1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-wbt.h" 46 47 #ifdef CONFIG_DEBUG_FS 48 struct dentry *blk_debugfs_root; 49 #endif 50 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 56 57 DEFINE_IDA(blk_queue_ida); 58 59 /* 60 * For the allocated request tables 61 */ 62 struct kmem_cache *request_cachep; 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 unsigned long flags; 82 83 spin_lock_irqsave(q->queue_lock, flags); 84 queue_flag_set(flag, q); 85 spin_unlock_irqrestore(q->queue_lock, flags); 86 } 87 EXPORT_SYMBOL(blk_queue_flag_set); 88 89 /** 90 * blk_queue_flag_clear - atomically clear a queue flag 91 * @flag: flag to be cleared 92 * @q: request queue 93 */ 94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(q->queue_lock, flags); 99 queue_flag_clear(flag, q); 100 spin_unlock_irqrestore(q->queue_lock, flags); 101 } 102 EXPORT_SYMBOL(blk_queue_flag_clear); 103 104 /** 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag 106 * @flag: flag to be set 107 * @q: request queue 108 * 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 110 * the flag was already set. 111 */ 112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 113 { 114 unsigned long flags; 115 bool res; 116 117 spin_lock_irqsave(q->queue_lock, flags); 118 res = queue_flag_test_and_set(flag, q); 119 spin_unlock_irqrestore(q->queue_lock, flags); 120 121 return res; 122 } 123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 124 125 /** 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag 127 * @flag: flag to be cleared 128 * @q: request queue 129 * 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 131 * the flag was set. 132 */ 133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) 134 { 135 unsigned long flags; 136 bool res; 137 138 spin_lock_irqsave(q->queue_lock, flags); 139 res = queue_flag_test_and_clear(flag, q); 140 spin_unlock_irqrestore(q->queue_lock, flags); 141 142 return res; 143 } 144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear); 145 146 static void blk_clear_congested(struct request_list *rl, int sync) 147 { 148 #ifdef CONFIG_CGROUP_WRITEBACK 149 clear_wb_congested(rl->blkg->wb_congested, sync); 150 #else 151 /* 152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 153 * flip its congestion state for events on other blkcgs. 154 */ 155 if (rl == &rl->q->root_rl) 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 157 #endif 158 } 159 160 static void blk_set_congested(struct request_list *rl, int sync) 161 { 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 set_wb_congested(rl->blkg->wb_congested, sync); 164 #else 165 /* see blk_clear_congested() */ 166 if (rl == &rl->q->root_rl) 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 168 #endif 169 } 170 171 void blk_queue_congestion_threshold(struct request_queue *q) 172 { 173 int nr; 174 175 nr = q->nr_requests - (q->nr_requests / 8) + 1; 176 if (nr > q->nr_requests) 177 nr = q->nr_requests; 178 q->nr_congestion_on = nr; 179 180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 181 if (nr < 1) 182 nr = 1; 183 q->nr_congestion_off = nr; 184 } 185 186 void blk_rq_init(struct request_queue *q, struct request *rq) 187 { 188 memset(rq, 0, sizeof(*rq)); 189 190 INIT_LIST_HEAD(&rq->queuelist); 191 INIT_LIST_HEAD(&rq->timeout_list); 192 rq->cpu = -1; 193 rq->q = q; 194 rq->__sector = (sector_t) -1; 195 INIT_HLIST_NODE(&rq->hash); 196 RB_CLEAR_NODE(&rq->rb_node); 197 rq->tag = -1; 198 rq->internal_tag = -1; 199 rq->start_time = jiffies; 200 set_start_time_ns(rq); 201 rq->part = NULL; 202 seqcount_init(&rq->gstate_seq); 203 u64_stats_init(&rq->aborted_gstate_sync); 204 } 205 EXPORT_SYMBOL(blk_rq_init); 206 207 static const struct { 208 int errno; 209 const char *name; 210 } blk_errors[] = { 211 [BLK_STS_OK] = { 0, "" }, 212 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 213 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 214 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 215 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 216 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 217 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 218 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 219 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 220 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 221 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 222 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 223 224 /* device mapper special case, should not leak out: */ 225 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 226 227 /* everything else not covered above: */ 228 [BLK_STS_IOERR] = { -EIO, "I/O" }, 229 }; 230 231 blk_status_t errno_to_blk_status(int errno) 232 { 233 int i; 234 235 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 236 if (blk_errors[i].errno == errno) 237 return (__force blk_status_t)i; 238 } 239 240 return BLK_STS_IOERR; 241 } 242 EXPORT_SYMBOL_GPL(errno_to_blk_status); 243 244 int blk_status_to_errno(blk_status_t status) 245 { 246 int idx = (__force int)status; 247 248 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 249 return -EIO; 250 return blk_errors[idx].errno; 251 } 252 EXPORT_SYMBOL_GPL(blk_status_to_errno); 253 254 static void print_req_error(struct request *req, blk_status_t status) 255 { 256 int idx = (__force int)status; 257 258 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 259 return; 260 261 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 262 __func__, blk_errors[idx].name, req->rq_disk ? 263 req->rq_disk->disk_name : "?", 264 (unsigned long long)blk_rq_pos(req)); 265 } 266 267 static void req_bio_endio(struct request *rq, struct bio *bio, 268 unsigned int nbytes, blk_status_t error) 269 { 270 if (error) 271 bio->bi_status = error; 272 273 if (unlikely(rq->rq_flags & RQF_QUIET)) 274 bio_set_flag(bio, BIO_QUIET); 275 276 bio_advance(bio, nbytes); 277 278 /* don't actually finish bio if it's part of flush sequence */ 279 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 280 bio_endio(bio); 281 } 282 283 void blk_dump_rq_flags(struct request *rq, char *msg) 284 { 285 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 286 rq->rq_disk ? rq->rq_disk->disk_name : "?", 287 (unsigned long long) rq->cmd_flags); 288 289 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 290 (unsigned long long)blk_rq_pos(rq), 291 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 292 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 293 rq->bio, rq->biotail, blk_rq_bytes(rq)); 294 } 295 EXPORT_SYMBOL(blk_dump_rq_flags); 296 297 static void blk_delay_work(struct work_struct *work) 298 { 299 struct request_queue *q; 300 301 q = container_of(work, struct request_queue, delay_work.work); 302 spin_lock_irq(q->queue_lock); 303 __blk_run_queue(q); 304 spin_unlock_irq(q->queue_lock); 305 } 306 307 /** 308 * blk_delay_queue - restart queueing after defined interval 309 * @q: The &struct request_queue in question 310 * @msecs: Delay in msecs 311 * 312 * Description: 313 * Sometimes queueing needs to be postponed for a little while, to allow 314 * resources to come back. This function will make sure that queueing is 315 * restarted around the specified time. 316 */ 317 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 318 { 319 lockdep_assert_held(q->queue_lock); 320 WARN_ON_ONCE(q->mq_ops); 321 322 if (likely(!blk_queue_dead(q))) 323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 324 msecs_to_jiffies(msecs)); 325 } 326 EXPORT_SYMBOL(blk_delay_queue); 327 328 /** 329 * blk_start_queue_async - asynchronously restart a previously stopped queue 330 * @q: The &struct request_queue in question 331 * 332 * Description: 333 * blk_start_queue_async() will clear the stop flag on the queue, and 334 * ensure that the request_fn for the queue is run from an async 335 * context. 336 **/ 337 void blk_start_queue_async(struct request_queue *q) 338 { 339 lockdep_assert_held(q->queue_lock); 340 WARN_ON_ONCE(q->mq_ops); 341 342 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 343 blk_run_queue_async(q); 344 } 345 EXPORT_SYMBOL(blk_start_queue_async); 346 347 /** 348 * blk_start_queue - restart a previously stopped queue 349 * @q: The &struct request_queue in question 350 * 351 * Description: 352 * blk_start_queue() will clear the stop flag on the queue, and call 353 * the request_fn for the queue if it was in a stopped state when 354 * entered. Also see blk_stop_queue(). 355 **/ 356 void blk_start_queue(struct request_queue *q) 357 { 358 lockdep_assert_held(q->queue_lock); 359 WARN_ON(!in_interrupt() && !irqs_disabled()); 360 WARN_ON_ONCE(q->mq_ops); 361 362 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 363 __blk_run_queue(q); 364 } 365 EXPORT_SYMBOL(blk_start_queue); 366 367 /** 368 * blk_stop_queue - stop a queue 369 * @q: The &struct request_queue in question 370 * 371 * Description: 372 * The Linux block layer assumes that a block driver will consume all 373 * entries on the request queue when the request_fn strategy is called. 374 * Often this will not happen, because of hardware limitations (queue 375 * depth settings). If a device driver gets a 'queue full' response, 376 * or if it simply chooses not to queue more I/O at one point, it can 377 * call this function to prevent the request_fn from being called until 378 * the driver has signalled it's ready to go again. This happens by calling 379 * blk_start_queue() to restart queue operations. 380 **/ 381 void blk_stop_queue(struct request_queue *q) 382 { 383 lockdep_assert_held(q->queue_lock); 384 WARN_ON_ONCE(q->mq_ops); 385 386 cancel_delayed_work(&q->delay_work); 387 queue_flag_set(QUEUE_FLAG_STOPPED, q); 388 } 389 EXPORT_SYMBOL(blk_stop_queue); 390 391 /** 392 * blk_sync_queue - cancel any pending callbacks on a queue 393 * @q: the queue 394 * 395 * Description: 396 * The block layer may perform asynchronous callback activity 397 * on a queue, such as calling the unplug function after a timeout. 398 * A block device may call blk_sync_queue to ensure that any 399 * such activity is cancelled, thus allowing it to release resources 400 * that the callbacks might use. The caller must already have made sure 401 * that its ->make_request_fn will not re-add plugging prior to calling 402 * this function. 403 * 404 * This function does not cancel any asynchronous activity arising 405 * out of elevator or throttling code. That would require elevator_exit() 406 * and blkcg_exit_queue() to be called with queue lock initialized. 407 * 408 */ 409 void blk_sync_queue(struct request_queue *q) 410 { 411 del_timer_sync(&q->timeout); 412 cancel_work_sync(&q->timeout_work); 413 414 if (q->mq_ops) { 415 struct blk_mq_hw_ctx *hctx; 416 int i; 417 418 cancel_delayed_work_sync(&q->requeue_work); 419 queue_for_each_hw_ctx(q, hctx, i) 420 cancel_delayed_work_sync(&hctx->run_work); 421 } else { 422 cancel_delayed_work_sync(&q->delay_work); 423 } 424 } 425 EXPORT_SYMBOL(blk_sync_queue); 426 427 /** 428 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 429 * @q: request queue pointer 430 * 431 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 432 * set and 1 if the flag was already set. 433 */ 434 int blk_set_preempt_only(struct request_queue *q) 435 { 436 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 437 } 438 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 439 440 void blk_clear_preempt_only(struct request_queue *q) 441 { 442 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 443 wake_up_all(&q->mq_freeze_wq); 444 } 445 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 446 447 /** 448 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 449 * @q: The queue to run 450 * 451 * Description: 452 * Invoke request handling on a queue if there are any pending requests. 453 * May be used to restart request handling after a request has completed. 454 * This variant runs the queue whether or not the queue has been 455 * stopped. Must be called with the queue lock held and interrupts 456 * disabled. See also @blk_run_queue. 457 */ 458 inline void __blk_run_queue_uncond(struct request_queue *q) 459 { 460 lockdep_assert_held(q->queue_lock); 461 WARN_ON_ONCE(q->mq_ops); 462 463 if (unlikely(blk_queue_dead(q))) 464 return; 465 466 /* 467 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 468 * the queue lock internally. As a result multiple threads may be 469 * running such a request function concurrently. Keep track of the 470 * number of active request_fn invocations such that blk_drain_queue() 471 * can wait until all these request_fn calls have finished. 472 */ 473 q->request_fn_active++; 474 q->request_fn(q); 475 q->request_fn_active--; 476 } 477 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 478 479 /** 480 * __blk_run_queue - run a single device queue 481 * @q: The queue to run 482 * 483 * Description: 484 * See @blk_run_queue. 485 */ 486 void __blk_run_queue(struct request_queue *q) 487 { 488 lockdep_assert_held(q->queue_lock); 489 WARN_ON_ONCE(q->mq_ops); 490 491 if (unlikely(blk_queue_stopped(q))) 492 return; 493 494 __blk_run_queue_uncond(q); 495 } 496 EXPORT_SYMBOL(__blk_run_queue); 497 498 /** 499 * blk_run_queue_async - run a single device queue in workqueue context 500 * @q: The queue to run 501 * 502 * Description: 503 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 504 * of us. 505 * 506 * Note: 507 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 508 * has canceled q->delay_work, callers must hold the queue lock to avoid 509 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 510 */ 511 void blk_run_queue_async(struct request_queue *q) 512 { 513 lockdep_assert_held(q->queue_lock); 514 WARN_ON_ONCE(q->mq_ops); 515 516 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 517 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 518 } 519 EXPORT_SYMBOL(blk_run_queue_async); 520 521 /** 522 * blk_run_queue - run a single device queue 523 * @q: The queue to run 524 * 525 * Description: 526 * Invoke request handling on this queue, if it has pending work to do. 527 * May be used to restart queueing when a request has completed. 528 */ 529 void blk_run_queue(struct request_queue *q) 530 { 531 unsigned long flags; 532 533 WARN_ON_ONCE(q->mq_ops); 534 535 spin_lock_irqsave(q->queue_lock, flags); 536 __blk_run_queue(q); 537 spin_unlock_irqrestore(q->queue_lock, flags); 538 } 539 EXPORT_SYMBOL(blk_run_queue); 540 541 void blk_put_queue(struct request_queue *q) 542 { 543 kobject_put(&q->kobj); 544 } 545 EXPORT_SYMBOL(blk_put_queue); 546 547 /** 548 * __blk_drain_queue - drain requests from request_queue 549 * @q: queue to drain 550 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 551 * 552 * Drain requests from @q. If @drain_all is set, all requests are drained. 553 * If not, only ELVPRIV requests are drained. The caller is responsible 554 * for ensuring that no new requests which need to be drained are queued. 555 */ 556 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 557 __releases(q->queue_lock) 558 __acquires(q->queue_lock) 559 { 560 int i; 561 562 lockdep_assert_held(q->queue_lock); 563 WARN_ON_ONCE(q->mq_ops); 564 565 while (true) { 566 bool drain = false; 567 568 /* 569 * The caller might be trying to drain @q before its 570 * elevator is initialized. 571 */ 572 if (q->elevator) 573 elv_drain_elevator(q); 574 575 blkcg_drain_queue(q); 576 577 /* 578 * This function might be called on a queue which failed 579 * driver init after queue creation or is not yet fully 580 * active yet. Some drivers (e.g. fd and loop) get unhappy 581 * in such cases. Kick queue iff dispatch queue has 582 * something on it and @q has request_fn set. 583 */ 584 if (!list_empty(&q->queue_head) && q->request_fn) 585 __blk_run_queue(q); 586 587 drain |= q->nr_rqs_elvpriv; 588 drain |= q->request_fn_active; 589 590 /* 591 * Unfortunately, requests are queued at and tracked from 592 * multiple places and there's no single counter which can 593 * be drained. Check all the queues and counters. 594 */ 595 if (drain_all) { 596 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 597 drain |= !list_empty(&q->queue_head); 598 for (i = 0; i < 2; i++) { 599 drain |= q->nr_rqs[i]; 600 drain |= q->in_flight[i]; 601 if (fq) 602 drain |= !list_empty(&fq->flush_queue[i]); 603 } 604 } 605 606 if (!drain) 607 break; 608 609 spin_unlock_irq(q->queue_lock); 610 611 msleep(10); 612 613 spin_lock_irq(q->queue_lock); 614 } 615 616 /* 617 * With queue marked dead, any woken up waiter will fail the 618 * allocation path, so the wakeup chaining is lost and we're 619 * left with hung waiters. We need to wake up those waiters. 620 */ 621 if (q->request_fn) { 622 struct request_list *rl; 623 624 blk_queue_for_each_rl(rl, q) 625 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 626 wake_up_all(&rl->wait[i]); 627 } 628 } 629 630 void blk_drain_queue(struct request_queue *q) 631 { 632 spin_lock_irq(q->queue_lock); 633 __blk_drain_queue(q, true); 634 spin_unlock_irq(q->queue_lock); 635 } 636 637 /** 638 * blk_queue_bypass_start - enter queue bypass mode 639 * @q: queue of interest 640 * 641 * In bypass mode, only the dispatch FIFO queue of @q is used. This 642 * function makes @q enter bypass mode and drains all requests which were 643 * throttled or issued before. On return, it's guaranteed that no request 644 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 645 * inside queue or RCU read lock. 646 */ 647 void blk_queue_bypass_start(struct request_queue *q) 648 { 649 WARN_ON_ONCE(q->mq_ops); 650 651 spin_lock_irq(q->queue_lock); 652 q->bypass_depth++; 653 queue_flag_set(QUEUE_FLAG_BYPASS, q); 654 spin_unlock_irq(q->queue_lock); 655 656 /* 657 * Queues start drained. Skip actual draining till init is 658 * complete. This avoids lenghty delays during queue init which 659 * can happen many times during boot. 660 */ 661 if (blk_queue_init_done(q)) { 662 spin_lock_irq(q->queue_lock); 663 __blk_drain_queue(q, false); 664 spin_unlock_irq(q->queue_lock); 665 666 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 667 synchronize_rcu(); 668 } 669 } 670 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 671 672 /** 673 * blk_queue_bypass_end - leave queue bypass mode 674 * @q: queue of interest 675 * 676 * Leave bypass mode and restore the normal queueing behavior. 677 * 678 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 679 * this function is called for both blk-sq and blk-mq queues. 680 */ 681 void blk_queue_bypass_end(struct request_queue *q) 682 { 683 spin_lock_irq(q->queue_lock); 684 if (!--q->bypass_depth) 685 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 686 WARN_ON_ONCE(q->bypass_depth < 0); 687 spin_unlock_irq(q->queue_lock); 688 } 689 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 690 691 void blk_set_queue_dying(struct request_queue *q) 692 { 693 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 694 695 /* 696 * When queue DYING flag is set, we need to block new req 697 * entering queue, so we call blk_freeze_queue_start() to 698 * prevent I/O from crossing blk_queue_enter(). 699 */ 700 blk_freeze_queue_start(q); 701 702 if (q->mq_ops) 703 blk_mq_wake_waiters(q); 704 else { 705 struct request_list *rl; 706 707 spin_lock_irq(q->queue_lock); 708 blk_queue_for_each_rl(rl, q) { 709 if (rl->rq_pool) { 710 wake_up_all(&rl->wait[BLK_RW_SYNC]); 711 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 712 } 713 } 714 spin_unlock_irq(q->queue_lock); 715 } 716 717 /* Make blk_queue_enter() reexamine the DYING flag. */ 718 wake_up_all(&q->mq_freeze_wq); 719 } 720 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 721 722 /** 723 * blk_cleanup_queue - shutdown a request queue 724 * @q: request queue to shutdown 725 * 726 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 727 * put it. All future requests will be failed immediately with -ENODEV. 728 */ 729 void blk_cleanup_queue(struct request_queue *q) 730 { 731 spinlock_t *lock = q->queue_lock; 732 733 /* mark @q DYING, no new request or merges will be allowed afterwards */ 734 mutex_lock(&q->sysfs_lock); 735 blk_set_queue_dying(q); 736 spin_lock_irq(lock); 737 738 /* 739 * A dying queue is permanently in bypass mode till released. Note 740 * that, unlike blk_queue_bypass_start(), we aren't performing 741 * synchronize_rcu() after entering bypass mode to avoid the delay 742 * as some drivers create and destroy a lot of queues while 743 * probing. This is still safe because blk_release_queue() will be 744 * called only after the queue refcnt drops to zero and nothing, 745 * RCU or not, would be traversing the queue by then. 746 */ 747 q->bypass_depth++; 748 queue_flag_set(QUEUE_FLAG_BYPASS, q); 749 750 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 751 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 752 queue_flag_set(QUEUE_FLAG_DYING, q); 753 spin_unlock_irq(lock); 754 mutex_unlock(&q->sysfs_lock); 755 756 /* 757 * Drain all requests queued before DYING marking. Set DEAD flag to 758 * prevent that q->request_fn() gets invoked after draining finished. 759 */ 760 blk_freeze_queue(q); 761 spin_lock_irq(lock); 762 queue_flag_set(QUEUE_FLAG_DEAD, q); 763 spin_unlock_irq(lock); 764 765 /* 766 * make sure all in-progress dispatch are completed because 767 * blk_freeze_queue() can only complete all requests, and 768 * dispatch may still be in-progress since we dispatch requests 769 * from more than one contexts 770 */ 771 if (q->mq_ops) 772 blk_mq_quiesce_queue(q); 773 774 /* for synchronous bio-based driver finish in-flight integrity i/o */ 775 blk_flush_integrity(); 776 777 /* @q won't process any more request, flush async actions */ 778 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 779 blk_sync_queue(q); 780 781 /* 782 * I/O scheduler exit is only safe after the sysfs scheduler attribute 783 * has been removed. 784 */ 785 WARN_ON_ONCE(q->kobj.state_in_sysfs); 786 787 /* 788 * Since the I/O scheduler exit code may access cgroup information, 789 * perform I/O scheduler exit before disassociating from the block 790 * cgroup controller. 791 */ 792 if (q->elevator) { 793 ioc_clear_queue(q); 794 elevator_exit(q, q->elevator); 795 q->elevator = NULL; 796 } 797 798 /* 799 * Remove all references to @q from the block cgroup controller before 800 * restoring @q->queue_lock to avoid that restoring this pointer causes 801 * e.g. blkcg_print_blkgs() to crash. 802 */ 803 blkcg_exit_queue(q); 804 805 /* 806 * Since the cgroup code may dereference the @q->backing_dev_info 807 * pointer, only decrease its reference count after having removed the 808 * association with the block cgroup controller. 809 */ 810 bdi_put(q->backing_dev_info); 811 812 if (q->mq_ops) 813 blk_mq_free_queue(q); 814 percpu_ref_exit(&q->q_usage_counter); 815 816 spin_lock_irq(lock); 817 if (q->queue_lock != &q->__queue_lock) 818 q->queue_lock = &q->__queue_lock; 819 spin_unlock_irq(lock); 820 821 /* @q is and will stay empty, shutdown and put */ 822 blk_put_queue(q); 823 } 824 EXPORT_SYMBOL(blk_cleanup_queue); 825 826 /* Allocate memory local to the request queue */ 827 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 828 { 829 struct request_queue *q = data; 830 831 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 832 } 833 834 static void free_request_simple(void *element, void *data) 835 { 836 kmem_cache_free(request_cachep, element); 837 } 838 839 static void *alloc_request_size(gfp_t gfp_mask, void *data) 840 { 841 struct request_queue *q = data; 842 struct request *rq; 843 844 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 845 q->node); 846 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 847 kfree(rq); 848 rq = NULL; 849 } 850 return rq; 851 } 852 853 static void free_request_size(void *element, void *data) 854 { 855 struct request_queue *q = data; 856 857 if (q->exit_rq_fn) 858 q->exit_rq_fn(q, element); 859 kfree(element); 860 } 861 862 int blk_init_rl(struct request_list *rl, struct request_queue *q, 863 gfp_t gfp_mask) 864 { 865 if (unlikely(rl->rq_pool) || q->mq_ops) 866 return 0; 867 868 rl->q = q; 869 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 870 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 871 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 872 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 873 874 if (q->cmd_size) { 875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 876 alloc_request_size, free_request_size, 877 q, gfp_mask, q->node); 878 } else { 879 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 880 alloc_request_simple, free_request_simple, 881 q, gfp_mask, q->node); 882 } 883 if (!rl->rq_pool) 884 return -ENOMEM; 885 886 if (rl != &q->root_rl) 887 WARN_ON_ONCE(!blk_get_queue(q)); 888 889 return 0; 890 } 891 892 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 893 { 894 if (rl->rq_pool) { 895 mempool_destroy(rl->rq_pool); 896 if (rl != &q->root_rl) 897 blk_put_queue(q); 898 } 899 } 900 901 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 902 { 903 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL); 904 } 905 EXPORT_SYMBOL(blk_alloc_queue); 906 907 /** 908 * blk_queue_enter() - try to increase q->q_usage_counter 909 * @q: request queue pointer 910 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 911 */ 912 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 913 { 914 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 915 916 while (true) { 917 bool success = false; 918 int ret; 919 920 rcu_read_lock(); 921 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 922 /* 923 * The code that sets the PREEMPT_ONLY flag is 924 * responsible for ensuring that that flag is globally 925 * visible before the queue is unfrozen. 926 */ 927 if (preempt || !blk_queue_preempt_only(q)) { 928 success = true; 929 } else { 930 percpu_ref_put(&q->q_usage_counter); 931 } 932 } 933 rcu_read_unlock(); 934 935 if (success) 936 return 0; 937 938 if (flags & BLK_MQ_REQ_NOWAIT) 939 return -EBUSY; 940 941 /* 942 * read pair of barrier in blk_freeze_queue_start(), 943 * we need to order reading __PERCPU_REF_DEAD flag of 944 * .q_usage_counter and reading .mq_freeze_depth or 945 * queue dying flag, otherwise the following wait may 946 * never return if the two reads are reordered. 947 */ 948 smp_rmb(); 949 950 ret = wait_event_interruptible(q->mq_freeze_wq, 951 (atomic_read(&q->mq_freeze_depth) == 0 && 952 (preempt || !blk_queue_preempt_only(q))) || 953 blk_queue_dying(q)); 954 if (blk_queue_dying(q)) 955 return -ENODEV; 956 if (ret) 957 return ret; 958 } 959 } 960 961 void blk_queue_exit(struct request_queue *q) 962 { 963 percpu_ref_put(&q->q_usage_counter); 964 } 965 966 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 967 { 968 struct request_queue *q = 969 container_of(ref, struct request_queue, q_usage_counter); 970 971 wake_up_all(&q->mq_freeze_wq); 972 } 973 974 static void blk_rq_timed_out_timer(struct timer_list *t) 975 { 976 struct request_queue *q = from_timer(q, t, timeout); 977 978 kblockd_schedule_work(&q->timeout_work); 979 } 980 981 /** 982 * blk_alloc_queue_node - allocate a request queue 983 * @gfp_mask: memory allocation flags 984 * @node_id: NUMA node to allocate memory from 985 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g. 986 * serialize calls to the legacy .request_fn() callback. Ignored for 987 * blk-mq request queues. 988 * 989 * Note: pass the queue lock as the third argument to this function instead of 990 * setting the queue lock pointer explicitly to avoid triggering a sporadic 991 * crash in the blkcg code. This function namely calls blkcg_init_queue() and 992 * the queue lock pointer must be set before blkcg_init_queue() is called. 993 */ 994 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 995 spinlock_t *lock) 996 { 997 struct request_queue *q; 998 999 q = kmem_cache_alloc_node(blk_requestq_cachep, 1000 gfp_mask | __GFP_ZERO, node_id); 1001 if (!q) 1002 return NULL; 1003 1004 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 1005 if (q->id < 0) 1006 goto fail_q; 1007 1008 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 1009 if (!q->bio_split) 1010 goto fail_id; 1011 1012 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 1013 if (!q->backing_dev_info) 1014 goto fail_split; 1015 1016 q->stats = blk_alloc_queue_stats(); 1017 if (!q->stats) 1018 goto fail_stats; 1019 1020 q->backing_dev_info->ra_pages = 1021 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 1022 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 1023 q->backing_dev_info->name = "block"; 1024 q->node = node_id; 1025 1026 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 1027 laptop_mode_timer_fn, 0); 1028 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 1029 INIT_WORK(&q->timeout_work, NULL); 1030 INIT_LIST_HEAD(&q->queue_head); 1031 INIT_LIST_HEAD(&q->timeout_list); 1032 INIT_LIST_HEAD(&q->icq_list); 1033 #ifdef CONFIG_BLK_CGROUP 1034 INIT_LIST_HEAD(&q->blkg_list); 1035 #endif 1036 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 1037 1038 kobject_init(&q->kobj, &blk_queue_ktype); 1039 1040 #ifdef CONFIG_BLK_DEV_IO_TRACE 1041 mutex_init(&q->blk_trace_mutex); 1042 #endif 1043 mutex_init(&q->sysfs_lock); 1044 spin_lock_init(&q->__queue_lock); 1045 1046 if (!q->mq_ops) 1047 q->queue_lock = lock ? : &q->__queue_lock; 1048 1049 /* 1050 * A queue starts its life with bypass turned on to avoid 1051 * unnecessary bypass on/off overhead and nasty surprises during 1052 * init. The initial bypass will be finished when the queue is 1053 * registered by blk_register_queue(). 1054 */ 1055 q->bypass_depth = 1; 1056 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q); 1057 1058 init_waitqueue_head(&q->mq_freeze_wq); 1059 1060 /* 1061 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1062 * See blk_register_queue() for details. 1063 */ 1064 if (percpu_ref_init(&q->q_usage_counter, 1065 blk_queue_usage_counter_release, 1066 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1067 goto fail_bdi; 1068 1069 if (blkcg_init_queue(q)) 1070 goto fail_ref; 1071 1072 return q; 1073 1074 fail_ref: 1075 percpu_ref_exit(&q->q_usage_counter); 1076 fail_bdi: 1077 blk_free_queue_stats(q->stats); 1078 fail_stats: 1079 bdi_put(q->backing_dev_info); 1080 fail_split: 1081 bioset_free(q->bio_split); 1082 fail_id: 1083 ida_simple_remove(&blk_queue_ida, q->id); 1084 fail_q: 1085 kmem_cache_free(blk_requestq_cachep, q); 1086 return NULL; 1087 } 1088 EXPORT_SYMBOL(blk_alloc_queue_node); 1089 1090 /** 1091 * blk_init_queue - prepare a request queue for use with a block device 1092 * @rfn: The function to be called to process requests that have been 1093 * placed on the queue. 1094 * @lock: Request queue spin lock 1095 * 1096 * Description: 1097 * If a block device wishes to use the standard request handling procedures, 1098 * which sorts requests and coalesces adjacent requests, then it must 1099 * call blk_init_queue(). The function @rfn will be called when there 1100 * are requests on the queue that need to be processed. If the device 1101 * supports plugging, then @rfn may not be called immediately when requests 1102 * are available on the queue, but may be called at some time later instead. 1103 * Plugged queues are generally unplugged when a buffer belonging to one 1104 * of the requests on the queue is needed, or due to memory pressure. 1105 * 1106 * @rfn is not required, or even expected, to remove all requests off the 1107 * queue, but only as many as it can handle at a time. If it does leave 1108 * requests on the queue, it is responsible for arranging that the requests 1109 * get dealt with eventually. 1110 * 1111 * The queue spin lock must be held while manipulating the requests on the 1112 * request queue; this lock will be taken also from interrupt context, so irq 1113 * disabling is needed for it. 1114 * 1115 * Function returns a pointer to the initialized request queue, or %NULL if 1116 * it didn't succeed. 1117 * 1118 * Note: 1119 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1120 * when the block device is deactivated (such as at module unload). 1121 **/ 1122 1123 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1124 { 1125 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1126 } 1127 EXPORT_SYMBOL(blk_init_queue); 1128 1129 struct request_queue * 1130 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1131 { 1132 struct request_queue *q; 1133 1134 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock); 1135 if (!q) 1136 return NULL; 1137 1138 q->request_fn = rfn; 1139 if (blk_init_allocated_queue(q) < 0) { 1140 blk_cleanup_queue(q); 1141 return NULL; 1142 } 1143 1144 return q; 1145 } 1146 EXPORT_SYMBOL(blk_init_queue_node); 1147 1148 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1149 1150 1151 int blk_init_allocated_queue(struct request_queue *q) 1152 { 1153 WARN_ON_ONCE(q->mq_ops); 1154 1155 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1156 if (!q->fq) 1157 return -ENOMEM; 1158 1159 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1160 goto out_free_flush_queue; 1161 1162 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1163 goto out_exit_flush_rq; 1164 1165 INIT_WORK(&q->timeout_work, blk_timeout_work); 1166 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1167 1168 /* 1169 * This also sets hw/phys segments, boundary and size 1170 */ 1171 blk_queue_make_request(q, blk_queue_bio); 1172 1173 q->sg_reserved_size = INT_MAX; 1174 1175 /* Protect q->elevator from elevator_change */ 1176 mutex_lock(&q->sysfs_lock); 1177 1178 /* init elevator */ 1179 if (elevator_init(q, NULL)) { 1180 mutex_unlock(&q->sysfs_lock); 1181 goto out_exit_flush_rq; 1182 } 1183 1184 mutex_unlock(&q->sysfs_lock); 1185 return 0; 1186 1187 out_exit_flush_rq: 1188 if (q->exit_rq_fn) 1189 q->exit_rq_fn(q, q->fq->flush_rq); 1190 out_free_flush_queue: 1191 blk_free_flush_queue(q->fq); 1192 return -ENOMEM; 1193 } 1194 EXPORT_SYMBOL(blk_init_allocated_queue); 1195 1196 bool blk_get_queue(struct request_queue *q) 1197 { 1198 if (likely(!blk_queue_dying(q))) { 1199 __blk_get_queue(q); 1200 return true; 1201 } 1202 1203 return false; 1204 } 1205 EXPORT_SYMBOL(blk_get_queue); 1206 1207 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1208 { 1209 if (rq->rq_flags & RQF_ELVPRIV) { 1210 elv_put_request(rl->q, rq); 1211 if (rq->elv.icq) 1212 put_io_context(rq->elv.icq->ioc); 1213 } 1214 1215 mempool_free(rq, rl->rq_pool); 1216 } 1217 1218 /* 1219 * ioc_batching returns true if the ioc is a valid batching request and 1220 * should be given priority access to a request. 1221 */ 1222 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1223 { 1224 if (!ioc) 1225 return 0; 1226 1227 /* 1228 * Make sure the process is able to allocate at least 1 request 1229 * even if the batch times out, otherwise we could theoretically 1230 * lose wakeups. 1231 */ 1232 return ioc->nr_batch_requests == q->nr_batching || 1233 (ioc->nr_batch_requests > 0 1234 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1235 } 1236 1237 /* 1238 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1239 * will cause the process to be a "batcher" on all queues in the system. This 1240 * is the behaviour we want though - once it gets a wakeup it should be given 1241 * a nice run. 1242 */ 1243 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1244 { 1245 if (!ioc || ioc_batching(q, ioc)) 1246 return; 1247 1248 ioc->nr_batch_requests = q->nr_batching; 1249 ioc->last_waited = jiffies; 1250 } 1251 1252 static void __freed_request(struct request_list *rl, int sync) 1253 { 1254 struct request_queue *q = rl->q; 1255 1256 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1257 blk_clear_congested(rl, sync); 1258 1259 if (rl->count[sync] + 1 <= q->nr_requests) { 1260 if (waitqueue_active(&rl->wait[sync])) 1261 wake_up(&rl->wait[sync]); 1262 1263 blk_clear_rl_full(rl, sync); 1264 } 1265 } 1266 1267 /* 1268 * A request has just been released. Account for it, update the full and 1269 * congestion status, wake up any waiters. Called under q->queue_lock. 1270 */ 1271 static void freed_request(struct request_list *rl, bool sync, 1272 req_flags_t rq_flags) 1273 { 1274 struct request_queue *q = rl->q; 1275 1276 q->nr_rqs[sync]--; 1277 rl->count[sync]--; 1278 if (rq_flags & RQF_ELVPRIV) 1279 q->nr_rqs_elvpriv--; 1280 1281 __freed_request(rl, sync); 1282 1283 if (unlikely(rl->starved[sync ^ 1])) 1284 __freed_request(rl, sync ^ 1); 1285 } 1286 1287 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1288 { 1289 struct request_list *rl; 1290 int on_thresh, off_thresh; 1291 1292 WARN_ON_ONCE(q->mq_ops); 1293 1294 spin_lock_irq(q->queue_lock); 1295 q->nr_requests = nr; 1296 blk_queue_congestion_threshold(q); 1297 on_thresh = queue_congestion_on_threshold(q); 1298 off_thresh = queue_congestion_off_threshold(q); 1299 1300 blk_queue_for_each_rl(rl, q) { 1301 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1302 blk_set_congested(rl, BLK_RW_SYNC); 1303 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1304 blk_clear_congested(rl, BLK_RW_SYNC); 1305 1306 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1307 blk_set_congested(rl, BLK_RW_ASYNC); 1308 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1309 blk_clear_congested(rl, BLK_RW_ASYNC); 1310 1311 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1312 blk_set_rl_full(rl, BLK_RW_SYNC); 1313 } else { 1314 blk_clear_rl_full(rl, BLK_RW_SYNC); 1315 wake_up(&rl->wait[BLK_RW_SYNC]); 1316 } 1317 1318 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1319 blk_set_rl_full(rl, BLK_RW_ASYNC); 1320 } else { 1321 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1322 wake_up(&rl->wait[BLK_RW_ASYNC]); 1323 } 1324 } 1325 1326 spin_unlock_irq(q->queue_lock); 1327 return 0; 1328 } 1329 1330 /** 1331 * __get_request - get a free request 1332 * @rl: request list to allocate from 1333 * @op: operation and flags 1334 * @bio: bio to allocate request for (can be %NULL) 1335 * @flags: BLQ_MQ_REQ_* flags 1336 * 1337 * Get a free request from @q. This function may fail under memory 1338 * pressure or if @q is dead. 1339 * 1340 * Must be called with @q->queue_lock held and, 1341 * Returns ERR_PTR on failure, with @q->queue_lock held. 1342 * Returns request pointer on success, with @q->queue_lock *not held*. 1343 */ 1344 static struct request *__get_request(struct request_list *rl, unsigned int op, 1345 struct bio *bio, blk_mq_req_flags_t flags) 1346 { 1347 struct request_queue *q = rl->q; 1348 struct request *rq; 1349 struct elevator_type *et = q->elevator->type; 1350 struct io_context *ioc = rq_ioc(bio); 1351 struct io_cq *icq = NULL; 1352 const bool is_sync = op_is_sync(op); 1353 int may_queue; 1354 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1355 __GFP_DIRECT_RECLAIM; 1356 req_flags_t rq_flags = RQF_ALLOCED; 1357 1358 lockdep_assert_held(q->queue_lock); 1359 1360 if (unlikely(blk_queue_dying(q))) 1361 return ERR_PTR(-ENODEV); 1362 1363 may_queue = elv_may_queue(q, op); 1364 if (may_queue == ELV_MQUEUE_NO) 1365 goto rq_starved; 1366 1367 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1368 if (rl->count[is_sync]+1 >= q->nr_requests) { 1369 /* 1370 * The queue will fill after this allocation, so set 1371 * it as full, and mark this process as "batching". 1372 * This process will be allowed to complete a batch of 1373 * requests, others will be blocked. 1374 */ 1375 if (!blk_rl_full(rl, is_sync)) { 1376 ioc_set_batching(q, ioc); 1377 blk_set_rl_full(rl, is_sync); 1378 } else { 1379 if (may_queue != ELV_MQUEUE_MUST 1380 && !ioc_batching(q, ioc)) { 1381 /* 1382 * The queue is full and the allocating 1383 * process is not a "batcher", and not 1384 * exempted by the IO scheduler 1385 */ 1386 return ERR_PTR(-ENOMEM); 1387 } 1388 } 1389 } 1390 blk_set_congested(rl, is_sync); 1391 } 1392 1393 /* 1394 * Only allow batching queuers to allocate up to 50% over the defined 1395 * limit of requests, otherwise we could have thousands of requests 1396 * allocated with any setting of ->nr_requests 1397 */ 1398 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1399 return ERR_PTR(-ENOMEM); 1400 1401 q->nr_rqs[is_sync]++; 1402 rl->count[is_sync]++; 1403 rl->starved[is_sync] = 0; 1404 1405 /* 1406 * Decide whether the new request will be managed by elevator. If 1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1408 * prevent the current elevator from being destroyed until the new 1409 * request is freed. This guarantees icq's won't be destroyed and 1410 * makes creating new ones safe. 1411 * 1412 * Flush requests do not use the elevator so skip initialization. 1413 * This allows a request to share the flush and elevator data. 1414 * 1415 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1416 * it will be created after releasing queue_lock. 1417 */ 1418 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1419 rq_flags |= RQF_ELVPRIV; 1420 q->nr_rqs_elvpriv++; 1421 if (et->icq_cache && ioc) 1422 icq = ioc_lookup_icq(ioc, q); 1423 } 1424 1425 if (blk_queue_io_stat(q)) 1426 rq_flags |= RQF_IO_STAT; 1427 spin_unlock_irq(q->queue_lock); 1428 1429 /* allocate and init request */ 1430 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1431 if (!rq) 1432 goto fail_alloc; 1433 1434 blk_rq_init(q, rq); 1435 blk_rq_set_rl(rq, rl); 1436 rq->cmd_flags = op; 1437 rq->rq_flags = rq_flags; 1438 if (flags & BLK_MQ_REQ_PREEMPT) 1439 rq->rq_flags |= RQF_PREEMPT; 1440 1441 /* init elvpriv */ 1442 if (rq_flags & RQF_ELVPRIV) { 1443 if (unlikely(et->icq_cache && !icq)) { 1444 if (ioc) 1445 icq = ioc_create_icq(ioc, q, gfp_mask); 1446 if (!icq) 1447 goto fail_elvpriv; 1448 } 1449 1450 rq->elv.icq = icq; 1451 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1452 goto fail_elvpriv; 1453 1454 /* @rq->elv.icq holds io_context until @rq is freed */ 1455 if (icq) 1456 get_io_context(icq->ioc); 1457 } 1458 out: 1459 /* 1460 * ioc may be NULL here, and ioc_batching will be false. That's 1461 * OK, if the queue is under the request limit then requests need 1462 * not count toward the nr_batch_requests limit. There will always 1463 * be some limit enforced by BLK_BATCH_TIME. 1464 */ 1465 if (ioc_batching(q, ioc)) 1466 ioc->nr_batch_requests--; 1467 1468 trace_block_getrq(q, bio, op); 1469 return rq; 1470 1471 fail_elvpriv: 1472 /* 1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1474 * and may fail indefinitely under memory pressure and thus 1475 * shouldn't stall IO. Treat this request as !elvpriv. This will 1476 * disturb iosched and blkcg but weird is bettern than dead. 1477 */ 1478 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1479 __func__, dev_name(q->backing_dev_info->dev)); 1480 1481 rq->rq_flags &= ~RQF_ELVPRIV; 1482 rq->elv.icq = NULL; 1483 1484 spin_lock_irq(q->queue_lock); 1485 q->nr_rqs_elvpriv--; 1486 spin_unlock_irq(q->queue_lock); 1487 goto out; 1488 1489 fail_alloc: 1490 /* 1491 * Allocation failed presumably due to memory. Undo anything we 1492 * might have messed up. 1493 * 1494 * Allocating task should really be put onto the front of the wait 1495 * queue, but this is pretty rare. 1496 */ 1497 spin_lock_irq(q->queue_lock); 1498 freed_request(rl, is_sync, rq_flags); 1499 1500 /* 1501 * in the very unlikely event that allocation failed and no 1502 * requests for this direction was pending, mark us starved so that 1503 * freeing of a request in the other direction will notice 1504 * us. another possible fix would be to split the rq mempool into 1505 * READ and WRITE 1506 */ 1507 rq_starved: 1508 if (unlikely(rl->count[is_sync] == 0)) 1509 rl->starved[is_sync] = 1; 1510 return ERR_PTR(-ENOMEM); 1511 } 1512 1513 /** 1514 * get_request - get a free request 1515 * @q: request_queue to allocate request from 1516 * @op: operation and flags 1517 * @bio: bio to allocate request for (can be %NULL) 1518 * @flags: BLK_MQ_REQ_* flags. 1519 * 1520 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1521 * this function keeps retrying under memory pressure and fails iff @q is dead. 1522 * 1523 * Must be called with @q->queue_lock held and, 1524 * Returns ERR_PTR on failure, with @q->queue_lock held. 1525 * Returns request pointer on success, with @q->queue_lock *not held*. 1526 */ 1527 static struct request *get_request(struct request_queue *q, unsigned int op, 1528 struct bio *bio, blk_mq_req_flags_t flags) 1529 { 1530 const bool is_sync = op_is_sync(op); 1531 DEFINE_WAIT(wait); 1532 struct request_list *rl; 1533 struct request *rq; 1534 1535 lockdep_assert_held(q->queue_lock); 1536 WARN_ON_ONCE(q->mq_ops); 1537 1538 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1539 retry: 1540 rq = __get_request(rl, op, bio, flags); 1541 if (!IS_ERR(rq)) 1542 return rq; 1543 1544 if (op & REQ_NOWAIT) { 1545 blk_put_rl(rl); 1546 return ERR_PTR(-EAGAIN); 1547 } 1548 1549 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1550 blk_put_rl(rl); 1551 return rq; 1552 } 1553 1554 /* wait on @rl and retry */ 1555 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1556 TASK_UNINTERRUPTIBLE); 1557 1558 trace_block_sleeprq(q, bio, op); 1559 1560 spin_unlock_irq(q->queue_lock); 1561 io_schedule(); 1562 1563 /* 1564 * After sleeping, we become a "batching" process and will be able 1565 * to allocate at least one request, and up to a big batch of them 1566 * for a small period time. See ioc_batching, ioc_set_batching 1567 */ 1568 ioc_set_batching(q, current->io_context); 1569 1570 spin_lock_irq(q->queue_lock); 1571 finish_wait(&rl->wait[is_sync], &wait); 1572 1573 goto retry; 1574 } 1575 1576 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1577 static struct request *blk_old_get_request(struct request_queue *q, 1578 unsigned int op, blk_mq_req_flags_t flags) 1579 { 1580 struct request *rq; 1581 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1582 __GFP_DIRECT_RECLAIM; 1583 int ret = 0; 1584 1585 WARN_ON_ONCE(q->mq_ops); 1586 1587 /* create ioc upfront */ 1588 create_io_context(gfp_mask, q->node); 1589 1590 ret = blk_queue_enter(q, flags); 1591 if (ret) 1592 return ERR_PTR(ret); 1593 spin_lock_irq(q->queue_lock); 1594 rq = get_request(q, op, NULL, flags); 1595 if (IS_ERR(rq)) { 1596 spin_unlock_irq(q->queue_lock); 1597 blk_queue_exit(q); 1598 return rq; 1599 } 1600 1601 /* q->queue_lock is unlocked at this point */ 1602 rq->__data_len = 0; 1603 rq->__sector = (sector_t) -1; 1604 rq->bio = rq->biotail = NULL; 1605 return rq; 1606 } 1607 1608 /** 1609 * blk_get_request_flags - allocate a request 1610 * @q: request queue to allocate a request for 1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1613 */ 1614 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op, 1615 blk_mq_req_flags_t flags) 1616 { 1617 struct request *req; 1618 1619 WARN_ON_ONCE(op & REQ_NOWAIT); 1620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1621 1622 if (q->mq_ops) { 1623 req = blk_mq_alloc_request(q, op, flags); 1624 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1625 q->mq_ops->initialize_rq_fn(req); 1626 } else { 1627 req = blk_old_get_request(q, op, flags); 1628 if (!IS_ERR(req) && q->initialize_rq_fn) 1629 q->initialize_rq_fn(req); 1630 } 1631 1632 return req; 1633 } 1634 EXPORT_SYMBOL(blk_get_request_flags); 1635 1636 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1637 gfp_t gfp_mask) 1638 { 1639 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ? 1640 0 : BLK_MQ_REQ_NOWAIT); 1641 } 1642 EXPORT_SYMBOL(blk_get_request); 1643 1644 /** 1645 * blk_requeue_request - put a request back on queue 1646 * @q: request queue where request should be inserted 1647 * @rq: request to be inserted 1648 * 1649 * Description: 1650 * Drivers often keep queueing requests until the hardware cannot accept 1651 * more, when that condition happens we need to put the request back 1652 * on the queue. Must be called with queue lock held. 1653 */ 1654 void blk_requeue_request(struct request_queue *q, struct request *rq) 1655 { 1656 lockdep_assert_held(q->queue_lock); 1657 WARN_ON_ONCE(q->mq_ops); 1658 1659 blk_delete_timer(rq); 1660 blk_clear_rq_complete(rq); 1661 trace_block_rq_requeue(q, rq); 1662 wbt_requeue(q->rq_wb, &rq->issue_stat); 1663 1664 if (rq->rq_flags & RQF_QUEUED) 1665 blk_queue_end_tag(q, rq); 1666 1667 BUG_ON(blk_queued_rq(rq)); 1668 1669 elv_requeue_request(q, rq); 1670 } 1671 EXPORT_SYMBOL(blk_requeue_request); 1672 1673 static void add_acct_request(struct request_queue *q, struct request *rq, 1674 int where) 1675 { 1676 blk_account_io_start(rq, true); 1677 __elv_add_request(q, rq, where); 1678 } 1679 1680 static void part_round_stats_single(struct request_queue *q, int cpu, 1681 struct hd_struct *part, unsigned long now, 1682 unsigned int inflight) 1683 { 1684 if (inflight) { 1685 __part_stat_add(cpu, part, time_in_queue, 1686 inflight * (now - part->stamp)); 1687 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1688 } 1689 part->stamp = now; 1690 } 1691 1692 /** 1693 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1694 * @q: target block queue 1695 * @cpu: cpu number for stats access 1696 * @part: target partition 1697 * 1698 * The average IO queue length and utilisation statistics are maintained 1699 * by observing the current state of the queue length and the amount of 1700 * time it has been in this state for. 1701 * 1702 * Normally, that accounting is done on IO completion, but that can result 1703 * in more than a second's worth of IO being accounted for within any one 1704 * second, leading to >100% utilisation. To deal with that, we call this 1705 * function to do a round-off before returning the results when reading 1706 * /proc/diskstats. This accounts immediately for all queue usage up to 1707 * the current jiffies and restarts the counters again. 1708 */ 1709 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1710 { 1711 struct hd_struct *part2 = NULL; 1712 unsigned long now = jiffies; 1713 unsigned int inflight[2]; 1714 int stats = 0; 1715 1716 if (part->stamp != now) 1717 stats |= 1; 1718 1719 if (part->partno) { 1720 part2 = &part_to_disk(part)->part0; 1721 if (part2->stamp != now) 1722 stats |= 2; 1723 } 1724 1725 if (!stats) 1726 return; 1727 1728 part_in_flight(q, part, inflight); 1729 1730 if (stats & 2) 1731 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1732 if (stats & 1) 1733 part_round_stats_single(q, cpu, part, now, inflight[0]); 1734 } 1735 EXPORT_SYMBOL_GPL(part_round_stats); 1736 1737 #ifdef CONFIG_PM 1738 static void blk_pm_put_request(struct request *rq) 1739 { 1740 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1741 pm_runtime_mark_last_busy(rq->q->dev); 1742 } 1743 #else 1744 static inline void blk_pm_put_request(struct request *rq) {} 1745 #endif 1746 1747 void __blk_put_request(struct request_queue *q, struct request *req) 1748 { 1749 req_flags_t rq_flags = req->rq_flags; 1750 1751 if (unlikely(!q)) 1752 return; 1753 1754 if (q->mq_ops) { 1755 blk_mq_free_request(req); 1756 return; 1757 } 1758 1759 lockdep_assert_held(q->queue_lock); 1760 1761 blk_req_zone_write_unlock(req); 1762 blk_pm_put_request(req); 1763 1764 elv_completed_request(q, req); 1765 1766 /* this is a bio leak */ 1767 WARN_ON(req->bio != NULL); 1768 1769 wbt_done(q->rq_wb, &req->issue_stat); 1770 1771 /* 1772 * Request may not have originated from ll_rw_blk. if not, 1773 * it didn't come out of our reserved rq pools 1774 */ 1775 if (rq_flags & RQF_ALLOCED) { 1776 struct request_list *rl = blk_rq_rl(req); 1777 bool sync = op_is_sync(req->cmd_flags); 1778 1779 BUG_ON(!list_empty(&req->queuelist)); 1780 BUG_ON(ELV_ON_HASH(req)); 1781 1782 blk_free_request(rl, req); 1783 freed_request(rl, sync, rq_flags); 1784 blk_put_rl(rl); 1785 blk_queue_exit(q); 1786 } 1787 } 1788 EXPORT_SYMBOL_GPL(__blk_put_request); 1789 1790 void blk_put_request(struct request *req) 1791 { 1792 struct request_queue *q = req->q; 1793 1794 if (q->mq_ops) 1795 blk_mq_free_request(req); 1796 else { 1797 unsigned long flags; 1798 1799 spin_lock_irqsave(q->queue_lock, flags); 1800 __blk_put_request(q, req); 1801 spin_unlock_irqrestore(q->queue_lock, flags); 1802 } 1803 } 1804 EXPORT_SYMBOL(blk_put_request); 1805 1806 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1807 struct bio *bio) 1808 { 1809 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1810 1811 if (!ll_back_merge_fn(q, req, bio)) 1812 return false; 1813 1814 trace_block_bio_backmerge(q, req, bio); 1815 1816 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1817 blk_rq_set_mixed_merge(req); 1818 1819 req->biotail->bi_next = bio; 1820 req->biotail = bio; 1821 req->__data_len += bio->bi_iter.bi_size; 1822 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1823 1824 blk_account_io_start(req, false); 1825 return true; 1826 } 1827 1828 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1829 struct bio *bio) 1830 { 1831 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1832 1833 if (!ll_front_merge_fn(q, req, bio)) 1834 return false; 1835 1836 trace_block_bio_frontmerge(q, req, bio); 1837 1838 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1839 blk_rq_set_mixed_merge(req); 1840 1841 bio->bi_next = req->bio; 1842 req->bio = bio; 1843 1844 req->__sector = bio->bi_iter.bi_sector; 1845 req->__data_len += bio->bi_iter.bi_size; 1846 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1847 1848 blk_account_io_start(req, false); 1849 return true; 1850 } 1851 1852 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1853 struct bio *bio) 1854 { 1855 unsigned short segments = blk_rq_nr_discard_segments(req); 1856 1857 if (segments >= queue_max_discard_segments(q)) 1858 goto no_merge; 1859 if (blk_rq_sectors(req) + bio_sectors(bio) > 1860 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1861 goto no_merge; 1862 1863 req->biotail->bi_next = bio; 1864 req->biotail = bio; 1865 req->__data_len += bio->bi_iter.bi_size; 1866 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1867 req->nr_phys_segments = segments + 1; 1868 1869 blk_account_io_start(req, false); 1870 return true; 1871 no_merge: 1872 req_set_nomerge(q, req); 1873 return false; 1874 } 1875 1876 /** 1877 * blk_attempt_plug_merge - try to merge with %current's plugged list 1878 * @q: request_queue new bio is being queued at 1879 * @bio: new bio being queued 1880 * @request_count: out parameter for number of traversed plugged requests 1881 * @same_queue_rq: pointer to &struct request that gets filled in when 1882 * another request associated with @q is found on the plug list 1883 * (optional, may be %NULL) 1884 * 1885 * Determine whether @bio being queued on @q can be merged with a request 1886 * on %current's plugged list. Returns %true if merge was successful, 1887 * otherwise %false. 1888 * 1889 * Plugging coalesces IOs from the same issuer for the same purpose without 1890 * going through @q->queue_lock. As such it's more of an issuing mechanism 1891 * than scheduling, and the request, while may have elvpriv data, is not 1892 * added on the elevator at this point. In addition, we don't have 1893 * reliable access to the elevator outside queue lock. Only check basic 1894 * merging parameters without querying the elevator. 1895 * 1896 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1897 */ 1898 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1899 unsigned int *request_count, 1900 struct request **same_queue_rq) 1901 { 1902 struct blk_plug *plug; 1903 struct request *rq; 1904 struct list_head *plug_list; 1905 1906 plug = current->plug; 1907 if (!plug) 1908 return false; 1909 *request_count = 0; 1910 1911 if (q->mq_ops) 1912 plug_list = &plug->mq_list; 1913 else 1914 plug_list = &plug->list; 1915 1916 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1917 bool merged = false; 1918 1919 if (rq->q == q) { 1920 (*request_count)++; 1921 /* 1922 * Only blk-mq multiple hardware queues case checks the 1923 * rq in the same queue, there should be only one such 1924 * rq in a queue 1925 **/ 1926 if (same_queue_rq) 1927 *same_queue_rq = rq; 1928 } 1929 1930 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1931 continue; 1932 1933 switch (blk_try_merge(rq, bio)) { 1934 case ELEVATOR_BACK_MERGE: 1935 merged = bio_attempt_back_merge(q, rq, bio); 1936 break; 1937 case ELEVATOR_FRONT_MERGE: 1938 merged = bio_attempt_front_merge(q, rq, bio); 1939 break; 1940 case ELEVATOR_DISCARD_MERGE: 1941 merged = bio_attempt_discard_merge(q, rq, bio); 1942 break; 1943 default: 1944 break; 1945 } 1946 1947 if (merged) 1948 return true; 1949 } 1950 1951 return false; 1952 } 1953 1954 unsigned int blk_plug_queued_count(struct request_queue *q) 1955 { 1956 struct blk_plug *plug; 1957 struct request *rq; 1958 struct list_head *plug_list; 1959 unsigned int ret = 0; 1960 1961 plug = current->plug; 1962 if (!plug) 1963 goto out; 1964 1965 if (q->mq_ops) 1966 plug_list = &plug->mq_list; 1967 else 1968 plug_list = &plug->list; 1969 1970 list_for_each_entry(rq, plug_list, queuelist) { 1971 if (rq->q == q) 1972 ret++; 1973 } 1974 out: 1975 return ret; 1976 } 1977 1978 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1979 { 1980 struct io_context *ioc = rq_ioc(bio); 1981 1982 if (bio->bi_opf & REQ_RAHEAD) 1983 req->cmd_flags |= REQ_FAILFAST_MASK; 1984 1985 req->__sector = bio->bi_iter.bi_sector; 1986 if (ioprio_valid(bio_prio(bio))) 1987 req->ioprio = bio_prio(bio); 1988 else if (ioc) 1989 req->ioprio = ioc->ioprio; 1990 else 1991 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1992 req->write_hint = bio->bi_write_hint; 1993 blk_rq_bio_prep(req->q, req, bio); 1994 } 1995 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1996 1997 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1998 { 1999 struct blk_plug *plug; 2000 int where = ELEVATOR_INSERT_SORT; 2001 struct request *req, *free; 2002 unsigned int request_count = 0; 2003 unsigned int wb_acct; 2004 2005 /* 2006 * low level driver can indicate that it wants pages above a 2007 * certain limit bounced to low memory (ie for highmem, or even 2008 * ISA dma in theory) 2009 */ 2010 blk_queue_bounce(q, &bio); 2011 2012 blk_queue_split(q, &bio); 2013 2014 if (!bio_integrity_prep(bio)) 2015 return BLK_QC_T_NONE; 2016 2017 if (op_is_flush(bio->bi_opf)) { 2018 spin_lock_irq(q->queue_lock); 2019 where = ELEVATOR_INSERT_FLUSH; 2020 goto get_rq; 2021 } 2022 2023 /* 2024 * Check if we can merge with the plugged list before grabbing 2025 * any locks. 2026 */ 2027 if (!blk_queue_nomerges(q)) { 2028 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 2029 return BLK_QC_T_NONE; 2030 } else 2031 request_count = blk_plug_queued_count(q); 2032 2033 spin_lock_irq(q->queue_lock); 2034 2035 switch (elv_merge(q, &req, bio)) { 2036 case ELEVATOR_BACK_MERGE: 2037 if (!bio_attempt_back_merge(q, req, bio)) 2038 break; 2039 elv_bio_merged(q, req, bio); 2040 free = attempt_back_merge(q, req); 2041 if (free) 2042 __blk_put_request(q, free); 2043 else 2044 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 2045 goto out_unlock; 2046 case ELEVATOR_FRONT_MERGE: 2047 if (!bio_attempt_front_merge(q, req, bio)) 2048 break; 2049 elv_bio_merged(q, req, bio); 2050 free = attempt_front_merge(q, req); 2051 if (free) 2052 __blk_put_request(q, free); 2053 else 2054 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 2055 goto out_unlock; 2056 default: 2057 break; 2058 } 2059 2060 get_rq: 2061 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 2062 2063 /* 2064 * Grab a free request. This is might sleep but can not fail. 2065 * Returns with the queue unlocked. 2066 */ 2067 blk_queue_enter_live(q); 2068 req = get_request(q, bio->bi_opf, bio, 0); 2069 if (IS_ERR(req)) { 2070 blk_queue_exit(q); 2071 __wbt_done(q->rq_wb, wb_acct); 2072 if (PTR_ERR(req) == -ENOMEM) 2073 bio->bi_status = BLK_STS_RESOURCE; 2074 else 2075 bio->bi_status = BLK_STS_IOERR; 2076 bio_endio(bio); 2077 goto out_unlock; 2078 } 2079 2080 wbt_track(&req->issue_stat, wb_acct); 2081 2082 /* 2083 * After dropping the lock and possibly sleeping here, our request 2084 * may now be mergeable after it had proven unmergeable (above). 2085 * We don't worry about that case for efficiency. It won't happen 2086 * often, and the elevators are able to handle it. 2087 */ 2088 blk_init_request_from_bio(req, bio); 2089 2090 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 2091 req->cpu = raw_smp_processor_id(); 2092 2093 plug = current->plug; 2094 if (plug) { 2095 /* 2096 * If this is the first request added after a plug, fire 2097 * of a plug trace. 2098 * 2099 * @request_count may become stale because of schedule 2100 * out, so check plug list again. 2101 */ 2102 if (!request_count || list_empty(&plug->list)) 2103 trace_block_plug(q); 2104 else { 2105 struct request *last = list_entry_rq(plug->list.prev); 2106 if (request_count >= BLK_MAX_REQUEST_COUNT || 2107 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2108 blk_flush_plug_list(plug, false); 2109 trace_block_plug(q); 2110 } 2111 } 2112 list_add_tail(&req->queuelist, &plug->list); 2113 blk_account_io_start(req, true); 2114 } else { 2115 spin_lock_irq(q->queue_lock); 2116 add_acct_request(q, req, where); 2117 __blk_run_queue(q); 2118 out_unlock: 2119 spin_unlock_irq(q->queue_lock); 2120 } 2121 2122 return BLK_QC_T_NONE; 2123 } 2124 2125 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 2126 { 2127 char b[BDEVNAME_SIZE]; 2128 2129 printk(KERN_INFO "attempt to access beyond end of device\n"); 2130 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2131 bio_devname(bio, b), bio->bi_opf, 2132 (unsigned long long)bio_end_sector(bio), 2133 (long long)maxsector); 2134 } 2135 2136 #ifdef CONFIG_FAIL_MAKE_REQUEST 2137 2138 static DECLARE_FAULT_ATTR(fail_make_request); 2139 2140 static int __init setup_fail_make_request(char *str) 2141 { 2142 return setup_fault_attr(&fail_make_request, str); 2143 } 2144 __setup("fail_make_request=", setup_fail_make_request); 2145 2146 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2147 { 2148 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2149 } 2150 2151 static int __init fail_make_request_debugfs(void) 2152 { 2153 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2154 NULL, &fail_make_request); 2155 2156 return PTR_ERR_OR_ZERO(dir); 2157 } 2158 2159 late_initcall(fail_make_request_debugfs); 2160 2161 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2162 2163 static inline bool should_fail_request(struct hd_struct *part, 2164 unsigned int bytes) 2165 { 2166 return false; 2167 } 2168 2169 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2170 2171 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2172 { 2173 if (part->policy && op_is_write(bio_op(bio))) { 2174 char b[BDEVNAME_SIZE]; 2175 2176 printk(KERN_ERR 2177 "generic_make_request: Trying to write " 2178 "to read-only block-device %s (partno %d)\n", 2179 bio_devname(bio, b), part->partno); 2180 return true; 2181 } 2182 2183 return false; 2184 } 2185 2186 static noinline int should_fail_bio(struct bio *bio) 2187 { 2188 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2189 return -EIO; 2190 return 0; 2191 } 2192 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2193 2194 /* 2195 * Check whether this bio extends beyond the end of the device or partition. 2196 * This may well happen - the kernel calls bread() without checking the size of 2197 * the device, e.g., when mounting a file system. 2198 */ 2199 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 2200 { 2201 unsigned int nr_sectors = bio_sectors(bio); 2202 2203 if (nr_sectors && maxsector && 2204 (nr_sectors > maxsector || 2205 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 2206 handle_bad_sector(bio, maxsector); 2207 return -EIO; 2208 } 2209 return 0; 2210 } 2211 2212 /* 2213 * Remap block n of partition p to block n+start(p) of the disk. 2214 */ 2215 static inline int blk_partition_remap(struct bio *bio) 2216 { 2217 struct hd_struct *p; 2218 int ret = -EIO; 2219 2220 rcu_read_lock(); 2221 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2222 if (unlikely(!p)) 2223 goto out; 2224 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 2225 goto out; 2226 if (unlikely(bio_check_ro(bio, p))) 2227 goto out; 2228 2229 /* 2230 * Zone reset does not include bi_size so bio_sectors() is always 0. 2231 * Include a test for the reset op code and perform the remap if needed. 2232 */ 2233 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 2234 if (bio_check_eod(bio, part_nr_sects_read(p))) 2235 goto out; 2236 bio->bi_iter.bi_sector += p->start_sect; 2237 bio->bi_partno = 0; 2238 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2239 bio->bi_iter.bi_sector - p->start_sect); 2240 } 2241 ret = 0; 2242 out: 2243 rcu_read_unlock(); 2244 return ret; 2245 } 2246 2247 static noinline_for_stack bool 2248 generic_make_request_checks(struct bio *bio) 2249 { 2250 struct request_queue *q; 2251 int nr_sectors = bio_sectors(bio); 2252 blk_status_t status = BLK_STS_IOERR; 2253 char b[BDEVNAME_SIZE]; 2254 2255 might_sleep(); 2256 2257 q = bio->bi_disk->queue; 2258 if (unlikely(!q)) { 2259 printk(KERN_ERR 2260 "generic_make_request: Trying to access " 2261 "nonexistent block-device %s (%Lu)\n", 2262 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2263 goto end_io; 2264 } 2265 2266 /* 2267 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2268 * if queue is not a request based queue. 2269 */ 2270 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2271 goto not_supported; 2272 2273 if (should_fail_bio(bio)) 2274 goto end_io; 2275 2276 if (bio->bi_partno) { 2277 if (unlikely(blk_partition_remap(bio))) 2278 goto end_io; 2279 } else { 2280 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2281 goto end_io; 2282 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 2283 goto end_io; 2284 } 2285 2286 /* 2287 * Filter flush bio's early so that make_request based 2288 * drivers without flush support don't have to worry 2289 * about them. 2290 */ 2291 if (op_is_flush(bio->bi_opf) && 2292 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2293 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2294 if (!nr_sectors) { 2295 status = BLK_STS_OK; 2296 goto end_io; 2297 } 2298 } 2299 2300 switch (bio_op(bio)) { 2301 case REQ_OP_DISCARD: 2302 if (!blk_queue_discard(q)) 2303 goto not_supported; 2304 break; 2305 case REQ_OP_SECURE_ERASE: 2306 if (!blk_queue_secure_erase(q)) 2307 goto not_supported; 2308 break; 2309 case REQ_OP_WRITE_SAME: 2310 if (!q->limits.max_write_same_sectors) 2311 goto not_supported; 2312 break; 2313 case REQ_OP_ZONE_REPORT: 2314 case REQ_OP_ZONE_RESET: 2315 if (!blk_queue_is_zoned(q)) 2316 goto not_supported; 2317 break; 2318 case REQ_OP_WRITE_ZEROES: 2319 if (!q->limits.max_write_zeroes_sectors) 2320 goto not_supported; 2321 break; 2322 default: 2323 break; 2324 } 2325 2326 /* 2327 * Various block parts want %current->io_context and lazy ioc 2328 * allocation ends up trading a lot of pain for a small amount of 2329 * memory. Just allocate it upfront. This may fail and block 2330 * layer knows how to live with it. 2331 */ 2332 create_io_context(GFP_ATOMIC, q->node); 2333 2334 if (!blkcg_bio_issue_check(q, bio)) 2335 return false; 2336 2337 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2338 trace_block_bio_queue(q, bio); 2339 /* Now that enqueuing has been traced, we need to trace 2340 * completion as well. 2341 */ 2342 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2343 } 2344 return true; 2345 2346 not_supported: 2347 status = BLK_STS_NOTSUPP; 2348 end_io: 2349 bio->bi_status = status; 2350 bio_endio(bio); 2351 return false; 2352 } 2353 2354 /** 2355 * generic_make_request - hand a buffer to its device driver for I/O 2356 * @bio: The bio describing the location in memory and on the device. 2357 * 2358 * generic_make_request() is used to make I/O requests of block 2359 * devices. It is passed a &struct bio, which describes the I/O that needs 2360 * to be done. 2361 * 2362 * generic_make_request() does not return any status. The 2363 * success/failure status of the request, along with notification of 2364 * completion, is delivered asynchronously through the bio->bi_end_io 2365 * function described (one day) else where. 2366 * 2367 * The caller of generic_make_request must make sure that bi_io_vec 2368 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2369 * set to describe the device address, and the 2370 * bi_end_io and optionally bi_private are set to describe how 2371 * completion notification should be signaled. 2372 * 2373 * generic_make_request and the drivers it calls may use bi_next if this 2374 * bio happens to be merged with someone else, and may resubmit the bio to 2375 * a lower device by calling into generic_make_request recursively, which 2376 * means the bio should NOT be touched after the call to ->make_request_fn. 2377 */ 2378 blk_qc_t generic_make_request(struct bio *bio) 2379 { 2380 /* 2381 * bio_list_on_stack[0] contains bios submitted by the current 2382 * make_request_fn. 2383 * bio_list_on_stack[1] contains bios that were submitted before 2384 * the current make_request_fn, but that haven't been processed 2385 * yet. 2386 */ 2387 struct bio_list bio_list_on_stack[2]; 2388 blk_mq_req_flags_t flags = 0; 2389 struct request_queue *q = bio->bi_disk->queue; 2390 blk_qc_t ret = BLK_QC_T_NONE; 2391 2392 if (bio->bi_opf & REQ_NOWAIT) 2393 flags = BLK_MQ_REQ_NOWAIT; 2394 if (blk_queue_enter(q, flags) < 0) { 2395 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 2396 bio_wouldblock_error(bio); 2397 else 2398 bio_io_error(bio); 2399 return ret; 2400 } 2401 2402 if (!generic_make_request_checks(bio)) 2403 goto out; 2404 2405 /* 2406 * We only want one ->make_request_fn to be active at a time, else 2407 * stack usage with stacked devices could be a problem. So use 2408 * current->bio_list to keep a list of requests submited by a 2409 * make_request_fn function. current->bio_list is also used as a 2410 * flag to say if generic_make_request is currently active in this 2411 * task or not. If it is NULL, then no make_request is active. If 2412 * it is non-NULL, then a make_request is active, and new requests 2413 * should be added at the tail 2414 */ 2415 if (current->bio_list) { 2416 bio_list_add(¤t->bio_list[0], bio); 2417 goto out; 2418 } 2419 2420 /* following loop may be a bit non-obvious, and so deserves some 2421 * explanation. 2422 * Before entering the loop, bio->bi_next is NULL (as all callers 2423 * ensure that) so we have a list with a single bio. 2424 * We pretend that we have just taken it off a longer list, so 2425 * we assign bio_list to a pointer to the bio_list_on_stack, 2426 * thus initialising the bio_list of new bios to be 2427 * added. ->make_request() may indeed add some more bios 2428 * through a recursive call to generic_make_request. If it 2429 * did, we find a non-NULL value in bio_list and re-enter the loop 2430 * from the top. In this case we really did just take the bio 2431 * of the top of the list (no pretending) and so remove it from 2432 * bio_list, and call into ->make_request() again. 2433 */ 2434 BUG_ON(bio->bi_next); 2435 bio_list_init(&bio_list_on_stack[0]); 2436 current->bio_list = bio_list_on_stack; 2437 do { 2438 bool enter_succeeded = true; 2439 2440 if (unlikely(q != bio->bi_disk->queue)) { 2441 if (q) 2442 blk_queue_exit(q); 2443 q = bio->bi_disk->queue; 2444 flags = 0; 2445 if (bio->bi_opf & REQ_NOWAIT) 2446 flags = BLK_MQ_REQ_NOWAIT; 2447 if (blk_queue_enter(q, flags) < 0) { 2448 enter_succeeded = false; 2449 q = NULL; 2450 } 2451 } 2452 2453 if (enter_succeeded) { 2454 struct bio_list lower, same; 2455 2456 /* Create a fresh bio_list for all subordinate requests */ 2457 bio_list_on_stack[1] = bio_list_on_stack[0]; 2458 bio_list_init(&bio_list_on_stack[0]); 2459 ret = q->make_request_fn(q, bio); 2460 2461 /* sort new bios into those for a lower level 2462 * and those for the same level 2463 */ 2464 bio_list_init(&lower); 2465 bio_list_init(&same); 2466 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2467 if (q == bio->bi_disk->queue) 2468 bio_list_add(&same, bio); 2469 else 2470 bio_list_add(&lower, bio); 2471 /* now assemble so we handle the lowest level first */ 2472 bio_list_merge(&bio_list_on_stack[0], &lower); 2473 bio_list_merge(&bio_list_on_stack[0], &same); 2474 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2475 } else { 2476 if (unlikely(!blk_queue_dying(q) && 2477 (bio->bi_opf & REQ_NOWAIT))) 2478 bio_wouldblock_error(bio); 2479 else 2480 bio_io_error(bio); 2481 } 2482 bio = bio_list_pop(&bio_list_on_stack[0]); 2483 } while (bio); 2484 current->bio_list = NULL; /* deactivate */ 2485 2486 out: 2487 if (q) 2488 blk_queue_exit(q); 2489 return ret; 2490 } 2491 EXPORT_SYMBOL(generic_make_request); 2492 2493 /** 2494 * direct_make_request - hand a buffer directly to its device driver for I/O 2495 * @bio: The bio describing the location in memory and on the device. 2496 * 2497 * This function behaves like generic_make_request(), but does not protect 2498 * against recursion. Must only be used if the called driver is known 2499 * to not call generic_make_request (or direct_make_request) again from 2500 * its make_request function. (Calling direct_make_request again from 2501 * a workqueue is perfectly fine as that doesn't recurse). 2502 */ 2503 blk_qc_t direct_make_request(struct bio *bio) 2504 { 2505 struct request_queue *q = bio->bi_disk->queue; 2506 bool nowait = bio->bi_opf & REQ_NOWAIT; 2507 blk_qc_t ret; 2508 2509 if (!generic_make_request_checks(bio)) 2510 return BLK_QC_T_NONE; 2511 2512 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2513 if (nowait && !blk_queue_dying(q)) 2514 bio->bi_status = BLK_STS_AGAIN; 2515 else 2516 bio->bi_status = BLK_STS_IOERR; 2517 bio_endio(bio); 2518 return BLK_QC_T_NONE; 2519 } 2520 2521 ret = q->make_request_fn(q, bio); 2522 blk_queue_exit(q); 2523 return ret; 2524 } 2525 EXPORT_SYMBOL_GPL(direct_make_request); 2526 2527 /** 2528 * submit_bio - submit a bio to the block device layer for I/O 2529 * @bio: The &struct bio which describes the I/O 2530 * 2531 * submit_bio() is very similar in purpose to generic_make_request(), and 2532 * uses that function to do most of the work. Both are fairly rough 2533 * interfaces; @bio must be presetup and ready for I/O. 2534 * 2535 */ 2536 blk_qc_t submit_bio(struct bio *bio) 2537 { 2538 /* 2539 * If it's a regular read/write or a barrier with data attached, 2540 * go through the normal accounting stuff before submission. 2541 */ 2542 if (bio_has_data(bio)) { 2543 unsigned int count; 2544 2545 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2546 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2547 else 2548 count = bio_sectors(bio); 2549 2550 if (op_is_write(bio_op(bio))) { 2551 count_vm_events(PGPGOUT, count); 2552 } else { 2553 task_io_account_read(bio->bi_iter.bi_size); 2554 count_vm_events(PGPGIN, count); 2555 } 2556 2557 if (unlikely(block_dump)) { 2558 char b[BDEVNAME_SIZE]; 2559 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2560 current->comm, task_pid_nr(current), 2561 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2562 (unsigned long long)bio->bi_iter.bi_sector, 2563 bio_devname(bio, b), count); 2564 } 2565 } 2566 2567 return generic_make_request(bio); 2568 } 2569 EXPORT_SYMBOL(submit_bio); 2570 2571 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2572 { 2573 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2574 return false; 2575 2576 if (current->plug) 2577 blk_flush_plug_list(current->plug, false); 2578 return q->poll_fn(q, cookie); 2579 } 2580 EXPORT_SYMBOL_GPL(blk_poll); 2581 2582 /** 2583 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2584 * for new the queue limits 2585 * @q: the queue 2586 * @rq: the request being checked 2587 * 2588 * Description: 2589 * @rq may have been made based on weaker limitations of upper-level queues 2590 * in request stacking drivers, and it may violate the limitation of @q. 2591 * Since the block layer and the underlying device driver trust @rq 2592 * after it is inserted to @q, it should be checked against @q before 2593 * the insertion using this generic function. 2594 * 2595 * Request stacking drivers like request-based dm may change the queue 2596 * limits when retrying requests on other queues. Those requests need 2597 * to be checked against the new queue limits again during dispatch. 2598 */ 2599 static int blk_cloned_rq_check_limits(struct request_queue *q, 2600 struct request *rq) 2601 { 2602 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2603 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2604 return -EIO; 2605 } 2606 2607 /* 2608 * queue's settings related to segment counting like q->bounce_pfn 2609 * may differ from that of other stacking queues. 2610 * Recalculate it to check the request correctly on this queue's 2611 * limitation. 2612 */ 2613 blk_recalc_rq_segments(rq); 2614 if (rq->nr_phys_segments > queue_max_segments(q)) { 2615 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2616 return -EIO; 2617 } 2618 2619 return 0; 2620 } 2621 2622 /** 2623 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2624 * @q: the queue to submit the request 2625 * @rq: the request being queued 2626 */ 2627 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2628 { 2629 unsigned long flags; 2630 int where = ELEVATOR_INSERT_BACK; 2631 2632 if (blk_cloned_rq_check_limits(q, rq)) 2633 return BLK_STS_IOERR; 2634 2635 if (rq->rq_disk && 2636 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2637 return BLK_STS_IOERR; 2638 2639 if (q->mq_ops) { 2640 if (blk_queue_io_stat(q)) 2641 blk_account_io_start(rq, true); 2642 /* 2643 * Since we have a scheduler attached on the top device, 2644 * bypass a potential scheduler on the bottom device for 2645 * insert. 2646 */ 2647 return blk_mq_request_issue_directly(rq); 2648 } 2649 2650 spin_lock_irqsave(q->queue_lock, flags); 2651 if (unlikely(blk_queue_dying(q))) { 2652 spin_unlock_irqrestore(q->queue_lock, flags); 2653 return BLK_STS_IOERR; 2654 } 2655 2656 /* 2657 * Submitting request must be dequeued before calling this function 2658 * because it will be linked to another request_queue 2659 */ 2660 BUG_ON(blk_queued_rq(rq)); 2661 2662 if (op_is_flush(rq->cmd_flags)) 2663 where = ELEVATOR_INSERT_FLUSH; 2664 2665 add_acct_request(q, rq, where); 2666 if (where == ELEVATOR_INSERT_FLUSH) 2667 __blk_run_queue(q); 2668 spin_unlock_irqrestore(q->queue_lock, flags); 2669 2670 return BLK_STS_OK; 2671 } 2672 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2673 2674 /** 2675 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2676 * @rq: request to examine 2677 * 2678 * Description: 2679 * A request could be merge of IOs which require different failure 2680 * handling. This function determines the number of bytes which 2681 * can be failed from the beginning of the request without 2682 * crossing into area which need to be retried further. 2683 * 2684 * Return: 2685 * The number of bytes to fail. 2686 */ 2687 unsigned int blk_rq_err_bytes(const struct request *rq) 2688 { 2689 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2690 unsigned int bytes = 0; 2691 struct bio *bio; 2692 2693 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2694 return blk_rq_bytes(rq); 2695 2696 /* 2697 * Currently the only 'mixing' which can happen is between 2698 * different fastfail types. We can safely fail portions 2699 * which have all the failfast bits that the first one has - 2700 * the ones which are at least as eager to fail as the first 2701 * one. 2702 */ 2703 for (bio = rq->bio; bio; bio = bio->bi_next) { 2704 if ((bio->bi_opf & ff) != ff) 2705 break; 2706 bytes += bio->bi_iter.bi_size; 2707 } 2708 2709 /* this could lead to infinite loop */ 2710 BUG_ON(blk_rq_bytes(rq) && !bytes); 2711 return bytes; 2712 } 2713 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2714 2715 void blk_account_io_completion(struct request *req, unsigned int bytes) 2716 { 2717 if (blk_do_io_stat(req)) { 2718 const int rw = rq_data_dir(req); 2719 struct hd_struct *part; 2720 int cpu; 2721 2722 cpu = part_stat_lock(); 2723 part = req->part; 2724 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2725 part_stat_unlock(); 2726 } 2727 } 2728 2729 void blk_account_io_done(struct request *req) 2730 { 2731 /* 2732 * Account IO completion. flush_rq isn't accounted as a 2733 * normal IO on queueing nor completion. Accounting the 2734 * containing request is enough. 2735 */ 2736 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2737 unsigned long duration = jiffies - req->start_time; 2738 const int rw = rq_data_dir(req); 2739 struct hd_struct *part; 2740 int cpu; 2741 2742 cpu = part_stat_lock(); 2743 part = req->part; 2744 2745 part_stat_inc(cpu, part, ios[rw]); 2746 part_stat_add(cpu, part, ticks[rw], duration); 2747 part_round_stats(req->q, cpu, part); 2748 part_dec_in_flight(req->q, part, rw); 2749 2750 hd_struct_put(part); 2751 part_stat_unlock(); 2752 } 2753 } 2754 2755 #ifdef CONFIG_PM 2756 /* 2757 * Don't process normal requests when queue is suspended 2758 * or in the process of suspending/resuming 2759 */ 2760 static bool blk_pm_allow_request(struct request *rq) 2761 { 2762 switch (rq->q->rpm_status) { 2763 case RPM_RESUMING: 2764 case RPM_SUSPENDING: 2765 return rq->rq_flags & RQF_PM; 2766 case RPM_SUSPENDED: 2767 return false; 2768 } 2769 2770 return true; 2771 } 2772 #else 2773 static bool blk_pm_allow_request(struct request *rq) 2774 { 2775 return true; 2776 } 2777 #endif 2778 2779 void blk_account_io_start(struct request *rq, bool new_io) 2780 { 2781 struct hd_struct *part; 2782 int rw = rq_data_dir(rq); 2783 int cpu; 2784 2785 if (!blk_do_io_stat(rq)) 2786 return; 2787 2788 cpu = part_stat_lock(); 2789 2790 if (!new_io) { 2791 part = rq->part; 2792 part_stat_inc(cpu, part, merges[rw]); 2793 } else { 2794 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2795 if (!hd_struct_try_get(part)) { 2796 /* 2797 * The partition is already being removed, 2798 * the request will be accounted on the disk only 2799 * 2800 * We take a reference on disk->part0 although that 2801 * partition will never be deleted, so we can treat 2802 * it as any other partition. 2803 */ 2804 part = &rq->rq_disk->part0; 2805 hd_struct_get(part); 2806 } 2807 part_round_stats(rq->q, cpu, part); 2808 part_inc_in_flight(rq->q, part, rw); 2809 rq->part = part; 2810 } 2811 2812 part_stat_unlock(); 2813 } 2814 2815 static struct request *elv_next_request(struct request_queue *q) 2816 { 2817 struct request *rq; 2818 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2819 2820 WARN_ON_ONCE(q->mq_ops); 2821 2822 while (1) { 2823 list_for_each_entry(rq, &q->queue_head, queuelist) { 2824 if (blk_pm_allow_request(rq)) 2825 return rq; 2826 2827 if (rq->rq_flags & RQF_SOFTBARRIER) 2828 break; 2829 } 2830 2831 /* 2832 * Flush request is running and flush request isn't queueable 2833 * in the drive, we can hold the queue till flush request is 2834 * finished. Even we don't do this, driver can't dispatch next 2835 * requests and will requeue them. And this can improve 2836 * throughput too. For example, we have request flush1, write1, 2837 * flush 2. flush1 is dispatched, then queue is hold, write1 2838 * isn't inserted to queue. After flush1 is finished, flush2 2839 * will be dispatched. Since disk cache is already clean, 2840 * flush2 will be finished very soon, so looks like flush2 is 2841 * folded to flush1. 2842 * Since the queue is hold, a flag is set to indicate the queue 2843 * should be restarted later. Please see flush_end_io() for 2844 * details. 2845 */ 2846 if (fq->flush_pending_idx != fq->flush_running_idx && 2847 !queue_flush_queueable(q)) { 2848 fq->flush_queue_delayed = 1; 2849 return NULL; 2850 } 2851 if (unlikely(blk_queue_bypass(q)) || 2852 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2853 return NULL; 2854 } 2855 } 2856 2857 /** 2858 * blk_peek_request - peek at the top of a request queue 2859 * @q: request queue to peek at 2860 * 2861 * Description: 2862 * Return the request at the top of @q. The returned request 2863 * should be started using blk_start_request() before LLD starts 2864 * processing it. 2865 * 2866 * Return: 2867 * Pointer to the request at the top of @q if available. Null 2868 * otherwise. 2869 */ 2870 struct request *blk_peek_request(struct request_queue *q) 2871 { 2872 struct request *rq; 2873 int ret; 2874 2875 lockdep_assert_held(q->queue_lock); 2876 WARN_ON_ONCE(q->mq_ops); 2877 2878 while ((rq = elv_next_request(q)) != NULL) { 2879 if (!(rq->rq_flags & RQF_STARTED)) { 2880 /* 2881 * This is the first time the device driver 2882 * sees this request (possibly after 2883 * requeueing). Notify IO scheduler. 2884 */ 2885 if (rq->rq_flags & RQF_SORTED) 2886 elv_activate_rq(q, rq); 2887 2888 /* 2889 * just mark as started even if we don't start 2890 * it, a request that has been delayed should 2891 * not be passed by new incoming requests 2892 */ 2893 rq->rq_flags |= RQF_STARTED; 2894 trace_block_rq_issue(q, rq); 2895 } 2896 2897 if (!q->boundary_rq || q->boundary_rq == rq) { 2898 q->end_sector = rq_end_sector(rq); 2899 q->boundary_rq = NULL; 2900 } 2901 2902 if (rq->rq_flags & RQF_DONTPREP) 2903 break; 2904 2905 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2906 /* 2907 * make sure space for the drain appears we 2908 * know we can do this because max_hw_segments 2909 * has been adjusted to be one fewer than the 2910 * device can handle 2911 */ 2912 rq->nr_phys_segments++; 2913 } 2914 2915 if (!q->prep_rq_fn) 2916 break; 2917 2918 ret = q->prep_rq_fn(q, rq); 2919 if (ret == BLKPREP_OK) { 2920 break; 2921 } else if (ret == BLKPREP_DEFER) { 2922 /* 2923 * the request may have been (partially) prepped. 2924 * we need to keep this request in the front to 2925 * avoid resource deadlock. RQF_STARTED will 2926 * prevent other fs requests from passing this one. 2927 */ 2928 if (q->dma_drain_size && blk_rq_bytes(rq) && 2929 !(rq->rq_flags & RQF_DONTPREP)) { 2930 /* 2931 * remove the space for the drain we added 2932 * so that we don't add it again 2933 */ 2934 --rq->nr_phys_segments; 2935 } 2936 2937 rq = NULL; 2938 break; 2939 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2940 rq->rq_flags |= RQF_QUIET; 2941 /* 2942 * Mark this request as started so we don't trigger 2943 * any debug logic in the end I/O path. 2944 */ 2945 blk_start_request(rq); 2946 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2947 BLK_STS_TARGET : BLK_STS_IOERR); 2948 } else { 2949 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2950 break; 2951 } 2952 } 2953 2954 return rq; 2955 } 2956 EXPORT_SYMBOL(blk_peek_request); 2957 2958 static void blk_dequeue_request(struct request *rq) 2959 { 2960 struct request_queue *q = rq->q; 2961 2962 BUG_ON(list_empty(&rq->queuelist)); 2963 BUG_ON(ELV_ON_HASH(rq)); 2964 2965 list_del_init(&rq->queuelist); 2966 2967 /* 2968 * the time frame between a request being removed from the lists 2969 * and to it is freed is accounted as io that is in progress at 2970 * the driver side. 2971 */ 2972 if (blk_account_rq(rq)) { 2973 q->in_flight[rq_is_sync(rq)]++; 2974 set_io_start_time_ns(rq); 2975 } 2976 } 2977 2978 /** 2979 * blk_start_request - start request processing on the driver 2980 * @req: request to dequeue 2981 * 2982 * Description: 2983 * Dequeue @req and start timeout timer on it. This hands off the 2984 * request to the driver. 2985 */ 2986 void blk_start_request(struct request *req) 2987 { 2988 lockdep_assert_held(req->q->queue_lock); 2989 WARN_ON_ONCE(req->q->mq_ops); 2990 2991 blk_dequeue_request(req); 2992 2993 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2994 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2995 req->rq_flags |= RQF_STATS; 2996 wbt_issue(req->q->rq_wb, &req->issue_stat); 2997 } 2998 2999 BUG_ON(blk_rq_is_complete(req)); 3000 blk_add_timer(req); 3001 } 3002 EXPORT_SYMBOL(blk_start_request); 3003 3004 /** 3005 * blk_fetch_request - fetch a request from a request queue 3006 * @q: request queue to fetch a request from 3007 * 3008 * Description: 3009 * Return the request at the top of @q. The request is started on 3010 * return and LLD can start processing it immediately. 3011 * 3012 * Return: 3013 * Pointer to the request at the top of @q if available. Null 3014 * otherwise. 3015 */ 3016 struct request *blk_fetch_request(struct request_queue *q) 3017 { 3018 struct request *rq; 3019 3020 lockdep_assert_held(q->queue_lock); 3021 WARN_ON_ONCE(q->mq_ops); 3022 3023 rq = blk_peek_request(q); 3024 if (rq) 3025 blk_start_request(rq); 3026 return rq; 3027 } 3028 EXPORT_SYMBOL(blk_fetch_request); 3029 3030 /* 3031 * Steal bios from a request and add them to a bio list. 3032 * The request must not have been partially completed before. 3033 */ 3034 void blk_steal_bios(struct bio_list *list, struct request *rq) 3035 { 3036 if (rq->bio) { 3037 if (list->tail) 3038 list->tail->bi_next = rq->bio; 3039 else 3040 list->head = rq->bio; 3041 list->tail = rq->biotail; 3042 3043 rq->bio = NULL; 3044 rq->biotail = NULL; 3045 } 3046 3047 rq->__data_len = 0; 3048 } 3049 EXPORT_SYMBOL_GPL(blk_steal_bios); 3050 3051 /** 3052 * blk_update_request - Special helper function for request stacking drivers 3053 * @req: the request being processed 3054 * @error: block status code 3055 * @nr_bytes: number of bytes to complete @req 3056 * 3057 * Description: 3058 * Ends I/O on a number of bytes attached to @req, but doesn't complete 3059 * the request structure even if @req doesn't have leftover. 3060 * If @req has leftover, sets it up for the next range of segments. 3061 * 3062 * This special helper function is only for request stacking drivers 3063 * (e.g. request-based dm) so that they can handle partial completion. 3064 * Actual device drivers should use blk_end_request instead. 3065 * 3066 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 3067 * %false return from this function. 3068 * 3069 * Return: 3070 * %false - this request doesn't have any more data 3071 * %true - this request has more data 3072 **/ 3073 bool blk_update_request(struct request *req, blk_status_t error, 3074 unsigned int nr_bytes) 3075 { 3076 int total_bytes; 3077 3078 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 3079 3080 if (!req->bio) 3081 return false; 3082 3083 if (unlikely(error && !blk_rq_is_passthrough(req) && 3084 !(req->rq_flags & RQF_QUIET))) 3085 print_req_error(req, error); 3086 3087 blk_account_io_completion(req, nr_bytes); 3088 3089 total_bytes = 0; 3090 while (req->bio) { 3091 struct bio *bio = req->bio; 3092 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 3093 3094 if (bio_bytes == bio->bi_iter.bi_size) 3095 req->bio = bio->bi_next; 3096 3097 /* Completion has already been traced */ 3098 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 3099 req_bio_endio(req, bio, bio_bytes, error); 3100 3101 total_bytes += bio_bytes; 3102 nr_bytes -= bio_bytes; 3103 3104 if (!nr_bytes) 3105 break; 3106 } 3107 3108 /* 3109 * completely done 3110 */ 3111 if (!req->bio) { 3112 /* 3113 * Reset counters so that the request stacking driver 3114 * can find how many bytes remain in the request 3115 * later. 3116 */ 3117 req->__data_len = 0; 3118 return false; 3119 } 3120 3121 req->__data_len -= total_bytes; 3122 3123 /* update sector only for requests with clear definition of sector */ 3124 if (!blk_rq_is_passthrough(req)) 3125 req->__sector += total_bytes >> 9; 3126 3127 /* mixed attributes always follow the first bio */ 3128 if (req->rq_flags & RQF_MIXED_MERGE) { 3129 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3130 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3131 } 3132 3133 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3134 /* 3135 * If total number of sectors is less than the first segment 3136 * size, something has gone terribly wrong. 3137 */ 3138 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3139 blk_dump_rq_flags(req, "request botched"); 3140 req->__data_len = blk_rq_cur_bytes(req); 3141 } 3142 3143 /* recalculate the number of segments */ 3144 blk_recalc_rq_segments(req); 3145 } 3146 3147 return true; 3148 } 3149 EXPORT_SYMBOL_GPL(blk_update_request); 3150 3151 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3152 unsigned int nr_bytes, 3153 unsigned int bidi_bytes) 3154 { 3155 if (blk_update_request(rq, error, nr_bytes)) 3156 return true; 3157 3158 /* Bidi request must be completed as a whole */ 3159 if (unlikely(blk_bidi_rq(rq)) && 3160 blk_update_request(rq->next_rq, error, bidi_bytes)) 3161 return true; 3162 3163 if (blk_queue_add_random(rq->q)) 3164 add_disk_randomness(rq->rq_disk); 3165 3166 return false; 3167 } 3168 3169 /** 3170 * blk_unprep_request - unprepare a request 3171 * @req: the request 3172 * 3173 * This function makes a request ready for complete resubmission (or 3174 * completion). It happens only after all error handling is complete, 3175 * so represents the appropriate moment to deallocate any resources 3176 * that were allocated to the request in the prep_rq_fn. The queue 3177 * lock is held when calling this. 3178 */ 3179 void blk_unprep_request(struct request *req) 3180 { 3181 struct request_queue *q = req->q; 3182 3183 req->rq_flags &= ~RQF_DONTPREP; 3184 if (q->unprep_rq_fn) 3185 q->unprep_rq_fn(q, req); 3186 } 3187 EXPORT_SYMBOL_GPL(blk_unprep_request); 3188 3189 void blk_finish_request(struct request *req, blk_status_t error) 3190 { 3191 struct request_queue *q = req->q; 3192 3193 lockdep_assert_held(req->q->queue_lock); 3194 WARN_ON_ONCE(q->mq_ops); 3195 3196 if (req->rq_flags & RQF_STATS) 3197 blk_stat_add(req); 3198 3199 if (req->rq_flags & RQF_QUEUED) 3200 blk_queue_end_tag(q, req); 3201 3202 BUG_ON(blk_queued_rq(req)); 3203 3204 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3205 laptop_io_completion(req->q->backing_dev_info); 3206 3207 blk_delete_timer(req); 3208 3209 if (req->rq_flags & RQF_DONTPREP) 3210 blk_unprep_request(req); 3211 3212 blk_account_io_done(req); 3213 3214 if (req->end_io) { 3215 wbt_done(req->q->rq_wb, &req->issue_stat); 3216 req->end_io(req, error); 3217 } else { 3218 if (blk_bidi_rq(req)) 3219 __blk_put_request(req->next_rq->q, req->next_rq); 3220 3221 __blk_put_request(q, req); 3222 } 3223 } 3224 EXPORT_SYMBOL(blk_finish_request); 3225 3226 /** 3227 * blk_end_bidi_request - Complete a bidi request 3228 * @rq: the request to complete 3229 * @error: block status code 3230 * @nr_bytes: number of bytes to complete @rq 3231 * @bidi_bytes: number of bytes to complete @rq->next_rq 3232 * 3233 * Description: 3234 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3235 * Drivers that supports bidi can safely call this member for any 3236 * type of request, bidi or uni. In the later case @bidi_bytes is 3237 * just ignored. 3238 * 3239 * Return: 3240 * %false - we are done with this request 3241 * %true - still buffers pending for this request 3242 **/ 3243 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3244 unsigned int nr_bytes, unsigned int bidi_bytes) 3245 { 3246 struct request_queue *q = rq->q; 3247 unsigned long flags; 3248 3249 WARN_ON_ONCE(q->mq_ops); 3250 3251 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3252 return true; 3253 3254 spin_lock_irqsave(q->queue_lock, flags); 3255 blk_finish_request(rq, error); 3256 spin_unlock_irqrestore(q->queue_lock, flags); 3257 3258 return false; 3259 } 3260 3261 /** 3262 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3263 * @rq: the request to complete 3264 * @error: block status code 3265 * @nr_bytes: number of bytes to complete @rq 3266 * @bidi_bytes: number of bytes to complete @rq->next_rq 3267 * 3268 * Description: 3269 * Identical to blk_end_bidi_request() except that queue lock is 3270 * assumed to be locked on entry and remains so on return. 3271 * 3272 * Return: 3273 * %false - we are done with this request 3274 * %true - still buffers pending for this request 3275 **/ 3276 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3277 unsigned int nr_bytes, unsigned int bidi_bytes) 3278 { 3279 lockdep_assert_held(rq->q->queue_lock); 3280 WARN_ON_ONCE(rq->q->mq_ops); 3281 3282 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3283 return true; 3284 3285 blk_finish_request(rq, error); 3286 3287 return false; 3288 } 3289 3290 /** 3291 * blk_end_request - Helper function for drivers to complete the request. 3292 * @rq: the request being processed 3293 * @error: block status code 3294 * @nr_bytes: number of bytes to complete 3295 * 3296 * Description: 3297 * Ends I/O on a number of bytes attached to @rq. 3298 * If @rq has leftover, sets it up for the next range of segments. 3299 * 3300 * Return: 3301 * %false - we are done with this request 3302 * %true - still buffers pending for this request 3303 **/ 3304 bool blk_end_request(struct request *rq, blk_status_t error, 3305 unsigned int nr_bytes) 3306 { 3307 WARN_ON_ONCE(rq->q->mq_ops); 3308 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3309 } 3310 EXPORT_SYMBOL(blk_end_request); 3311 3312 /** 3313 * blk_end_request_all - Helper function for drives to finish the request. 3314 * @rq: the request to finish 3315 * @error: block status code 3316 * 3317 * Description: 3318 * Completely finish @rq. 3319 */ 3320 void blk_end_request_all(struct request *rq, blk_status_t error) 3321 { 3322 bool pending; 3323 unsigned int bidi_bytes = 0; 3324 3325 if (unlikely(blk_bidi_rq(rq))) 3326 bidi_bytes = blk_rq_bytes(rq->next_rq); 3327 3328 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3329 BUG_ON(pending); 3330 } 3331 EXPORT_SYMBOL(blk_end_request_all); 3332 3333 /** 3334 * __blk_end_request - Helper function for drivers to complete the request. 3335 * @rq: the request being processed 3336 * @error: block status code 3337 * @nr_bytes: number of bytes to complete 3338 * 3339 * Description: 3340 * Must be called with queue lock held unlike blk_end_request(). 3341 * 3342 * Return: 3343 * %false - we are done with this request 3344 * %true - still buffers pending for this request 3345 **/ 3346 bool __blk_end_request(struct request *rq, blk_status_t error, 3347 unsigned int nr_bytes) 3348 { 3349 lockdep_assert_held(rq->q->queue_lock); 3350 WARN_ON_ONCE(rq->q->mq_ops); 3351 3352 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3353 } 3354 EXPORT_SYMBOL(__blk_end_request); 3355 3356 /** 3357 * __blk_end_request_all - Helper function for drives to finish the request. 3358 * @rq: the request to finish 3359 * @error: block status code 3360 * 3361 * Description: 3362 * Completely finish @rq. Must be called with queue lock held. 3363 */ 3364 void __blk_end_request_all(struct request *rq, blk_status_t error) 3365 { 3366 bool pending; 3367 unsigned int bidi_bytes = 0; 3368 3369 lockdep_assert_held(rq->q->queue_lock); 3370 WARN_ON_ONCE(rq->q->mq_ops); 3371 3372 if (unlikely(blk_bidi_rq(rq))) 3373 bidi_bytes = blk_rq_bytes(rq->next_rq); 3374 3375 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3376 BUG_ON(pending); 3377 } 3378 EXPORT_SYMBOL(__blk_end_request_all); 3379 3380 /** 3381 * __blk_end_request_cur - Helper function to finish the current request chunk. 3382 * @rq: the request to finish the current chunk for 3383 * @error: block status code 3384 * 3385 * Description: 3386 * Complete the current consecutively mapped chunk from @rq. Must 3387 * be called with queue lock held. 3388 * 3389 * Return: 3390 * %false - we are done with this request 3391 * %true - still buffers pending for this request 3392 */ 3393 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3394 { 3395 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3396 } 3397 EXPORT_SYMBOL(__blk_end_request_cur); 3398 3399 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3400 struct bio *bio) 3401 { 3402 if (bio_has_data(bio)) 3403 rq->nr_phys_segments = bio_phys_segments(q, bio); 3404 else if (bio_op(bio) == REQ_OP_DISCARD) 3405 rq->nr_phys_segments = 1; 3406 3407 rq->__data_len = bio->bi_iter.bi_size; 3408 rq->bio = rq->biotail = bio; 3409 3410 if (bio->bi_disk) 3411 rq->rq_disk = bio->bi_disk; 3412 } 3413 3414 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3415 /** 3416 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3417 * @rq: the request to be flushed 3418 * 3419 * Description: 3420 * Flush all pages in @rq. 3421 */ 3422 void rq_flush_dcache_pages(struct request *rq) 3423 { 3424 struct req_iterator iter; 3425 struct bio_vec bvec; 3426 3427 rq_for_each_segment(bvec, rq, iter) 3428 flush_dcache_page(bvec.bv_page); 3429 } 3430 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3431 #endif 3432 3433 /** 3434 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3435 * @q : the queue of the device being checked 3436 * 3437 * Description: 3438 * Check if underlying low-level drivers of a device are busy. 3439 * If the drivers want to export their busy state, they must set own 3440 * exporting function using blk_queue_lld_busy() first. 3441 * 3442 * Basically, this function is used only by request stacking drivers 3443 * to stop dispatching requests to underlying devices when underlying 3444 * devices are busy. This behavior helps more I/O merging on the queue 3445 * of the request stacking driver and prevents I/O throughput regression 3446 * on burst I/O load. 3447 * 3448 * Return: 3449 * 0 - Not busy (The request stacking driver should dispatch request) 3450 * 1 - Busy (The request stacking driver should stop dispatching request) 3451 */ 3452 int blk_lld_busy(struct request_queue *q) 3453 { 3454 if (q->lld_busy_fn) 3455 return q->lld_busy_fn(q); 3456 3457 return 0; 3458 } 3459 EXPORT_SYMBOL_GPL(blk_lld_busy); 3460 3461 /** 3462 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3463 * @rq: the clone request to be cleaned up 3464 * 3465 * Description: 3466 * Free all bios in @rq for a cloned request. 3467 */ 3468 void blk_rq_unprep_clone(struct request *rq) 3469 { 3470 struct bio *bio; 3471 3472 while ((bio = rq->bio) != NULL) { 3473 rq->bio = bio->bi_next; 3474 3475 bio_put(bio); 3476 } 3477 } 3478 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3479 3480 /* 3481 * Copy attributes of the original request to the clone request. 3482 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3483 */ 3484 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3485 { 3486 dst->cpu = src->cpu; 3487 dst->__sector = blk_rq_pos(src); 3488 dst->__data_len = blk_rq_bytes(src); 3489 dst->nr_phys_segments = src->nr_phys_segments; 3490 dst->ioprio = src->ioprio; 3491 dst->extra_len = src->extra_len; 3492 } 3493 3494 /** 3495 * blk_rq_prep_clone - Helper function to setup clone request 3496 * @rq: the request to be setup 3497 * @rq_src: original request to be cloned 3498 * @bs: bio_set that bios for clone are allocated from 3499 * @gfp_mask: memory allocation mask for bio 3500 * @bio_ctr: setup function to be called for each clone bio. 3501 * Returns %0 for success, non %0 for failure. 3502 * @data: private data to be passed to @bio_ctr 3503 * 3504 * Description: 3505 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3506 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3507 * are not copied, and copying such parts is the caller's responsibility. 3508 * Also, pages which the original bios are pointing to are not copied 3509 * and the cloned bios just point same pages. 3510 * So cloned bios must be completed before original bios, which means 3511 * the caller must complete @rq before @rq_src. 3512 */ 3513 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3514 struct bio_set *bs, gfp_t gfp_mask, 3515 int (*bio_ctr)(struct bio *, struct bio *, void *), 3516 void *data) 3517 { 3518 struct bio *bio, *bio_src; 3519 3520 if (!bs) 3521 bs = fs_bio_set; 3522 3523 __rq_for_each_bio(bio_src, rq_src) { 3524 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3525 if (!bio) 3526 goto free_and_out; 3527 3528 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3529 goto free_and_out; 3530 3531 if (rq->bio) { 3532 rq->biotail->bi_next = bio; 3533 rq->biotail = bio; 3534 } else 3535 rq->bio = rq->biotail = bio; 3536 } 3537 3538 __blk_rq_prep_clone(rq, rq_src); 3539 3540 return 0; 3541 3542 free_and_out: 3543 if (bio) 3544 bio_put(bio); 3545 blk_rq_unprep_clone(rq); 3546 3547 return -ENOMEM; 3548 } 3549 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3550 3551 int kblockd_schedule_work(struct work_struct *work) 3552 { 3553 return queue_work(kblockd_workqueue, work); 3554 } 3555 EXPORT_SYMBOL(kblockd_schedule_work); 3556 3557 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3558 { 3559 return queue_work_on(cpu, kblockd_workqueue, work); 3560 } 3561 EXPORT_SYMBOL(kblockd_schedule_work_on); 3562 3563 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3564 unsigned long delay) 3565 { 3566 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3567 } 3568 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3569 3570 /** 3571 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3572 * @plug: The &struct blk_plug that needs to be initialized 3573 * 3574 * Description: 3575 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3576 * pending I/O should the task end up blocking between blk_start_plug() and 3577 * blk_finish_plug(). This is important from a performance perspective, but 3578 * also ensures that we don't deadlock. For instance, if the task is blocking 3579 * for a memory allocation, memory reclaim could end up wanting to free a 3580 * page belonging to that request that is currently residing in our private 3581 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3582 * this kind of deadlock. 3583 */ 3584 void blk_start_plug(struct blk_plug *plug) 3585 { 3586 struct task_struct *tsk = current; 3587 3588 /* 3589 * If this is a nested plug, don't actually assign it. 3590 */ 3591 if (tsk->plug) 3592 return; 3593 3594 INIT_LIST_HEAD(&plug->list); 3595 INIT_LIST_HEAD(&plug->mq_list); 3596 INIT_LIST_HEAD(&plug->cb_list); 3597 /* 3598 * Store ordering should not be needed here, since a potential 3599 * preempt will imply a full memory barrier 3600 */ 3601 tsk->plug = plug; 3602 } 3603 EXPORT_SYMBOL(blk_start_plug); 3604 3605 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3606 { 3607 struct request *rqa = container_of(a, struct request, queuelist); 3608 struct request *rqb = container_of(b, struct request, queuelist); 3609 3610 return !(rqa->q < rqb->q || 3611 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3612 } 3613 3614 /* 3615 * If 'from_schedule' is true, then postpone the dispatch of requests 3616 * until a safe kblockd context. We due this to avoid accidental big 3617 * additional stack usage in driver dispatch, in places where the originally 3618 * plugger did not intend it. 3619 */ 3620 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3621 bool from_schedule) 3622 __releases(q->queue_lock) 3623 { 3624 lockdep_assert_held(q->queue_lock); 3625 3626 trace_block_unplug(q, depth, !from_schedule); 3627 3628 if (from_schedule) 3629 blk_run_queue_async(q); 3630 else 3631 __blk_run_queue(q); 3632 spin_unlock(q->queue_lock); 3633 } 3634 3635 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3636 { 3637 LIST_HEAD(callbacks); 3638 3639 while (!list_empty(&plug->cb_list)) { 3640 list_splice_init(&plug->cb_list, &callbacks); 3641 3642 while (!list_empty(&callbacks)) { 3643 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3644 struct blk_plug_cb, 3645 list); 3646 list_del(&cb->list); 3647 cb->callback(cb, from_schedule); 3648 } 3649 } 3650 } 3651 3652 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3653 int size) 3654 { 3655 struct blk_plug *plug = current->plug; 3656 struct blk_plug_cb *cb; 3657 3658 if (!plug) 3659 return NULL; 3660 3661 list_for_each_entry(cb, &plug->cb_list, list) 3662 if (cb->callback == unplug && cb->data == data) 3663 return cb; 3664 3665 /* Not currently on the callback list */ 3666 BUG_ON(size < sizeof(*cb)); 3667 cb = kzalloc(size, GFP_ATOMIC); 3668 if (cb) { 3669 cb->data = data; 3670 cb->callback = unplug; 3671 list_add(&cb->list, &plug->cb_list); 3672 } 3673 return cb; 3674 } 3675 EXPORT_SYMBOL(blk_check_plugged); 3676 3677 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3678 { 3679 struct request_queue *q; 3680 unsigned long flags; 3681 struct request *rq; 3682 LIST_HEAD(list); 3683 unsigned int depth; 3684 3685 flush_plug_callbacks(plug, from_schedule); 3686 3687 if (!list_empty(&plug->mq_list)) 3688 blk_mq_flush_plug_list(plug, from_schedule); 3689 3690 if (list_empty(&plug->list)) 3691 return; 3692 3693 list_splice_init(&plug->list, &list); 3694 3695 list_sort(NULL, &list, plug_rq_cmp); 3696 3697 q = NULL; 3698 depth = 0; 3699 3700 /* 3701 * Save and disable interrupts here, to avoid doing it for every 3702 * queue lock we have to take. 3703 */ 3704 local_irq_save(flags); 3705 while (!list_empty(&list)) { 3706 rq = list_entry_rq(list.next); 3707 list_del_init(&rq->queuelist); 3708 BUG_ON(!rq->q); 3709 if (rq->q != q) { 3710 /* 3711 * This drops the queue lock 3712 */ 3713 if (q) 3714 queue_unplugged(q, depth, from_schedule); 3715 q = rq->q; 3716 depth = 0; 3717 spin_lock(q->queue_lock); 3718 } 3719 3720 /* 3721 * Short-circuit if @q is dead 3722 */ 3723 if (unlikely(blk_queue_dying(q))) { 3724 __blk_end_request_all(rq, BLK_STS_IOERR); 3725 continue; 3726 } 3727 3728 /* 3729 * rq is already accounted, so use raw insert 3730 */ 3731 if (op_is_flush(rq->cmd_flags)) 3732 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3733 else 3734 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3735 3736 depth++; 3737 } 3738 3739 /* 3740 * This drops the queue lock 3741 */ 3742 if (q) 3743 queue_unplugged(q, depth, from_schedule); 3744 3745 local_irq_restore(flags); 3746 } 3747 3748 void blk_finish_plug(struct blk_plug *plug) 3749 { 3750 if (plug != current->plug) 3751 return; 3752 blk_flush_plug_list(plug, false); 3753 3754 current->plug = NULL; 3755 } 3756 EXPORT_SYMBOL(blk_finish_plug); 3757 3758 #ifdef CONFIG_PM 3759 /** 3760 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3761 * @q: the queue of the device 3762 * @dev: the device the queue belongs to 3763 * 3764 * Description: 3765 * Initialize runtime-PM-related fields for @q and start auto suspend for 3766 * @dev. Drivers that want to take advantage of request-based runtime PM 3767 * should call this function after @dev has been initialized, and its 3768 * request queue @q has been allocated, and runtime PM for it can not happen 3769 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3770 * cases, driver should call this function before any I/O has taken place. 3771 * 3772 * This function takes care of setting up using auto suspend for the device, 3773 * the autosuspend delay is set to -1 to make runtime suspend impossible 3774 * until an updated value is either set by user or by driver. Drivers do 3775 * not need to touch other autosuspend settings. 3776 * 3777 * The block layer runtime PM is request based, so only works for drivers 3778 * that use request as their IO unit instead of those directly use bio's. 3779 */ 3780 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3781 { 3782 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3783 if (q->mq_ops) 3784 return; 3785 3786 q->dev = dev; 3787 q->rpm_status = RPM_ACTIVE; 3788 pm_runtime_set_autosuspend_delay(q->dev, -1); 3789 pm_runtime_use_autosuspend(q->dev); 3790 } 3791 EXPORT_SYMBOL(blk_pm_runtime_init); 3792 3793 /** 3794 * blk_pre_runtime_suspend - Pre runtime suspend check 3795 * @q: the queue of the device 3796 * 3797 * Description: 3798 * This function will check if runtime suspend is allowed for the device 3799 * by examining if there are any requests pending in the queue. If there 3800 * are requests pending, the device can not be runtime suspended; otherwise, 3801 * the queue's status will be updated to SUSPENDING and the driver can 3802 * proceed to suspend the device. 3803 * 3804 * For the not allowed case, we mark last busy for the device so that 3805 * runtime PM core will try to autosuspend it some time later. 3806 * 3807 * This function should be called near the start of the device's 3808 * runtime_suspend callback. 3809 * 3810 * Return: 3811 * 0 - OK to runtime suspend the device 3812 * -EBUSY - Device should not be runtime suspended 3813 */ 3814 int blk_pre_runtime_suspend(struct request_queue *q) 3815 { 3816 int ret = 0; 3817 3818 if (!q->dev) 3819 return ret; 3820 3821 spin_lock_irq(q->queue_lock); 3822 if (q->nr_pending) { 3823 ret = -EBUSY; 3824 pm_runtime_mark_last_busy(q->dev); 3825 } else { 3826 q->rpm_status = RPM_SUSPENDING; 3827 } 3828 spin_unlock_irq(q->queue_lock); 3829 return ret; 3830 } 3831 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3832 3833 /** 3834 * blk_post_runtime_suspend - Post runtime suspend processing 3835 * @q: the queue of the device 3836 * @err: return value of the device's runtime_suspend function 3837 * 3838 * Description: 3839 * Update the queue's runtime status according to the return value of the 3840 * device's runtime suspend function and mark last busy for the device so 3841 * that PM core will try to auto suspend the device at a later time. 3842 * 3843 * This function should be called near the end of the device's 3844 * runtime_suspend callback. 3845 */ 3846 void blk_post_runtime_suspend(struct request_queue *q, int err) 3847 { 3848 if (!q->dev) 3849 return; 3850 3851 spin_lock_irq(q->queue_lock); 3852 if (!err) { 3853 q->rpm_status = RPM_SUSPENDED; 3854 } else { 3855 q->rpm_status = RPM_ACTIVE; 3856 pm_runtime_mark_last_busy(q->dev); 3857 } 3858 spin_unlock_irq(q->queue_lock); 3859 } 3860 EXPORT_SYMBOL(blk_post_runtime_suspend); 3861 3862 /** 3863 * blk_pre_runtime_resume - Pre runtime resume processing 3864 * @q: the queue of the device 3865 * 3866 * Description: 3867 * Update the queue's runtime status to RESUMING in preparation for the 3868 * runtime resume of the device. 3869 * 3870 * This function should be called near the start of the device's 3871 * runtime_resume callback. 3872 */ 3873 void blk_pre_runtime_resume(struct request_queue *q) 3874 { 3875 if (!q->dev) 3876 return; 3877 3878 spin_lock_irq(q->queue_lock); 3879 q->rpm_status = RPM_RESUMING; 3880 spin_unlock_irq(q->queue_lock); 3881 } 3882 EXPORT_SYMBOL(blk_pre_runtime_resume); 3883 3884 /** 3885 * blk_post_runtime_resume - Post runtime resume processing 3886 * @q: the queue of the device 3887 * @err: return value of the device's runtime_resume function 3888 * 3889 * Description: 3890 * Update the queue's runtime status according to the return value of the 3891 * device's runtime_resume function. If it is successfully resumed, process 3892 * the requests that are queued into the device's queue when it is resuming 3893 * and then mark last busy and initiate autosuspend for it. 3894 * 3895 * This function should be called near the end of the device's 3896 * runtime_resume callback. 3897 */ 3898 void blk_post_runtime_resume(struct request_queue *q, int err) 3899 { 3900 if (!q->dev) 3901 return; 3902 3903 spin_lock_irq(q->queue_lock); 3904 if (!err) { 3905 q->rpm_status = RPM_ACTIVE; 3906 __blk_run_queue(q); 3907 pm_runtime_mark_last_busy(q->dev); 3908 pm_request_autosuspend(q->dev); 3909 } else { 3910 q->rpm_status = RPM_SUSPENDED; 3911 } 3912 spin_unlock_irq(q->queue_lock); 3913 } 3914 EXPORT_SYMBOL(blk_post_runtime_resume); 3915 3916 /** 3917 * blk_set_runtime_active - Force runtime status of the queue to be active 3918 * @q: the queue of the device 3919 * 3920 * If the device is left runtime suspended during system suspend the resume 3921 * hook typically resumes the device and corrects runtime status 3922 * accordingly. However, that does not affect the queue runtime PM status 3923 * which is still "suspended". This prevents processing requests from the 3924 * queue. 3925 * 3926 * This function can be used in driver's resume hook to correct queue 3927 * runtime PM status and re-enable peeking requests from the queue. It 3928 * should be called before first request is added to the queue. 3929 */ 3930 void blk_set_runtime_active(struct request_queue *q) 3931 { 3932 spin_lock_irq(q->queue_lock); 3933 q->rpm_status = RPM_ACTIVE; 3934 pm_runtime_mark_last_busy(q->dev); 3935 pm_request_autosuspend(q->dev); 3936 spin_unlock_irq(q->queue_lock); 3937 } 3938 EXPORT_SYMBOL(blk_set_runtime_active); 3939 #endif 3940 3941 int __init blk_dev_init(void) 3942 { 3943 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3944 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3945 FIELD_SIZEOF(struct request, cmd_flags)); 3946 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3947 FIELD_SIZEOF(struct bio, bi_opf)); 3948 3949 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3950 kblockd_workqueue = alloc_workqueue("kblockd", 3951 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3952 if (!kblockd_workqueue) 3953 panic("Failed to create kblockd\n"); 3954 3955 request_cachep = kmem_cache_create("blkdev_requests", 3956 sizeof(struct request), 0, SLAB_PANIC, NULL); 3957 3958 blk_requestq_cachep = kmem_cache_create("request_queue", 3959 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3960 3961 #ifdef CONFIG_DEBUG_FS 3962 blk_debugfs_root = debugfs_create_dir("block", NULL); 3963 #endif 3964 3965 return 0; 3966 } 3967