from @q.  This function may fail under memory
1066  * pressure or if @q is dead.
1067  *
1068  * Must be called with @q->queue_lock held and,
1069  * Returns ERR_PTR on failure, with @q->queue_lock held.
1070  * Returns request pointer on success, with @q->queue_lock *not held*.
1071  */
1072 static struct request *__get_request(struct request_list *rl, unsigned int op,
1073 		struct bio *bio, gfp_t gfp_mask)
1074 {
1075 	struct request_queue *q = rl->q;
1076 	struct request *rq;
1077 	struct elevator_type *et = q->elevator->type;
1078 	struct io_context *ioc = rq_ioc(bio);
1079 	struct io_cq *icq = NULL;
1080 	const bool is_sync = op_is_sync(op);
1081 	int may_queue;
1082 	req_flags_t rq_flags = RQF_ALLOCED;
1083 
1084 	if (unlikely(blk_queue_dying(q)))
1085 		return ERR_PTR(-ENODEV);
1086 
1087 	may_queue = elv_may_queue(q, op);
1088 	if (may_queue == ELV_MQUEUE_NO)
1089 		goto rq_starved;
1090 
1091 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1093 			/*
1094 			 * The queue will fill after this allocation, so set
1095 			 * it as full, and mark this process as "batching".
1096 			 * This process will be allowed to complete a batch of
1097 			 * requests, others will be blocked.
1098 			 */
1099 			if (!blk_rl_full(rl, is_sync)) {
1100 				ioc_set_batching(q, ioc);
1101 				blk_set_rl_full(rl, is_sync);
1102 			} else {
1103 				if (may_queue != ELV_MQUEUE_MUST
1104 						&& !ioc_batching(q, ioc)) {
1105 					/*
1106 					 * The queue is full and the allocating
1107 					 * process is not a "batcher", and not
1108 					 * exempted by the IO scheduler
1109 					 */
1110 					return ERR_PTR(-ENOMEM);
1111 				}
1112 			}
1113 		}
1114 		blk_set_congested(rl, is_sync);
1115 	}
1116 
1117 	/*
1118 	 * Only allow batching queuers to allocate up to 50% over the defined
1119 	 * limit of requests, otherwise we could have thousands of requests
1120 	 * allocated with any setting of ->nr_requests
1121 	 */
1122 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123 		return ERR_PTR(-ENOMEM);
1124 
1125 	q->nr_rqs[is_sync]++;
1126 	rl->count[is_sync]++;
1127 	rl->starved[is_sync] = 0;
1128 
1129 	/*
1130 	 * Decide whether the new request will be managed by elevator.  If
1131 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1132 	 * prevent the current elevator from being destroyed until the new
1133 	 * request is freed.  This guarantees icq's won't be destroyed and
1134 	 * makes creating new ones safe.
1135 	 *
1136 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1137 	 * it will be created after releasing queue_lock.
1138 	 */
1139 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140 		rq_flags |= RQF_ELVPRIV;
1141 		q->nr_rqs_elvpriv++;
1142 		if (et->icq_cache && ioc)
1143 			icq = ioc_lookup_icq(ioc, q);
1144 	}
1145 
1146 	if (blk_queue_io_stat(q))
1147 		rq_flags |= RQF_IO_STAT;
1148 	spin_unlock_irq(q->queue_lock);
1149 
1150 	/* allocate and init request */
1151 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152 	if (!rq)
1153 		goto fail_alloc;
1154 
1155 	blk_rq_init(q, rq);
1156 	blk_rq_set_rl(rq, rl);
1157 	blk_rq_set_prio(rq, ioc);
1158 	rq->cmd_flags = op;
1159 	rq->rq_flags = rq_flags;
1160 
1161 	/* init elvpriv */
1162 	if (rq_flags & RQF_ELVPRIV) {
1163 		if (unlikely(et->icq_cache && !icq)) {
1164 			if (ioc)
1165 				icq = ioc_create_icq(ioc, q, gfp_mask);
1166 			if (!icq)
1167 				goto fail_elvpriv;
1168 		}
1169 
1170 		rq->elv.icq = icq;
1171 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1172 			goto fail_elvpriv;
1173 
1174 		/* @rq->elv.icq holds io_context until @rq is freed */
1175 		if (icq)
1176 			get_io_context(icq->ioc);
1177 	}
1178 out:
1179 	/*
1180 	 * ioc may be NULL here, and ioc_batching will be false. That's
1181 	 * OK, if the queue is under the request limit then requests need
1182 	 * not count toward the nr_batch_requests limit. There will always
1183 	 * be some limit enforced by BLK_BATCH_TIME.
1184 	 */
1185 	if (ioc_batching(q, ioc))
1186 		ioc->nr_batch_requests--;
1187 
1188 	trace_block_getrq(q, bio, op);
1189 	return rq;
1190 
1191 fail_elvpriv:
1192 	/*
1193 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1194 	 * and may fail indefinitely under memory pressure and thus
1195 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1196 	 * disturb iosched and blkcg but weird is bettern than dead.
1197 	 */
1198 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1199 			   __func__, dev_name(q->backing_dev_info.dev));
1200 
1201 	rq->rq_flags &= ~RQF_ELVPRIV;
1202 	rq->elv.icq = NULL;
1203 
1204 	spin_lock_irq(q->queue_lock);
1205 	q->nr_rqs_elvpriv--;
1206 	spin_unlock_irq(q->queue_lock);
1207 	goto out;
1208 
1209 fail_alloc:
1210 	/*
1211 	 * Allocation failed presumably due to memory. Undo anything we
1212 	 * might have messed up.
1213 	 *
1214 	 * Allocating task should really be put onto the front of the wait
1215 	 * queue, but this is pretty rare.
1216 	 */
1217 	spin_lock_irq(q->queue_lock);
1218 	freed_request(rl, is_sync, rq_flags);
1219 
1220 	/*
1221 	 * in the very unlikely event that allocation failed and no
1222 	 * requests for this direction was pending, mark us starved so that
1223 	 * freeing of a request in the other direction will notice
1224 	 * us. another possible fix would be to split the rq mempool into
1225 	 * READ and WRITE
1226 	 */
1227 rq_starved:
1228 	if (unlikely(rl->count[is_sync] == 0))
1229 		rl->starved[is_sync] = 1;
1230 	return ERR_PTR(-ENOMEM);
1231 }
1232 
1233 /**
1234  * get_request - get a free request
1235  * @q: request_queue to allocate request from
1236  * @op: operation and flags
1237  * @bio: bio to allocate request for (can be %NULL)
1238  * @gfp_mask: allocation mask
1239  *
1240  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1241  * this function keeps retrying under memory pressure and fails iff @q is dead.
1242  *
1243  * Must be called with @q->queue_lock held and,
1244  * Returns ERR_PTR on failure, with @q->queue_lock held.
1245  * Returns request pointer on success, with @q->queue_lock *not held*.
1246  */
1247 static struct request *get_request(struct request_queue *q, unsigned int op,
1248 		struct bio *bio, gfp_t gfp_mask)
1249 {
1250 	const bool is_sync = op_is_sync(op);
1251 	DEFINE_WAIT(wait);
1252 	struct request_list *rl;
1253 	struct request *rq;
1254 
1255 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1256 retry:
1257 	rq = __get_request(rl, op, bio, gfp_mask);
1258 	if (!IS_ERR(rq))
1259 		return rq;
1260 
1261 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1262 		blk_put_rl(rl);
1263 		return rq;
1264 	}
1265 
1266 	/* wait on @rl and retry */
1267 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1268 				  TASK_UNINTERRUPTIBLE);
1269 
1270 	trace_block_sleeprq(q, bio, op);
1271 
1272 	spin_unlock_irq(q->queue_lock);
1273 	io_schedule();
1274 
1275 	/*
1276 	 * After sleeping, we become a "batching" process and will be able
1277 	 * to allocate at least one request, and up to a big batch of them
1278 	 * for a small period time.  See ioc_batching, ioc_set_batching
1279 	 */
1280 	ioc_set_batching(q, current->io_context);
1281 
1282 	spin_lock_irq(q->queue_lock);
1283 	finish_wait(&rl->wait[is_sync], &wait);
1284 
1285 	goto retry;
1286 }
1287 
1288 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1289 		gfp_t gfp_mask)
1290 {
1291 	struct request *rq;
1292 
1293 	BUG_ON(rw != READ && rw != WRITE);
1294 
1295 	/* create ioc upfront */
1296 	create_io_context(gfp_mask, q->node);
1297 
1298 	spin_lock_irq(q->queue_lock);
1299 	rq = get_request(q, rw, NULL, gfp_mask);
1300 	if (IS_ERR(rq)) {
1301 		spin_unlock_irq(q->queue_lock);
1302 		return rq;
1303 	}
1304 
1305 	/* q->queue_lock is unlocked at this point */
1306 	rq->__data_len = 0;
1307 	rq->__sector = (sector_t) -1;
1308 	rq->bio = rq->biotail = NULL;
1309 	return rq;
1310 }
1311 
1312 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1313 {
1314 	if (q->mq_ops)
1315 		return blk_mq_alloc_request(q, rw,
1316 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1317 				0 : BLK_MQ_REQ_NOWAIT);
1318 	else
1319 		return blk_old_get_request(q, rw, gfp_mask);
1320 }
1321 EXPORT_SYMBOL(blk_get_request);
1322 
1323 /**
1324  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1325  * @rq:		request to be initialized
1326  *
1327  */
1328 void blk_rq_set_block_pc(struct request *rq)
1329 {
1330 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1331 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1332 }
1333 EXPORT_SYMBOL(blk_rq_set_block_pc);
1334 
1335 /**
1336  * blk_requeue_request - put a request back on queue
1337  * @q:		request queue where request should be inserted
1338  * @rq:		request to be inserted
1339  *
1340  * Description:
1341  *    Drivers often keep queueing requests until the hardware cannot accept
1342  *    more, when that condition happens we need to put the request back
1343  *    on the queue. Must be called with queue lock held.
1344  */
1345 void blk_requeue_request(struct request_queue *q, struct request *rq)
1346 {
1347 	blk_delete_timer(rq);
1348 	blk_clear_rq_complete(rq);
1349 	trace_block_rq_requeue(q, rq);
1350 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1351 
1352 	if (rq->rq_flags & RQF_QUEUED)
1353 		blk_queue_end_tag(q, rq);
1354 
1355 	BUG_ON(blk_queued_rq(rq));
1356 
1357 	elv_requeue_request(q, rq);
1358 }
1359 EXPORT_SYMBOL(blk_requeue_request);
1360 
1361 static void add_acct_request(struct request_queue *q, struct request *rq,
1362 			     int where)
1363 {
1364 	blk_account_io_start(rq, true);
1365 	__elv_add_request(q, rq, where);
1366 }
1367 
1368 static void part_round_stats_single(int cpu, struct hd_struct *part,
1369 				    unsigned long now)
1370 {
1371 	int inflight;
1372 
1373 	if (now == part->stamp)
1374 		return;
1375 
1376 	inflight = part_in_flight(part);
1377 	if (inflight) {
1378 		__part_stat_add(cpu, part, time_in_queue,
1379 				inflight * (now - part->stamp));
1380 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1381 	}
1382 	part->stamp = now;
1383 }
1384 
1385 /**
1386  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1387  * @cpu: cpu number for stats access
1388  * @part: target partition
1389  *
1390  * The average IO queue length and utilisation statistics are maintained
1391  * by observing the current state of the queue length and the amount of
1392  * time it has been in this state for.
1393  *
1394  * Normally, that accounting is done on IO completion, but that can result
1395  * in more than a second's worth of IO being accounted for within any one
1396  * second, leading to >100% utilisation.  To deal with that, we call this
1397  * function to do a round-off before returning the results when reading
1398  * /proc/diskstats.  This accounts immediately for all queue usage up to
1399  * the current jiffies and restarts the counters again.
1400  */
1401 void part_round_stats(int cpu, struct hd_struct *part)
1402 {
1403 	unsigned long now = jiffies;
1404 
1405 	if (part->partno)
1406 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1407 	part_round_stats_single(cpu, part, now);
1408 }
1409 EXPORT_SYMBOL_GPL(part_round_stats);
1410 
1411 #ifdef CONFIG_PM
1412 static void blk_pm_put_request(struct request *rq)
1413 {
1414 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1415 		pm_runtime_mark_last_busy(rq->q->dev);
1416 }
1417 #else
1418 static inline void blk_pm_put_request(struct request *rq) {}
1419 #endif
1420 
1421 /*
1422  * queue lock must be held
1423  */
1424 void __blk_put_request(struct request_queue *q, struct request *req)
1425 {
1426 	req_flags_t rq_flags = req->rq_flags;
1427 
1428 	if (unlikely(!q))
1429 		return;
1430 
1431 	if (q->mq_ops) {
1432 		blk_mq_free_request(req);
1433 		return;
1434 	}
1435 
1436 	blk_pm_put_request(req);
1437 
1438 	elv_completed_request(q, req);
1439 
1440 	/* this is a bio leak */
1441 	WARN_ON(req->bio != NULL);
1442 
1443 	wbt_done(q->rq_wb, &req->issue_stat);
1444 
1445 	/*
1446 	 * Request may not have originated from ll_rw_blk. if not,
1447 	 * it didn't come out of our reserved rq pools
1448 	 */
1449 	if (rq_flags & RQF_ALLOCED) {
1450 		struct request_list *rl = blk_rq_rl(req);
1451 		bool sync = op_is_sync(req->cmd_flags);
1452 
1453 		BUG_ON(!list_empty(&req->queuelist));
1454 		BUG_ON(ELV_ON_HASH(req));
1455 
1456 		blk_free_request(rl, req);
1457 		freed_request(rl, sync, rq_flags);
1458 		blk_put_rl(rl);
1459 	}
1460 }
1461 EXPORT_SYMBOL_GPL(__blk_put_request);
1462 
1463 void blk_put_request(struct request *req)
1464 {
1465 	struct request_queue *q = req->q;
1466 
1467 	if (q->mq_ops)
1468 		blk_mq_free_request(req);
1469 	else {
1470 		unsigned long flags;
1471 
1472 		spin_lock_irqsave(q->queue_lock, flags);
1473 		__blk_put_request(q, req);
1474 		spin_unlock_irqrestore(q->queue_lock, flags);
1475 	}
1476 }
1477 EXPORT_SYMBOL(blk_put_request);
1478 
1479 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1480 			    struct bio *bio)
1481 {
1482 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1483 
1484 	if (!ll_back_merge_fn(q, req, bio))
1485 		return false;
1486 
1487 	trace_block_bio_backmerge(q, req, bio);
1488 
1489 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1490 		blk_rq_set_mixed_merge(req);
1491 
1492 	req->biotail->bi_next = bio;
1493 	req->biotail = bio;
1494 	req->__data_len += bio->bi_iter.bi_size;
1495 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1496 
1497 	blk_account_io_start(req, false);
1498 	return true;
1499 }
1500 
1501 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1502 			     struct bio *bio)
1503 {
1504 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1505 
1506 	if (!ll_front_merge_fn(q, req, bio))
1507 		return false;
1508 
1509 	trace_block_bio_frontmerge(q, req, bio);
1510 
1511 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1512 		blk_rq_set_mixed_merge(req);
1513 
1514 	bio->bi_next = req->bio;
1515 	req->bio = bio;
1516 
1517 	req->__sector = bio->bi_iter.bi_sector;
1518 	req->__data_len += bio->bi_iter.bi_size;
1519 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1520 
1521 	blk_account_io_start(req, false);
1522 	return true;
1523 }
1524 
1525 /**
1526  * blk_attempt_plug_merge - try to merge with %current's plugged list
1527  * @q: request_queue new bio is being queued at
1528  * @bio: new bio being queued
1529  * @request_count: out parameter for number of traversed plugged requests
1530  * @same_queue_rq: pointer to &struct request that gets filled in when
1531  * another request associated with @q is found on the plug list
1532  * (optional, may be %NULL)
1533  *
1534  * Determine whether @bio being queued on @q can be merged with a request
1535  * on %current's plugged list.  Returns %true if merge was successful,
1536  * otherwise %false.
1537  *
1538  * Plugging coalesces IOs from the same issuer for the same purpose without
1539  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1540  * than scheduling, and the request, while may have elvpriv data, is not
1541  * added on the elevator at this point.  In addition, we don't have
1542  * reliable access to the elevator outside queue lock.  Only check basic
1543  * merging parameters without querying the elevator.
1544  *
1545  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1546  */
1547 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1548 			    unsigned int *request_count,
1549 			    struct request **same_queue_rq)
1550 {
1551 	struct blk_plug *plug;
1552 	struct request *rq;
1553 	bool ret = false;
1554 	struct list_head *plug_list;
1555 
1556 	plug = current->plug;
1557 	if (!plug)
1558 		goto out;
1559 	*request_count = 0;
1560 
1561 	if (q->mq_ops)
1562 		plug_list = &plug->mq_list;
1563 	else
1564 		plug_list = &plug->list;
1565 
1566 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1567 		int el_ret;
1568 
1569 		if (rq->q == q) {
1570 			(*request_count)++;
1571 			/*
1572 			 * Only blk-mq multiple hardware queues case checks the
1573 			 * rq in the same queue, there should be only one such
1574 			 * rq in a queue
1575 			 **/
1576 			if (same_queue_rq)
1577 				*same_queue_rq = rq;
1578 		}
1579 
1580 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1581 			continue;
1582 
1583 		el_ret = blk_try_merge(rq, bio);
1584 		if (el_ret == ELEVATOR_BACK_MERGE) {
1585 			ret = bio_attempt_back_merge(q, rq, bio);
1586 			if (ret)
1587 				break;
1588 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1589 			ret = bio_attempt_front_merge(q, rq, bio);
1590 			if (ret)
1591 				break;
1592 		}
1593 	}
1594 out:
1595 	return ret;
1596 }
1597 
1598 unsigned int blk_plug_queued_count(struct request_queue *q)
1599 {
1600 	struct blk_plug *plug;
1601 	struct request *rq;
1602 	struct list_head *plug_list;
1603 	unsigned int ret = 0;
1604 
1605 	plug = current->plug;
1606 	if (!plug)
1607 		goto out;
1608 
1609 	if (q->mq_ops)
1610 		plug_list = &plug->mq_list;
1611 	else
1612 		plug_list = &plug->list;
1613 
1614 	list_for_each_entry(rq, plug_list, queuelist) {
1615 		if (rq->q == q)
1616 			ret++;
1617 	}
1618 out:
1619 	return ret;
1620 }
1621 
1622 void init_request_from_bio(struct request *req, struct bio *bio)
1623 {
1624 	req->cmd_type = REQ_TYPE_FS;
1625 	if (bio->bi_opf & REQ_RAHEAD)
1626 		req->cmd_flags |= REQ_FAILFAST_MASK;
1627 
1628 	req->errors = 0;
1629 	req->__sector = bio->bi_iter.bi_sector;
1630 	if (ioprio_valid(bio_prio(bio)))
1631 		req->ioprio = bio_prio(bio);
1632 	blk_rq_bio_prep(req->q, req, bio);
1633 }
1634 
1635 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1636 {
1637 	struct blk_plug *plug;
1638 	int el_ret, where = ELEVATOR_INSERT_SORT;
1639 	struct request *req;
1640 	unsigned int request_count = 0;
1641 	unsigned int wb_acct;
1642 
1643 	/*
1644 	 * low level driver can indicate that it wants pages above a
1645 	 * certain limit bounced to low memory (ie for highmem, or even
1646 	 * ISA dma in theory)
1647 	 */
1648 	blk_queue_bounce(q, &bio);
1649 
1650 	blk_queue_split(q, &bio, q->bio_split);
1651 
1652 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1653 		bio->bi_error = -EIO;
1654 		bio_endio(bio);
1655 		return BLK_QC_T_NONE;
1656 	}
1657 
1658 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1659 		spin_lock_irq(q->queue_lock);
1660 		where = ELEVATOR_INSERT_FLUSH;
1661 		goto get_rq;
1662 	}
1663 
1664 	/*
1665 	 * Check if we can merge with the plugged list before grabbing
1666 	 * any locks.
1667 	 */
1668 	if (!blk_queue_nomerges(q)) {
1669 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1670 			return BLK_QC_T_NONE;
1671 	} else
1672 		request_count = blk_plug_queued_count(q);
1673 
1674 	spin_lock_irq(q->queue_lock);
1675 
1676 	el_ret = elv_merge(q, &req, bio);
1677 	if (el_ret == ELEVATOR_BACK_MERGE) {
1678 		if (bio_attempt_back_merge(q, req, bio)) {
1679 			elv_bio_merged(q, req, bio);
1680 			if (!attempt_back_merge(q, req))
1681 				elv_merged_request(q, req, el_ret);
1682 			goto out_unlock;
1683 		}
1684 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1685 		if (bio_attempt_front_merge(q, req, bio)) {
1686 			elv_bio_merged(q, req, bio);
1687 			if (!attempt_front_merge(q, req))
1688 				elv_merged_request(q, req, el_ret);
1689 			goto out_unlock;
1690 		}
1691 	}
1692 
1693 get_rq:
1694 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1695 
1696 	/*
1697 	 * Grab a free request. This is might sleep but can not fail.
1698 	 * Returns with the queue unlocked.
1699 	 */
1700 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1701 	if (IS_ERR(req)) {
1702 		__wbt_done(q->rq_wb, wb_acct);
1703 		bio->bi_error = PTR_ERR(req);
1704 		bio_endio(bio);
1705 		goto out_unlock;
1706 	}
1707 
1708 	wbt_track(&req->issue_stat, wb_acct);
1709 
1710 	/*
1711 	 * After dropping the lock and possibly sleeping here, our request
1712 	 * may now be mergeable after it had proven unmergeable (above).
1713 	 * We don't worry about that case for efficiency. It won't happen
1714 	 * often, and the elevators are able to handle it.
1715 	 */
1716 	init_request_from_bio(req, bio);
1717 
1718 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1719 		req->cpu = raw_smp_processor_id();
1720 
1721 	plug = current->plug;
1722 	if (plug) {
1723 		/*
1724 		 * If this is the first request added after a plug, fire
1725 		 * of a plug trace.
1726 		 *
1727 		 * @request_count may become stale because of schedule
1728 		 * out, so check plug list again.
1729 		 */
1730 		if (!request_count || list_empty(&plug->list))
1731 			trace_block_plug(q);
1732 		else {
1733 			struct request *last = list_entry_rq(plug->list.prev);
1734 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1735 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1736 				blk_flush_plug_list(plug, false);
1737 				trace_block_plug(q);
1738 			}
1739 		}
1740 		list_add_tail(&req->queuelist, &plug->list);
1741 		blk_account_io_start(req, true);
1742 	} else {
1743 		spin_lock_irq(q->queue_lock);
1744 		add_acct_request(q, req, where);
1745 		__blk_run_queue(q);
1746 out_unlock:
1747 		spin_unlock_irq(q->queue_lock);
1748 	}
1749 
1750 	return BLK_QC_T_NONE;
1751 }
1752 
1753 /*
1754  * If bio->bi_dev is a partition, remap the location
1755  */
1756 static inline void blk_partition_remap(struct bio *bio)
1757 {
1758 	struct block_device *bdev = bio->bi_bdev;
1759 
1760 	/*
1761 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1762 	 * Include a test for the reset op code and perform the remap if needed.
1763 	 */
1764 	if (bdev != bdev->bd_contains &&
1765 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1766 		struct hd_struct *p = bdev->bd_part;
1767 
1768 		bio->bi_iter.bi_sector += p->start_sect;
1769 		bio->bi_bdev = bdev->bd_contains;
1770 
1771 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1772 				      bdev->bd_dev,
1773 				      bio->bi_iter.bi_sector - p->start_sect);
1774 	}
1775 }
1776 
1777 static void handle_bad_sector(struct bio *bio)
1778 {
1779 	char b[BDEVNAME_SIZE];
1780 
1781 	printk(KERN_INFO "attempt to access beyond end of device\n");
1782 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1783 			bdevname(bio->bi_bdev, b),
1784 			bio->bi_opf,
1785 			(unsigned long long)bio_end_sector(bio),
1786 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1787 }
1788 
1789 #ifdef CONFIG_FAIL_MAKE_REQUEST
1790 
1791 static DECLARE_FAULT_ATTR(fail_make_request);
1792 
1793 static int __init setup_fail_make_request(char *str)
1794 {
1795 	return setup_fault_attr(&fail_make_request, str);
1796 }
1797 __setup("fail_make_request=", setup_fail_make_request);
1798 
1799 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1800 {
1801 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1802 }
1803 
1804 static int __init fail_make_request_debugfs(void)
1805 {
1806 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1807 						NULL, &fail_make_request);
1808 
1809 	return PTR_ERR_OR_ZERO(dir);
1810 }
1811 
1812 late_initcall(fail_make_request_debugfs);
1813 
1814 #else /* CONFIG_FAIL_MAKE_REQUEST */
1815 
1816 static inline bool should_fail_request(struct hd_struct *part,
1817 					unsigned int bytes)
1818 {
1819 	return false;
1820 }
1821 
1822 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1823 
1824 /*
1825  * Check whether this bio extends beyond the end of the device.
1826  */
1827 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1828 {
1829 	sector_t maxsector;
1830 
1831 	if (!nr_sectors)
1832 		return 0;
1833 
1834 	/* Test device or partition size, when known. */
1835 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1836 	if (maxsector) {
1837 		sector_t sector = bio->bi_iter.bi_sector;
1838 
1839 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1840 			/*
1841 			 * This may well happen - the kernel calls bread()
1842 			 * without checking the size of the device, e.g., when
1843 			 * mounting a device.
1844 			 */
1845 			handle_bad_sector(bio);
1846 			return 1;
1847 		}
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 static noinline_for_stack bool
1854 generic_make_request_checks(struct bio *bio)
1855 {
1856 	struct request_queue *q;
1857 	int nr_sectors = bio_sectors(bio);
1858 	int err = -EIO;
1859 	char b[BDEVNAME_SIZE];
1860 	struct hd_struct *part;
1861 
1862 	might_sleep();
1863 
1864 	if (bio_check_eod(bio, nr_sectors))
1865 		goto end_io;
1866 
1867 	q = bdev_get_queue(bio->bi_bdev);
1868 	if (unlikely(!q)) {
1869 		printk(KERN_ERR
1870 		       "generic_make_request: Trying to access "
1871 			"nonexistent block-device %s (%Lu)\n",
1872 			bdevname(bio->bi_bdev, b),
1873 			(long long) bio->bi_iter.bi_sector);
1874 		goto end_io;
1875 	}
1876 
1877 	part = bio->bi_bdev->bd_part;
1878 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1879 	    should_fail_request(&part_to_disk(part)->part0,
1880 				bio->bi_iter.bi_size))
1881 		goto end_io;
1882 
1883 	/*
1884 	 * If this device has partitions, remap block n
1885 	 * of partition p to block n+start(p) of the disk.
1886 	 */
1887 	blk_partition_remap(bio);
1888 
1889 	if (bio_check_eod(bio, nr_sectors))
1890 		goto end_io;
1891 
1892 	/*
1893 	 * Filter flush bio's early so that make_request based
1894 	 * drivers without flush support don't have to worry
1895 	 * about them.
1896 	 */
1897 	if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1898 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1899 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1900 		if (!nr_sectors) {
1901 			err = 0;
1902 			goto end_io;
1903 		}
1904 	}
1905 
1906 	switch (bio_op(bio)) {
1907 	case REQ_OP_DISCARD:
1908 		if (!blk_queue_discard(q))
1909 			goto not_supported;
1910 		break;
1911 	case REQ_OP_SECURE_ERASE:
1912 		if (!blk_queue_secure_erase(q))
1913 			goto not_supported;
1914 		break;
1915 	case REQ_OP_WRITE_SAME:
1916 		if (!bdev_write_same(bio->bi_bdev))
1917 			goto not_supported;
1918 		break;
1919 	case REQ_OP_ZONE_REPORT:
1920 	case REQ_OP_ZONE_RESET:
1921 		if (!bdev_is_zoned(bio->bi_bdev))
1922 			goto not_supported;
1923 		break;
1924 	case REQ_OP_WRITE_ZEROES:
1925 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1926 			goto not_supported;
1927 		break;
1928 	default:
1929 		break;
1930 	}
1931 
1932 	/*
1933 	 * Various block parts want %current->io_context and lazy ioc
1934 	 * allocation ends up trading a lot of pain for a small amount of
1935 	 * memory.  Just allocate it upfront.  This may fail and block
1936 	 * layer knows how to live with it.
1937 	 */
1938 	create_io_context(GFP_ATOMIC, q->node);
1939 
1940 	if (!blkcg_bio_issue_check(q, bio))
1941 		return false;
1942 
1943 	trace_block_bio_queue(q, bio);
1944 	return true;
1945 
1946 not_supported:
1947 	err = -EOPNOTSUPP;
1948 end_io:
1949 	bio->bi_error = err;
1950 	bio_endio(bio);
1951 	return false;
1952 }
1953 
1954 /**
1955  * generic_make_request - hand a buffer to its device driver for I/O
1956  * @bio:  The bio describing the location in memory and on the device.
1957  *
1958  * generic_make_request() is used to make I/O requests of block
1959  * devices. It is passed a &struct bio, which describes the I/O that needs
1960  * to be done.
1961  *
1962  * generic_make_request() does not return any status.  The
1963  * success/failure status of the request, along with notification of
1964  * completion, is delivered asynchronously through the bio->bi_end_io
1965  * function described (one day) else where.
1966  *
1967  * The caller of generic_make_request must make sure that bi_io_vec
1968  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1969  * set to describe the device address, and the
1970  * bi_end_io and optionally bi_private are set to describe how
1971  * completion notification should be signaled.
1972  *
1973  * generic_make_request and the drivers it calls may use bi_next if this
1974  * bio happens to be merged with someone else, and may resubmit the bio to
1975  * a lower device by calling into generic_make_request recursively, which
1976  * means the bio should NOT be touched after the call to ->make_request_fn.
1977  */
1978 blk_qc_t generic_make_request(struct bio *bio)
1979 {
1980 	struct bio_list bio_list_on_stack;
1981 	blk_qc_t ret = BLK_QC_T_NONE;
1982 
1983 	if (!generic_make_request_checks(bio))
1984 		goto out;
1985 
1986 	/*
1987 	 * We only want one ->make_request_fn to be active at a time, else
1988 	 * stack usage with stacked devices could be a problem.  So use
1989 	 * current->bio_list to keep a list of requests submited by a
1990 	 * make_request_fn function.  current->bio_list is also used as a
1991 	 * flag to say if generic_make_request is currently active in this
1992 	 * task or not.  If it is NULL, then no make_request is active.  If
1993 	 * it is non-NULL, then a make_request is active, and new requests
1994 	 * should be added at the tail
1995 	 */
1996 	if (current->bio_list) {
1997 		bio_list_add(current->bio_list, bio);
1998 		goto out;
1999 	}
2000 
2001 	/* following loop may be a bit non-obvious, and so deserves some
2002 	 * explanation.
2003 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2004 	 * ensure that) so we have a list with a single bio.
2005 	 * We pretend that we have just taken it off a longer list, so
2006 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2007 	 * thus initialising the bio_list of new bios to be
2008 	 * added.  ->make_request() may indeed add some more bios
2009 	 * through a recursive call to generic_make_request.  If it
2010 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2011 	 * from the top.  In this case we really did just take the bio
2012 	 * of the top of the list (no pretending) and so remove it from
2013 	 * bio_list, and call into ->make_request() again.
2014 	 */
2015 	BUG_ON(bio->bi_next);
2016 	bio_list_init(&bio_list_on_stack);
2017 	current->bio_list = &bio_list_on_stack;
2018 	do {
2019 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2020 
2021 		if (likely(blk_queue_enter(q, false) == 0)) {
2022 			ret = q->make_request_fn(q, bio);
2023 
2024 			blk_queue_exit(q);
2025 
2026 			bio = bio_list_pop(current->bio_list);
2027 		} else {
2028 			struct bio *bio_next = bio_list_pop(current->bio_list);
2029 
2030 			bio_io_error(bio);
2031 			bio = bio_next;
2032 		}
2033 	} while (bio);
2034 	current->bio_list = NULL; /* deactivate */
2035 
2036 out:
2037 	return ret;
2038 }
2039 EXPORT_SYMBOL(generic_make_request);
2040 
2041 /**
2042  * submit_bio - submit a bio to the block device layer for I/O
2043  * @bio: The &struct bio which describes the I/O
2044  *
2045  * submit_bio() is very similar in purpose to generic_make_request(), and
2046  * uses that function to do most of the work. Both are fairly rough
2047  * interfaces; @bio must be presetup and ready for I/O.
2048  *
2049  */
2050 blk_qc_t submit_bio(struct bio *bio)
2051 {
2052 	/*
2053 	 * If it's a regular read/write or a barrier with data attached,
2054 	 * go through the normal accounting stuff before submission.
2055 	 */
2056 	if (bio_has_data(bio)) {
2057 		unsigned int count;
2058 
2059 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2060 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2061 		else
2062 			count = bio_sectors(bio);
2063 
2064 		if (op_is_write(bio_op(bio))) {
2065 			count_vm_events(PGPGOUT, count);
2066 		} else {
2067 			task_io_account_read(bio->bi_iter.bi_size);
2068 			count_vm_events(PGPGIN, count);
2069 		}
2070 
2071 		if (unlikely(block_dump)) {
2072 			char b[BDEVNAME_SIZE];
2073 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2074 			current->comm, task_pid_nr(current),
2075 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2076 				(unsigned long long)bio->bi_iter.bi_sector,
2077 				bdevname(bio->bi_bdev, b),
2078 				count);
2079 		}
2080 	}
2081 
2082 	return generic_make_request(bio);
2083 }
2084 EXPORT_SYMBOL(submit_bio);
2085 
2086 /**
2087  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2088  *                              for new the queue limits
2089  * @q:  the queue
2090  * @rq: the request being checked
2091  *
2092  * Description:
2093  *    @rq may have been made based on weaker limitations of upper-level queues
2094  *    in request stacking drivers, and it may violate the limitation of @q.
2095  *    Since the block layer and the underlying device driver trust @rq
2096  *    after it is inserted to @q, it should be checked against @q before
2097  *    the insertion using this generic function.
2098  *
2099  *    Request stacking drivers like request-based dm may change the queue
2100  *    limits when retrying requests on other queues. Those requests need
2101  *    to be checked against the new queue limits again during dispatch.
2102  */
2103 static int blk_cloned_rq_check_limits(struct request_queue *q,
2104 				      struct request *rq)
2105 {
2106 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2107 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2108 		return -EIO;
2109 	}
2110 
2111 	/*
2112 	 * queue's settings related to segment counting like q->bounce_pfn
2113 	 * may differ from that of other stacking queues.
2114 	 * Recalculate it to check the request correctly on this queue's
2115 	 * limitation.
2116 	 */
2117 	blk_recalc_rq_segments(rq);
2118 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2119 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2120 		return -EIO;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2128  * @q:  the queue to submit the request
2129  * @rq: the request being queued
2130  */
2131 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2132 {
2133 	unsigned long flags;
2134 	int where = ELEVATOR_INSERT_BACK;
2135 
2136 	if (blk_cloned_rq_check_limits(q, rq))
2137 		return -EIO;
2138 
2139 	if (rq->rq_disk &&
2140 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2141 		return -EIO;
2142 
2143 	if (q->mq_ops) {
2144 		if (blk_queue_io_stat(q))
2145 			blk_account_io_start(rq, true);
2146 		blk_mq_insert_request(rq, false, true, false);
2147 		return 0;
2148 	}
2149 
2150 	spin_lock_irqsave(q->queue_lock, flags);
2151 	if (unlikely(blk_queue_dying(q))) {
2152 		spin_unlock_irqrestore(q->queue_lock, flags);
2153 		return -ENODEV;
2154 	}
2155 
2156 	/*
2157 	 * Submitting request must be dequeued before calling this function
2158 	 * because it will be linked to another request_queue
2159 	 */
2160 	BUG_ON(blk_queued_rq(rq));
2161 
2162 	if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2163 		where = ELEVATOR_INSERT_FLUSH;
2164 
2165 	add_acct_request(q, rq, where);
2166 	if (where == ELEVATOR_INSERT_FLUSH)
2167 		__blk_run_queue(q);
2168 	spin_unlock_irqrestore(q->queue_lock, flags);
2169 
2170 	return 0;
2171 }
2172 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2173 
2174 /**
2175  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2176  * @rq: request to examine
2177  *
2178  * Description:
2179  *     A request could be merge of IOs which require different failure
2180  *     handling.  This function determines the number of bytes which
2181  *     can be failed from the beginning of the request without
2182  *     crossing into area which need to be retried further.
2183  *
2184  * Return:
2185  *     The number of bytes to fail.
2186  *
2187  * Context:
2188  *     queue_lock must be held.
2189  */
2190 unsigned int blk_rq_err_bytes(const struct request *rq)
2191 {
2192 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2193 	unsigned int bytes = 0;
2194 	struct bio *bio;
2195 
2196 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2197 		return blk_rq_bytes(rq);
2198 
2199 	/*
2200 	 * Currently the only 'mixing' which can happen is between
2201 	 * different fastfail types.  We can safely fail portions
2202 	 * which have all the failfast bits that the first one has -
2203 	 * the ones which are at least as eager to fail as the first
2204 	 * one.
2205 	 */
2206 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2207 		if ((bio->bi_opf & ff) != ff)
2208 			break;
2209 		bytes += bio->bi_iter.bi_size;
2210 	}
2211 
2212 	/* this could lead to infinite loop */
2213 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2214 	return bytes;
2215 }
2216 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2217 
2218 void blk_account_io_completion(struct request *req, unsigned int bytes)
2219 {
2220 	if (blk_do_io_stat(req)) {
2221 		const int rw = rq_data_dir(req);
2222 		struct hd_struct *part;
2223 		int cpu;
2224 
2225 		cpu = part_stat_lock();
2226 		part = req->part;
2227 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2228 		part_stat_unlock();
2229 	}
2230 }
2231 
2232 void blk_account_io_done(struct request *req)
2233 {
2234 	/*
2235 	 * Account IO completion.  flush_rq isn't accounted as a
2236 	 * normal IO on queueing nor completion.  Accounting the
2237 	 * containing request is enough.
2238 	 */
2239 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2240 		unsigned long duration = jiffies - req->start_time;
2241 		const int rw = rq_data_dir(req);
2242 		struct hd_struct *part;
2243 		int cpu;
2244 
2245 		cpu = part_stat_lock();
2246 		part = req->part;
2247 
2248 		part_stat_inc(cpu, part, ios[rw]);
2249 		part_stat_add(cpu, part, ticks[rw], duration);
2250 		part_round_stats(cpu, part);
2251 		part_dec_in_flight(part, rw);
2252 
2253 		hd_struct_put(part);
2254 		part_stat_unlock();
2255 	}
2256 }
2257 
2258 #ifdef CONFIG_PM
2259 /*
2260  * Don't process normal requests when queue is suspended
2261  * or in the process of suspending/resuming
2262  */
2263 static struct request *blk_pm_peek_request(struct request_queue *q,
2264 					   struct request *rq)
2265 {
2266 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2267 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2268 		return NULL;
2269 	else
2270 		return rq;
2271 }
2272 #else
2273 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2274 						  struct request *rq)
2275 {
2276 	return rq;
2277 }
2278 #endif
2279 
2280 void blk_account_io_start(struct request *rq, bool new_io)
2281 {
2282 	struct hd_struct *part;
2283 	int rw = rq_data_dir(rq);
2284 	int cpu;
2285 
2286 	if (!blk_do_io_stat(rq))
2287 		return;
2288 
2289 	cpu = part_stat_lock();
2290 
2291 	if (!new_io) {
2292 		part = rq->part;
2293 		part_stat_inc(cpu, part, merges[rw]);
2294 	} else {
2295 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2296 		if (!hd_struct_try_get(part)) {
2297 			/*
2298 			 * The partition is already being removed,
2299 			 * the request will be accounted on the disk only
2300 			 *
2301 			 * We take a reference on disk->part0 although that
2302 			 * partition will never be deleted, so we can treat
2303 			 * it as any other partition.
2304 			 */
2305 			part = &rq->rq_disk->part0;
2306 			hd_struct_get(part);
2307 		}
2308 		part_round_stats(cpu, part);
2309 		part_inc_in_flight(part, rw);
2310 		rq->part = part;
2311 	}
2312 
2313 	part_stat_unlock();
2314 }
2315 
2316 /**
2317  * blk_peek_request - peek at the top of a request queue
2318  * @q: request queue to peek at
2319  *
2320  * Description:
2321  *     Return the request at the top of @q.  The returned request
2322  *     should be started using blk_start_request() before LLD starts
2323  *     processing it.
2324  *
2325  * Return:
2326  *     Pointer to the request at the top of @q if available.  Null
2327  *     otherwise.
2328  *
2329  * Context:
2330  *     queue_lock must be held.
2331  */
2332 struct request *blk_peek_request(struct request_queue *q)
2333 {
2334 	struct request *rq;
2335 	int ret;
2336 
2337 	while ((rq = __elv_next_request(q)) != NULL) {
2338 
2339 		rq = blk_pm_peek_request(q, rq);
2340 		if (!rq)
2341 			break;
2342 
2343 		if (!(rq->rq_flags & RQF_STARTED)) {
2344 			/*
2345 			 * This is the first time the device driver
2346 			 * sees this request (possibly after
2347 			 * requeueing).  Notify IO scheduler.
2348 			 */
2349 			if (rq->rq_flags & RQF_SORTED)
2350 				elv_activate_rq(q, rq);
2351 
2352 			/*
2353 			 * just mark as started even if we don't start
2354 			 * it, a request that has been delayed should
2355 			 * not be passed by new incoming requests
2356 			 */
2357 			rq->rq_flags |= RQF_STARTED;
2358 			trace_block_rq_issue(q, rq);
2359 		}
2360 
2361 		if (!q->boundary_rq || q->boundary_rq == rq) {
2362 			q->end_sector = rq_end_sector(rq);
2363 			q->boundary_rq = NULL;
2364 		}
2365 
2366 		if (rq->rq_flags & RQF_DONTPREP)
2367 			break;
2368 
2369 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2370 			/*
2371 			 * make sure space for the drain appears we
2372 			 * know we can do this because max_hw_segments
2373 			 * has been adjusted to be one fewer than the
2374 			 * device can handle
2375 			 */
2376 			rq->nr_phys_segments++;
2377 		}
2378 
2379 		if (!q->prep_rq_fn)
2380 			break;
2381 
2382 		ret = q->prep_rq_fn(q, rq);
2383 		if (ret == BLKPREP_OK) {
2384 			break;
2385 		} else if (ret == BLKPREP_DEFER) {
2386 			/*
2387 			 * the request may have been (partially) prepped.
2388 			 * we need to keep this request in the front to
2389 			 * avoid resource deadlock.  RQF_STARTED will
2390 			 * prevent other fs requests from passing this one.
2391 			 */
2392 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2393 			    !(rq->rq_flags & RQF_DONTPREP)) {
2394 				/*
2395 				 * remove the space for the drain we added
2396 				 * so that we don't add it again
2397 				 */
2398 				--rq->nr_phys_segments;
2399 			}
2400 
2401 			rq = NULL;
2402 			break;
2403 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2404 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2405 
2406 			rq->rq_flags |= RQF_QUIET;
2407 			/*
2408 			 * Mark this request as started so we don't trigger
2409 			 * any debug logic in the end I/O path.
2410 			 */
2411 			blk_start_request(rq);
2412 			__blk_end_request_all(rq, err);
2413 		} else {
2414 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2415 			break;
2416 		}
2417 	}
2418 
2419 	return rq;
2420 }
2421 EXPORT_SYMBOL(blk_peek_request);
2422 
2423 void blk_dequeue_request(struct request *rq)
2424 {
2425 	struct request_queue *q = rq->q;
2426 
2427 	BUG_ON(list_empty(&rq->queuelist));
2428 	BUG_ON(ELV_ON_HASH(rq));
2429 
2430 	list_del_init(&rq->queuelist);
2431 
2432 	/*
2433 	 * the time frame between a request being removed from the lists
2434 	 * and to it is freed is accounted as io that is in progress at
2435 	 * the driver side.
2436 	 */
2437 	if (blk_account_rq(rq)) {
2438 		q->in_flight[rq_is_sync(rq)]++;
2439 		set_io_start_time_ns(rq);
2440 	}
2441 }
2442 
2443 /**
2444  * blk_start_request - start request processing on the driver
2445  * @req: request to dequeue
2446  *
2447  * Description:
2448  *     Dequeue @req and start timeout timer on it.  This hands off the
2449  *     request to the driver.
2450  *
2451  *     Block internal functions which don't want to start timer should
2452  *     call blk_dequeue_request().
2453  *
2454  * Context:
2455  *     queue_lock must be held.
2456  */
2457 void blk_start_request(struct request *req)
2458 {
2459 	blk_dequeue_request(req);
2460 
2461 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2462 		blk_stat_set_issue_time(&req->issue_stat);
2463 		req->rq_flags |= RQF_STATS;
2464 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2465 	}
2466 
2467 	/*
2468 	 * We are now handing the request to the hardware, initialize
2469 	 * resid_len to full count and add the timeout handler.
2470 	 */
2471 	req->resid_len = blk_rq_bytes(req);
2472 	if (unlikely(blk_bidi_rq(req)))
2473 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2474 
2475 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2476 	blk_add_timer(req);
2477 }
2478 EXPORT_SYMBOL(blk_start_request);
2479 
2480 /**
2481  * blk_fetch_request - fetch a request from a request queue
2482  * @q: request queue to fetch a request from
2483  *
2484  * Description:
2485  *     Return the request at the top of @q.  The request is started on
2486  *     return and LLD can start processing it immediately.
2487  *
2488  * Return:
2489  *     Pointer to the request at the top of @q if available.  Null
2490  *     otherwise.
2491  *
2492  * Context:
2493  *     queue_lock must be held.
2494  */
2495 struct request *blk_fetch_request(struct request_queue *q)
2496 {
2497 	struct request *rq;
2498 
2499 	rq = blk_peek_request(q);
2500 	if (rq)
2501 		blk_start_request(rq);
2502 	return rq;
2503 }
2504 EXPORT_SYMBOL(blk_fetch_request);
2505 
2506 /**
2507  * blk_update_request - Special helper function for request stacking drivers
2508  * @req:      the request being processed
2509  * @error:    %0 for success, < %0 for error
2510  * @nr_bytes: number of bytes to complete @req
2511  *
2512  * Description:
2513  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2514  *     the request structure even if @req doesn't have leftover.
2515  *     If @req has leftover, sets it up for the next range of segments.
2516  *
2517  *     This special helper function is only for request stacking drivers
2518  *     (e.g. request-based dm) so that they can handle partial completion.
2519  *     Actual device drivers should use blk_end_request instead.
2520  *
2521  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2522  *     %false return from this function.
2523  *
2524  * Return:
2525  *     %false - this request doesn't have any more data
2526  *     %true  - this request has more data
2527  **/
2528 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2529 {
2530 	int total_bytes;
2531 
2532 	trace_block_rq_complete(req->q, req, nr_bytes);
2533 
2534 	if (!req->bio)
2535 		return false;
2536 
2537 	/*
2538 	 * For fs requests, rq is just carrier of independent bio's
2539 	 * and each partial completion should be handled separately.
2540 	 * Reset per-request error on each partial completion.
2541 	 *
2542 	 * TODO: tj: This is too subtle.  It would be better to let
2543 	 * low level drivers do what they see fit.
2544 	 */
2545 	if (req->cmd_type == REQ_TYPE_FS)
2546 		req->errors = 0;
2547 
2548 	if (error && req->cmd_type == REQ_TYPE_FS &&
2549 	    !(req->rq_flags & RQF_QUIET)) {
2550 		char *error_type;
2551 
2552 		switch (error) {
2553 		case -ENOLINK:
2554 			error_type = "recoverable transport";
2555 			break;
2556 		case -EREMOTEIO:
2557 			error_type = "critical target";
2558 			break;
2559 		case -EBADE:
2560 			error_type = "critical nexus";
2561 			break;
2562 		case -ETIMEDOUT:
2563 			error_type = "timeout";
2564 			break;
2565 		case -ENOSPC:
2566 			error_type = "critical space allocation";
2567 			break;
2568 		case -ENODATA:
2569 			error_type = "critical medium";
2570 			break;
2571 		case -EIO:
2572 		default:
2573 			error_type = "I/O";
2574 			break;
2575 		}
2576 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2577 				   __func__, error_type, req->rq_disk ?
2578 				   req->rq_disk->disk_name : "?",
2579 				   (unsigned long long)blk_rq_pos(req));
2580 
2581 	}
2582 
2583 	blk_account_io_completion(req, nr_bytes);
2584 
2585 	total_bytes = 0;
2586 	while (req->bio) {
2587 		struct bio *bio = req->bio;
2588 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2589 
2590 		if (bio_bytes == bio->bi_iter.bi_size)
2591 			req->bio = bio->bi_next;
2592 
2593 		req_bio_endio(req, bio, bio_bytes, error);
2594 
2595 		total_bytes += bio_bytes;
2596 		nr_bytes -= bio_bytes;
2597 
2598 		if (!nr_bytes)
2599 			break;
2600 	}
2601 
2602 	/*
2603 	 * completely done
2604 	 */
2605 	if (!req->bio) {
2606 		/*
2607 		 * Reset counters so that the request stacking driver
2608 		 * can find how many bytes remain in the request
2609 		 * later.
2610 		 */
2611 		req->__data_len = 0;
2612 		return false;
2613 	}
2614 
2615 	WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2616 
2617 	req->__data_len -= total_bytes;
2618 
2619 	/* update sector only for requests with clear definition of sector */
2620 	if (req->cmd_type == REQ_TYPE_FS)
2621 		req->__sector += total_bytes >> 9;
2622 
2623 	/* mixed attributes always follow the first bio */
2624 	if (req->rq_flags & RQF_MIXED_MERGE) {
2625 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2626 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2627 	}
2628 
2629 	/*
2630 	 * If total number of sectors is less than the first segment
2631 	 * size, something has gone terribly wrong.
2632 	 */
2633 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2634 		blk_dump_rq_flags(req, "request botched");
2635 		req->__data_len = blk_rq_cur_bytes(req);
2636 	}
2637 
2638 	/* recalculate the number of segments */
2639 	blk_recalc_rq_segments(req);
2640 
2641 	return true;
2642 }
2643 EXPORT_SYMBOL_GPL(blk_update_request);
2644 
2645 static bool blk_update_bidi_request(struct request *rq, int error,
2646 				    unsigned int nr_bytes,
2647 				    unsigned int bidi_bytes)
2648 {
2649 	if (blk_update_request(rq, error, nr_bytes))
2650 		return true;
2651 
2652 	/* Bidi request must be completed as a whole */
2653 	if (unlikely(blk_bidi_rq(rq)) &&
2654 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2655 		return true;
2656 
2657 	if (blk_queue_add_random(rq->q))
2658 		add_disk_randomness(rq->rq_disk);
2659 
2660 	return false;
2661 }
2662 
2663 /**
2664  * blk_unprep_request - unprepare a request
2665  * @req:	the request
2666  *
2667  * This function makes a request ready for complete resubmission (or
2668  * completion).  It happens only after all error handling is complete,
2669  * so represents the appropriate moment to deallocate any resources
2670  * that were allocated to the request in the prep_rq_fn.  The queue
2671  * lock is held when calling this.
2672  */
2673 void blk_unprep_request(struct request *req)
2674 {
2675 	struct request_queue *q = req->q;
2676 
2677 	req->rq_flags &= ~RQF_DONTPREP;
2678 	if (q->unprep_rq_fn)
2679 		q->unprep_rq_fn(q, req);
2680 }
2681 EXPORT_SYMBOL_GPL(blk_unprep_request);
2682 
2683 /*
2684  * queue lock must be held
2685  */
2686 void blk_finish_request(struct request *req, int error)
2687 {
2688 	struct request_queue *q = req->q;
2689 
2690 	if (req->rq_flags & RQF_STATS)
2691 		blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2692 
2693 	if (req->rq_flags & RQF_QUEUED)
2694 		blk_queue_end_tag(q, req);
2695 
2696 	BUG_ON(blk_queued_rq(req));
2697 
2698 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2699 		laptop_io_completion(&req->q->backing_dev_info);
2700 
2701 	blk_delete_timer(req);
2702 
2703 	if (req->rq_flags & RQF_DONTPREP)
2704 		blk_unprep_request(req);
2705 
2706 	blk_account_io_done(req);
2707 
2708 	if (req->end_io) {
2709 		wbt_done(req->q->rq_wb, &req->issue_stat);
2710 		req->end_io(req, error);
2711 	} else {
2712 		if (blk_bidi_rq(req))
2713 			__blk_put_request(req->next_rq->q, req->next_rq);
2714 
2715 		__blk_put_request(q, req);
2716 	}
2717 }
2718 EXPORT_SYMBOL(blk_finish_request);
2719 
2720 /**
2721  * blk_end_bidi_request - Complete a bidi request
2722  * @rq:         the request to complete
2723  * @error:      %0 for success, < %0 for error
2724  * @nr_bytes:   number of bytes to complete @rq
2725  * @bidi_bytes: number of bytes to complete @rq->next_rq
2726  *
2727  * Description:
2728  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2729  *     Drivers that supports bidi can safely call this member for any
2730  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2731  *     just ignored.
2732  *
2733  * Return:
2734  *     %false - we are done with this request
2735  *     %true  - still buffers pending for this request
2736  **/
2737 static bool blk_end_bidi_request(struct request *rq, int error,
2738 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2739 {
2740 	struct request_queue *q = rq->q;
2741 	unsigned long flags;
2742 
2743 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2744 		return true;
2745 
2746 	spin_lock_irqsave(q->queue_lock, flags);
2747 	blk_finish_request(rq, error);
2748 	spin_unlock_irqrestore(q->queue_lock, flags);
2749 
2750 	return false;
2751 }
2752 
2753 /**
2754  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2755  * @rq:         the request to complete
2756  * @error:      %0 for success, < %0 for error
2757  * @nr_bytes:   number of bytes to complete @rq
2758  * @bidi_bytes: number of bytes to complete @rq->next_rq
2759  *
2760  * Description:
2761  *     Identical to blk_end_bidi_request() except that queue lock is
2762  *     assumed to be locked on entry and remains so on return.
2763  *
2764  * Return:
2765  *     %false - we are done with this request
2766  *     %true  - still buffers pending for this request
2767  **/
2768 bool __blk_end_bidi_request(struct request *rq, int error,
2769 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2770 {
2771 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2772 		return true;
2773 
2774 	blk_finish_request(rq, error);
2775 
2776 	return false;
2777 }
2778 
2779 /**
2780  * blk_end_request - Helper function for drivers to complete the request.
2781  * @rq:       the request being processed
2782  * @error:    %0 for success, < %0 for error
2783  * @nr_bytes: number of bytes to complete
2784  *
2785  * Description:
2786  *     Ends I/O on a number of bytes attached to @rq.
2787  *     If @rq has leftover, sets it up for the next range of segments.
2788  *
2789  * Return:
2790  *     %false - we are done with this request
2791  *     %true  - still buffers pending for this request
2792  **/
2793 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2794 {
2795 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2796 }
2797 EXPORT_SYMBOL(blk_end_request);
2798 
2799 /**
2800  * blk_end_request_all - Helper function for drives to finish the request.
2801  * @rq: the request to finish
2802  * @error: %0 for success, < %0 for error
2803  *
2804  * Description:
2805  *     Completely finish @rq.
2806  */
2807 void blk_end_request_all(struct request *rq, int error)
2808 {
2809 	bool pending;
2810 	unsigned int bidi_bytes = 0;
2811 
2812 	if (unlikely(blk_bidi_rq(rq)))
2813 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2814 
2815 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2816 	BUG_ON(pending);
2817 }
2818 EXPORT_SYMBOL(blk_end_request_all);
2819 
2820 /**
2821  * blk_end_request_cur - Helper function to finish the current request chunk.
2822  * @rq: the request to finish the current chunk for
2823  * @error: %0 for success, < %0 for error
2824  *
2825  * Description:
2826  *     Complete the current consecutively mapped chunk from @rq.
2827  *
2828  * Return:
2829  *     %false - we are done with this request
2830  *     %true  - still buffers pending for this request
2831  */
2832 bool blk_end_request_cur(struct request *rq, int error)
2833 {
2834 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2835 }
2836 EXPORT_SYMBOL(blk_end_request_cur);
2837 
2838 /**
2839  * blk_end_request_err - Finish a request till the next failure boundary.
2840  * @rq: the request to finish till the next failure boundary for
2841  * @error: must be negative errno
2842  *
2843  * Description:
2844  *     Complete @rq till the next failure boundary.
2845  *
2846  * Return:
2847  *     %false - we are done with this request
2848  *     %true  - still buffers pending for this request
2849  */
2850 bool blk_end_request_err(struct request *rq, int error)
2851 {
2852 	WARN_ON(error >= 0);
2853 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2854 }
2855 EXPORT_SYMBOL_GPL(blk_end_request_err);
2856 
2857 /**
2858  * __blk_end_request - Helper function for drivers to complete the request.
2859  * @rq:       the request being processed
2860  * @error:    %0 for success, < %0 for error
2861  * @nr_bytes: number of bytes to complete
2862  *
2863  * Description:
2864  *     Must be called with queue lock held unlike blk_end_request().
2865  *
2866  * Return:
2867  *     %false - we are done with this request
2868  *     %true  - still buffers pending for this request
2869  **/
2870 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2871 {
2872 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2873 }
2874 EXPORT_SYMBOL(__blk_end_request);
2875 
2876 /**
2877  * __blk_end_request_all - Helper function for drives to finish the request.
2878  * @rq: the request to finish
2879  * @error: %0 for success, < %0 for error
2880  *
2881  * Description:
2882  *     Completely finish @rq.  Must be called with queue lock held.
2883  */
2884 void __blk_end_request_all(struct request *rq, int error)
2885 {
2886 	bool pending;
2887 	unsigned int bidi_bytes = 0;
2888 
2889 	if (unlikely(blk_bidi_rq(rq)))
2890 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2891 
2892 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2893 	BUG_ON(pending);
2894 }
2895 EXPORT_SYMBOL(__blk_end_request_all);
2896 
2897 /**
2898  * __blk_end_request_cur - Helper function to finish the current request chunk.
2899  * @rq: the request to finish the current chunk for
2900  * @error: %0 for success, < %0 for error
2901  *
2902  * Description:
2903  *     Complete the current consecutively mapped chunk from @rq.  Must
2904  *     be called with queue lock held.
2905  *
2906  * Return:
2907  *     %false - we are done with this request
2908  *     %true  - still buffers pending for this request
2909  */
2910 bool __blk_end_request_cur(struct request *rq, int error)
2911 {
2912 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2913 }
2914 EXPORT_SYMBOL(__blk_end_request_cur);
2915 
2916 /**
2917  * __blk_end_request_err - Finish a request till the next failure boundary.
2918  * @rq: the request to finish till the next failure boundary for
2919  * @error: must be negative errno
2920  *
2921  * Description:
2922  *     Complete @rq till the next failure boundary.  Must be called
2923  *     with queue lock held.
2924  *
2925  * Return:
2926  *     %false - we are done with this request
2927  *     %true  - still buffers pending for this request
2928  */
2929 bool __blk_end_request_err(struct request *rq, int error)
2930 {
2931 	WARN_ON(error >= 0);
2932 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2933 }
2934 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2935 
2936 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2937 		     struct bio *bio)
2938 {
2939 	if (bio_has_data(bio))
2940 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2941 
2942 	rq->__data_len = bio->bi_iter.bi_size;
2943 	rq->bio = rq->biotail = bio;
2944 
2945 	if (bio->bi_bdev)
2946 		rq->rq_disk = bio->bi_bdev->bd_disk;
2947 }
2948 
2949 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2950 /**
2951  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2952  * @rq: the request to be flushed
2953  *
2954  * Description:
2955  *     Flush all pages in @rq.
2956  */
2957 void rq_flush_dcache_pages(struct request *rq)
2958 {
2959 	struct req_iterator iter;
2960 	struct bio_vec bvec;
2961 
2962 	rq_for_each_segment(bvec, rq, iter)
2963 		flush_dcache_page(bvec.bv_page);
2964 }
2965 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2966 #endif
2967 
2968 /**
2969  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2970  * @q : the queue of the device being checked
2971  *
2972  * Description:
2973  *    Check if underlying low-level drivers of a device are busy.
2974  *    If the drivers want to export their busy state, they must set own
2975  *    exporting function using blk_queue_lld_busy() first.
2976  *
2977  *    Basically, this function is used only by request stacking drivers
2978  *    to stop dispatching requests to underlying devices when underlying
2979  *    devices are busy.  This behavior helps more I/O merging on the queue
2980  *    of the request stacking driver and prevents I/O throughput regression
2981  *    on burst I/O load.
2982  *
2983  * Return:
2984  *    0 - Not busy (The request stacking driver should dispatch request)
2985  *    1 - Busy (The request stacking driver should stop dispatching request)
2986  */
2987 int blk_lld_busy(struct request_queue *q)
2988 {
2989 	if (q->lld_busy_fn)
2990 		return q->lld_busy_fn(q);
2991 
2992 	return 0;
2993 }
2994 EXPORT_SYMBOL_GPL(blk_lld_busy);
2995 
2996 /**
2997  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2998  * @rq: the clone request to be cleaned up
2999  *
3000  * Description:
3001  *     Free all bios in @rq for a cloned request.
3002  */
3003 void blk_rq_unprep_clone(struct request *rq)
3004 {
3005 	struct bio *bio;
3006 
3007 	while ((bio = rq->bio) != NULL) {
3008 		rq->bio = bio->bi_next;
3009 
3010 		bio_put(bio);
3011 	}
3012 }
3013 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3014 
3015 /*
3016  * Copy attributes of the original request to the clone request.
3017  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3018  */
3019 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3020 {
3021 	dst->cpu = src->cpu;
3022 	dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3023 	dst->cmd_type = src->cmd_type;
3024 	dst->__sector = blk_rq_pos(src);
3025 	dst->__data_len = blk_rq_bytes(src);
3026 	dst->nr_phys_segments = src->nr_phys_segments;
3027 	dst->ioprio = src->ioprio;
3028 	dst->extra_len = src->extra_len;
3029 }
3030 
3031 /**
3032  * blk_rq_prep_clone - Helper function to setup clone request
3033  * @rq: the request to be setup
3034  * @rq_src: original request to be cloned
3035  * @bs: bio_set that bios for clone are allocated from
3036  * @gfp_mask: memory allocation mask for bio
3037  * @bio_ctr: setup function to be called for each clone bio.
3038  *           Returns %0 for success, non %0 for failure.
3039  * @data: private data to be passed to @bio_ctr
3040  *
3041  * Description:
3042  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3043  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3044  *     are not copied, and copying such parts is the caller's responsibility.
3045  *     Also, pages which the original bios are pointing to are not copied
3046  *     and the cloned bios just point same pages.
3047  *     So cloned bios must be completed before original bios, which means
3048  *     the caller must complete @rq before @rq_src.
3049  */
3050 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3051 		      struct bio_set *bs, gfp_t gfp_mask,
3052 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3053 		      void *data)
3054 {
3055 	struct bio *bio, *bio_src;
3056 
3057 	if (!bs)
3058 		bs = fs_bio_set;
3059 
3060 	__rq_for_each_bio(bio_src, rq_src) {
3061 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3062 		if (!bio)
3063 			goto free_and_out;
3064 
3065 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3066 			goto free_and_out;
3067 
3068 		if (rq->bio) {
3069 			rq->biotail->bi_next = bio;
3070 			rq->biotail = bio;
3071 		} else
3072 			rq->bio = rq->biotail = bio;
3073 	}
3074 
3075 	__blk_rq_prep_clone(rq, rq_src);
3076 
3077 	return 0;
3078 
3079 free_and_out:
3080 	if (bio)
3081 		bio_put(bio);
3082 	blk_rq_unprep_clone(rq);
3083 
3084 	return -ENOMEM;
3085 }
3086 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3087 
3088 int kblockd_schedule_work(struct work_struct *work)
3089 {
3090 	return queue_work(kblockd_workqueue, work);
3091 }
3092 EXPORT_SYMBOL(kblockd_schedule_work);
3093 
3094 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3095 {
3096 	return queue_work_on(cpu, kblockd_workqueue, work);
3097 }
3098 EXPORT_SYMBOL(kblockd_schedule_work_on);
3099 
3100 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3101 				  unsigned long delay)
3102 {
3103 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3104 }
3105 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3106 
3107 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3108 				     unsigned long delay)
3109 {
3110 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3111 }
3112 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3113 
3114 /**
3115  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3116  * @plug:	The &struct blk_plug that needs to be initialized
3117  *
3118  * Description:
3119  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3120  *   pending I/O should the task end up blocking between blk_start_plug() and
3121  *   blk_finish_plug(). This is important from a performance perspective, but
3122  *   also ensures that we don't deadlock. For instance, if the task is blocking
3123  *   for a memory allocation, memory reclaim could end up wanting to free a
3124  *   page belonging to that request that is currently residing in our private
3125  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3126  *   this kind of deadlock.
3127  */
3128 void blk_start_plug(struct blk_plug *plug)
3129 {
3130 	struct task_struct *tsk = current;
3131 
3132 	/*
3133 	 * If this is a nested plug, don't actually assign it.
3134 	 */
3135 	if (tsk->plug)
3136 		return;
3137 
3138 	INIT_LIST_HEAD(&plug->list);
3139 	INIT_LIST_HEAD(&plug->mq_list);
3140 	INIT_LIST_HEAD(&plug->cb_list);
3141 	/*
3142 	 * Store ordering should not be needed here, since a potential
3143 	 * preempt will imply a full memory barrier
3144 	 */
3145 	tsk->plug = plug;
3146 }
3147 EXPORT_SYMBOL(blk_start_plug);
3148 
3149 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3150 {
3151 	struct request *rqa = container_of(a, struct request, queuelist);
3152 	struct request *rqb = container_of(b, struct request, queuelist);
3153 
3154 	return !(rqa->q < rqb->q ||
3155 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3156 }
3157 
3158 /*
3159  * If 'from_schedule' is true, then postpone the dispatch of requests
3160  * until a safe kblockd context. We due this to avoid accidental big
3161  * additional stack usage in driver dispatch, in places where the originally
3162  * plugger did not intend it.
3163  */
3164 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3165 			    bool from_schedule)
3166 	__releases(q->queue_lock)
3167 {
3168 	trace_block_unplug(q, depth, !from_schedule);
3169 
3170 	if (from_schedule)
3171 		blk_run_queue_async(q);
3172 	else
3173 		__blk_run_queue(q);
3174 	spin_unlock(q->queue_lock);
3175 }
3176 
3177 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3178 {
3179 	LIST_HEAD(callbacks);
3180 
3181 	while (!list_empty(&plug->cb_list)) {
3182 		list_splice_init(&plug->cb_list, &callbacks);
3183 
3184 		while (!list_empty(&callbacks)) {
3185 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3186 							  struct blk_plug_cb,
3187 							  list);
3188 			list_del(&cb->list);
3189 			cb->callback(cb, from_schedule);
3190 		}
3191 	}
3192 }
3193 
3194 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3195 				      int size)
3196 {
3197 	struct blk_plug *plug = current->plug;
3198 	struct blk_plug_cb *cb;
3199 
3200 	if (!plug)
3201 		return NULL;
3202 
3203 	list_for_each_entry(cb, &plug->cb_list, list)
3204 		if (cb->callback == unplug && cb->data == data)
3205 			return cb;
3206 
3207 	/* Not currently on the callback list */
3208 	BUG_ON(size < sizeof(*cb));
3209 	cb = kzalloc(size, GFP_ATOMIC);
3210 	if (cb) {
3211 		cb->data = data;
3212 		cb->callback = unplug;
3213 		list_add(&cb->list, &plug->cb_list);
3214 	}
3215 	return cb;
3216 }
3217 EXPORT_SYMBOL(blk_check_plugged);
3218 
3219 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3220 {
3221 	struct request_queue *q;
3222 	unsigned long flags;
3223 	struct request *rq;
3224 	LIST_HEAD(list);
3225 	unsigned int depth;
3226 
3227 	flush_plug_callbacks(plug, from_schedule);
3228 
3229 	if (!list_empty(&plug->mq_list))
3230 		blk_mq_flush_plug_list(plug, from_schedule);
3231 
3232 	if (list_empty(&plug->list))
3233 		return;
3234 
3235 	list_splice_init(&plug->list, &list);
3236 
3237 	list_sort(NULL, &list, plug_rq_cmp);
3238 
3239 	q = NULL;
3240 	depth = 0;
3241 
3242 	/*
3243 	 * Save and disable interrupts here, to avoid doing it for every
3244 	 * queue lock we have to take.
3245 	 */
3246 	local_irq_save(flags);
3247 	while (!list_empty(&list)) {
3248 		rq = list_entry_rq(list.next);
3249 		list_del_init(&rq->queuelist);
3250 		BUG_ON(!rq->q);
3251 		if (rq->q != q) {
3252 			/*
3253 			 * This drops the queue lock
3254 			 */
3255 			if (q)
3256 				queue_unplugged(q, depth, from_schedule);
3257 			q = rq->q;
3258 			depth = 0;
3259 			spin_lock(q->queue_lock);
3260 		}
3261 
3262 		/*
3263 		 * Short-circuit if @q is dead
3264 		 */
3265 		if (unlikely(blk_queue_dying(q))) {
3266 			__blk_end_request_all(rq, -ENODEV);
3267 			continue;
3268 		}
3269 
3270 		/*
3271 		 * rq is already accounted, so use raw insert
3272 		 */
3273 		if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3274 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3275 		else
3276 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3277 
3278 		depth++;
3279 	}
3280 
3281 	/*
3282 	 * This drops the queue lock
3283 	 */
3284 	if (q)
3285 		queue_unplugged(q, depth, from_schedule);
3286 
3287 	local_irq_restore(flags);
3288 }
3289 
3290 void blk_finish_plug(struct blk_plug *plug)
3291 {
3292 	if (plug != current->plug)
3293 		return;
3294 	blk_flush_plug_list(plug, false);
3295 
3296 	current->plug = NULL;
3297 }
3298 EXPORT_SYMBOL(blk_finish_plug);
3299 
3300 #ifdef CONFIG_PM
3301 /**
3302  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3303  * @q: the queue of the device
3304  * @dev: the device the queue belongs to
3305  *
3306  * Description:
3307  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3308  *    @dev. Drivers that want to take advantage of request-based runtime PM
3309  *    should call this function after @dev has been initialized, and its
3310  *    request queue @q has been allocated, and runtime PM for it can not happen
3311  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3312  *    cases, driver should call this function before any I/O has taken place.
3313  *
3314  *    This function takes care of setting up using auto suspend for the device,
3315  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3316  *    until an updated value is either set by user or by driver. Drivers do
3317  *    not need to touch other autosuspend settings.
3318  *
3319  *    The block layer runtime PM is request based, so only works for drivers
3320  *    that use request as their IO unit instead of those directly use bio's.
3321  */
3322 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3323 {
3324 	q->dev = dev;
3325 	q->rpm_status = RPM_ACTIVE;
3326 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3327 	pm_runtime_use_autosuspend(q->dev);
3328 }
3329 EXPORT_SYMBOL(blk_pm_runtime_init);
3330 
3331 /**
3332  * blk_pre_runtime_suspend - Pre runtime suspend check
3333  * @q: the queue of the device
3334  *
3335  * Description:
3336  *    This function will check if runtime suspend is allowed for the device
3337  *    by examining if there are any requests pending in the queue. If there
3338  *    are requests pending, the device can not be runtime suspended; otherwise,
3339  *    the queue's status will be updated to SUSPENDING and the driver can
3340  *    proceed to suspend the device.
3341  *
3342  *    For the not allowed case, we mark last busy for the device so that
3343  *    runtime PM core will try to autosuspend it some time later.
3344  *
3345  *    This function should be called near the start of the device's
3346  *    runtime_suspend callback.
3347  *
3348  * Return:
3349  *    0		- OK to runtime suspend the device
3350  *    -EBUSY	- Device should not be runtime suspended
3351  */
3352 int blk_pre_runtime_suspend(struct request_queue *q)
3353 {
3354 	int ret = 0;
3355 
3356 	if (!q->dev)
3357 		return ret;
3358 
3359 	spin_lock_irq(q->queue_lock);
3360 	if (q->nr_pending) {
3361 		ret = -EBUSY;
3362 		pm_runtime_mark_last_busy(q->dev);
3363 	} else {
3364 		q->rpm_status = RPM_SUSPENDING;
3365 	}
3366 	spin_unlock_irq(q->queue_lock);
3367 	return ret;
3368 }
3369 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3370 
3371 /**
3372  * blk_post_runtime_suspend - Post runtime suspend processing
3373  * @q: the queue of the device
3374  * @err: return value of the device's runtime_suspend function
3375  *
3376  * Description:
3377  *    Update the queue's runtime status according to the return value of the
3378  *    device's runtime suspend function and mark last busy for the device so
3379  *    that PM core will try to auto suspend the device at a later time.
3380  *
3381  *    This function should be called near the end of the device's
3382  *    runtime_suspend callback.
3383  */
3384 void blk_post_runtime_suspend(struct request_queue *q, int err)
3385 {
3386 	if (!q->dev)
3387 		return;
3388 
3389 	spin_lock_irq(q->queue_lock);
3390 	if (!err) {
3391 		q->rpm_status = RPM_SUSPENDED;
3392 	} else {
3393 		q->rpm_status = RPM_ACTIVE;
3394 		pm_runtime_mark_last_busy(q->dev);
3395 	}
3396 	spin_unlock_irq(q->queue_lock);
3397 }
3398 EXPORT_SYMBOL(blk_post_runtime_suspend);
3399 
3400 /**
3401  * blk_pre_runtime_resume - Pre runtime resume processing
3402  * @q: the queue of the device
3403  *
3404  * Description:
3405  *    Update the queue's runtime status to RESUMING in preparation for the
3406  *    runtime resume of the device.
3407  *
3408  *    This function should be called near the start of the device's
3409  *    runtime_resume callback.
3410  */
3411 void blk_pre_runtime_resume(struct request_queue *q)
3412 {
3413 	if (!q->dev)
3414 		return;
3415 
3416 	spin_lock_irq(q->queue_lock);
3417 	q->rpm_status = RPM_RESUMING;
3418 	spin_unlock_irq(q->queue_lock);
3419 }
3420 EXPORT_SYMBOL(blk_pre_runtime_resume);
3421 
3422 /**
3423  * blk_post_runtime_resume - Post runtime resume processing
3424  * @q: the queue of the device
3425  * @err: return value of the device's runtime_resume function
3426  *
3427  * Description:
3428  *    Update the queue's runtime status according to the return value of the
3429  *    device's runtime_resume function. If it is successfully resumed, process
3430  *    the requests that are queued into the device's queue when it is resuming
3431  *    and then mark last busy and initiate autosuspend for it.
3432  *
3433  *    This function should be called near the end of the device's
3434  *    runtime_resume callback.
3435  */
3436 void blk_post_runtime_resume(struct request_queue *q, int err)
3437 {
3438 	if (!q->dev)
3439 		return;
3440 
3441 	spin_lock_irq(q->queue_lock);
3442 	if (!err) {
3443 		q->rpm_status = RPM_ACTIVE;
3444 		__blk_run_queue(q);
3445 		pm_runtime_mark_last_busy(q->dev);
3446 		pm_request_autosuspend(q->dev);
3447 	} else {
3448 		q->rpm_status = RPM_SUSPENDED;
3449 	}
3450 	spin_unlock_irq(q->queue_lock);
3451 }
3452 EXPORT_SYMBOL(blk_post_runtime_resume);
3453 
3454 /**
3455  * blk_set_runtime_active - Force runtime status of the queue to be active
3456  * @q: the queue of the device
3457  *
3458  * If the device is left runtime suspended during system suspend the resume
3459  * hook typically resumes the device and corrects runtime status
3460  * accordingly. However, that does not affect the queue runtime PM status
3461  * which is still "suspended". This prevents processing requests from the
3462  * queue.
3463  *
3464  * This function can be used in driver's resume hook to correct queue
3465  * runtime PM status and re-enable peeking requests from the queue. It
3466  * should be called before first request is added to the queue.
3467  */
3468 void blk_set_runtime_active(struct request_queue *q)
3469 {
3470 	spin_lock_irq(q->queue_lock);
3471 	q->rpm_status = RPM_ACTIVE;
3472 	pm_runtime_mark_last_busy(q->dev);
3473 	pm_request_autosuspend(q->dev);
3474 	spin_unlock_irq(q->queue_lock);
3475 }
3476 EXPORT_SYMBOL(blk_set_runtime_active);
3477 #endif
3478 
3479 int __init blk_dev_init(void)
3480 {
3481 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3482 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3483 			FIELD_SIZEOF(struct request, cmd_flags));
3484 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3485 			FIELD_SIZEOF(struct bio, bi_opf));
3486 
3487 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3488 	kblockd_workqueue = alloc_workqueue("kblockd",
3489 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3490 	if (!kblockd_workqueue)
3491 		panic("Failed to create kblockd\n");
3492 
3493 	request_cachep = kmem_cache_create("blkdev_requests",
3494 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3495 
3496 	blk_requestq_cachep = kmem_cache_create("request_queue",
3497 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3498 
3499 	return 0;
3500 }
3501