xref: /openbmc/linux/block/blk-core.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time = jiffies;
200 	set_start_time_ns(rq);
201 	rq->part = NULL;
202 	seqcount_init(&rq->gstate_seq);
203 	u64_stats_init(&rq->aborted_gstate_sync);
204 }
205 EXPORT_SYMBOL(blk_rq_init);
206 
207 static const struct {
208 	int		errno;
209 	const char	*name;
210 } blk_errors[] = {
211 	[BLK_STS_OK]		= { 0,		"" },
212 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
213 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
214 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
215 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
216 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
217 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
218 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
219 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
220 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
221 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
222 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
223 
224 	/* device mapper special case, should not leak out: */
225 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
226 
227 	/* everything else not covered above: */
228 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
229 };
230 
231 blk_status_t errno_to_blk_status(int errno)
232 {
233 	int i;
234 
235 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
236 		if (blk_errors[i].errno == errno)
237 			return (__force blk_status_t)i;
238 	}
239 
240 	return BLK_STS_IOERR;
241 }
242 EXPORT_SYMBOL_GPL(errno_to_blk_status);
243 
244 int blk_status_to_errno(blk_status_t status)
245 {
246 	int idx = (__force int)status;
247 
248 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
249 		return -EIO;
250 	return blk_errors[idx].errno;
251 }
252 EXPORT_SYMBOL_GPL(blk_status_to_errno);
253 
254 static void print_req_error(struct request *req, blk_status_t status)
255 {
256 	int idx = (__force int)status;
257 
258 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
259 		return;
260 
261 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
262 			   __func__, blk_errors[idx].name, req->rq_disk ?
263 			   req->rq_disk->disk_name : "?",
264 			   (unsigned long long)blk_rq_pos(req));
265 }
266 
267 static void req_bio_endio(struct request *rq, struct bio *bio,
268 			  unsigned int nbytes, blk_status_t error)
269 {
270 	if (error)
271 		bio->bi_status = error;
272 
273 	if (unlikely(rq->rq_flags & RQF_QUIET))
274 		bio_set_flag(bio, BIO_QUIET);
275 
276 	bio_advance(bio, nbytes);
277 
278 	/* don't actually finish bio if it's part of flush sequence */
279 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
280 		bio_endio(bio);
281 }
282 
283 void blk_dump_rq_flags(struct request *rq, char *msg)
284 {
285 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
286 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
287 		(unsigned long long) rq->cmd_flags);
288 
289 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
290 	       (unsigned long long)blk_rq_pos(rq),
291 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
292 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
293 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
294 }
295 EXPORT_SYMBOL(blk_dump_rq_flags);
296 
297 static void blk_delay_work(struct work_struct *work)
298 {
299 	struct request_queue *q;
300 
301 	q = container_of(work, struct request_queue, delay_work.work);
302 	spin_lock_irq(q->queue_lock);
303 	__blk_run_queue(q);
304 	spin_unlock_irq(q->queue_lock);
305 }
306 
307 /**
308  * blk_delay_queue - restart queueing after defined interval
309  * @q:		The &struct request_queue in question
310  * @msecs:	Delay in msecs
311  *
312  * Description:
313  *   Sometimes queueing needs to be postponed for a little while, to allow
314  *   resources to come back. This function will make sure that queueing is
315  *   restarted around the specified time.
316  */
317 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
318 {
319 	lockdep_assert_held(q->queue_lock);
320 	WARN_ON_ONCE(q->mq_ops);
321 
322 	if (likely(!blk_queue_dead(q)))
323 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
324 				   msecs_to_jiffies(msecs));
325 }
326 EXPORT_SYMBOL(blk_delay_queue);
327 
328 /**
329  * blk_start_queue_async - asynchronously restart a previously stopped queue
330  * @q:    The &struct request_queue in question
331  *
332  * Description:
333  *   blk_start_queue_async() will clear the stop flag on the queue, and
334  *   ensure that the request_fn for the queue is run from an async
335  *   context.
336  **/
337 void blk_start_queue_async(struct request_queue *q)
338 {
339 	lockdep_assert_held(q->queue_lock);
340 	WARN_ON_ONCE(q->mq_ops);
341 
342 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
343 	blk_run_queue_async(q);
344 }
345 EXPORT_SYMBOL(blk_start_queue_async);
346 
347 /**
348  * blk_start_queue - restart a previously stopped queue
349  * @q:    The &struct request_queue in question
350  *
351  * Description:
352  *   blk_start_queue() will clear the stop flag on the queue, and call
353  *   the request_fn for the queue if it was in a stopped state when
354  *   entered. Also see blk_stop_queue().
355  **/
356 void blk_start_queue(struct request_queue *q)
357 {
358 	lockdep_assert_held(q->queue_lock);
359 	WARN_ON(!in_interrupt() && !irqs_disabled());
360 	WARN_ON_ONCE(q->mq_ops);
361 
362 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
363 	__blk_run_queue(q);
364 }
365 EXPORT_SYMBOL(blk_start_queue);
366 
367 /**
368  * blk_stop_queue - stop a queue
369  * @q:    The &struct request_queue in question
370  *
371  * Description:
372  *   The Linux block layer assumes that a block driver will consume all
373  *   entries on the request queue when the request_fn strategy is called.
374  *   Often this will not happen, because of hardware limitations (queue
375  *   depth settings). If a device driver gets a 'queue full' response,
376  *   or if it simply chooses not to queue more I/O at one point, it can
377  *   call this function to prevent the request_fn from being called until
378  *   the driver has signalled it's ready to go again. This happens by calling
379  *   blk_start_queue() to restart queue operations.
380  **/
381 void blk_stop_queue(struct request_queue *q)
382 {
383 	lockdep_assert_held(q->queue_lock);
384 	WARN_ON_ONCE(q->mq_ops);
385 
386 	cancel_delayed_work(&q->delay_work);
387 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
388 }
389 EXPORT_SYMBOL(blk_stop_queue);
390 
391 /**
392  * blk_sync_queue - cancel any pending callbacks on a queue
393  * @q: the queue
394  *
395  * Description:
396  *     The block layer may perform asynchronous callback activity
397  *     on a queue, such as calling the unplug function after a timeout.
398  *     A block device may call blk_sync_queue to ensure that any
399  *     such activity is cancelled, thus allowing it to release resources
400  *     that the callbacks might use. The caller must already have made sure
401  *     that its ->make_request_fn will not re-add plugging prior to calling
402  *     this function.
403  *
404  *     This function does not cancel any asynchronous activity arising
405  *     out of elevator or throttling code. That would require elevator_exit()
406  *     and blkcg_exit_queue() to be called with queue lock initialized.
407  *
408  */
409 void blk_sync_queue(struct request_queue *q)
410 {
411 	del_timer_sync(&q->timeout);
412 	cancel_work_sync(&q->timeout_work);
413 
414 	if (q->mq_ops) {
415 		struct blk_mq_hw_ctx *hctx;
416 		int i;
417 
418 		cancel_delayed_work_sync(&q->requeue_work);
419 		queue_for_each_hw_ctx(q, hctx, i)
420 			cancel_delayed_work_sync(&hctx->run_work);
421 	} else {
422 		cancel_delayed_work_sync(&q->delay_work);
423 	}
424 }
425 EXPORT_SYMBOL(blk_sync_queue);
426 
427 /**
428  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
429  * @q: request queue pointer
430  *
431  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
432  * set and 1 if the flag was already set.
433  */
434 int blk_set_preempt_only(struct request_queue *q)
435 {
436 	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
437 }
438 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
439 
440 void blk_clear_preempt_only(struct request_queue *q)
441 {
442 	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
443 	wake_up_all(&q->mq_freeze_wq);
444 }
445 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
446 
447 /**
448  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
449  * @q:	The queue to run
450  *
451  * Description:
452  *    Invoke request handling on a queue if there are any pending requests.
453  *    May be used to restart request handling after a request has completed.
454  *    This variant runs the queue whether or not the queue has been
455  *    stopped. Must be called with the queue lock held and interrupts
456  *    disabled. See also @blk_run_queue.
457  */
458 inline void __blk_run_queue_uncond(struct request_queue *q)
459 {
460 	lockdep_assert_held(q->queue_lock);
461 	WARN_ON_ONCE(q->mq_ops);
462 
463 	if (unlikely(blk_queue_dead(q)))
464 		return;
465 
466 	/*
467 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
468 	 * the queue lock internally. As a result multiple threads may be
469 	 * running such a request function concurrently. Keep track of the
470 	 * number of active request_fn invocations such that blk_drain_queue()
471 	 * can wait until all these request_fn calls have finished.
472 	 */
473 	q->request_fn_active++;
474 	q->request_fn(q);
475 	q->request_fn_active--;
476 }
477 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
478 
479 /**
480  * __blk_run_queue - run a single device queue
481  * @q:	The queue to run
482  *
483  * Description:
484  *    See @blk_run_queue.
485  */
486 void __blk_run_queue(struct request_queue *q)
487 {
488 	lockdep_assert_held(q->queue_lock);
489 	WARN_ON_ONCE(q->mq_ops);
490 
491 	if (unlikely(blk_queue_stopped(q)))
492 		return;
493 
494 	__blk_run_queue_uncond(q);
495 }
496 EXPORT_SYMBOL(__blk_run_queue);
497 
498 /**
499  * blk_run_queue_async - run a single device queue in workqueue context
500  * @q:	The queue to run
501  *
502  * Description:
503  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
504  *    of us.
505  *
506  * Note:
507  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
508  *    has canceled q->delay_work, callers must hold the queue lock to avoid
509  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
510  */
511 void blk_run_queue_async(struct request_queue *q)
512 {
513 	lockdep_assert_held(q->queue_lock);
514 	WARN_ON_ONCE(q->mq_ops);
515 
516 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
517 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
518 }
519 EXPORT_SYMBOL(blk_run_queue_async);
520 
521 /**
522  * blk_run_queue - run a single device queue
523  * @q: The queue to run
524  *
525  * Description:
526  *    Invoke request handling on this queue, if it has pending work to do.
527  *    May be used to restart queueing when a request has completed.
528  */
529 void blk_run_queue(struct request_queue *q)
530 {
531 	unsigned long flags;
532 
533 	WARN_ON_ONCE(q->mq_ops);
534 
535 	spin_lock_irqsave(q->queue_lock, flags);
536 	__blk_run_queue(q);
537 	spin_unlock_irqrestore(q->queue_lock, flags);
538 }
539 EXPORT_SYMBOL(blk_run_queue);
540 
541 void blk_put_queue(struct request_queue *q)
542 {
543 	kobject_put(&q->kobj);
544 }
545 EXPORT_SYMBOL(blk_put_queue);
546 
547 /**
548  * __blk_drain_queue - drain requests from request_queue
549  * @q: queue to drain
550  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
551  *
552  * Drain requests from @q.  If @drain_all is set, all requests are drained.
553  * If not, only ELVPRIV requests are drained.  The caller is responsible
554  * for ensuring that no new requests which need to be drained are queued.
555  */
556 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
557 	__releases(q->queue_lock)
558 	__acquires(q->queue_lock)
559 {
560 	int i;
561 
562 	lockdep_assert_held(q->queue_lock);
563 	WARN_ON_ONCE(q->mq_ops);
564 
565 	while (true) {
566 		bool drain = false;
567 
568 		/*
569 		 * The caller might be trying to drain @q before its
570 		 * elevator is initialized.
571 		 */
572 		if (q->elevator)
573 			elv_drain_elevator(q);
574 
575 		blkcg_drain_queue(q);
576 
577 		/*
578 		 * This function might be called on a queue which failed
579 		 * driver init after queue creation or is not yet fully
580 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
581 		 * in such cases.  Kick queue iff dispatch queue has
582 		 * something on it and @q has request_fn set.
583 		 */
584 		if (!list_empty(&q->queue_head) && q->request_fn)
585 			__blk_run_queue(q);
586 
587 		drain |= q->nr_rqs_elvpriv;
588 		drain |= q->request_fn_active;
589 
590 		/*
591 		 * Unfortunately, requests are queued at and tracked from
592 		 * multiple places and there's no single counter which can
593 		 * be drained.  Check all the queues and counters.
594 		 */
595 		if (drain_all) {
596 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
597 			drain |= !list_empty(&q->queue_head);
598 			for (i = 0; i < 2; i++) {
599 				drain |= q->nr_rqs[i];
600 				drain |= q->in_flight[i];
601 				if (fq)
602 				    drain |= !list_empty(&fq->flush_queue[i]);
603 			}
604 		}
605 
606 		if (!drain)
607 			break;
608 
609 		spin_unlock_irq(q->queue_lock);
610 
611 		msleep(10);
612 
613 		spin_lock_irq(q->queue_lock);
614 	}
615 
616 	/*
617 	 * With queue marked dead, any woken up waiter will fail the
618 	 * allocation path, so the wakeup chaining is lost and we're
619 	 * left with hung waiters. We need to wake up those waiters.
620 	 */
621 	if (q->request_fn) {
622 		struct request_list *rl;
623 
624 		blk_queue_for_each_rl(rl, q)
625 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
626 				wake_up_all(&rl->wait[i]);
627 	}
628 }
629 
630 void blk_drain_queue(struct request_queue *q)
631 {
632 	spin_lock_irq(q->queue_lock);
633 	__blk_drain_queue(q, true);
634 	spin_unlock_irq(q->queue_lock);
635 }
636 
637 /**
638  * blk_queue_bypass_start - enter queue bypass mode
639  * @q: queue of interest
640  *
641  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
642  * function makes @q enter bypass mode and drains all requests which were
643  * throttled or issued before.  On return, it's guaranteed that no request
644  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
645  * inside queue or RCU read lock.
646  */
647 void blk_queue_bypass_start(struct request_queue *q)
648 {
649 	WARN_ON_ONCE(q->mq_ops);
650 
651 	spin_lock_irq(q->queue_lock);
652 	q->bypass_depth++;
653 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
654 	spin_unlock_irq(q->queue_lock);
655 
656 	/*
657 	 * Queues start drained.  Skip actual draining till init is
658 	 * complete.  This avoids lenghty delays during queue init which
659 	 * can happen many times during boot.
660 	 */
661 	if (blk_queue_init_done(q)) {
662 		spin_lock_irq(q->queue_lock);
663 		__blk_drain_queue(q, false);
664 		spin_unlock_irq(q->queue_lock);
665 
666 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
667 		synchronize_rcu();
668 	}
669 }
670 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
671 
672 /**
673  * blk_queue_bypass_end - leave queue bypass mode
674  * @q: queue of interest
675  *
676  * Leave bypass mode and restore the normal queueing behavior.
677  *
678  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
679  * this function is called for both blk-sq and blk-mq queues.
680  */
681 void blk_queue_bypass_end(struct request_queue *q)
682 {
683 	spin_lock_irq(q->queue_lock);
684 	if (!--q->bypass_depth)
685 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
686 	WARN_ON_ONCE(q->bypass_depth < 0);
687 	spin_unlock_irq(q->queue_lock);
688 }
689 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
690 
691 void blk_set_queue_dying(struct request_queue *q)
692 {
693 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
694 
695 	/*
696 	 * When queue DYING flag is set, we need to block new req
697 	 * entering queue, so we call blk_freeze_queue_start() to
698 	 * prevent I/O from crossing blk_queue_enter().
699 	 */
700 	blk_freeze_queue_start(q);
701 
702 	if (q->mq_ops)
703 		blk_mq_wake_waiters(q);
704 	else {
705 		struct request_list *rl;
706 
707 		spin_lock_irq(q->queue_lock);
708 		blk_queue_for_each_rl(rl, q) {
709 			if (rl->rq_pool) {
710 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
711 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
712 			}
713 		}
714 		spin_unlock_irq(q->queue_lock);
715 	}
716 
717 	/* Make blk_queue_enter() reexamine the DYING flag. */
718 	wake_up_all(&q->mq_freeze_wq);
719 }
720 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
721 
722 /**
723  * blk_cleanup_queue - shutdown a request queue
724  * @q: request queue to shutdown
725  *
726  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
727  * put it.  All future requests will be failed immediately with -ENODEV.
728  */
729 void blk_cleanup_queue(struct request_queue *q)
730 {
731 	spinlock_t *lock = q->queue_lock;
732 
733 	/* mark @q DYING, no new request or merges will be allowed afterwards */
734 	mutex_lock(&q->sysfs_lock);
735 	blk_set_queue_dying(q);
736 	spin_lock_irq(lock);
737 
738 	/*
739 	 * A dying queue is permanently in bypass mode till released.  Note
740 	 * that, unlike blk_queue_bypass_start(), we aren't performing
741 	 * synchronize_rcu() after entering bypass mode to avoid the delay
742 	 * as some drivers create and destroy a lot of queues while
743 	 * probing.  This is still safe because blk_release_queue() will be
744 	 * called only after the queue refcnt drops to zero and nothing,
745 	 * RCU or not, would be traversing the queue by then.
746 	 */
747 	q->bypass_depth++;
748 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
749 
750 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
751 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
752 	queue_flag_set(QUEUE_FLAG_DYING, q);
753 	spin_unlock_irq(lock);
754 	mutex_unlock(&q->sysfs_lock);
755 
756 	/*
757 	 * Drain all requests queued before DYING marking. Set DEAD flag to
758 	 * prevent that q->request_fn() gets invoked after draining finished.
759 	 */
760 	blk_freeze_queue(q);
761 	spin_lock_irq(lock);
762 	queue_flag_set(QUEUE_FLAG_DEAD, q);
763 	spin_unlock_irq(lock);
764 
765 	/*
766 	 * make sure all in-progress dispatch are completed because
767 	 * blk_freeze_queue() can only complete all requests, and
768 	 * dispatch may still be in-progress since we dispatch requests
769 	 * from more than one contexts
770 	 */
771 	if (q->mq_ops)
772 		blk_mq_quiesce_queue(q);
773 
774 	/* for synchronous bio-based driver finish in-flight integrity i/o */
775 	blk_flush_integrity();
776 
777 	/* @q won't process any more request, flush async actions */
778 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
779 	blk_sync_queue(q);
780 
781 	/*
782 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
783 	 * has been removed.
784 	 */
785 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
786 
787 	/*
788 	 * Since the I/O scheduler exit code may access cgroup information,
789 	 * perform I/O scheduler exit before disassociating from the block
790 	 * cgroup controller.
791 	 */
792 	if (q->elevator) {
793 		ioc_clear_queue(q);
794 		elevator_exit(q, q->elevator);
795 		q->elevator = NULL;
796 	}
797 
798 	/*
799 	 * Remove all references to @q from the block cgroup controller before
800 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
801 	 * e.g. blkcg_print_blkgs() to crash.
802 	 */
803 	blkcg_exit_queue(q);
804 
805 	/*
806 	 * Since the cgroup code may dereference the @q->backing_dev_info
807 	 * pointer, only decrease its reference count after having removed the
808 	 * association with the block cgroup controller.
809 	 */
810 	bdi_put(q->backing_dev_info);
811 
812 	if (q->mq_ops)
813 		blk_mq_free_queue(q);
814 	percpu_ref_exit(&q->q_usage_counter);
815 
816 	spin_lock_irq(lock);
817 	if (q->queue_lock != &q->__queue_lock)
818 		q->queue_lock = &q->__queue_lock;
819 	spin_unlock_irq(lock);
820 
821 	/* @q is and will stay empty, shutdown and put */
822 	blk_put_queue(q);
823 }
824 EXPORT_SYMBOL(blk_cleanup_queue);
825 
826 /* Allocate memory local to the request queue */
827 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
828 {
829 	struct request_queue *q = data;
830 
831 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
832 }
833 
834 static void free_request_simple(void *element, void *data)
835 {
836 	kmem_cache_free(request_cachep, element);
837 }
838 
839 static void *alloc_request_size(gfp_t gfp_mask, void *data)
840 {
841 	struct request_queue *q = data;
842 	struct request *rq;
843 
844 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
845 			q->node);
846 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
847 		kfree(rq);
848 		rq = NULL;
849 	}
850 	return rq;
851 }
852 
853 static void free_request_size(void *element, void *data)
854 {
855 	struct request_queue *q = data;
856 
857 	if (q->exit_rq_fn)
858 		q->exit_rq_fn(q, element);
859 	kfree(element);
860 }
861 
862 int blk_init_rl(struct request_list *rl, struct request_queue *q,
863 		gfp_t gfp_mask)
864 {
865 	if (unlikely(rl->rq_pool) || q->mq_ops)
866 		return 0;
867 
868 	rl->q = q;
869 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
870 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
871 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
872 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
873 
874 	if (q->cmd_size) {
875 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 				alloc_request_size, free_request_size,
877 				q, gfp_mask, q->node);
878 	} else {
879 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
880 				alloc_request_simple, free_request_simple,
881 				q, gfp_mask, q->node);
882 	}
883 	if (!rl->rq_pool)
884 		return -ENOMEM;
885 
886 	if (rl != &q->root_rl)
887 		WARN_ON_ONCE(!blk_get_queue(q));
888 
889 	return 0;
890 }
891 
892 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
893 {
894 	if (rl->rq_pool) {
895 		mempool_destroy(rl->rq_pool);
896 		if (rl != &q->root_rl)
897 			blk_put_queue(q);
898 	}
899 }
900 
901 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
902 {
903 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
904 }
905 EXPORT_SYMBOL(blk_alloc_queue);
906 
907 /**
908  * blk_queue_enter() - try to increase q->q_usage_counter
909  * @q: request queue pointer
910  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
911  */
912 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
913 {
914 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
915 
916 	while (true) {
917 		bool success = false;
918 		int ret;
919 
920 		rcu_read_lock();
921 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
922 			/*
923 			 * The code that sets the PREEMPT_ONLY flag is
924 			 * responsible for ensuring that that flag is globally
925 			 * visible before the queue is unfrozen.
926 			 */
927 			if (preempt || !blk_queue_preempt_only(q)) {
928 				success = true;
929 			} else {
930 				percpu_ref_put(&q->q_usage_counter);
931 			}
932 		}
933 		rcu_read_unlock();
934 
935 		if (success)
936 			return 0;
937 
938 		if (flags & BLK_MQ_REQ_NOWAIT)
939 			return -EBUSY;
940 
941 		/*
942 		 * read pair of barrier in blk_freeze_queue_start(),
943 		 * we need to order reading __PERCPU_REF_DEAD flag of
944 		 * .q_usage_counter and reading .mq_freeze_depth or
945 		 * queue dying flag, otherwise the following wait may
946 		 * never return if the two reads are reordered.
947 		 */
948 		smp_rmb();
949 
950 		ret = wait_event_interruptible(q->mq_freeze_wq,
951 				(atomic_read(&q->mq_freeze_depth) == 0 &&
952 				 (preempt || !blk_queue_preempt_only(q))) ||
953 				blk_queue_dying(q));
954 		if (blk_queue_dying(q))
955 			return -ENODEV;
956 		if (ret)
957 			return ret;
958 	}
959 }
960 
961 void blk_queue_exit(struct request_queue *q)
962 {
963 	percpu_ref_put(&q->q_usage_counter);
964 }
965 
966 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
967 {
968 	struct request_queue *q =
969 		container_of(ref, struct request_queue, q_usage_counter);
970 
971 	wake_up_all(&q->mq_freeze_wq);
972 }
973 
974 static void blk_rq_timed_out_timer(struct timer_list *t)
975 {
976 	struct request_queue *q = from_timer(q, t, timeout);
977 
978 	kblockd_schedule_work(&q->timeout_work);
979 }
980 
981 /**
982  * blk_alloc_queue_node - allocate a request queue
983  * @gfp_mask: memory allocation flags
984  * @node_id: NUMA node to allocate memory from
985  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
986  *        serialize calls to the legacy .request_fn() callback. Ignored for
987  *	  blk-mq request queues.
988  *
989  * Note: pass the queue lock as the third argument to this function instead of
990  * setting the queue lock pointer explicitly to avoid triggering a sporadic
991  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
992  * the queue lock pointer must be set before blkcg_init_queue() is called.
993  */
994 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
995 					   spinlock_t *lock)
996 {
997 	struct request_queue *q;
998 
999 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1000 				gfp_mask | __GFP_ZERO, node_id);
1001 	if (!q)
1002 		return NULL;
1003 
1004 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1005 	if (q->id < 0)
1006 		goto fail_q;
1007 
1008 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1009 	if (!q->bio_split)
1010 		goto fail_id;
1011 
1012 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1013 	if (!q->backing_dev_info)
1014 		goto fail_split;
1015 
1016 	q->stats = blk_alloc_queue_stats();
1017 	if (!q->stats)
1018 		goto fail_stats;
1019 
1020 	q->backing_dev_info->ra_pages =
1021 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1022 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1023 	q->backing_dev_info->name = "block";
1024 	q->node = node_id;
1025 
1026 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1027 		    laptop_mode_timer_fn, 0);
1028 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1029 	INIT_WORK(&q->timeout_work, NULL);
1030 	INIT_LIST_HEAD(&q->queue_head);
1031 	INIT_LIST_HEAD(&q->timeout_list);
1032 	INIT_LIST_HEAD(&q->icq_list);
1033 #ifdef CONFIG_BLK_CGROUP
1034 	INIT_LIST_HEAD(&q->blkg_list);
1035 #endif
1036 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1037 
1038 	kobject_init(&q->kobj, &blk_queue_ktype);
1039 
1040 #ifdef CONFIG_BLK_DEV_IO_TRACE
1041 	mutex_init(&q->blk_trace_mutex);
1042 #endif
1043 	mutex_init(&q->sysfs_lock);
1044 	spin_lock_init(&q->__queue_lock);
1045 
1046 	if (!q->mq_ops)
1047 		q->queue_lock = lock ? : &q->__queue_lock;
1048 
1049 	/*
1050 	 * A queue starts its life with bypass turned on to avoid
1051 	 * unnecessary bypass on/off overhead and nasty surprises during
1052 	 * init.  The initial bypass will be finished when the queue is
1053 	 * registered by blk_register_queue().
1054 	 */
1055 	q->bypass_depth = 1;
1056 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1057 
1058 	init_waitqueue_head(&q->mq_freeze_wq);
1059 
1060 	/*
1061 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1062 	 * See blk_register_queue() for details.
1063 	 */
1064 	if (percpu_ref_init(&q->q_usage_counter,
1065 				blk_queue_usage_counter_release,
1066 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1067 		goto fail_bdi;
1068 
1069 	if (blkcg_init_queue(q))
1070 		goto fail_ref;
1071 
1072 	return q;
1073 
1074 fail_ref:
1075 	percpu_ref_exit(&q->q_usage_counter);
1076 fail_bdi:
1077 	blk_free_queue_stats(q->stats);
1078 fail_stats:
1079 	bdi_put(q->backing_dev_info);
1080 fail_split:
1081 	bioset_free(q->bio_split);
1082 fail_id:
1083 	ida_simple_remove(&blk_queue_ida, q->id);
1084 fail_q:
1085 	kmem_cache_free(blk_requestq_cachep, q);
1086 	return NULL;
1087 }
1088 EXPORT_SYMBOL(blk_alloc_queue_node);
1089 
1090 /**
1091  * blk_init_queue  - prepare a request queue for use with a block device
1092  * @rfn:  The function to be called to process requests that have been
1093  *        placed on the queue.
1094  * @lock: Request queue spin lock
1095  *
1096  * Description:
1097  *    If a block device wishes to use the standard request handling procedures,
1098  *    which sorts requests and coalesces adjacent requests, then it must
1099  *    call blk_init_queue().  The function @rfn will be called when there
1100  *    are requests on the queue that need to be processed.  If the device
1101  *    supports plugging, then @rfn may not be called immediately when requests
1102  *    are available on the queue, but may be called at some time later instead.
1103  *    Plugged queues are generally unplugged when a buffer belonging to one
1104  *    of the requests on the queue is needed, or due to memory pressure.
1105  *
1106  *    @rfn is not required, or even expected, to remove all requests off the
1107  *    queue, but only as many as it can handle at a time.  If it does leave
1108  *    requests on the queue, it is responsible for arranging that the requests
1109  *    get dealt with eventually.
1110  *
1111  *    The queue spin lock must be held while manipulating the requests on the
1112  *    request queue; this lock will be taken also from interrupt context, so irq
1113  *    disabling is needed for it.
1114  *
1115  *    Function returns a pointer to the initialized request queue, or %NULL if
1116  *    it didn't succeed.
1117  *
1118  * Note:
1119  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1120  *    when the block device is deactivated (such as at module unload).
1121  **/
1122 
1123 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1124 {
1125 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1126 }
1127 EXPORT_SYMBOL(blk_init_queue);
1128 
1129 struct request_queue *
1130 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1131 {
1132 	struct request_queue *q;
1133 
1134 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1135 	if (!q)
1136 		return NULL;
1137 
1138 	q->request_fn = rfn;
1139 	if (blk_init_allocated_queue(q) < 0) {
1140 		blk_cleanup_queue(q);
1141 		return NULL;
1142 	}
1143 
1144 	return q;
1145 }
1146 EXPORT_SYMBOL(blk_init_queue_node);
1147 
1148 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1149 
1150 
1151 int blk_init_allocated_queue(struct request_queue *q)
1152 {
1153 	WARN_ON_ONCE(q->mq_ops);
1154 
1155 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1156 	if (!q->fq)
1157 		return -ENOMEM;
1158 
1159 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1160 		goto out_free_flush_queue;
1161 
1162 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1163 		goto out_exit_flush_rq;
1164 
1165 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1166 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1167 
1168 	/*
1169 	 * This also sets hw/phys segments, boundary and size
1170 	 */
1171 	blk_queue_make_request(q, blk_queue_bio);
1172 
1173 	q->sg_reserved_size = INT_MAX;
1174 
1175 	/* Protect q->elevator from elevator_change */
1176 	mutex_lock(&q->sysfs_lock);
1177 
1178 	/* init elevator */
1179 	if (elevator_init(q, NULL)) {
1180 		mutex_unlock(&q->sysfs_lock);
1181 		goto out_exit_flush_rq;
1182 	}
1183 
1184 	mutex_unlock(&q->sysfs_lock);
1185 	return 0;
1186 
1187 out_exit_flush_rq:
1188 	if (q->exit_rq_fn)
1189 		q->exit_rq_fn(q, q->fq->flush_rq);
1190 out_free_flush_queue:
1191 	blk_free_flush_queue(q->fq);
1192 	return -ENOMEM;
1193 }
1194 EXPORT_SYMBOL(blk_init_allocated_queue);
1195 
1196 bool blk_get_queue(struct request_queue *q)
1197 {
1198 	if (likely(!blk_queue_dying(q))) {
1199 		__blk_get_queue(q);
1200 		return true;
1201 	}
1202 
1203 	return false;
1204 }
1205 EXPORT_SYMBOL(blk_get_queue);
1206 
1207 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1208 {
1209 	if (rq->rq_flags & RQF_ELVPRIV) {
1210 		elv_put_request(rl->q, rq);
1211 		if (rq->elv.icq)
1212 			put_io_context(rq->elv.icq->ioc);
1213 	}
1214 
1215 	mempool_free(rq, rl->rq_pool);
1216 }
1217 
1218 /*
1219  * ioc_batching returns true if the ioc is a valid batching request and
1220  * should be given priority access to a request.
1221  */
1222 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1223 {
1224 	if (!ioc)
1225 		return 0;
1226 
1227 	/*
1228 	 * Make sure the process is able to allocate at least 1 request
1229 	 * even if the batch times out, otherwise we could theoretically
1230 	 * lose wakeups.
1231 	 */
1232 	return ioc->nr_batch_requests == q->nr_batching ||
1233 		(ioc->nr_batch_requests > 0
1234 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1235 }
1236 
1237 /*
1238  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1239  * will cause the process to be a "batcher" on all queues in the system. This
1240  * is the behaviour we want though - once it gets a wakeup it should be given
1241  * a nice run.
1242  */
1243 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1244 {
1245 	if (!ioc || ioc_batching(q, ioc))
1246 		return;
1247 
1248 	ioc->nr_batch_requests = q->nr_batching;
1249 	ioc->last_waited = jiffies;
1250 }
1251 
1252 static void __freed_request(struct request_list *rl, int sync)
1253 {
1254 	struct request_queue *q = rl->q;
1255 
1256 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1257 		blk_clear_congested(rl, sync);
1258 
1259 	if (rl->count[sync] + 1 <= q->nr_requests) {
1260 		if (waitqueue_active(&rl->wait[sync]))
1261 			wake_up(&rl->wait[sync]);
1262 
1263 		blk_clear_rl_full(rl, sync);
1264 	}
1265 }
1266 
1267 /*
1268  * A request has just been released.  Account for it, update the full and
1269  * congestion status, wake up any waiters.   Called under q->queue_lock.
1270  */
1271 static void freed_request(struct request_list *rl, bool sync,
1272 		req_flags_t rq_flags)
1273 {
1274 	struct request_queue *q = rl->q;
1275 
1276 	q->nr_rqs[sync]--;
1277 	rl->count[sync]--;
1278 	if (rq_flags & RQF_ELVPRIV)
1279 		q->nr_rqs_elvpriv--;
1280 
1281 	__freed_request(rl, sync);
1282 
1283 	if (unlikely(rl->starved[sync ^ 1]))
1284 		__freed_request(rl, sync ^ 1);
1285 }
1286 
1287 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1288 {
1289 	struct request_list *rl;
1290 	int on_thresh, off_thresh;
1291 
1292 	WARN_ON_ONCE(q->mq_ops);
1293 
1294 	spin_lock_irq(q->queue_lock);
1295 	q->nr_requests = nr;
1296 	blk_queue_congestion_threshold(q);
1297 	on_thresh = queue_congestion_on_threshold(q);
1298 	off_thresh = queue_congestion_off_threshold(q);
1299 
1300 	blk_queue_for_each_rl(rl, q) {
1301 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1302 			blk_set_congested(rl, BLK_RW_SYNC);
1303 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1304 			blk_clear_congested(rl, BLK_RW_SYNC);
1305 
1306 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1307 			blk_set_congested(rl, BLK_RW_ASYNC);
1308 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1309 			blk_clear_congested(rl, BLK_RW_ASYNC);
1310 
1311 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1312 			blk_set_rl_full(rl, BLK_RW_SYNC);
1313 		} else {
1314 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1315 			wake_up(&rl->wait[BLK_RW_SYNC]);
1316 		}
1317 
1318 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1319 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1320 		} else {
1321 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1322 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1323 		}
1324 	}
1325 
1326 	spin_unlock_irq(q->queue_lock);
1327 	return 0;
1328 }
1329 
1330 /**
1331  * __get_request - get a free request
1332  * @rl: request list to allocate from
1333  * @op: operation and flags
1334  * @bio: bio to allocate request for (can be %NULL)
1335  * @flags: BLQ_MQ_REQ_* flags
1336  *
1337  * Get a free request from @q.  This function may fail under memory
1338  * pressure or if @q is dead.
1339  *
1340  * Must be called with @q->queue_lock held and,
1341  * Returns ERR_PTR on failure, with @q->queue_lock held.
1342  * Returns request pointer on success, with @q->queue_lock *not held*.
1343  */
1344 static struct request *__get_request(struct request_list *rl, unsigned int op,
1345 				     struct bio *bio, blk_mq_req_flags_t flags)
1346 {
1347 	struct request_queue *q = rl->q;
1348 	struct request *rq;
1349 	struct elevator_type *et = q->elevator->type;
1350 	struct io_context *ioc = rq_ioc(bio);
1351 	struct io_cq *icq = NULL;
1352 	const bool is_sync = op_is_sync(op);
1353 	int may_queue;
1354 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1355 			 __GFP_DIRECT_RECLAIM;
1356 	req_flags_t rq_flags = RQF_ALLOCED;
1357 
1358 	lockdep_assert_held(q->queue_lock);
1359 
1360 	if (unlikely(blk_queue_dying(q)))
1361 		return ERR_PTR(-ENODEV);
1362 
1363 	may_queue = elv_may_queue(q, op);
1364 	if (may_queue == ELV_MQUEUE_NO)
1365 		goto rq_starved;
1366 
1367 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1368 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1369 			/*
1370 			 * The queue will fill after this allocation, so set
1371 			 * it as full, and mark this process as "batching".
1372 			 * This process will be allowed to complete a batch of
1373 			 * requests, others will be blocked.
1374 			 */
1375 			if (!blk_rl_full(rl, is_sync)) {
1376 				ioc_set_batching(q, ioc);
1377 				blk_set_rl_full(rl, is_sync);
1378 			} else {
1379 				if (may_queue != ELV_MQUEUE_MUST
1380 						&& !ioc_batching(q, ioc)) {
1381 					/*
1382 					 * The queue is full and the allocating
1383 					 * process is not a "batcher", and not
1384 					 * exempted by the IO scheduler
1385 					 */
1386 					return ERR_PTR(-ENOMEM);
1387 				}
1388 			}
1389 		}
1390 		blk_set_congested(rl, is_sync);
1391 	}
1392 
1393 	/*
1394 	 * Only allow batching queuers to allocate up to 50% over the defined
1395 	 * limit of requests, otherwise we could have thousands of requests
1396 	 * allocated with any setting of ->nr_requests
1397 	 */
1398 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1399 		return ERR_PTR(-ENOMEM);
1400 
1401 	q->nr_rqs[is_sync]++;
1402 	rl->count[is_sync]++;
1403 	rl->starved[is_sync] = 0;
1404 
1405 	/*
1406 	 * Decide whether the new request will be managed by elevator.  If
1407 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1408 	 * prevent the current elevator from being destroyed until the new
1409 	 * request is freed.  This guarantees icq's won't be destroyed and
1410 	 * makes creating new ones safe.
1411 	 *
1412 	 * Flush requests do not use the elevator so skip initialization.
1413 	 * This allows a request to share the flush and elevator data.
1414 	 *
1415 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1416 	 * it will be created after releasing queue_lock.
1417 	 */
1418 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1419 		rq_flags |= RQF_ELVPRIV;
1420 		q->nr_rqs_elvpriv++;
1421 		if (et->icq_cache && ioc)
1422 			icq = ioc_lookup_icq(ioc, q);
1423 	}
1424 
1425 	if (blk_queue_io_stat(q))
1426 		rq_flags |= RQF_IO_STAT;
1427 	spin_unlock_irq(q->queue_lock);
1428 
1429 	/* allocate and init request */
1430 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1431 	if (!rq)
1432 		goto fail_alloc;
1433 
1434 	blk_rq_init(q, rq);
1435 	blk_rq_set_rl(rq, rl);
1436 	rq->cmd_flags = op;
1437 	rq->rq_flags = rq_flags;
1438 	if (flags & BLK_MQ_REQ_PREEMPT)
1439 		rq->rq_flags |= RQF_PREEMPT;
1440 
1441 	/* init elvpriv */
1442 	if (rq_flags & RQF_ELVPRIV) {
1443 		if (unlikely(et->icq_cache && !icq)) {
1444 			if (ioc)
1445 				icq = ioc_create_icq(ioc, q, gfp_mask);
1446 			if (!icq)
1447 				goto fail_elvpriv;
1448 		}
1449 
1450 		rq->elv.icq = icq;
1451 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1452 			goto fail_elvpriv;
1453 
1454 		/* @rq->elv.icq holds io_context until @rq is freed */
1455 		if (icq)
1456 			get_io_context(icq->ioc);
1457 	}
1458 out:
1459 	/*
1460 	 * ioc may be NULL here, and ioc_batching will be false. That's
1461 	 * OK, if the queue is under the request limit then requests need
1462 	 * not count toward the nr_batch_requests limit. There will always
1463 	 * be some limit enforced by BLK_BATCH_TIME.
1464 	 */
1465 	if (ioc_batching(q, ioc))
1466 		ioc->nr_batch_requests--;
1467 
1468 	trace_block_getrq(q, bio, op);
1469 	return rq;
1470 
1471 fail_elvpriv:
1472 	/*
1473 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1474 	 * and may fail indefinitely under memory pressure and thus
1475 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1476 	 * disturb iosched and blkcg but weird is bettern than dead.
1477 	 */
1478 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1479 			   __func__, dev_name(q->backing_dev_info->dev));
1480 
1481 	rq->rq_flags &= ~RQF_ELVPRIV;
1482 	rq->elv.icq = NULL;
1483 
1484 	spin_lock_irq(q->queue_lock);
1485 	q->nr_rqs_elvpriv--;
1486 	spin_unlock_irq(q->queue_lock);
1487 	goto out;
1488 
1489 fail_alloc:
1490 	/*
1491 	 * Allocation failed presumably due to memory. Undo anything we
1492 	 * might have messed up.
1493 	 *
1494 	 * Allocating task should really be put onto the front of the wait
1495 	 * queue, but this is pretty rare.
1496 	 */
1497 	spin_lock_irq(q->queue_lock);
1498 	freed_request(rl, is_sync, rq_flags);
1499 
1500 	/*
1501 	 * in the very unlikely event that allocation failed and no
1502 	 * requests for this direction was pending, mark us starved so that
1503 	 * freeing of a request in the other direction will notice
1504 	 * us. another possible fix would be to split the rq mempool into
1505 	 * READ and WRITE
1506 	 */
1507 rq_starved:
1508 	if (unlikely(rl->count[is_sync] == 0))
1509 		rl->starved[is_sync] = 1;
1510 	return ERR_PTR(-ENOMEM);
1511 }
1512 
1513 /**
1514  * get_request - get a free request
1515  * @q: request_queue to allocate request from
1516  * @op: operation and flags
1517  * @bio: bio to allocate request for (can be %NULL)
1518  * @flags: BLK_MQ_REQ_* flags.
1519  *
1520  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1521  * this function keeps retrying under memory pressure and fails iff @q is dead.
1522  *
1523  * Must be called with @q->queue_lock held and,
1524  * Returns ERR_PTR on failure, with @q->queue_lock held.
1525  * Returns request pointer on success, with @q->queue_lock *not held*.
1526  */
1527 static struct request *get_request(struct request_queue *q, unsigned int op,
1528 				   struct bio *bio, blk_mq_req_flags_t flags)
1529 {
1530 	const bool is_sync = op_is_sync(op);
1531 	DEFINE_WAIT(wait);
1532 	struct request_list *rl;
1533 	struct request *rq;
1534 
1535 	lockdep_assert_held(q->queue_lock);
1536 	WARN_ON_ONCE(q->mq_ops);
1537 
1538 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1539 retry:
1540 	rq = __get_request(rl, op, bio, flags);
1541 	if (!IS_ERR(rq))
1542 		return rq;
1543 
1544 	if (op & REQ_NOWAIT) {
1545 		blk_put_rl(rl);
1546 		return ERR_PTR(-EAGAIN);
1547 	}
1548 
1549 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1550 		blk_put_rl(rl);
1551 		return rq;
1552 	}
1553 
1554 	/* wait on @rl and retry */
1555 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1556 				  TASK_UNINTERRUPTIBLE);
1557 
1558 	trace_block_sleeprq(q, bio, op);
1559 
1560 	spin_unlock_irq(q->queue_lock);
1561 	io_schedule();
1562 
1563 	/*
1564 	 * After sleeping, we become a "batching" process and will be able
1565 	 * to allocate at least one request, and up to a big batch of them
1566 	 * for a small period time.  See ioc_batching, ioc_set_batching
1567 	 */
1568 	ioc_set_batching(q, current->io_context);
1569 
1570 	spin_lock_irq(q->queue_lock);
1571 	finish_wait(&rl->wait[is_sync], &wait);
1572 
1573 	goto retry;
1574 }
1575 
1576 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1577 static struct request *blk_old_get_request(struct request_queue *q,
1578 				unsigned int op, blk_mq_req_flags_t flags)
1579 {
1580 	struct request *rq;
1581 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1582 			 __GFP_DIRECT_RECLAIM;
1583 	int ret = 0;
1584 
1585 	WARN_ON_ONCE(q->mq_ops);
1586 
1587 	/* create ioc upfront */
1588 	create_io_context(gfp_mask, q->node);
1589 
1590 	ret = blk_queue_enter(q, flags);
1591 	if (ret)
1592 		return ERR_PTR(ret);
1593 	spin_lock_irq(q->queue_lock);
1594 	rq = get_request(q, op, NULL, flags);
1595 	if (IS_ERR(rq)) {
1596 		spin_unlock_irq(q->queue_lock);
1597 		blk_queue_exit(q);
1598 		return rq;
1599 	}
1600 
1601 	/* q->queue_lock is unlocked at this point */
1602 	rq->__data_len = 0;
1603 	rq->__sector = (sector_t) -1;
1604 	rq->bio = rq->biotail = NULL;
1605 	return rq;
1606 }
1607 
1608 /**
1609  * blk_get_request_flags - allocate a request
1610  * @q: request queue to allocate a request for
1611  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1612  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1613  */
1614 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1615 				      blk_mq_req_flags_t flags)
1616 {
1617 	struct request *req;
1618 
1619 	WARN_ON_ONCE(op & REQ_NOWAIT);
1620 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1621 
1622 	if (q->mq_ops) {
1623 		req = blk_mq_alloc_request(q, op, flags);
1624 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1625 			q->mq_ops->initialize_rq_fn(req);
1626 	} else {
1627 		req = blk_old_get_request(q, op, flags);
1628 		if (!IS_ERR(req) && q->initialize_rq_fn)
1629 			q->initialize_rq_fn(req);
1630 	}
1631 
1632 	return req;
1633 }
1634 EXPORT_SYMBOL(blk_get_request_flags);
1635 
1636 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1637 				gfp_t gfp_mask)
1638 {
1639 	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1640 				     0 : BLK_MQ_REQ_NOWAIT);
1641 }
1642 EXPORT_SYMBOL(blk_get_request);
1643 
1644 /**
1645  * blk_requeue_request - put a request back on queue
1646  * @q:		request queue where request should be inserted
1647  * @rq:		request to be inserted
1648  *
1649  * Description:
1650  *    Drivers often keep queueing requests until the hardware cannot accept
1651  *    more, when that condition happens we need to put the request back
1652  *    on the queue. Must be called with queue lock held.
1653  */
1654 void blk_requeue_request(struct request_queue *q, struct request *rq)
1655 {
1656 	lockdep_assert_held(q->queue_lock);
1657 	WARN_ON_ONCE(q->mq_ops);
1658 
1659 	blk_delete_timer(rq);
1660 	blk_clear_rq_complete(rq);
1661 	trace_block_rq_requeue(q, rq);
1662 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1663 
1664 	if (rq->rq_flags & RQF_QUEUED)
1665 		blk_queue_end_tag(q, rq);
1666 
1667 	BUG_ON(blk_queued_rq(rq));
1668 
1669 	elv_requeue_request(q, rq);
1670 }
1671 EXPORT_SYMBOL(blk_requeue_request);
1672 
1673 static void add_acct_request(struct request_queue *q, struct request *rq,
1674 			     int where)
1675 {
1676 	blk_account_io_start(rq, true);
1677 	__elv_add_request(q, rq, where);
1678 }
1679 
1680 static void part_round_stats_single(struct request_queue *q, int cpu,
1681 				    struct hd_struct *part, unsigned long now,
1682 				    unsigned int inflight)
1683 {
1684 	if (inflight) {
1685 		__part_stat_add(cpu, part, time_in_queue,
1686 				inflight * (now - part->stamp));
1687 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1688 	}
1689 	part->stamp = now;
1690 }
1691 
1692 /**
1693  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1694  * @q: target block queue
1695  * @cpu: cpu number for stats access
1696  * @part: target partition
1697  *
1698  * The average IO queue length and utilisation statistics are maintained
1699  * by observing the current state of the queue length and the amount of
1700  * time it has been in this state for.
1701  *
1702  * Normally, that accounting is done on IO completion, but that can result
1703  * in more than a second's worth of IO being accounted for within any one
1704  * second, leading to >100% utilisation.  To deal with that, we call this
1705  * function to do a round-off before returning the results when reading
1706  * /proc/diskstats.  This accounts immediately for all queue usage up to
1707  * the current jiffies and restarts the counters again.
1708  */
1709 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1710 {
1711 	struct hd_struct *part2 = NULL;
1712 	unsigned long now = jiffies;
1713 	unsigned int inflight[2];
1714 	int stats = 0;
1715 
1716 	if (part->stamp != now)
1717 		stats |= 1;
1718 
1719 	if (part->partno) {
1720 		part2 = &part_to_disk(part)->part0;
1721 		if (part2->stamp != now)
1722 			stats |= 2;
1723 	}
1724 
1725 	if (!stats)
1726 		return;
1727 
1728 	part_in_flight(q, part, inflight);
1729 
1730 	if (stats & 2)
1731 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1732 	if (stats & 1)
1733 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1734 }
1735 EXPORT_SYMBOL_GPL(part_round_stats);
1736 
1737 #ifdef CONFIG_PM
1738 static void blk_pm_put_request(struct request *rq)
1739 {
1740 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1741 		pm_runtime_mark_last_busy(rq->q->dev);
1742 }
1743 #else
1744 static inline void blk_pm_put_request(struct request *rq) {}
1745 #endif
1746 
1747 void __blk_put_request(struct request_queue *q, struct request *req)
1748 {
1749 	req_flags_t rq_flags = req->rq_flags;
1750 
1751 	if (unlikely(!q))
1752 		return;
1753 
1754 	if (q->mq_ops) {
1755 		blk_mq_free_request(req);
1756 		return;
1757 	}
1758 
1759 	lockdep_assert_held(q->queue_lock);
1760 
1761 	blk_req_zone_write_unlock(req);
1762 	blk_pm_put_request(req);
1763 
1764 	elv_completed_request(q, req);
1765 
1766 	/* this is a bio leak */
1767 	WARN_ON(req->bio != NULL);
1768 
1769 	wbt_done(q->rq_wb, &req->issue_stat);
1770 
1771 	/*
1772 	 * Request may not have originated from ll_rw_blk. if not,
1773 	 * it didn't come out of our reserved rq pools
1774 	 */
1775 	if (rq_flags & RQF_ALLOCED) {
1776 		struct request_list *rl = blk_rq_rl(req);
1777 		bool sync = op_is_sync(req->cmd_flags);
1778 
1779 		BUG_ON(!list_empty(&req->queuelist));
1780 		BUG_ON(ELV_ON_HASH(req));
1781 
1782 		blk_free_request(rl, req);
1783 		freed_request(rl, sync, rq_flags);
1784 		blk_put_rl(rl);
1785 		blk_queue_exit(q);
1786 	}
1787 }
1788 EXPORT_SYMBOL_GPL(__blk_put_request);
1789 
1790 void blk_put_request(struct request *req)
1791 {
1792 	struct request_queue *q = req->q;
1793 
1794 	if (q->mq_ops)
1795 		blk_mq_free_request(req);
1796 	else {
1797 		unsigned long flags;
1798 
1799 		spin_lock_irqsave(q->queue_lock, flags);
1800 		__blk_put_request(q, req);
1801 		spin_unlock_irqrestore(q->queue_lock, flags);
1802 	}
1803 }
1804 EXPORT_SYMBOL(blk_put_request);
1805 
1806 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1807 			    struct bio *bio)
1808 {
1809 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1810 
1811 	if (!ll_back_merge_fn(q, req, bio))
1812 		return false;
1813 
1814 	trace_block_bio_backmerge(q, req, bio);
1815 
1816 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1817 		blk_rq_set_mixed_merge(req);
1818 
1819 	req->biotail->bi_next = bio;
1820 	req->biotail = bio;
1821 	req->__data_len += bio->bi_iter.bi_size;
1822 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1823 
1824 	blk_account_io_start(req, false);
1825 	return true;
1826 }
1827 
1828 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1829 			     struct bio *bio)
1830 {
1831 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1832 
1833 	if (!ll_front_merge_fn(q, req, bio))
1834 		return false;
1835 
1836 	trace_block_bio_frontmerge(q, req, bio);
1837 
1838 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1839 		blk_rq_set_mixed_merge(req);
1840 
1841 	bio->bi_next = req->bio;
1842 	req->bio = bio;
1843 
1844 	req->__sector = bio->bi_iter.bi_sector;
1845 	req->__data_len += bio->bi_iter.bi_size;
1846 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1847 
1848 	blk_account_io_start(req, false);
1849 	return true;
1850 }
1851 
1852 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1853 		struct bio *bio)
1854 {
1855 	unsigned short segments = blk_rq_nr_discard_segments(req);
1856 
1857 	if (segments >= queue_max_discard_segments(q))
1858 		goto no_merge;
1859 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1860 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1861 		goto no_merge;
1862 
1863 	req->biotail->bi_next = bio;
1864 	req->biotail = bio;
1865 	req->__data_len += bio->bi_iter.bi_size;
1866 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1867 	req->nr_phys_segments = segments + 1;
1868 
1869 	blk_account_io_start(req, false);
1870 	return true;
1871 no_merge:
1872 	req_set_nomerge(q, req);
1873 	return false;
1874 }
1875 
1876 /**
1877  * blk_attempt_plug_merge - try to merge with %current's plugged list
1878  * @q: request_queue new bio is being queued at
1879  * @bio: new bio being queued
1880  * @request_count: out parameter for number of traversed plugged requests
1881  * @same_queue_rq: pointer to &struct request that gets filled in when
1882  * another request associated with @q is found on the plug list
1883  * (optional, may be %NULL)
1884  *
1885  * Determine whether @bio being queued on @q can be merged with a request
1886  * on %current's plugged list.  Returns %true if merge was successful,
1887  * otherwise %false.
1888  *
1889  * Plugging coalesces IOs from the same issuer for the same purpose without
1890  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1891  * than scheduling, and the request, while may have elvpriv data, is not
1892  * added on the elevator at this point.  In addition, we don't have
1893  * reliable access to the elevator outside queue lock.  Only check basic
1894  * merging parameters without querying the elevator.
1895  *
1896  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1897  */
1898 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1899 			    unsigned int *request_count,
1900 			    struct request **same_queue_rq)
1901 {
1902 	struct blk_plug *plug;
1903 	struct request *rq;
1904 	struct list_head *plug_list;
1905 
1906 	plug = current->plug;
1907 	if (!plug)
1908 		return false;
1909 	*request_count = 0;
1910 
1911 	if (q->mq_ops)
1912 		plug_list = &plug->mq_list;
1913 	else
1914 		plug_list = &plug->list;
1915 
1916 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1917 		bool merged = false;
1918 
1919 		if (rq->q == q) {
1920 			(*request_count)++;
1921 			/*
1922 			 * Only blk-mq multiple hardware queues case checks the
1923 			 * rq in the same queue, there should be only one such
1924 			 * rq in a queue
1925 			 **/
1926 			if (same_queue_rq)
1927 				*same_queue_rq = rq;
1928 		}
1929 
1930 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1931 			continue;
1932 
1933 		switch (blk_try_merge(rq, bio)) {
1934 		case ELEVATOR_BACK_MERGE:
1935 			merged = bio_attempt_back_merge(q, rq, bio);
1936 			break;
1937 		case ELEVATOR_FRONT_MERGE:
1938 			merged = bio_attempt_front_merge(q, rq, bio);
1939 			break;
1940 		case ELEVATOR_DISCARD_MERGE:
1941 			merged = bio_attempt_discard_merge(q, rq, bio);
1942 			break;
1943 		default:
1944 			break;
1945 		}
1946 
1947 		if (merged)
1948 			return true;
1949 	}
1950 
1951 	return false;
1952 }
1953 
1954 unsigned int blk_plug_queued_count(struct request_queue *q)
1955 {
1956 	struct blk_plug *plug;
1957 	struct request *rq;
1958 	struct list_head *plug_list;
1959 	unsigned int ret = 0;
1960 
1961 	plug = current->plug;
1962 	if (!plug)
1963 		goto out;
1964 
1965 	if (q->mq_ops)
1966 		plug_list = &plug->mq_list;
1967 	else
1968 		plug_list = &plug->list;
1969 
1970 	list_for_each_entry(rq, plug_list, queuelist) {
1971 		if (rq->q == q)
1972 			ret++;
1973 	}
1974 out:
1975 	return ret;
1976 }
1977 
1978 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1979 {
1980 	struct io_context *ioc = rq_ioc(bio);
1981 
1982 	if (bio->bi_opf & REQ_RAHEAD)
1983 		req->cmd_flags |= REQ_FAILFAST_MASK;
1984 
1985 	req->__sector = bio->bi_iter.bi_sector;
1986 	if (ioprio_valid(bio_prio(bio)))
1987 		req->ioprio = bio_prio(bio);
1988 	else if (ioc)
1989 		req->ioprio = ioc->ioprio;
1990 	else
1991 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1992 	req->write_hint = bio->bi_write_hint;
1993 	blk_rq_bio_prep(req->q, req, bio);
1994 }
1995 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1996 
1997 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1998 {
1999 	struct blk_plug *plug;
2000 	int where = ELEVATOR_INSERT_SORT;
2001 	struct request *req, *free;
2002 	unsigned int request_count = 0;
2003 	unsigned int wb_acct;
2004 
2005 	/*
2006 	 * low level driver can indicate that it wants pages above a
2007 	 * certain limit bounced to low memory (ie for highmem, or even
2008 	 * ISA dma in theory)
2009 	 */
2010 	blk_queue_bounce(q, &bio);
2011 
2012 	blk_queue_split(q, &bio);
2013 
2014 	if (!bio_integrity_prep(bio))
2015 		return BLK_QC_T_NONE;
2016 
2017 	if (op_is_flush(bio->bi_opf)) {
2018 		spin_lock_irq(q->queue_lock);
2019 		where = ELEVATOR_INSERT_FLUSH;
2020 		goto get_rq;
2021 	}
2022 
2023 	/*
2024 	 * Check if we can merge with the plugged list before grabbing
2025 	 * any locks.
2026 	 */
2027 	if (!blk_queue_nomerges(q)) {
2028 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2029 			return BLK_QC_T_NONE;
2030 	} else
2031 		request_count = blk_plug_queued_count(q);
2032 
2033 	spin_lock_irq(q->queue_lock);
2034 
2035 	switch (elv_merge(q, &req, bio)) {
2036 	case ELEVATOR_BACK_MERGE:
2037 		if (!bio_attempt_back_merge(q, req, bio))
2038 			break;
2039 		elv_bio_merged(q, req, bio);
2040 		free = attempt_back_merge(q, req);
2041 		if (free)
2042 			__blk_put_request(q, free);
2043 		else
2044 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2045 		goto out_unlock;
2046 	case ELEVATOR_FRONT_MERGE:
2047 		if (!bio_attempt_front_merge(q, req, bio))
2048 			break;
2049 		elv_bio_merged(q, req, bio);
2050 		free = attempt_front_merge(q, req);
2051 		if (free)
2052 			__blk_put_request(q, free);
2053 		else
2054 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2055 		goto out_unlock;
2056 	default:
2057 		break;
2058 	}
2059 
2060 get_rq:
2061 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2062 
2063 	/*
2064 	 * Grab a free request. This is might sleep but can not fail.
2065 	 * Returns with the queue unlocked.
2066 	 */
2067 	blk_queue_enter_live(q);
2068 	req = get_request(q, bio->bi_opf, bio, 0);
2069 	if (IS_ERR(req)) {
2070 		blk_queue_exit(q);
2071 		__wbt_done(q->rq_wb, wb_acct);
2072 		if (PTR_ERR(req) == -ENOMEM)
2073 			bio->bi_status = BLK_STS_RESOURCE;
2074 		else
2075 			bio->bi_status = BLK_STS_IOERR;
2076 		bio_endio(bio);
2077 		goto out_unlock;
2078 	}
2079 
2080 	wbt_track(&req->issue_stat, wb_acct);
2081 
2082 	/*
2083 	 * After dropping the lock and possibly sleeping here, our request
2084 	 * may now be mergeable after it had proven unmergeable (above).
2085 	 * We don't worry about that case for efficiency. It won't happen
2086 	 * often, and the elevators are able to handle it.
2087 	 */
2088 	blk_init_request_from_bio(req, bio);
2089 
2090 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2091 		req->cpu = raw_smp_processor_id();
2092 
2093 	plug = current->plug;
2094 	if (plug) {
2095 		/*
2096 		 * If this is the first request added after a plug, fire
2097 		 * of a plug trace.
2098 		 *
2099 		 * @request_count may become stale because of schedule
2100 		 * out, so check plug list again.
2101 		 */
2102 		if (!request_count || list_empty(&plug->list))
2103 			trace_block_plug(q);
2104 		else {
2105 			struct request *last = list_entry_rq(plug->list.prev);
2106 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2107 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2108 				blk_flush_plug_list(plug, false);
2109 				trace_block_plug(q);
2110 			}
2111 		}
2112 		list_add_tail(&req->queuelist, &plug->list);
2113 		blk_account_io_start(req, true);
2114 	} else {
2115 		spin_lock_irq(q->queue_lock);
2116 		add_acct_request(q, req, where);
2117 		__blk_run_queue(q);
2118 out_unlock:
2119 		spin_unlock_irq(q->queue_lock);
2120 	}
2121 
2122 	return BLK_QC_T_NONE;
2123 }
2124 
2125 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2126 {
2127 	char b[BDEVNAME_SIZE];
2128 
2129 	printk(KERN_INFO "attempt to access beyond end of device\n");
2130 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2131 			bio_devname(bio, b), bio->bi_opf,
2132 			(unsigned long long)bio_end_sector(bio),
2133 			(long long)maxsector);
2134 }
2135 
2136 #ifdef CONFIG_FAIL_MAKE_REQUEST
2137 
2138 static DECLARE_FAULT_ATTR(fail_make_request);
2139 
2140 static int __init setup_fail_make_request(char *str)
2141 {
2142 	return setup_fault_attr(&fail_make_request, str);
2143 }
2144 __setup("fail_make_request=", setup_fail_make_request);
2145 
2146 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2147 {
2148 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2149 }
2150 
2151 static int __init fail_make_request_debugfs(void)
2152 {
2153 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2154 						NULL, &fail_make_request);
2155 
2156 	return PTR_ERR_OR_ZERO(dir);
2157 }
2158 
2159 late_initcall(fail_make_request_debugfs);
2160 
2161 #else /* CONFIG_FAIL_MAKE_REQUEST */
2162 
2163 static inline bool should_fail_request(struct hd_struct *part,
2164 					unsigned int bytes)
2165 {
2166 	return false;
2167 }
2168 
2169 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2170 
2171 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2172 {
2173 	if (part->policy && op_is_write(bio_op(bio))) {
2174 		char b[BDEVNAME_SIZE];
2175 
2176 		printk(KERN_ERR
2177 		       "generic_make_request: Trying to write "
2178 			"to read-only block-device %s (partno %d)\n",
2179 			bio_devname(bio, b), part->partno);
2180 		return true;
2181 	}
2182 
2183 	return false;
2184 }
2185 
2186 static noinline int should_fail_bio(struct bio *bio)
2187 {
2188 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2189 		return -EIO;
2190 	return 0;
2191 }
2192 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2193 
2194 /*
2195  * Check whether this bio extends beyond the end of the device or partition.
2196  * This may well happen - the kernel calls bread() without checking the size of
2197  * the device, e.g., when mounting a file system.
2198  */
2199 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2200 {
2201 	unsigned int nr_sectors = bio_sectors(bio);
2202 
2203 	if (nr_sectors && maxsector &&
2204 	    (nr_sectors > maxsector ||
2205 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2206 		handle_bad_sector(bio, maxsector);
2207 		return -EIO;
2208 	}
2209 	return 0;
2210 }
2211 
2212 /*
2213  * Remap block n of partition p to block n+start(p) of the disk.
2214  */
2215 static inline int blk_partition_remap(struct bio *bio)
2216 {
2217 	struct hd_struct *p;
2218 	int ret = -EIO;
2219 
2220 	rcu_read_lock();
2221 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2222 	if (unlikely(!p))
2223 		goto out;
2224 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2225 		goto out;
2226 	if (unlikely(bio_check_ro(bio, p)))
2227 		goto out;
2228 
2229 	/*
2230 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2231 	 * Include a test for the reset op code and perform the remap if needed.
2232 	 */
2233 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2234 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2235 			goto out;
2236 		bio->bi_iter.bi_sector += p->start_sect;
2237 		bio->bi_partno = 0;
2238 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2239 				      bio->bi_iter.bi_sector - p->start_sect);
2240 	}
2241 	ret = 0;
2242 out:
2243 	rcu_read_unlock();
2244 	return ret;
2245 }
2246 
2247 static noinline_for_stack bool
2248 generic_make_request_checks(struct bio *bio)
2249 {
2250 	struct request_queue *q;
2251 	int nr_sectors = bio_sectors(bio);
2252 	blk_status_t status = BLK_STS_IOERR;
2253 	char b[BDEVNAME_SIZE];
2254 
2255 	might_sleep();
2256 
2257 	q = bio->bi_disk->queue;
2258 	if (unlikely(!q)) {
2259 		printk(KERN_ERR
2260 		       "generic_make_request: Trying to access "
2261 			"nonexistent block-device %s (%Lu)\n",
2262 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2263 		goto end_io;
2264 	}
2265 
2266 	/*
2267 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2268 	 * if queue is not a request based queue.
2269 	 */
2270 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2271 		goto not_supported;
2272 
2273 	if (should_fail_bio(bio))
2274 		goto end_io;
2275 
2276 	if (bio->bi_partno) {
2277 		if (unlikely(blk_partition_remap(bio)))
2278 			goto end_io;
2279 	} else {
2280 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2281 			goto end_io;
2282 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2283 			goto end_io;
2284 	}
2285 
2286 	/*
2287 	 * Filter flush bio's early so that make_request based
2288 	 * drivers without flush support don't have to worry
2289 	 * about them.
2290 	 */
2291 	if (op_is_flush(bio->bi_opf) &&
2292 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2293 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2294 		if (!nr_sectors) {
2295 			status = BLK_STS_OK;
2296 			goto end_io;
2297 		}
2298 	}
2299 
2300 	switch (bio_op(bio)) {
2301 	case REQ_OP_DISCARD:
2302 		if (!blk_queue_discard(q))
2303 			goto not_supported;
2304 		break;
2305 	case REQ_OP_SECURE_ERASE:
2306 		if (!blk_queue_secure_erase(q))
2307 			goto not_supported;
2308 		break;
2309 	case REQ_OP_WRITE_SAME:
2310 		if (!q->limits.max_write_same_sectors)
2311 			goto not_supported;
2312 		break;
2313 	case REQ_OP_ZONE_REPORT:
2314 	case REQ_OP_ZONE_RESET:
2315 		if (!blk_queue_is_zoned(q))
2316 			goto not_supported;
2317 		break;
2318 	case REQ_OP_WRITE_ZEROES:
2319 		if (!q->limits.max_write_zeroes_sectors)
2320 			goto not_supported;
2321 		break;
2322 	default:
2323 		break;
2324 	}
2325 
2326 	/*
2327 	 * Various block parts want %current->io_context and lazy ioc
2328 	 * allocation ends up trading a lot of pain for a small amount of
2329 	 * memory.  Just allocate it upfront.  This may fail and block
2330 	 * layer knows how to live with it.
2331 	 */
2332 	create_io_context(GFP_ATOMIC, q->node);
2333 
2334 	if (!blkcg_bio_issue_check(q, bio))
2335 		return false;
2336 
2337 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2338 		trace_block_bio_queue(q, bio);
2339 		/* Now that enqueuing has been traced, we need to trace
2340 		 * completion as well.
2341 		 */
2342 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2343 	}
2344 	return true;
2345 
2346 not_supported:
2347 	status = BLK_STS_NOTSUPP;
2348 end_io:
2349 	bio->bi_status = status;
2350 	bio_endio(bio);
2351 	return false;
2352 }
2353 
2354 /**
2355  * generic_make_request - hand a buffer to its device driver for I/O
2356  * @bio:  The bio describing the location in memory and on the device.
2357  *
2358  * generic_make_request() is used to make I/O requests of block
2359  * devices. It is passed a &struct bio, which describes the I/O that needs
2360  * to be done.
2361  *
2362  * generic_make_request() does not return any status.  The
2363  * success/failure status of the request, along with notification of
2364  * completion, is delivered asynchronously through the bio->bi_end_io
2365  * function described (one day) else where.
2366  *
2367  * The caller of generic_make_request must make sure that bi_io_vec
2368  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2369  * set to describe the device address, and the
2370  * bi_end_io and optionally bi_private are set to describe how
2371  * completion notification should be signaled.
2372  *
2373  * generic_make_request and the drivers it calls may use bi_next if this
2374  * bio happens to be merged with someone else, and may resubmit the bio to
2375  * a lower device by calling into generic_make_request recursively, which
2376  * means the bio should NOT be touched after the call to ->make_request_fn.
2377  */
2378 blk_qc_t generic_make_request(struct bio *bio)
2379 {
2380 	/*
2381 	 * bio_list_on_stack[0] contains bios submitted by the current
2382 	 * make_request_fn.
2383 	 * bio_list_on_stack[1] contains bios that were submitted before
2384 	 * the current make_request_fn, but that haven't been processed
2385 	 * yet.
2386 	 */
2387 	struct bio_list bio_list_on_stack[2];
2388 	blk_mq_req_flags_t flags = 0;
2389 	struct request_queue *q = bio->bi_disk->queue;
2390 	blk_qc_t ret = BLK_QC_T_NONE;
2391 
2392 	if (bio->bi_opf & REQ_NOWAIT)
2393 		flags = BLK_MQ_REQ_NOWAIT;
2394 	if (blk_queue_enter(q, flags) < 0) {
2395 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2396 			bio_wouldblock_error(bio);
2397 		else
2398 			bio_io_error(bio);
2399 		return ret;
2400 	}
2401 
2402 	if (!generic_make_request_checks(bio))
2403 		goto out;
2404 
2405 	/*
2406 	 * We only want one ->make_request_fn to be active at a time, else
2407 	 * stack usage with stacked devices could be a problem.  So use
2408 	 * current->bio_list to keep a list of requests submited by a
2409 	 * make_request_fn function.  current->bio_list is also used as a
2410 	 * flag to say if generic_make_request is currently active in this
2411 	 * task or not.  If it is NULL, then no make_request is active.  If
2412 	 * it is non-NULL, then a make_request is active, and new requests
2413 	 * should be added at the tail
2414 	 */
2415 	if (current->bio_list) {
2416 		bio_list_add(&current->bio_list[0], bio);
2417 		goto out;
2418 	}
2419 
2420 	/* following loop may be a bit non-obvious, and so deserves some
2421 	 * explanation.
2422 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2423 	 * ensure that) so we have a list with a single bio.
2424 	 * We pretend that we have just taken it off a longer list, so
2425 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2426 	 * thus initialising the bio_list of new bios to be
2427 	 * added.  ->make_request() may indeed add some more bios
2428 	 * through a recursive call to generic_make_request.  If it
2429 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2430 	 * from the top.  In this case we really did just take the bio
2431 	 * of the top of the list (no pretending) and so remove it from
2432 	 * bio_list, and call into ->make_request() again.
2433 	 */
2434 	BUG_ON(bio->bi_next);
2435 	bio_list_init(&bio_list_on_stack[0]);
2436 	current->bio_list = bio_list_on_stack;
2437 	do {
2438 		bool enter_succeeded = true;
2439 
2440 		if (unlikely(q != bio->bi_disk->queue)) {
2441 			if (q)
2442 				blk_queue_exit(q);
2443 			q = bio->bi_disk->queue;
2444 			flags = 0;
2445 			if (bio->bi_opf & REQ_NOWAIT)
2446 				flags = BLK_MQ_REQ_NOWAIT;
2447 			if (blk_queue_enter(q, flags) < 0) {
2448 				enter_succeeded = false;
2449 				q = NULL;
2450 			}
2451 		}
2452 
2453 		if (enter_succeeded) {
2454 			struct bio_list lower, same;
2455 
2456 			/* Create a fresh bio_list for all subordinate requests */
2457 			bio_list_on_stack[1] = bio_list_on_stack[0];
2458 			bio_list_init(&bio_list_on_stack[0]);
2459 			ret = q->make_request_fn(q, bio);
2460 
2461 			/* sort new bios into those for a lower level
2462 			 * and those for the same level
2463 			 */
2464 			bio_list_init(&lower);
2465 			bio_list_init(&same);
2466 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2467 				if (q == bio->bi_disk->queue)
2468 					bio_list_add(&same, bio);
2469 				else
2470 					bio_list_add(&lower, bio);
2471 			/* now assemble so we handle the lowest level first */
2472 			bio_list_merge(&bio_list_on_stack[0], &lower);
2473 			bio_list_merge(&bio_list_on_stack[0], &same);
2474 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2475 		} else {
2476 			if (unlikely(!blk_queue_dying(q) &&
2477 					(bio->bi_opf & REQ_NOWAIT)))
2478 				bio_wouldblock_error(bio);
2479 			else
2480 				bio_io_error(bio);
2481 		}
2482 		bio = bio_list_pop(&bio_list_on_stack[0]);
2483 	} while (bio);
2484 	current->bio_list = NULL; /* deactivate */
2485 
2486 out:
2487 	if (q)
2488 		blk_queue_exit(q);
2489 	return ret;
2490 }
2491 EXPORT_SYMBOL(generic_make_request);
2492 
2493 /**
2494  * direct_make_request - hand a buffer directly to its device driver for I/O
2495  * @bio:  The bio describing the location in memory and on the device.
2496  *
2497  * This function behaves like generic_make_request(), but does not protect
2498  * against recursion.  Must only be used if the called driver is known
2499  * to not call generic_make_request (or direct_make_request) again from
2500  * its make_request function.  (Calling direct_make_request again from
2501  * a workqueue is perfectly fine as that doesn't recurse).
2502  */
2503 blk_qc_t direct_make_request(struct bio *bio)
2504 {
2505 	struct request_queue *q = bio->bi_disk->queue;
2506 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2507 	blk_qc_t ret;
2508 
2509 	if (!generic_make_request_checks(bio))
2510 		return BLK_QC_T_NONE;
2511 
2512 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2513 		if (nowait && !blk_queue_dying(q))
2514 			bio->bi_status = BLK_STS_AGAIN;
2515 		else
2516 			bio->bi_status = BLK_STS_IOERR;
2517 		bio_endio(bio);
2518 		return BLK_QC_T_NONE;
2519 	}
2520 
2521 	ret = q->make_request_fn(q, bio);
2522 	blk_queue_exit(q);
2523 	return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(direct_make_request);
2526 
2527 /**
2528  * submit_bio - submit a bio to the block device layer for I/O
2529  * @bio: The &struct bio which describes the I/O
2530  *
2531  * submit_bio() is very similar in purpose to generic_make_request(), and
2532  * uses that function to do most of the work. Both are fairly rough
2533  * interfaces; @bio must be presetup and ready for I/O.
2534  *
2535  */
2536 blk_qc_t submit_bio(struct bio *bio)
2537 {
2538 	/*
2539 	 * If it's a regular read/write or a barrier with data attached,
2540 	 * go through the normal accounting stuff before submission.
2541 	 */
2542 	if (bio_has_data(bio)) {
2543 		unsigned int count;
2544 
2545 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2546 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2547 		else
2548 			count = bio_sectors(bio);
2549 
2550 		if (op_is_write(bio_op(bio))) {
2551 			count_vm_events(PGPGOUT, count);
2552 		} else {
2553 			task_io_account_read(bio->bi_iter.bi_size);
2554 			count_vm_events(PGPGIN, count);
2555 		}
2556 
2557 		if (unlikely(block_dump)) {
2558 			char b[BDEVNAME_SIZE];
2559 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2560 			current->comm, task_pid_nr(current),
2561 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2562 				(unsigned long long)bio->bi_iter.bi_sector,
2563 				bio_devname(bio, b), count);
2564 		}
2565 	}
2566 
2567 	return generic_make_request(bio);
2568 }
2569 EXPORT_SYMBOL(submit_bio);
2570 
2571 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2572 {
2573 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2574 		return false;
2575 
2576 	if (current->plug)
2577 		blk_flush_plug_list(current->plug, false);
2578 	return q->poll_fn(q, cookie);
2579 }
2580 EXPORT_SYMBOL_GPL(blk_poll);
2581 
2582 /**
2583  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2584  *                              for new the queue limits
2585  * @q:  the queue
2586  * @rq: the request being checked
2587  *
2588  * Description:
2589  *    @rq may have been made based on weaker limitations of upper-level queues
2590  *    in request stacking drivers, and it may violate the limitation of @q.
2591  *    Since the block layer and the underlying device driver trust @rq
2592  *    after it is inserted to @q, it should be checked against @q before
2593  *    the insertion using this generic function.
2594  *
2595  *    Request stacking drivers like request-based dm may change the queue
2596  *    limits when retrying requests on other queues. Those requests need
2597  *    to be checked against the new queue limits again during dispatch.
2598  */
2599 static int blk_cloned_rq_check_limits(struct request_queue *q,
2600 				      struct request *rq)
2601 {
2602 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2603 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2604 		return -EIO;
2605 	}
2606 
2607 	/*
2608 	 * queue's settings related to segment counting like q->bounce_pfn
2609 	 * may differ from that of other stacking queues.
2610 	 * Recalculate it to check the request correctly on this queue's
2611 	 * limitation.
2612 	 */
2613 	blk_recalc_rq_segments(rq);
2614 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2615 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2616 		return -EIO;
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 /**
2623  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2624  * @q:  the queue to submit the request
2625  * @rq: the request being queued
2626  */
2627 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2628 {
2629 	unsigned long flags;
2630 	int where = ELEVATOR_INSERT_BACK;
2631 
2632 	if (blk_cloned_rq_check_limits(q, rq))
2633 		return BLK_STS_IOERR;
2634 
2635 	if (rq->rq_disk &&
2636 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2637 		return BLK_STS_IOERR;
2638 
2639 	if (q->mq_ops) {
2640 		if (blk_queue_io_stat(q))
2641 			blk_account_io_start(rq, true);
2642 		/*
2643 		 * Since we have a scheduler attached on the top device,
2644 		 * bypass a potential scheduler on the bottom device for
2645 		 * insert.
2646 		 */
2647 		return blk_mq_request_issue_directly(rq);
2648 	}
2649 
2650 	spin_lock_irqsave(q->queue_lock, flags);
2651 	if (unlikely(blk_queue_dying(q))) {
2652 		spin_unlock_irqrestore(q->queue_lock, flags);
2653 		return BLK_STS_IOERR;
2654 	}
2655 
2656 	/*
2657 	 * Submitting request must be dequeued before calling this function
2658 	 * because it will be linked to another request_queue
2659 	 */
2660 	BUG_ON(blk_queued_rq(rq));
2661 
2662 	if (op_is_flush(rq->cmd_flags))
2663 		where = ELEVATOR_INSERT_FLUSH;
2664 
2665 	add_acct_request(q, rq, where);
2666 	if (where == ELEVATOR_INSERT_FLUSH)
2667 		__blk_run_queue(q);
2668 	spin_unlock_irqrestore(q->queue_lock, flags);
2669 
2670 	return BLK_STS_OK;
2671 }
2672 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2673 
2674 /**
2675  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2676  * @rq: request to examine
2677  *
2678  * Description:
2679  *     A request could be merge of IOs which require different failure
2680  *     handling.  This function determines the number of bytes which
2681  *     can be failed from the beginning of the request without
2682  *     crossing into area which need to be retried further.
2683  *
2684  * Return:
2685  *     The number of bytes to fail.
2686  */
2687 unsigned int blk_rq_err_bytes(const struct request *rq)
2688 {
2689 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2690 	unsigned int bytes = 0;
2691 	struct bio *bio;
2692 
2693 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2694 		return blk_rq_bytes(rq);
2695 
2696 	/*
2697 	 * Currently the only 'mixing' which can happen is between
2698 	 * different fastfail types.  We can safely fail portions
2699 	 * which have all the failfast bits that the first one has -
2700 	 * the ones which are at least as eager to fail as the first
2701 	 * one.
2702 	 */
2703 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2704 		if ((bio->bi_opf & ff) != ff)
2705 			break;
2706 		bytes += bio->bi_iter.bi_size;
2707 	}
2708 
2709 	/* this could lead to infinite loop */
2710 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2711 	return bytes;
2712 }
2713 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2714 
2715 void blk_account_io_completion(struct request *req, unsigned int bytes)
2716 {
2717 	if (blk_do_io_stat(req)) {
2718 		const int rw = rq_data_dir(req);
2719 		struct hd_struct *part;
2720 		int cpu;
2721 
2722 		cpu = part_stat_lock();
2723 		part = req->part;
2724 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2725 		part_stat_unlock();
2726 	}
2727 }
2728 
2729 void blk_account_io_done(struct request *req)
2730 {
2731 	/*
2732 	 * Account IO completion.  flush_rq isn't accounted as a
2733 	 * normal IO on queueing nor completion.  Accounting the
2734 	 * containing request is enough.
2735 	 */
2736 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2737 		unsigned long duration = jiffies - req->start_time;
2738 		const int rw = rq_data_dir(req);
2739 		struct hd_struct *part;
2740 		int cpu;
2741 
2742 		cpu = part_stat_lock();
2743 		part = req->part;
2744 
2745 		part_stat_inc(cpu, part, ios[rw]);
2746 		part_stat_add(cpu, part, ticks[rw], duration);
2747 		part_round_stats(req->q, cpu, part);
2748 		part_dec_in_flight(req->q, part, rw);
2749 
2750 		hd_struct_put(part);
2751 		part_stat_unlock();
2752 	}
2753 }
2754 
2755 #ifdef CONFIG_PM
2756 /*
2757  * Don't process normal requests when queue is suspended
2758  * or in the process of suspending/resuming
2759  */
2760 static bool blk_pm_allow_request(struct request *rq)
2761 {
2762 	switch (rq->q->rpm_status) {
2763 	case RPM_RESUMING:
2764 	case RPM_SUSPENDING:
2765 		return rq->rq_flags & RQF_PM;
2766 	case RPM_SUSPENDED:
2767 		return false;
2768 	}
2769 
2770 	return true;
2771 }
2772 #else
2773 static bool blk_pm_allow_request(struct request *rq)
2774 {
2775 	return true;
2776 }
2777 #endif
2778 
2779 void blk_account_io_start(struct request *rq, bool new_io)
2780 {
2781 	struct hd_struct *part;
2782 	int rw = rq_data_dir(rq);
2783 	int cpu;
2784 
2785 	if (!blk_do_io_stat(rq))
2786 		return;
2787 
2788 	cpu = part_stat_lock();
2789 
2790 	if (!new_io) {
2791 		part = rq->part;
2792 		part_stat_inc(cpu, part, merges[rw]);
2793 	} else {
2794 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2795 		if (!hd_struct_try_get(part)) {
2796 			/*
2797 			 * The partition is already being removed,
2798 			 * the request will be accounted on the disk only
2799 			 *
2800 			 * We take a reference on disk->part0 although that
2801 			 * partition will never be deleted, so we can treat
2802 			 * it as any other partition.
2803 			 */
2804 			part = &rq->rq_disk->part0;
2805 			hd_struct_get(part);
2806 		}
2807 		part_round_stats(rq->q, cpu, part);
2808 		part_inc_in_flight(rq->q, part, rw);
2809 		rq->part = part;
2810 	}
2811 
2812 	part_stat_unlock();
2813 }
2814 
2815 static struct request *elv_next_request(struct request_queue *q)
2816 {
2817 	struct request *rq;
2818 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2819 
2820 	WARN_ON_ONCE(q->mq_ops);
2821 
2822 	while (1) {
2823 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2824 			if (blk_pm_allow_request(rq))
2825 				return rq;
2826 
2827 			if (rq->rq_flags & RQF_SOFTBARRIER)
2828 				break;
2829 		}
2830 
2831 		/*
2832 		 * Flush request is running and flush request isn't queueable
2833 		 * in the drive, we can hold the queue till flush request is
2834 		 * finished. Even we don't do this, driver can't dispatch next
2835 		 * requests and will requeue them. And this can improve
2836 		 * throughput too. For example, we have request flush1, write1,
2837 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2838 		 * isn't inserted to queue. After flush1 is finished, flush2
2839 		 * will be dispatched. Since disk cache is already clean,
2840 		 * flush2 will be finished very soon, so looks like flush2 is
2841 		 * folded to flush1.
2842 		 * Since the queue is hold, a flag is set to indicate the queue
2843 		 * should be restarted later. Please see flush_end_io() for
2844 		 * details.
2845 		 */
2846 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2847 				!queue_flush_queueable(q)) {
2848 			fq->flush_queue_delayed = 1;
2849 			return NULL;
2850 		}
2851 		if (unlikely(blk_queue_bypass(q)) ||
2852 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2853 			return NULL;
2854 	}
2855 }
2856 
2857 /**
2858  * blk_peek_request - peek at the top of a request queue
2859  * @q: request queue to peek at
2860  *
2861  * Description:
2862  *     Return the request at the top of @q.  The returned request
2863  *     should be started using blk_start_request() before LLD starts
2864  *     processing it.
2865  *
2866  * Return:
2867  *     Pointer to the request at the top of @q if available.  Null
2868  *     otherwise.
2869  */
2870 struct request *blk_peek_request(struct request_queue *q)
2871 {
2872 	struct request *rq;
2873 	int ret;
2874 
2875 	lockdep_assert_held(q->queue_lock);
2876 	WARN_ON_ONCE(q->mq_ops);
2877 
2878 	while ((rq = elv_next_request(q)) != NULL) {
2879 		if (!(rq->rq_flags & RQF_STARTED)) {
2880 			/*
2881 			 * This is the first time the device driver
2882 			 * sees this request (possibly after
2883 			 * requeueing).  Notify IO scheduler.
2884 			 */
2885 			if (rq->rq_flags & RQF_SORTED)
2886 				elv_activate_rq(q, rq);
2887 
2888 			/*
2889 			 * just mark as started even if we don't start
2890 			 * it, a request that has been delayed should
2891 			 * not be passed by new incoming requests
2892 			 */
2893 			rq->rq_flags |= RQF_STARTED;
2894 			trace_block_rq_issue(q, rq);
2895 		}
2896 
2897 		if (!q->boundary_rq || q->boundary_rq == rq) {
2898 			q->end_sector = rq_end_sector(rq);
2899 			q->boundary_rq = NULL;
2900 		}
2901 
2902 		if (rq->rq_flags & RQF_DONTPREP)
2903 			break;
2904 
2905 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2906 			/*
2907 			 * make sure space for the drain appears we
2908 			 * know we can do this because max_hw_segments
2909 			 * has been adjusted to be one fewer than the
2910 			 * device can handle
2911 			 */
2912 			rq->nr_phys_segments++;
2913 		}
2914 
2915 		if (!q->prep_rq_fn)
2916 			break;
2917 
2918 		ret = q->prep_rq_fn(q, rq);
2919 		if (ret == BLKPREP_OK) {
2920 			break;
2921 		} else if (ret == BLKPREP_DEFER) {
2922 			/*
2923 			 * the request may have been (partially) prepped.
2924 			 * we need to keep this request in the front to
2925 			 * avoid resource deadlock.  RQF_STARTED will
2926 			 * prevent other fs requests from passing this one.
2927 			 */
2928 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2929 			    !(rq->rq_flags & RQF_DONTPREP)) {
2930 				/*
2931 				 * remove the space for the drain we added
2932 				 * so that we don't add it again
2933 				 */
2934 				--rq->nr_phys_segments;
2935 			}
2936 
2937 			rq = NULL;
2938 			break;
2939 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2940 			rq->rq_flags |= RQF_QUIET;
2941 			/*
2942 			 * Mark this request as started so we don't trigger
2943 			 * any debug logic in the end I/O path.
2944 			 */
2945 			blk_start_request(rq);
2946 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2947 					BLK_STS_TARGET : BLK_STS_IOERR);
2948 		} else {
2949 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2950 			break;
2951 		}
2952 	}
2953 
2954 	return rq;
2955 }
2956 EXPORT_SYMBOL(blk_peek_request);
2957 
2958 static void blk_dequeue_request(struct request *rq)
2959 {
2960 	struct request_queue *q = rq->q;
2961 
2962 	BUG_ON(list_empty(&rq->queuelist));
2963 	BUG_ON(ELV_ON_HASH(rq));
2964 
2965 	list_del_init(&rq->queuelist);
2966 
2967 	/*
2968 	 * the time frame between a request being removed from the lists
2969 	 * and to it is freed is accounted as io that is in progress at
2970 	 * the driver side.
2971 	 */
2972 	if (blk_account_rq(rq)) {
2973 		q->in_flight[rq_is_sync(rq)]++;
2974 		set_io_start_time_ns(rq);
2975 	}
2976 }
2977 
2978 /**
2979  * blk_start_request - start request processing on the driver
2980  * @req: request to dequeue
2981  *
2982  * Description:
2983  *     Dequeue @req and start timeout timer on it.  This hands off the
2984  *     request to the driver.
2985  */
2986 void blk_start_request(struct request *req)
2987 {
2988 	lockdep_assert_held(req->q->queue_lock);
2989 	WARN_ON_ONCE(req->q->mq_ops);
2990 
2991 	blk_dequeue_request(req);
2992 
2993 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2994 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2995 		req->rq_flags |= RQF_STATS;
2996 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2997 	}
2998 
2999 	BUG_ON(blk_rq_is_complete(req));
3000 	blk_add_timer(req);
3001 }
3002 EXPORT_SYMBOL(blk_start_request);
3003 
3004 /**
3005  * blk_fetch_request - fetch a request from a request queue
3006  * @q: request queue to fetch a request from
3007  *
3008  * Description:
3009  *     Return the request at the top of @q.  The request is started on
3010  *     return and LLD can start processing it immediately.
3011  *
3012  * Return:
3013  *     Pointer to the request at the top of @q if available.  Null
3014  *     otherwise.
3015  */
3016 struct request *blk_fetch_request(struct request_queue *q)
3017 {
3018 	struct request *rq;
3019 
3020 	lockdep_assert_held(q->queue_lock);
3021 	WARN_ON_ONCE(q->mq_ops);
3022 
3023 	rq = blk_peek_request(q);
3024 	if (rq)
3025 		blk_start_request(rq);
3026 	return rq;
3027 }
3028 EXPORT_SYMBOL(blk_fetch_request);
3029 
3030 /*
3031  * Steal bios from a request and add them to a bio list.
3032  * The request must not have been partially completed before.
3033  */
3034 void blk_steal_bios(struct bio_list *list, struct request *rq)
3035 {
3036 	if (rq->bio) {
3037 		if (list->tail)
3038 			list->tail->bi_next = rq->bio;
3039 		else
3040 			list->head = rq->bio;
3041 		list->tail = rq->biotail;
3042 
3043 		rq->bio = NULL;
3044 		rq->biotail = NULL;
3045 	}
3046 
3047 	rq->__data_len = 0;
3048 }
3049 EXPORT_SYMBOL_GPL(blk_steal_bios);
3050 
3051 /**
3052  * blk_update_request - Special helper function for request stacking drivers
3053  * @req:      the request being processed
3054  * @error:    block status code
3055  * @nr_bytes: number of bytes to complete @req
3056  *
3057  * Description:
3058  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3059  *     the request structure even if @req doesn't have leftover.
3060  *     If @req has leftover, sets it up for the next range of segments.
3061  *
3062  *     This special helper function is only for request stacking drivers
3063  *     (e.g. request-based dm) so that they can handle partial completion.
3064  *     Actual device drivers should use blk_end_request instead.
3065  *
3066  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3067  *     %false return from this function.
3068  *
3069  * Return:
3070  *     %false - this request doesn't have any more data
3071  *     %true  - this request has more data
3072  **/
3073 bool blk_update_request(struct request *req, blk_status_t error,
3074 		unsigned int nr_bytes)
3075 {
3076 	int total_bytes;
3077 
3078 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3079 
3080 	if (!req->bio)
3081 		return false;
3082 
3083 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3084 		     !(req->rq_flags & RQF_QUIET)))
3085 		print_req_error(req, error);
3086 
3087 	blk_account_io_completion(req, nr_bytes);
3088 
3089 	total_bytes = 0;
3090 	while (req->bio) {
3091 		struct bio *bio = req->bio;
3092 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3093 
3094 		if (bio_bytes == bio->bi_iter.bi_size)
3095 			req->bio = bio->bi_next;
3096 
3097 		/* Completion has already been traced */
3098 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3099 		req_bio_endio(req, bio, bio_bytes, error);
3100 
3101 		total_bytes += bio_bytes;
3102 		nr_bytes -= bio_bytes;
3103 
3104 		if (!nr_bytes)
3105 			break;
3106 	}
3107 
3108 	/*
3109 	 * completely done
3110 	 */
3111 	if (!req->bio) {
3112 		/*
3113 		 * Reset counters so that the request stacking driver
3114 		 * can find how many bytes remain in the request
3115 		 * later.
3116 		 */
3117 		req->__data_len = 0;
3118 		return false;
3119 	}
3120 
3121 	req->__data_len -= total_bytes;
3122 
3123 	/* update sector only for requests with clear definition of sector */
3124 	if (!blk_rq_is_passthrough(req))
3125 		req->__sector += total_bytes >> 9;
3126 
3127 	/* mixed attributes always follow the first bio */
3128 	if (req->rq_flags & RQF_MIXED_MERGE) {
3129 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3130 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3131 	}
3132 
3133 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3134 		/*
3135 		 * If total number of sectors is less than the first segment
3136 		 * size, something has gone terribly wrong.
3137 		 */
3138 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3139 			blk_dump_rq_flags(req, "request botched");
3140 			req->__data_len = blk_rq_cur_bytes(req);
3141 		}
3142 
3143 		/* recalculate the number of segments */
3144 		blk_recalc_rq_segments(req);
3145 	}
3146 
3147 	return true;
3148 }
3149 EXPORT_SYMBOL_GPL(blk_update_request);
3150 
3151 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3152 				    unsigned int nr_bytes,
3153 				    unsigned int bidi_bytes)
3154 {
3155 	if (blk_update_request(rq, error, nr_bytes))
3156 		return true;
3157 
3158 	/* Bidi request must be completed as a whole */
3159 	if (unlikely(blk_bidi_rq(rq)) &&
3160 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3161 		return true;
3162 
3163 	if (blk_queue_add_random(rq->q))
3164 		add_disk_randomness(rq->rq_disk);
3165 
3166 	return false;
3167 }
3168 
3169 /**
3170  * blk_unprep_request - unprepare a request
3171  * @req:	the request
3172  *
3173  * This function makes a request ready for complete resubmission (or
3174  * completion).  It happens only after all error handling is complete,
3175  * so represents the appropriate moment to deallocate any resources
3176  * that were allocated to the request in the prep_rq_fn.  The queue
3177  * lock is held when calling this.
3178  */
3179 void blk_unprep_request(struct request *req)
3180 {
3181 	struct request_queue *q = req->q;
3182 
3183 	req->rq_flags &= ~RQF_DONTPREP;
3184 	if (q->unprep_rq_fn)
3185 		q->unprep_rq_fn(q, req);
3186 }
3187 EXPORT_SYMBOL_GPL(blk_unprep_request);
3188 
3189 void blk_finish_request(struct request *req, blk_status_t error)
3190 {
3191 	struct request_queue *q = req->q;
3192 
3193 	lockdep_assert_held(req->q->queue_lock);
3194 	WARN_ON_ONCE(q->mq_ops);
3195 
3196 	if (req->rq_flags & RQF_STATS)
3197 		blk_stat_add(req);
3198 
3199 	if (req->rq_flags & RQF_QUEUED)
3200 		blk_queue_end_tag(q, req);
3201 
3202 	BUG_ON(blk_queued_rq(req));
3203 
3204 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3205 		laptop_io_completion(req->q->backing_dev_info);
3206 
3207 	blk_delete_timer(req);
3208 
3209 	if (req->rq_flags & RQF_DONTPREP)
3210 		blk_unprep_request(req);
3211 
3212 	blk_account_io_done(req);
3213 
3214 	if (req->end_io) {
3215 		wbt_done(req->q->rq_wb, &req->issue_stat);
3216 		req->end_io(req, error);
3217 	} else {
3218 		if (blk_bidi_rq(req))
3219 			__blk_put_request(req->next_rq->q, req->next_rq);
3220 
3221 		__blk_put_request(q, req);
3222 	}
3223 }
3224 EXPORT_SYMBOL(blk_finish_request);
3225 
3226 /**
3227  * blk_end_bidi_request - Complete a bidi request
3228  * @rq:         the request to complete
3229  * @error:      block status code
3230  * @nr_bytes:   number of bytes to complete @rq
3231  * @bidi_bytes: number of bytes to complete @rq->next_rq
3232  *
3233  * Description:
3234  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3235  *     Drivers that supports bidi can safely call this member for any
3236  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3237  *     just ignored.
3238  *
3239  * Return:
3240  *     %false - we are done with this request
3241  *     %true  - still buffers pending for this request
3242  **/
3243 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3244 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3245 {
3246 	struct request_queue *q = rq->q;
3247 	unsigned long flags;
3248 
3249 	WARN_ON_ONCE(q->mq_ops);
3250 
3251 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3252 		return true;
3253 
3254 	spin_lock_irqsave(q->queue_lock, flags);
3255 	blk_finish_request(rq, error);
3256 	spin_unlock_irqrestore(q->queue_lock, flags);
3257 
3258 	return false;
3259 }
3260 
3261 /**
3262  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3263  * @rq:         the request to complete
3264  * @error:      block status code
3265  * @nr_bytes:   number of bytes to complete @rq
3266  * @bidi_bytes: number of bytes to complete @rq->next_rq
3267  *
3268  * Description:
3269  *     Identical to blk_end_bidi_request() except that queue lock is
3270  *     assumed to be locked on entry and remains so on return.
3271  *
3272  * Return:
3273  *     %false - we are done with this request
3274  *     %true  - still buffers pending for this request
3275  **/
3276 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3277 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3278 {
3279 	lockdep_assert_held(rq->q->queue_lock);
3280 	WARN_ON_ONCE(rq->q->mq_ops);
3281 
3282 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3283 		return true;
3284 
3285 	blk_finish_request(rq, error);
3286 
3287 	return false;
3288 }
3289 
3290 /**
3291  * blk_end_request - Helper function for drivers to complete the request.
3292  * @rq:       the request being processed
3293  * @error:    block status code
3294  * @nr_bytes: number of bytes to complete
3295  *
3296  * Description:
3297  *     Ends I/O on a number of bytes attached to @rq.
3298  *     If @rq has leftover, sets it up for the next range of segments.
3299  *
3300  * Return:
3301  *     %false - we are done with this request
3302  *     %true  - still buffers pending for this request
3303  **/
3304 bool blk_end_request(struct request *rq, blk_status_t error,
3305 		unsigned int nr_bytes)
3306 {
3307 	WARN_ON_ONCE(rq->q->mq_ops);
3308 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3309 }
3310 EXPORT_SYMBOL(blk_end_request);
3311 
3312 /**
3313  * blk_end_request_all - Helper function for drives to finish the request.
3314  * @rq: the request to finish
3315  * @error: block status code
3316  *
3317  * Description:
3318  *     Completely finish @rq.
3319  */
3320 void blk_end_request_all(struct request *rq, blk_status_t error)
3321 {
3322 	bool pending;
3323 	unsigned int bidi_bytes = 0;
3324 
3325 	if (unlikely(blk_bidi_rq(rq)))
3326 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3327 
3328 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3329 	BUG_ON(pending);
3330 }
3331 EXPORT_SYMBOL(blk_end_request_all);
3332 
3333 /**
3334  * __blk_end_request - Helper function for drivers to complete the request.
3335  * @rq:       the request being processed
3336  * @error:    block status code
3337  * @nr_bytes: number of bytes to complete
3338  *
3339  * Description:
3340  *     Must be called with queue lock held unlike blk_end_request().
3341  *
3342  * Return:
3343  *     %false - we are done with this request
3344  *     %true  - still buffers pending for this request
3345  **/
3346 bool __blk_end_request(struct request *rq, blk_status_t error,
3347 		unsigned int nr_bytes)
3348 {
3349 	lockdep_assert_held(rq->q->queue_lock);
3350 	WARN_ON_ONCE(rq->q->mq_ops);
3351 
3352 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3353 }
3354 EXPORT_SYMBOL(__blk_end_request);
3355 
3356 /**
3357  * __blk_end_request_all - Helper function for drives to finish the request.
3358  * @rq: the request to finish
3359  * @error:    block status code
3360  *
3361  * Description:
3362  *     Completely finish @rq.  Must be called with queue lock held.
3363  */
3364 void __blk_end_request_all(struct request *rq, blk_status_t error)
3365 {
3366 	bool pending;
3367 	unsigned int bidi_bytes = 0;
3368 
3369 	lockdep_assert_held(rq->q->queue_lock);
3370 	WARN_ON_ONCE(rq->q->mq_ops);
3371 
3372 	if (unlikely(blk_bidi_rq(rq)))
3373 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3374 
3375 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3376 	BUG_ON(pending);
3377 }
3378 EXPORT_SYMBOL(__blk_end_request_all);
3379 
3380 /**
3381  * __blk_end_request_cur - Helper function to finish the current request chunk.
3382  * @rq: the request to finish the current chunk for
3383  * @error:    block status code
3384  *
3385  * Description:
3386  *     Complete the current consecutively mapped chunk from @rq.  Must
3387  *     be called with queue lock held.
3388  *
3389  * Return:
3390  *     %false - we are done with this request
3391  *     %true  - still buffers pending for this request
3392  */
3393 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3394 {
3395 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3396 }
3397 EXPORT_SYMBOL(__blk_end_request_cur);
3398 
3399 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3400 		     struct bio *bio)
3401 {
3402 	if (bio_has_data(bio))
3403 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3404 	else if (bio_op(bio) == REQ_OP_DISCARD)
3405 		rq->nr_phys_segments = 1;
3406 
3407 	rq->__data_len = bio->bi_iter.bi_size;
3408 	rq->bio = rq->biotail = bio;
3409 
3410 	if (bio->bi_disk)
3411 		rq->rq_disk = bio->bi_disk;
3412 }
3413 
3414 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3415 /**
3416  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3417  * @rq: the request to be flushed
3418  *
3419  * Description:
3420  *     Flush all pages in @rq.
3421  */
3422 void rq_flush_dcache_pages(struct request *rq)
3423 {
3424 	struct req_iterator iter;
3425 	struct bio_vec bvec;
3426 
3427 	rq_for_each_segment(bvec, rq, iter)
3428 		flush_dcache_page(bvec.bv_page);
3429 }
3430 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3431 #endif
3432 
3433 /**
3434  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3435  * @q : the queue of the device being checked
3436  *
3437  * Description:
3438  *    Check if underlying low-level drivers of a device are busy.
3439  *    If the drivers want to export their busy state, they must set own
3440  *    exporting function using blk_queue_lld_busy() first.
3441  *
3442  *    Basically, this function is used only by request stacking drivers
3443  *    to stop dispatching requests to underlying devices when underlying
3444  *    devices are busy.  This behavior helps more I/O merging on the queue
3445  *    of the request stacking driver and prevents I/O throughput regression
3446  *    on burst I/O load.
3447  *
3448  * Return:
3449  *    0 - Not busy (The request stacking driver should dispatch request)
3450  *    1 - Busy (The request stacking driver should stop dispatching request)
3451  */
3452 int blk_lld_busy(struct request_queue *q)
3453 {
3454 	if (q->lld_busy_fn)
3455 		return q->lld_busy_fn(q);
3456 
3457 	return 0;
3458 }
3459 EXPORT_SYMBOL_GPL(blk_lld_busy);
3460 
3461 /**
3462  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3463  * @rq: the clone request to be cleaned up
3464  *
3465  * Description:
3466  *     Free all bios in @rq for a cloned request.
3467  */
3468 void blk_rq_unprep_clone(struct request *rq)
3469 {
3470 	struct bio *bio;
3471 
3472 	while ((bio = rq->bio) != NULL) {
3473 		rq->bio = bio->bi_next;
3474 
3475 		bio_put(bio);
3476 	}
3477 }
3478 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3479 
3480 /*
3481  * Copy attributes of the original request to the clone request.
3482  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3483  */
3484 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3485 {
3486 	dst->cpu = src->cpu;
3487 	dst->__sector = blk_rq_pos(src);
3488 	dst->__data_len = blk_rq_bytes(src);
3489 	dst->nr_phys_segments = src->nr_phys_segments;
3490 	dst->ioprio = src->ioprio;
3491 	dst->extra_len = src->extra_len;
3492 }
3493 
3494 /**
3495  * blk_rq_prep_clone - Helper function to setup clone request
3496  * @rq: the request to be setup
3497  * @rq_src: original request to be cloned
3498  * @bs: bio_set that bios for clone are allocated from
3499  * @gfp_mask: memory allocation mask for bio
3500  * @bio_ctr: setup function to be called for each clone bio.
3501  *           Returns %0 for success, non %0 for failure.
3502  * @data: private data to be passed to @bio_ctr
3503  *
3504  * Description:
3505  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3506  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3507  *     are not copied, and copying such parts is the caller's responsibility.
3508  *     Also, pages which the original bios are pointing to are not copied
3509  *     and the cloned bios just point same pages.
3510  *     So cloned bios must be completed before original bios, which means
3511  *     the caller must complete @rq before @rq_src.
3512  */
3513 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3514 		      struct bio_set *bs, gfp_t gfp_mask,
3515 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3516 		      void *data)
3517 {
3518 	struct bio *bio, *bio_src;
3519 
3520 	if (!bs)
3521 		bs = fs_bio_set;
3522 
3523 	__rq_for_each_bio(bio_src, rq_src) {
3524 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3525 		if (!bio)
3526 			goto free_and_out;
3527 
3528 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3529 			goto free_and_out;
3530 
3531 		if (rq->bio) {
3532 			rq->biotail->bi_next = bio;
3533 			rq->biotail = bio;
3534 		} else
3535 			rq->bio = rq->biotail = bio;
3536 	}
3537 
3538 	__blk_rq_prep_clone(rq, rq_src);
3539 
3540 	return 0;
3541 
3542 free_and_out:
3543 	if (bio)
3544 		bio_put(bio);
3545 	blk_rq_unprep_clone(rq);
3546 
3547 	return -ENOMEM;
3548 }
3549 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3550 
3551 int kblockd_schedule_work(struct work_struct *work)
3552 {
3553 	return queue_work(kblockd_workqueue, work);
3554 }
3555 EXPORT_SYMBOL(kblockd_schedule_work);
3556 
3557 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3558 {
3559 	return queue_work_on(cpu, kblockd_workqueue, work);
3560 }
3561 EXPORT_SYMBOL(kblockd_schedule_work_on);
3562 
3563 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3564 				unsigned long delay)
3565 {
3566 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3567 }
3568 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3569 
3570 /**
3571  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3572  * @plug:	The &struct blk_plug that needs to be initialized
3573  *
3574  * Description:
3575  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3576  *   pending I/O should the task end up blocking between blk_start_plug() and
3577  *   blk_finish_plug(). This is important from a performance perspective, but
3578  *   also ensures that we don't deadlock. For instance, if the task is blocking
3579  *   for a memory allocation, memory reclaim could end up wanting to free a
3580  *   page belonging to that request that is currently residing in our private
3581  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3582  *   this kind of deadlock.
3583  */
3584 void blk_start_plug(struct blk_plug *plug)
3585 {
3586 	struct task_struct *tsk = current;
3587 
3588 	/*
3589 	 * If this is a nested plug, don't actually assign it.
3590 	 */
3591 	if (tsk->plug)
3592 		return;
3593 
3594 	INIT_LIST_HEAD(&plug->list);
3595 	INIT_LIST_HEAD(&plug->mq_list);
3596 	INIT_LIST_HEAD(&plug->cb_list);
3597 	/*
3598 	 * Store ordering should not be needed here, since a potential
3599 	 * preempt will imply a full memory barrier
3600 	 */
3601 	tsk->plug = plug;
3602 }
3603 EXPORT_SYMBOL(blk_start_plug);
3604 
3605 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3606 {
3607 	struct request *rqa = container_of(a, struct request, queuelist);
3608 	struct request *rqb = container_of(b, struct request, queuelist);
3609 
3610 	return !(rqa->q < rqb->q ||
3611 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3612 }
3613 
3614 /*
3615  * If 'from_schedule' is true, then postpone the dispatch of requests
3616  * until a safe kblockd context. We due this to avoid accidental big
3617  * additional stack usage in driver dispatch, in places where the originally
3618  * plugger did not intend it.
3619  */
3620 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3621 			    bool from_schedule)
3622 	__releases(q->queue_lock)
3623 {
3624 	lockdep_assert_held(q->queue_lock);
3625 
3626 	trace_block_unplug(q, depth, !from_schedule);
3627 
3628 	if (from_schedule)
3629 		blk_run_queue_async(q);
3630 	else
3631 		__blk_run_queue(q);
3632 	spin_unlock(q->queue_lock);
3633 }
3634 
3635 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3636 {
3637 	LIST_HEAD(callbacks);
3638 
3639 	while (!list_empty(&plug->cb_list)) {
3640 		list_splice_init(&plug->cb_list, &callbacks);
3641 
3642 		while (!list_empty(&callbacks)) {
3643 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3644 							  struct blk_plug_cb,
3645 							  list);
3646 			list_del(&cb->list);
3647 			cb->callback(cb, from_schedule);
3648 		}
3649 	}
3650 }
3651 
3652 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3653 				      int size)
3654 {
3655 	struct blk_plug *plug = current->plug;
3656 	struct blk_plug_cb *cb;
3657 
3658 	if (!plug)
3659 		return NULL;
3660 
3661 	list_for_each_entry(cb, &plug->cb_list, list)
3662 		if (cb->callback == unplug && cb->data == data)
3663 			return cb;
3664 
3665 	/* Not currently on the callback list */
3666 	BUG_ON(size < sizeof(*cb));
3667 	cb = kzalloc(size, GFP_ATOMIC);
3668 	if (cb) {
3669 		cb->data = data;
3670 		cb->callback = unplug;
3671 		list_add(&cb->list, &plug->cb_list);
3672 	}
3673 	return cb;
3674 }
3675 EXPORT_SYMBOL(blk_check_plugged);
3676 
3677 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3678 {
3679 	struct request_queue *q;
3680 	unsigned long flags;
3681 	struct request *rq;
3682 	LIST_HEAD(list);
3683 	unsigned int depth;
3684 
3685 	flush_plug_callbacks(plug, from_schedule);
3686 
3687 	if (!list_empty(&plug->mq_list))
3688 		blk_mq_flush_plug_list(plug, from_schedule);
3689 
3690 	if (list_empty(&plug->list))
3691 		return;
3692 
3693 	list_splice_init(&plug->list, &list);
3694 
3695 	list_sort(NULL, &list, plug_rq_cmp);
3696 
3697 	q = NULL;
3698 	depth = 0;
3699 
3700 	/*
3701 	 * Save and disable interrupts here, to avoid doing it for every
3702 	 * queue lock we have to take.
3703 	 */
3704 	local_irq_save(flags);
3705 	while (!list_empty(&list)) {
3706 		rq = list_entry_rq(list.next);
3707 		list_del_init(&rq->queuelist);
3708 		BUG_ON(!rq->q);
3709 		if (rq->q != q) {
3710 			/*
3711 			 * This drops the queue lock
3712 			 */
3713 			if (q)
3714 				queue_unplugged(q, depth, from_schedule);
3715 			q = rq->q;
3716 			depth = 0;
3717 			spin_lock(q->queue_lock);
3718 		}
3719 
3720 		/*
3721 		 * Short-circuit if @q is dead
3722 		 */
3723 		if (unlikely(blk_queue_dying(q))) {
3724 			__blk_end_request_all(rq, BLK_STS_IOERR);
3725 			continue;
3726 		}
3727 
3728 		/*
3729 		 * rq is already accounted, so use raw insert
3730 		 */
3731 		if (op_is_flush(rq->cmd_flags))
3732 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3733 		else
3734 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3735 
3736 		depth++;
3737 	}
3738 
3739 	/*
3740 	 * This drops the queue lock
3741 	 */
3742 	if (q)
3743 		queue_unplugged(q, depth, from_schedule);
3744 
3745 	local_irq_restore(flags);
3746 }
3747 
3748 void blk_finish_plug(struct blk_plug *plug)
3749 {
3750 	if (plug != current->plug)
3751 		return;
3752 	blk_flush_plug_list(plug, false);
3753 
3754 	current->plug = NULL;
3755 }
3756 EXPORT_SYMBOL(blk_finish_plug);
3757 
3758 #ifdef CONFIG_PM
3759 /**
3760  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3761  * @q: the queue of the device
3762  * @dev: the device the queue belongs to
3763  *
3764  * Description:
3765  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3766  *    @dev. Drivers that want to take advantage of request-based runtime PM
3767  *    should call this function after @dev has been initialized, and its
3768  *    request queue @q has been allocated, and runtime PM for it can not happen
3769  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3770  *    cases, driver should call this function before any I/O has taken place.
3771  *
3772  *    This function takes care of setting up using auto suspend for the device,
3773  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3774  *    until an updated value is either set by user or by driver. Drivers do
3775  *    not need to touch other autosuspend settings.
3776  *
3777  *    The block layer runtime PM is request based, so only works for drivers
3778  *    that use request as their IO unit instead of those directly use bio's.
3779  */
3780 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3781 {
3782 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3783 	if (q->mq_ops)
3784 		return;
3785 
3786 	q->dev = dev;
3787 	q->rpm_status = RPM_ACTIVE;
3788 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3789 	pm_runtime_use_autosuspend(q->dev);
3790 }
3791 EXPORT_SYMBOL(blk_pm_runtime_init);
3792 
3793 /**
3794  * blk_pre_runtime_suspend - Pre runtime suspend check
3795  * @q: the queue of the device
3796  *
3797  * Description:
3798  *    This function will check if runtime suspend is allowed for the device
3799  *    by examining if there are any requests pending in the queue. If there
3800  *    are requests pending, the device can not be runtime suspended; otherwise,
3801  *    the queue's status will be updated to SUSPENDING and the driver can
3802  *    proceed to suspend the device.
3803  *
3804  *    For the not allowed case, we mark last busy for the device so that
3805  *    runtime PM core will try to autosuspend it some time later.
3806  *
3807  *    This function should be called near the start of the device's
3808  *    runtime_suspend callback.
3809  *
3810  * Return:
3811  *    0		- OK to runtime suspend the device
3812  *    -EBUSY	- Device should not be runtime suspended
3813  */
3814 int blk_pre_runtime_suspend(struct request_queue *q)
3815 {
3816 	int ret = 0;
3817 
3818 	if (!q->dev)
3819 		return ret;
3820 
3821 	spin_lock_irq(q->queue_lock);
3822 	if (q->nr_pending) {
3823 		ret = -EBUSY;
3824 		pm_runtime_mark_last_busy(q->dev);
3825 	} else {
3826 		q->rpm_status = RPM_SUSPENDING;
3827 	}
3828 	spin_unlock_irq(q->queue_lock);
3829 	return ret;
3830 }
3831 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3832 
3833 /**
3834  * blk_post_runtime_suspend - Post runtime suspend processing
3835  * @q: the queue of the device
3836  * @err: return value of the device's runtime_suspend function
3837  *
3838  * Description:
3839  *    Update the queue's runtime status according to the return value of the
3840  *    device's runtime suspend function and mark last busy for the device so
3841  *    that PM core will try to auto suspend the device at a later time.
3842  *
3843  *    This function should be called near the end of the device's
3844  *    runtime_suspend callback.
3845  */
3846 void blk_post_runtime_suspend(struct request_queue *q, int err)
3847 {
3848 	if (!q->dev)
3849 		return;
3850 
3851 	spin_lock_irq(q->queue_lock);
3852 	if (!err) {
3853 		q->rpm_status = RPM_SUSPENDED;
3854 	} else {
3855 		q->rpm_status = RPM_ACTIVE;
3856 		pm_runtime_mark_last_busy(q->dev);
3857 	}
3858 	spin_unlock_irq(q->queue_lock);
3859 }
3860 EXPORT_SYMBOL(blk_post_runtime_suspend);
3861 
3862 /**
3863  * blk_pre_runtime_resume - Pre runtime resume processing
3864  * @q: the queue of the device
3865  *
3866  * Description:
3867  *    Update the queue's runtime status to RESUMING in preparation for the
3868  *    runtime resume of the device.
3869  *
3870  *    This function should be called near the start of the device's
3871  *    runtime_resume callback.
3872  */
3873 void blk_pre_runtime_resume(struct request_queue *q)
3874 {
3875 	if (!q->dev)
3876 		return;
3877 
3878 	spin_lock_irq(q->queue_lock);
3879 	q->rpm_status = RPM_RESUMING;
3880 	spin_unlock_irq(q->queue_lock);
3881 }
3882 EXPORT_SYMBOL(blk_pre_runtime_resume);
3883 
3884 /**
3885  * blk_post_runtime_resume - Post runtime resume processing
3886  * @q: the queue of the device
3887  * @err: return value of the device's runtime_resume function
3888  *
3889  * Description:
3890  *    Update the queue's runtime status according to the return value of the
3891  *    device's runtime_resume function. If it is successfully resumed, process
3892  *    the requests that are queued into the device's queue when it is resuming
3893  *    and then mark last busy and initiate autosuspend for it.
3894  *
3895  *    This function should be called near the end of the device's
3896  *    runtime_resume callback.
3897  */
3898 void blk_post_runtime_resume(struct request_queue *q, int err)
3899 {
3900 	if (!q->dev)
3901 		return;
3902 
3903 	spin_lock_irq(q->queue_lock);
3904 	if (!err) {
3905 		q->rpm_status = RPM_ACTIVE;
3906 		__blk_run_queue(q);
3907 		pm_runtime_mark_last_busy(q->dev);
3908 		pm_request_autosuspend(q->dev);
3909 	} else {
3910 		q->rpm_status = RPM_SUSPENDED;
3911 	}
3912 	spin_unlock_irq(q->queue_lock);
3913 }
3914 EXPORT_SYMBOL(blk_post_runtime_resume);
3915 
3916 /**
3917  * blk_set_runtime_active - Force runtime status of the queue to be active
3918  * @q: the queue of the device
3919  *
3920  * If the device is left runtime suspended during system suspend the resume
3921  * hook typically resumes the device and corrects runtime status
3922  * accordingly. However, that does not affect the queue runtime PM status
3923  * which is still "suspended". This prevents processing requests from the
3924  * queue.
3925  *
3926  * This function can be used in driver's resume hook to correct queue
3927  * runtime PM status and re-enable peeking requests from the queue. It
3928  * should be called before first request is added to the queue.
3929  */
3930 void blk_set_runtime_active(struct request_queue *q)
3931 {
3932 	spin_lock_irq(q->queue_lock);
3933 	q->rpm_status = RPM_ACTIVE;
3934 	pm_runtime_mark_last_busy(q->dev);
3935 	pm_request_autosuspend(q->dev);
3936 	spin_unlock_irq(q->queue_lock);
3937 }
3938 EXPORT_SYMBOL(blk_set_runtime_active);
3939 #endif
3940 
3941 int __init blk_dev_init(void)
3942 {
3943 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3944 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3945 			FIELD_SIZEOF(struct request, cmd_flags));
3946 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3947 			FIELD_SIZEOF(struct bio, bi_opf));
3948 
3949 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3950 	kblockd_workqueue = alloc_workqueue("kblockd",
3951 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3952 	if (!kblockd_workqueue)
3953 		panic("Failed to create kblockd\n");
3954 
3955 	request_cachep = kmem_cache_create("blkdev_requests",
3956 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3957 
3958 	blk_requestq_cachep = kmem_cache_create("request_queue",
3959 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3960 
3961 #ifdef CONFIG_DEBUG_FS
3962 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3963 #endif
3964 
3965 	return 0;
3966 }
3967