xref: /openbmc/linux/block/blk-core.c (revision e23feb16)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
37 
38 #include "blk.h"
39 #include "blk-cgroup.h"
40 
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
45 
46 DEFINE_IDA(blk_queue_ida);
47 
48 /*
49  * For the allocated request tables
50  */
51 static struct kmem_cache *request_cachep;
52 
53 /*
54  * For queue allocation
55  */
56 struct kmem_cache *blk_requestq_cachep;
57 
58 /*
59  * Controlling structure to kblockd
60  */
61 static struct workqueue_struct *kblockd_workqueue;
62 
63 static void drive_stat_acct(struct request *rq, int new_io)
64 {
65 	struct hd_struct *part;
66 	int rw = rq_data_dir(rq);
67 	int cpu;
68 
69 	if (!blk_do_io_stat(rq))
70 		return;
71 
72 	cpu = part_stat_lock();
73 
74 	if (!new_io) {
75 		part = rq->part;
76 		part_stat_inc(cpu, part, merges[rw]);
77 	} else {
78 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
79 		if (!hd_struct_try_get(part)) {
80 			/*
81 			 * The partition is already being removed,
82 			 * the request will be accounted on the disk only
83 			 *
84 			 * We take a reference on disk->part0 although that
85 			 * partition will never be deleted, so we can treat
86 			 * it as any other partition.
87 			 */
88 			part = &rq->rq_disk->part0;
89 			hd_struct_get(part);
90 		}
91 		part_round_stats(cpu, part);
92 		part_inc_in_flight(part, rw);
93 		rq->part = part;
94 	}
95 
96 	part_stat_unlock();
97 }
98 
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 	int nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 	if (nr > q->nr_requests)
105 		nr = q->nr_requests;
106 	q->nr_congestion_on = nr;
107 
108 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 	if (nr < 1)
110 		nr = 1;
111 	q->nr_congestion_off = nr;
112 }
113 
114 /**
115  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116  * @bdev:	device
117  *
118  * Locates the passed device's request queue and returns the address of its
119  * backing_dev_info
120  *
121  * Will return NULL if the request queue cannot be located.
122  */
123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124 {
125 	struct backing_dev_info *ret = NULL;
126 	struct request_queue *q = bdev_get_queue(bdev);
127 
128 	if (q)
129 		ret = &q->backing_dev_info;
130 	return ret;
131 }
132 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 
134 void blk_rq_init(struct request_queue *q, struct request *rq)
135 {
136 	memset(rq, 0, sizeof(*rq));
137 
138 	INIT_LIST_HEAD(&rq->queuelist);
139 	INIT_LIST_HEAD(&rq->timeout_list);
140 	rq->cpu = -1;
141 	rq->q = q;
142 	rq->__sector = (sector_t) -1;
143 	INIT_HLIST_NODE(&rq->hash);
144 	RB_CLEAR_NODE(&rq->rb_node);
145 	rq->cmd = rq->__cmd;
146 	rq->cmd_len = BLK_MAX_CDB;
147 	rq->tag = -1;
148 	rq->ref_count = 1;
149 	rq->start_time = jiffies;
150 	set_start_time_ns(rq);
151 	rq->part = NULL;
152 }
153 EXPORT_SYMBOL(blk_rq_init);
154 
155 static void req_bio_endio(struct request *rq, struct bio *bio,
156 			  unsigned int nbytes, int error)
157 {
158 	if (error)
159 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 		error = -EIO;
162 
163 	if (unlikely(rq->cmd_flags & REQ_QUIET))
164 		set_bit(BIO_QUIET, &bio->bi_flags);
165 
166 	bio_advance(bio, nbytes);
167 
168 	/* don't actually finish bio if it's part of flush sequence */
169 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 		bio_endio(bio, error);
171 }
172 
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 	int bit;
176 
177 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 		rq->cmd_flags);
180 
181 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
182 	       (unsigned long long)blk_rq_pos(rq),
183 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
185 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186 
187 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 		printk(KERN_INFO "  cdb: ");
189 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 			printk("%02x ", rq->cmd[bit]);
191 		printk("\n");
192 	}
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195 
196 static void blk_delay_work(struct work_struct *work)
197 {
198 	struct request_queue *q;
199 
200 	q = container_of(work, struct request_queue, delay_work.work);
201 	spin_lock_irq(q->queue_lock);
202 	__blk_run_queue(q);
203 	spin_unlock_irq(q->queue_lock);
204 }
205 
206 /**
207  * blk_delay_queue - restart queueing after defined interval
208  * @q:		The &struct request_queue in question
209  * @msecs:	Delay in msecs
210  *
211  * Description:
212  *   Sometimes queueing needs to be postponed for a little while, to allow
213  *   resources to come back. This function will make sure that queueing is
214  *   restarted around the specified time. Queue lock must be held.
215  */
216 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
217 {
218 	if (likely(!blk_queue_dead(q)))
219 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 				   msecs_to_jiffies(msecs));
221 }
222 EXPORT_SYMBOL(blk_delay_queue);
223 
224 /**
225  * blk_start_queue - restart a previously stopped queue
226  * @q:    The &struct request_queue in question
227  *
228  * Description:
229  *   blk_start_queue() will clear the stop flag on the queue, and call
230  *   the request_fn for the queue if it was in a stopped state when
231  *   entered. Also see blk_stop_queue(). Queue lock must be held.
232  **/
233 void blk_start_queue(struct request_queue *q)
234 {
235 	WARN_ON(!irqs_disabled());
236 
237 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
238 	__blk_run_queue(q);
239 }
240 EXPORT_SYMBOL(blk_start_queue);
241 
242 /**
243  * blk_stop_queue - stop a queue
244  * @q:    The &struct request_queue in question
245  *
246  * Description:
247  *   The Linux block layer assumes that a block driver will consume all
248  *   entries on the request queue when the request_fn strategy is called.
249  *   Often this will not happen, because of hardware limitations (queue
250  *   depth settings). If a device driver gets a 'queue full' response,
251  *   or if it simply chooses not to queue more I/O at one point, it can
252  *   call this function to prevent the request_fn from being called until
253  *   the driver has signalled it's ready to go again. This happens by calling
254  *   blk_start_queue() to restart queue operations. Queue lock must be held.
255  **/
256 void blk_stop_queue(struct request_queue *q)
257 {
258 	cancel_delayed_work(&q->delay_work);
259 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
260 }
261 EXPORT_SYMBOL(blk_stop_queue);
262 
263 /**
264  * blk_sync_queue - cancel any pending callbacks on a queue
265  * @q: the queue
266  *
267  * Description:
268  *     The block layer may perform asynchronous callback activity
269  *     on a queue, such as calling the unplug function after a timeout.
270  *     A block device may call blk_sync_queue to ensure that any
271  *     such activity is cancelled, thus allowing it to release resources
272  *     that the callbacks might use. The caller must already have made sure
273  *     that its ->make_request_fn will not re-add plugging prior to calling
274  *     this function.
275  *
276  *     This function does not cancel any asynchronous activity arising
277  *     out of elevator or throttling code. That would require elevaotor_exit()
278  *     and blkcg_exit_queue() to be called with queue lock initialized.
279  *
280  */
281 void blk_sync_queue(struct request_queue *q)
282 {
283 	del_timer_sync(&q->timeout);
284 	cancel_delayed_work_sync(&q->delay_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287 
288 /**
289  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290  * @q:	The queue to run
291  *
292  * Description:
293  *    Invoke request handling on a queue if there are any pending requests.
294  *    May be used to restart request handling after a request has completed.
295  *    This variant runs the queue whether or not the queue has been
296  *    stopped. Must be called with the queue lock held and interrupts
297  *    disabled. See also @blk_run_queue.
298  */
299 inline void __blk_run_queue_uncond(struct request_queue *q)
300 {
301 	if (unlikely(blk_queue_dead(q)))
302 		return;
303 
304 	/*
305 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 	 * the queue lock internally. As a result multiple threads may be
307 	 * running such a request function concurrently. Keep track of the
308 	 * number of active request_fn invocations such that blk_drain_queue()
309 	 * can wait until all these request_fn calls have finished.
310 	 */
311 	q->request_fn_active++;
312 	q->request_fn(q);
313 	q->request_fn_active--;
314 }
315 
316 /**
317  * __blk_run_queue - run a single device queue
318  * @q:	The queue to run
319  *
320  * Description:
321  *    See @blk_run_queue. This variant must be called with the queue lock
322  *    held and interrupts disabled.
323  */
324 void __blk_run_queue(struct request_queue *q)
325 {
326 	if (unlikely(blk_queue_stopped(q)))
327 		return;
328 
329 	__blk_run_queue_uncond(q);
330 }
331 EXPORT_SYMBOL(__blk_run_queue);
332 
333 /**
334  * blk_run_queue_async - run a single device queue in workqueue context
335  * @q:	The queue to run
336  *
337  * Description:
338  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339  *    of us. The caller must hold the queue lock.
340  */
341 void blk_run_queue_async(struct request_queue *q)
342 {
343 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
344 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
345 }
346 EXPORT_SYMBOL(blk_run_queue_async);
347 
348 /**
349  * blk_run_queue - run a single device queue
350  * @q: The queue to run
351  *
352  * Description:
353  *    Invoke request handling on this queue, if it has pending work to do.
354  *    May be used to restart queueing when a request has completed.
355  */
356 void blk_run_queue(struct request_queue *q)
357 {
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(q->queue_lock, flags);
361 	__blk_run_queue(q);
362 	spin_unlock_irqrestore(q->queue_lock, flags);
363 }
364 EXPORT_SYMBOL(blk_run_queue);
365 
366 void blk_put_queue(struct request_queue *q)
367 {
368 	kobject_put(&q->kobj);
369 }
370 EXPORT_SYMBOL(blk_put_queue);
371 
372 /**
373  * __blk_drain_queue - drain requests from request_queue
374  * @q: queue to drain
375  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376  *
377  * Drain requests from @q.  If @drain_all is set, all requests are drained.
378  * If not, only ELVPRIV requests are drained.  The caller is responsible
379  * for ensuring that no new requests which need to be drained are queued.
380  */
381 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 	__releases(q->queue_lock)
383 	__acquires(q->queue_lock)
384 {
385 	int i;
386 
387 	lockdep_assert_held(q->queue_lock);
388 
389 	while (true) {
390 		bool drain = false;
391 
392 		/*
393 		 * The caller might be trying to drain @q before its
394 		 * elevator is initialized.
395 		 */
396 		if (q->elevator)
397 			elv_drain_elevator(q);
398 
399 		blkcg_drain_queue(q);
400 
401 		/*
402 		 * This function might be called on a queue which failed
403 		 * driver init after queue creation or is not yet fully
404 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
405 		 * in such cases.  Kick queue iff dispatch queue has
406 		 * something on it and @q has request_fn set.
407 		 */
408 		if (!list_empty(&q->queue_head) && q->request_fn)
409 			__blk_run_queue(q);
410 
411 		drain |= q->nr_rqs_elvpriv;
412 		drain |= q->request_fn_active;
413 
414 		/*
415 		 * Unfortunately, requests are queued at and tracked from
416 		 * multiple places and there's no single counter which can
417 		 * be drained.  Check all the queues and counters.
418 		 */
419 		if (drain_all) {
420 			drain |= !list_empty(&q->queue_head);
421 			for (i = 0; i < 2; i++) {
422 				drain |= q->nr_rqs[i];
423 				drain |= q->in_flight[i];
424 				drain |= !list_empty(&q->flush_queue[i]);
425 			}
426 		}
427 
428 		if (!drain)
429 			break;
430 
431 		spin_unlock_irq(q->queue_lock);
432 
433 		msleep(10);
434 
435 		spin_lock_irq(q->queue_lock);
436 	}
437 
438 	/*
439 	 * With queue marked dead, any woken up waiter will fail the
440 	 * allocation path, so the wakeup chaining is lost and we're
441 	 * left with hung waiters. We need to wake up those waiters.
442 	 */
443 	if (q->request_fn) {
444 		struct request_list *rl;
445 
446 		blk_queue_for_each_rl(rl, q)
447 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 				wake_up_all(&rl->wait[i]);
449 	}
450 }
451 
452 /**
453  * blk_queue_bypass_start - enter queue bypass mode
454  * @q: queue of interest
455  *
456  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
457  * function makes @q enter bypass mode and drains all requests which were
458  * throttled or issued before.  On return, it's guaranteed that no request
459  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460  * inside queue or RCU read lock.
461  */
462 void blk_queue_bypass_start(struct request_queue *q)
463 {
464 	bool drain;
465 
466 	spin_lock_irq(q->queue_lock);
467 	drain = !q->bypass_depth++;
468 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 	spin_unlock_irq(q->queue_lock);
470 
471 	if (drain) {
472 		spin_lock_irq(q->queue_lock);
473 		__blk_drain_queue(q, false);
474 		spin_unlock_irq(q->queue_lock);
475 
476 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
477 		synchronize_rcu();
478 	}
479 }
480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481 
482 /**
483  * blk_queue_bypass_end - leave queue bypass mode
484  * @q: queue of interest
485  *
486  * Leave bypass mode and restore the normal queueing behavior.
487  */
488 void blk_queue_bypass_end(struct request_queue *q)
489 {
490 	spin_lock_irq(q->queue_lock);
491 	if (!--q->bypass_depth)
492 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 	WARN_ON_ONCE(q->bypass_depth < 0);
494 	spin_unlock_irq(q->queue_lock);
495 }
496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497 
498 /**
499  * blk_cleanup_queue - shutdown a request queue
500  * @q: request queue to shutdown
501  *
502  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503  * put it.  All future requests will be failed immediately with -ENODEV.
504  */
505 void blk_cleanup_queue(struct request_queue *q)
506 {
507 	spinlock_t *lock = q->queue_lock;
508 
509 	/* mark @q DYING, no new request or merges will be allowed afterwards */
510 	mutex_lock(&q->sysfs_lock);
511 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
512 	spin_lock_irq(lock);
513 
514 	/*
515 	 * A dying queue is permanently in bypass mode till released.  Note
516 	 * that, unlike blk_queue_bypass_start(), we aren't performing
517 	 * synchronize_rcu() after entering bypass mode to avoid the delay
518 	 * as some drivers create and destroy a lot of queues while
519 	 * probing.  This is still safe because blk_release_queue() will be
520 	 * called only after the queue refcnt drops to zero and nothing,
521 	 * RCU or not, would be traversing the queue by then.
522 	 */
523 	q->bypass_depth++;
524 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
525 
526 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
528 	queue_flag_set(QUEUE_FLAG_DYING, q);
529 	spin_unlock_irq(lock);
530 	mutex_unlock(&q->sysfs_lock);
531 
532 	/*
533 	 * Drain all requests queued before DYING marking. Set DEAD flag to
534 	 * prevent that q->request_fn() gets invoked after draining finished.
535 	 */
536 	spin_lock_irq(lock);
537 	__blk_drain_queue(q, true);
538 	queue_flag_set(QUEUE_FLAG_DEAD, q);
539 	spin_unlock_irq(lock);
540 
541 	/* @q won't process any more request, flush async actions */
542 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 	blk_sync_queue(q);
544 
545 	spin_lock_irq(lock);
546 	if (q->queue_lock != &q->__queue_lock)
547 		q->queue_lock = &q->__queue_lock;
548 	spin_unlock_irq(lock);
549 
550 	/* @q is and will stay empty, shutdown and put */
551 	blk_put_queue(q);
552 }
553 EXPORT_SYMBOL(blk_cleanup_queue);
554 
555 int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 		gfp_t gfp_mask)
557 {
558 	if (unlikely(rl->rq_pool))
559 		return 0;
560 
561 	rl->q = q;
562 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
564 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
566 
567 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
568 					  mempool_free_slab, request_cachep,
569 					  gfp_mask, q->node);
570 	if (!rl->rq_pool)
571 		return -ENOMEM;
572 
573 	return 0;
574 }
575 
576 void blk_exit_rl(struct request_list *rl)
577 {
578 	if (rl->rq_pool)
579 		mempool_destroy(rl->rq_pool);
580 }
581 
582 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
583 {
584 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
585 }
586 EXPORT_SYMBOL(blk_alloc_queue);
587 
588 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
589 {
590 	struct request_queue *q;
591 	int err;
592 
593 	q = kmem_cache_alloc_node(blk_requestq_cachep,
594 				gfp_mask | __GFP_ZERO, node_id);
595 	if (!q)
596 		return NULL;
597 
598 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
599 	if (q->id < 0)
600 		goto fail_q;
601 
602 	q->backing_dev_info.ra_pages =
603 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 	q->backing_dev_info.state = 0;
605 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
606 	q->backing_dev_info.name = "block";
607 	q->node = node_id;
608 
609 	err = bdi_init(&q->backing_dev_info);
610 	if (err)
611 		goto fail_id;
612 
613 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 		    laptop_mode_timer_fn, (unsigned long) q);
615 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
616 	INIT_LIST_HEAD(&q->queue_head);
617 	INIT_LIST_HEAD(&q->timeout_list);
618 	INIT_LIST_HEAD(&q->icq_list);
619 #ifdef CONFIG_BLK_CGROUP
620 	INIT_LIST_HEAD(&q->blkg_list);
621 #endif
622 	INIT_LIST_HEAD(&q->flush_queue[0]);
623 	INIT_LIST_HEAD(&q->flush_queue[1]);
624 	INIT_LIST_HEAD(&q->flush_data_in_flight);
625 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
626 
627 	kobject_init(&q->kobj, &blk_queue_ktype);
628 
629 	mutex_init(&q->sysfs_lock);
630 	spin_lock_init(&q->__queue_lock);
631 
632 	/*
633 	 * By default initialize queue_lock to internal lock and driver can
634 	 * override it later if need be.
635 	 */
636 	q->queue_lock = &q->__queue_lock;
637 
638 	/*
639 	 * A queue starts its life with bypass turned on to avoid
640 	 * unnecessary bypass on/off overhead and nasty surprises during
641 	 * init.  The initial bypass will be finished when the queue is
642 	 * registered by blk_register_queue().
643 	 */
644 	q->bypass_depth = 1;
645 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646 
647 	if (blkcg_init_queue(q))
648 		goto fail_id;
649 
650 	return q;
651 
652 fail_id:
653 	ida_simple_remove(&blk_queue_ida, q->id);
654 fail_q:
655 	kmem_cache_free(blk_requestq_cachep, q);
656 	return NULL;
657 }
658 EXPORT_SYMBOL(blk_alloc_queue_node);
659 
660 /**
661  * blk_init_queue  - prepare a request queue for use with a block device
662  * @rfn:  The function to be called to process requests that have been
663  *        placed on the queue.
664  * @lock: Request queue spin lock
665  *
666  * Description:
667  *    If a block device wishes to use the standard request handling procedures,
668  *    which sorts requests and coalesces adjacent requests, then it must
669  *    call blk_init_queue().  The function @rfn will be called when there
670  *    are requests on the queue that need to be processed.  If the device
671  *    supports plugging, then @rfn may not be called immediately when requests
672  *    are available on the queue, but may be called at some time later instead.
673  *    Plugged queues are generally unplugged when a buffer belonging to one
674  *    of the requests on the queue is needed, or due to memory pressure.
675  *
676  *    @rfn is not required, or even expected, to remove all requests off the
677  *    queue, but only as many as it can handle at a time.  If it does leave
678  *    requests on the queue, it is responsible for arranging that the requests
679  *    get dealt with eventually.
680  *
681  *    The queue spin lock must be held while manipulating the requests on the
682  *    request queue; this lock will be taken also from interrupt context, so irq
683  *    disabling is needed for it.
684  *
685  *    Function returns a pointer to the initialized request queue, or %NULL if
686  *    it didn't succeed.
687  *
688  * Note:
689  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
690  *    when the block device is deactivated (such as at module unload).
691  **/
692 
693 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
694 {
695 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
696 }
697 EXPORT_SYMBOL(blk_init_queue);
698 
699 struct request_queue *
700 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
701 {
702 	struct request_queue *uninit_q, *q;
703 
704 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
705 	if (!uninit_q)
706 		return NULL;
707 
708 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
709 	if (!q)
710 		blk_cleanup_queue(uninit_q);
711 
712 	return q;
713 }
714 EXPORT_SYMBOL(blk_init_queue_node);
715 
716 struct request_queue *
717 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
718 			 spinlock_t *lock)
719 {
720 	if (!q)
721 		return NULL;
722 
723 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
724 		return NULL;
725 
726 	q->request_fn		= rfn;
727 	q->prep_rq_fn		= NULL;
728 	q->unprep_rq_fn		= NULL;
729 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
730 
731 	/* Override internal queue lock with supplied lock pointer */
732 	if (lock)
733 		q->queue_lock		= lock;
734 
735 	/*
736 	 * This also sets hw/phys segments, boundary and size
737 	 */
738 	blk_queue_make_request(q, blk_queue_bio);
739 
740 	q->sg_reserved_size = INT_MAX;
741 
742 	/* init elevator */
743 	if (elevator_init(q, NULL))
744 		return NULL;
745 	return q;
746 }
747 EXPORT_SYMBOL(blk_init_allocated_queue);
748 
749 bool blk_get_queue(struct request_queue *q)
750 {
751 	if (likely(!blk_queue_dying(q))) {
752 		__blk_get_queue(q);
753 		return true;
754 	}
755 
756 	return false;
757 }
758 EXPORT_SYMBOL(blk_get_queue);
759 
760 static inline void blk_free_request(struct request_list *rl, struct request *rq)
761 {
762 	if (rq->cmd_flags & REQ_ELVPRIV) {
763 		elv_put_request(rl->q, rq);
764 		if (rq->elv.icq)
765 			put_io_context(rq->elv.icq->ioc);
766 	}
767 
768 	mempool_free(rq, rl->rq_pool);
769 }
770 
771 /*
772  * ioc_batching returns true if the ioc is a valid batching request and
773  * should be given priority access to a request.
774  */
775 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
776 {
777 	if (!ioc)
778 		return 0;
779 
780 	/*
781 	 * Make sure the process is able to allocate at least 1 request
782 	 * even if the batch times out, otherwise we could theoretically
783 	 * lose wakeups.
784 	 */
785 	return ioc->nr_batch_requests == q->nr_batching ||
786 		(ioc->nr_batch_requests > 0
787 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
788 }
789 
790 /*
791  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
792  * will cause the process to be a "batcher" on all queues in the system. This
793  * is the behaviour we want though - once it gets a wakeup it should be given
794  * a nice run.
795  */
796 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
797 {
798 	if (!ioc || ioc_batching(q, ioc))
799 		return;
800 
801 	ioc->nr_batch_requests = q->nr_batching;
802 	ioc->last_waited = jiffies;
803 }
804 
805 static void __freed_request(struct request_list *rl, int sync)
806 {
807 	struct request_queue *q = rl->q;
808 
809 	/*
810 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
811 	 * blkcg anyway, just use root blkcg state.
812 	 */
813 	if (rl == &q->root_rl &&
814 	    rl->count[sync] < queue_congestion_off_threshold(q))
815 		blk_clear_queue_congested(q, sync);
816 
817 	if (rl->count[sync] + 1 <= q->nr_requests) {
818 		if (waitqueue_active(&rl->wait[sync]))
819 			wake_up(&rl->wait[sync]);
820 
821 		blk_clear_rl_full(rl, sync);
822 	}
823 }
824 
825 /*
826  * A request has just been released.  Account for it, update the full and
827  * congestion status, wake up any waiters.   Called under q->queue_lock.
828  */
829 static void freed_request(struct request_list *rl, unsigned int flags)
830 {
831 	struct request_queue *q = rl->q;
832 	int sync = rw_is_sync(flags);
833 
834 	q->nr_rqs[sync]--;
835 	rl->count[sync]--;
836 	if (flags & REQ_ELVPRIV)
837 		q->nr_rqs_elvpriv--;
838 
839 	__freed_request(rl, sync);
840 
841 	if (unlikely(rl->starved[sync ^ 1]))
842 		__freed_request(rl, sync ^ 1);
843 }
844 
845 /*
846  * Determine if elevator data should be initialized when allocating the
847  * request associated with @bio.
848  */
849 static bool blk_rq_should_init_elevator(struct bio *bio)
850 {
851 	if (!bio)
852 		return true;
853 
854 	/*
855 	 * Flush requests do not use the elevator so skip initialization.
856 	 * This allows a request to share the flush and elevator data.
857 	 */
858 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
859 		return false;
860 
861 	return true;
862 }
863 
864 /**
865  * rq_ioc - determine io_context for request allocation
866  * @bio: request being allocated is for this bio (can be %NULL)
867  *
868  * Determine io_context to use for request allocation for @bio.  May return
869  * %NULL if %current->io_context doesn't exist.
870  */
871 static struct io_context *rq_ioc(struct bio *bio)
872 {
873 #ifdef CONFIG_BLK_CGROUP
874 	if (bio && bio->bi_ioc)
875 		return bio->bi_ioc;
876 #endif
877 	return current->io_context;
878 }
879 
880 /**
881  * __get_request - get a free request
882  * @rl: request list to allocate from
883  * @rw_flags: RW and SYNC flags
884  * @bio: bio to allocate request for (can be %NULL)
885  * @gfp_mask: allocation mask
886  *
887  * Get a free request from @q.  This function may fail under memory
888  * pressure or if @q is dead.
889  *
890  * Must be callled with @q->queue_lock held and,
891  * Returns %NULL on failure, with @q->queue_lock held.
892  * Returns !%NULL on success, with @q->queue_lock *not held*.
893  */
894 static struct request *__get_request(struct request_list *rl, int rw_flags,
895 				     struct bio *bio, gfp_t gfp_mask)
896 {
897 	struct request_queue *q = rl->q;
898 	struct request *rq;
899 	struct elevator_type *et = q->elevator->type;
900 	struct io_context *ioc = rq_ioc(bio);
901 	struct io_cq *icq = NULL;
902 	const bool is_sync = rw_is_sync(rw_flags) != 0;
903 	int may_queue;
904 
905 	if (unlikely(blk_queue_dying(q)))
906 		return NULL;
907 
908 	may_queue = elv_may_queue(q, rw_flags);
909 	if (may_queue == ELV_MQUEUE_NO)
910 		goto rq_starved;
911 
912 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
913 		if (rl->count[is_sync]+1 >= q->nr_requests) {
914 			/*
915 			 * The queue will fill after this allocation, so set
916 			 * it as full, and mark this process as "batching".
917 			 * This process will be allowed to complete a batch of
918 			 * requests, others will be blocked.
919 			 */
920 			if (!blk_rl_full(rl, is_sync)) {
921 				ioc_set_batching(q, ioc);
922 				blk_set_rl_full(rl, is_sync);
923 			} else {
924 				if (may_queue != ELV_MQUEUE_MUST
925 						&& !ioc_batching(q, ioc)) {
926 					/*
927 					 * The queue is full and the allocating
928 					 * process is not a "batcher", and not
929 					 * exempted by the IO scheduler
930 					 */
931 					return NULL;
932 				}
933 			}
934 		}
935 		/*
936 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
937 		 * root blkcg anyway, just use root blkcg state.
938 		 */
939 		if (rl == &q->root_rl)
940 			blk_set_queue_congested(q, is_sync);
941 	}
942 
943 	/*
944 	 * Only allow batching queuers to allocate up to 50% over the defined
945 	 * limit of requests, otherwise we could have thousands of requests
946 	 * allocated with any setting of ->nr_requests
947 	 */
948 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
949 		return NULL;
950 
951 	q->nr_rqs[is_sync]++;
952 	rl->count[is_sync]++;
953 	rl->starved[is_sync] = 0;
954 
955 	/*
956 	 * Decide whether the new request will be managed by elevator.  If
957 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
958 	 * prevent the current elevator from being destroyed until the new
959 	 * request is freed.  This guarantees icq's won't be destroyed and
960 	 * makes creating new ones safe.
961 	 *
962 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
963 	 * it will be created after releasing queue_lock.
964 	 */
965 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
966 		rw_flags |= REQ_ELVPRIV;
967 		q->nr_rqs_elvpriv++;
968 		if (et->icq_cache && ioc)
969 			icq = ioc_lookup_icq(ioc, q);
970 	}
971 
972 	if (blk_queue_io_stat(q))
973 		rw_flags |= REQ_IO_STAT;
974 	spin_unlock_irq(q->queue_lock);
975 
976 	/* allocate and init request */
977 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
978 	if (!rq)
979 		goto fail_alloc;
980 
981 	blk_rq_init(q, rq);
982 	blk_rq_set_rl(rq, rl);
983 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
984 
985 	/* init elvpriv */
986 	if (rw_flags & REQ_ELVPRIV) {
987 		if (unlikely(et->icq_cache && !icq)) {
988 			if (ioc)
989 				icq = ioc_create_icq(ioc, q, gfp_mask);
990 			if (!icq)
991 				goto fail_elvpriv;
992 		}
993 
994 		rq->elv.icq = icq;
995 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
996 			goto fail_elvpriv;
997 
998 		/* @rq->elv.icq holds io_context until @rq is freed */
999 		if (icq)
1000 			get_io_context(icq->ioc);
1001 	}
1002 out:
1003 	/*
1004 	 * ioc may be NULL here, and ioc_batching will be false. That's
1005 	 * OK, if the queue is under the request limit then requests need
1006 	 * not count toward the nr_batch_requests limit. There will always
1007 	 * be some limit enforced by BLK_BATCH_TIME.
1008 	 */
1009 	if (ioc_batching(q, ioc))
1010 		ioc->nr_batch_requests--;
1011 
1012 	trace_block_getrq(q, bio, rw_flags & 1);
1013 	return rq;
1014 
1015 fail_elvpriv:
1016 	/*
1017 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1018 	 * and may fail indefinitely under memory pressure and thus
1019 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1020 	 * disturb iosched and blkcg but weird is bettern than dead.
1021 	 */
1022 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1023 			   dev_name(q->backing_dev_info.dev));
1024 
1025 	rq->cmd_flags &= ~REQ_ELVPRIV;
1026 	rq->elv.icq = NULL;
1027 
1028 	spin_lock_irq(q->queue_lock);
1029 	q->nr_rqs_elvpriv--;
1030 	spin_unlock_irq(q->queue_lock);
1031 	goto out;
1032 
1033 fail_alloc:
1034 	/*
1035 	 * Allocation failed presumably due to memory. Undo anything we
1036 	 * might have messed up.
1037 	 *
1038 	 * Allocating task should really be put onto the front of the wait
1039 	 * queue, but this is pretty rare.
1040 	 */
1041 	spin_lock_irq(q->queue_lock);
1042 	freed_request(rl, rw_flags);
1043 
1044 	/*
1045 	 * in the very unlikely event that allocation failed and no
1046 	 * requests for this direction was pending, mark us starved so that
1047 	 * freeing of a request in the other direction will notice
1048 	 * us. another possible fix would be to split the rq mempool into
1049 	 * READ and WRITE
1050 	 */
1051 rq_starved:
1052 	if (unlikely(rl->count[is_sync] == 0))
1053 		rl->starved[is_sync] = 1;
1054 	return NULL;
1055 }
1056 
1057 /**
1058  * get_request - get a free request
1059  * @q: request_queue to allocate request from
1060  * @rw_flags: RW and SYNC flags
1061  * @bio: bio to allocate request for (can be %NULL)
1062  * @gfp_mask: allocation mask
1063  *
1064  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1065  * function keeps retrying under memory pressure and fails iff @q is dead.
1066  *
1067  * Must be callled with @q->queue_lock held and,
1068  * Returns %NULL on failure, with @q->queue_lock held.
1069  * Returns !%NULL on success, with @q->queue_lock *not held*.
1070  */
1071 static struct request *get_request(struct request_queue *q, int rw_flags,
1072 				   struct bio *bio, gfp_t gfp_mask)
1073 {
1074 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1075 	DEFINE_WAIT(wait);
1076 	struct request_list *rl;
1077 	struct request *rq;
1078 
1079 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1080 retry:
1081 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1082 	if (rq)
1083 		return rq;
1084 
1085 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1086 		blk_put_rl(rl);
1087 		return NULL;
1088 	}
1089 
1090 	/* wait on @rl and retry */
1091 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1092 				  TASK_UNINTERRUPTIBLE);
1093 
1094 	trace_block_sleeprq(q, bio, rw_flags & 1);
1095 
1096 	spin_unlock_irq(q->queue_lock);
1097 	io_schedule();
1098 
1099 	/*
1100 	 * After sleeping, we become a "batching" process and will be able
1101 	 * to allocate at least one request, and up to a big batch of them
1102 	 * for a small period time.  See ioc_batching, ioc_set_batching
1103 	 */
1104 	ioc_set_batching(q, current->io_context);
1105 
1106 	spin_lock_irq(q->queue_lock);
1107 	finish_wait(&rl->wait[is_sync], &wait);
1108 
1109 	goto retry;
1110 }
1111 
1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1113 {
1114 	struct request *rq;
1115 
1116 	BUG_ON(rw != READ && rw != WRITE);
1117 
1118 	/* create ioc upfront */
1119 	create_io_context(gfp_mask, q->node);
1120 
1121 	spin_lock_irq(q->queue_lock);
1122 	rq = get_request(q, rw, NULL, gfp_mask);
1123 	if (!rq)
1124 		spin_unlock_irq(q->queue_lock);
1125 	/* q->queue_lock is unlocked at this point */
1126 
1127 	return rq;
1128 }
1129 EXPORT_SYMBOL(blk_get_request);
1130 
1131 /**
1132  * blk_make_request - given a bio, allocate a corresponding struct request.
1133  * @q: target request queue
1134  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1135  *        It may be a chained-bio properly constructed by block/bio layer.
1136  * @gfp_mask: gfp flags to be used for memory allocation
1137  *
1138  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1139  * type commands. Where the struct request needs to be farther initialized by
1140  * the caller. It is passed a &struct bio, which describes the memory info of
1141  * the I/O transfer.
1142  *
1143  * The caller of blk_make_request must make sure that bi_io_vec
1144  * are set to describe the memory buffers. That bio_data_dir() will return
1145  * the needed direction of the request. (And all bio's in the passed bio-chain
1146  * are properly set accordingly)
1147  *
1148  * If called under none-sleepable conditions, mapped bio buffers must not
1149  * need bouncing, by calling the appropriate masked or flagged allocator,
1150  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1151  * BUG.
1152  *
1153  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1154  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1155  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1156  * completion of a bio that hasn't been submitted yet, thus resulting in a
1157  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1158  * of bio_alloc(), as that avoids the mempool deadlock.
1159  * If possible a big IO should be split into smaller parts when allocation
1160  * fails. Partial allocation should not be an error, or you risk a live-lock.
1161  */
1162 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1163 				 gfp_t gfp_mask)
1164 {
1165 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1166 
1167 	if (unlikely(!rq))
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	for_each_bio(bio) {
1171 		struct bio *bounce_bio = bio;
1172 		int ret;
1173 
1174 		blk_queue_bounce(q, &bounce_bio);
1175 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1176 		if (unlikely(ret)) {
1177 			blk_put_request(rq);
1178 			return ERR_PTR(ret);
1179 		}
1180 	}
1181 
1182 	return rq;
1183 }
1184 EXPORT_SYMBOL(blk_make_request);
1185 
1186 /**
1187  * blk_requeue_request - put a request back on queue
1188  * @q:		request queue where request should be inserted
1189  * @rq:		request to be inserted
1190  *
1191  * Description:
1192  *    Drivers often keep queueing requests until the hardware cannot accept
1193  *    more, when that condition happens we need to put the request back
1194  *    on the queue. Must be called with queue lock held.
1195  */
1196 void blk_requeue_request(struct request_queue *q, struct request *rq)
1197 {
1198 	blk_delete_timer(rq);
1199 	blk_clear_rq_complete(rq);
1200 	trace_block_rq_requeue(q, rq);
1201 
1202 	if (blk_rq_tagged(rq))
1203 		blk_queue_end_tag(q, rq);
1204 
1205 	BUG_ON(blk_queued_rq(rq));
1206 
1207 	elv_requeue_request(q, rq);
1208 }
1209 EXPORT_SYMBOL(blk_requeue_request);
1210 
1211 static void add_acct_request(struct request_queue *q, struct request *rq,
1212 			     int where)
1213 {
1214 	drive_stat_acct(rq, 1);
1215 	__elv_add_request(q, rq, where);
1216 }
1217 
1218 static void part_round_stats_single(int cpu, struct hd_struct *part,
1219 				    unsigned long now)
1220 {
1221 	if (now == part->stamp)
1222 		return;
1223 
1224 	if (part_in_flight(part)) {
1225 		__part_stat_add(cpu, part, time_in_queue,
1226 				part_in_flight(part) * (now - part->stamp));
1227 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1228 	}
1229 	part->stamp = now;
1230 }
1231 
1232 /**
1233  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1234  * @cpu: cpu number for stats access
1235  * @part: target partition
1236  *
1237  * The average IO queue length and utilisation statistics are maintained
1238  * by observing the current state of the queue length and the amount of
1239  * time it has been in this state for.
1240  *
1241  * Normally, that accounting is done on IO completion, but that can result
1242  * in more than a second's worth of IO being accounted for within any one
1243  * second, leading to >100% utilisation.  To deal with that, we call this
1244  * function to do a round-off before returning the results when reading
1245  * /proc/diskstats.  This accounts immediately for all queue usage up to
1246  * the current jiffies and restarts the counters again.
1247  */
1248 void part_round_stats(int cpu, struct hd_struct *part)
1249 {
1250 	unsigned long now = jiffies;
1251 
1252 	if (part->partno)
1253 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1254 	part_round_stats_single(cpu, part, now);
1255 }
1256 EXPORT_SYMBOL_GPL(part_round_stats);
1257 
1258 #ifdef CONFIG_PM_RUNTIME
1259 static void blk_pm_put_request(struct request *rq)
1260 {
1261 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1262 		pm_runtime_mark_last_busy(rq->q->dev);
1263 }
1264 #else
1265 static inline void blk_pm_put_request(struct request *rq) {}
1266 #endif
1267 
1268 /*
1269  * queue lock must be held
1270  */
1271 void __blk_put_request(struct request_queue *q, struct request *req)
1272 {
1273 	if (unlikely(!q))
1274 		return;
1275 	if (unlikely(--req->ref_count))
1276 		return;
1277 
1278 	blk_pm_put_request(req);
1279 
1280 	elv_completed_request(q, req);
1281 
1282 	/* this is a bio leak */
1283 	WARN_ON(req->bio != NULL);
1284 
1285 	/*
1286 	 * Request may not have originated from ll_rw_blk. if not,
1287 	 * it didn't come out of our reserved rq pools
1288 	 */
1289 	if (req->cmd_flags & REQ_ALLOCED) {
1290 		unsigned int flags = req->cmd_flags;
1291 		struct request_list *rl = blk_rq_rl(req);
1292 
1293 		BUG_ON(!list_empty(&req->queuelist));
1294 		BUG_ON(!hlist_unhashed(&req->hash));
1295 
1296 		blk_free_request(rl, req);
1297 		freed_request(rl, flags);
1298 		blk_put_rl(rl);
1299 	}
1300 }
1301 EXPORT_SYMBOL_GPL(__blk_put_request);
1302 
1303 void blk_put_request(struct request *req)
1304 {
1305 	unsigned long flags;
1306 	struct request_queue *q = req->q;
1307 
1308 	spin_lock_irqsave(q->queue_lock, flags);
1309 	__blk_put_request(q, req);
1310 	spin_unlock_irqrestore(q->queue_lock, flags);
1311 }
1312 EXPORT_SYMBOL(blk_put_request);
1313 
1314 /**
1315  * blk_add_request_payload - add a payload to a request
1316  * @rq: request to update
1317  * @page: page backing the payload
1318  * @len: length of the payload.
1319  *
1320  * This allows to later add a payload to an already submitted request by
1321  * a block driver.  The driver needs to take care of freeing the payload
1322  * itself.
1323  *
1324  * Note that this is a quite horrible hack and nothing but handling of
1325  * discard requests should ever use it.
1326  */
1327 void blk_add_request_payload(struct request *rq, struct page *page,
1328 		unsigned int len)
1329 {
1330 	struct bio *bio = rq->bio;
1331 
1332 	bio->bi_io_vec->bv_page = page;
1333 	bio->bi_io_vec->bv_offset = 0;
1334 	bio->bi_io_vec->bv_len = len;
1335 
1336 	bio->bi_size = len;
1337 	bio->bi_vcnt = 1;
1338 	bio->bi_phys_segments = 1;
1339 
1340 	rq->__data_len = rq->resid_len = len;
1341 	rq->nr_phys_segments = 1;
1342 	rq->buffer = bio_data(bio);
1343 }
1344 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1345 
1346 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1347 				   struct bio *bio)
1348 {
1349 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1350 
1351 	if (!ll_back_merge_fn(q, req, bio))
1352 		return false;
1353 
1354 	trace_block_bio_backmerge(q, req, bio);
1355 
1356 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1357 		blk_rq_set_mixed_merge(req);
1358 
1359 	req->biotail->bi_next = bio;
1360 	req->biotail = bio;
1361 	req->__data_len += bio->bi_size;
1362 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1363 
1364 	drive_stat_acct(req, 0);
1365 	return true;
1366 }
1367 
1368 static bool bio_attempt_front_merge(struct request_queue *q,
1369 				    struct request *req, struct bio *bio)
1370 {
1371 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1372 
1373 	if (!ll_front_merge_fn(q, req, bio))
1374 		return false;
1375 
1376 	trace_block_bio_frontmerge(q, req, bio);
1377 
1378 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1379 		blk_rq_set_mixed_merge(req);
1380 
1381 	bio->bi_next = req->bio;
1382 	req->bio = bio;
1383 
1384 	/*
1385 	 * may not be valid. if the low level driver said
1386 	 * it didn't need a bounce buffer then it better
1387 	 * not touch req->buffer either...
1388 	 */
1389 	req->buffer = bio_data(bio);
1390 	req->__sector = bio->bi_sector;
1391 	req->__data_len += bio->bi_size;
1392 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1393 
1394 	drive_stat_acct(req, 0);
1395 	return true;
1396 }
1397 
1398 /**
1399  * attempt_plug_merge - try to merge with %current's plugged list
1400  * @q: request_queue new bio is being queued at
1401  * @bio: new bio being queued
1402  * @request_count: out parameter for number of traversed plugged requests
1403  *
1404  * Determine whether @bio being queued on @q can be merged with a request
1405  * on %current's plugged list.  Returns %true if merge was successful,
1406  * otherwise %false.
1407  *
1408  * Plugging coalesces IOs from the same issuer for the same purpose without
1409  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1410  * than scheduling, and the request, while may have elvpriv data, is not
1411  * added on the elevator at this point.  In addition, we don't have
1412  * reliable access to the elevator outside queue lock.  Only check basic
1413  * merging parameters without querying the elevator.
1414  */
1415 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1416 			       unsigned int *request_count)
1417 {
1418 	struct blk_plug *plug;
1419 	struct request *rq;
1420 	bool ret = false;
1421 
1422 	plug = current->plug;
1423 	if (!plug)
1424 		goto out;
1425 	*request_count = 0;
1426 
1427 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1428 		int el_ret;
1429 
1430 		if (rq->q == q)
1431 			(*request_count)++;
1432 
1433 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1434 			continue;
1435 
1436 		el_ret = blk_try_merge(rq, bio);
1437 		if (el_ret == ELEVATOR_BACK_MERGE) {
1438 			ret = bio_attempt_back_merge(q, rq, bio);
1439 			if (ret)
1440 				break;
1441 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1442 			ret = bio_attempt_front_merge(q, rq, bio);
1443 			if (ret)
1444 				break;
1445 		}
1446 	}
1447 out:
1448 	return ret;
1449 }
1450 
1451 void init_request_from_bio(struct request *req, struct bio *bio)
1452 {
1453 	req->cmd_type = REQ_TYPE_FS;
1454 
1455 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1456 	if (bio->bi_rw & REQ_RAHEAD)
1457 		req->cmd_flags |= REQ_FAILFAST_MASK;
1458 
1459 	req->errors = 0;
1460 	req->__sector = bio->bi_sector;
1461 	req->ioprio = bio_prio(bio);
1462 	blk_rq_bio_prep(req->q, req, bio);
1463 }
1464 
1465 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1466 {
1467 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1468 	struct blk_plug *plug;
1469 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1470 	struct request *req;
1471 	unsigned int request_count = 0;
1472 
1473 	/*
1474 	 * low level driver can indicate that it wants pages above a
1475 	 * certain limit bounced to low memory (ie for highmem, or even
1476 	 * ISA dma in theory)
1477 	 */
1478 	blk_queue_bounce(q, &bio);
1479 
1480 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1481 		bio_endio(bio, -EIO);
1482 		return;
1483 	}
1484 
1485 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1486 		spin_lock_irq(q->queue_lock);
1487 		where = ELEVATOR_INSERT_FLUSH;
1488 		goto get_rq;
1489 	}
1490 
1491 	/*
1492 	 * Check if we can merge with the plugged list before grabbing
1493 	 * any locks.
1494 	 */
1495 	if (attempt_plug_merge(q, bio, &request_count))
1496 		return;
1497 
1498 	spin_lock_irq(q->queue_lock);
1499 
1500 	el_ret = elv_merge(q, &req, bio);
1501 	if (el_ret == ELEVATOR_BACK_MERGE) {
1502 		if (bio_attempt_back_merge(q, req, bio)) {
1503 			elv_bio_merged(q, req, bio);
1504 			if (!attempt_back_merge(q, req))
1505 				elv_merged_request(q, req, el_ret);
1506 			goto out_unlock;
1507 		}
1508 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1509 		if (bio_attempt_front_merge(q, req, bio)) {
1510 			elv_bio_merged(q, req, bio);
1511 			if (!attempt_front_merge(q, req))
1512 				elv_merged_request(q, req, el_ret);
1513 			goto out_unlock;
1514 		}
1515 	}
1516 
1517 get_rq:
1518 	/*
1519 	 * This sync check and mask will be re-done in init_request_from_bio(),
1520 	 * but we need to set it earlier to expose the sync flag to the
1521 	 * rq allocator and io schedulers.
1522 	 */
1523 	rw_flags = bio_data_dir(bio);
1524 	if (sync)
1525 		rw_flags |= REQ_SYNC;
1526 
1527 	/*
1528 	 * Grab a free request. This is might sleep but can not fail.
1529 	 * Returns with the queue unlocked.
1530 	 */
1531 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1532 	if (unlikely(!req)) {
1533 		bio_endio(bio, -ENODEV);	/* @q is dead */
1534 		goto out_unlock;
1535 	}
1536 
1537 	/*
1538 	 * After dropping the lock and possibly sleeping here, our request
1539 	 * may now be mergeable after it had proven unmergeable (above).
1540 	 * We don't worry about that case for efficiency. It won't happen
1541 	 * often, and the elevators are able to handle it.
1542 	 */
1543 	init_request_from_bio(req, bio);
1544 
1545 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1546 		req->cpu = raw_smp_processor_id();
1547 
1548 	plug = current->plug;
1549 	if (plug) {
1550 		/*
1551 		 * If this is the first request added after a plug, fire
1552 		 * of a plug trace.
1553 		 */
1554 		if (!request_count)
1555 			trace_block_plug(q);
1556 		else {
1557 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1558 				blk_flush_plug_list(plug, false);
1559 				trace_block_plug(q);
1560 			}
1561 		}
1562 		list_add_tail(&req->queuelist, &plug->list);
1563 		drive_stat_acct(req, 1);
1564 	} else {
1565 		spin_lock_irq(q->queue_lock);
1566 		add_acct_request(q, req, where);
1567 		__blk_run_queue(q);
1568 out_unlock:
1569 		spin_unlock_irq(q->queue_lock);
1570 	}
1571 }
1572 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1573 
1574 /*
1575  * If bio->bi_dev is a partition, remap the location
1576  */
1577 static inline void blk_partition_remap(struct bio *bio)
1578 {
1579 	struct block_device *bdev = bio->bi_bdev;
1580 
1581 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1582 		struct hd_struct *p = bdev->bd_part;
1583 
1584 		bio->bi_sector += p->start_sect;
1585 		bio->bi_bdev = bdev->bd_contains;
1586 
1587 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1588 				      bdev->bd_dev,
1589 				      bio->bi_sector - p->start_sect);
1590 	}
1591 }
1592 
1593 static void handle_bad_sector(struct bio *bio)
1594 {
1595 	char b[BDEVNAME_SIZE];
1596 
1597 	printk(KERN_INFO "attempt to access beyond end of device\n");
1598 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1599 			bdevname(bio->bi_bdev, b),
1600 			bio->bi_rw,
1601 			(unsigned long long)bio_end_sector(bio),
1602 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1603 
1604 	set_bit(BIO_EOF, &bio->bi_flags);
1605 }
1606 
1607 #ifdef CONFIG_FAIL_MAKE_REQUEST
1608 
1609 static DECLARE_FAULT_ATTR(fail_make_request);
1610 
1611 static int __init setup_fail_make_request(char *str)
1612 {
1613 	return setup_fault_attr(&fail_make_request, str);
1614 }
1615 __setup("fail_make_request=", setup_fail_make_request);
1616 
1617 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1618 {
1619 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1620 }
1621 
1622 static int __init fail_make_request_debugfs(void)
1623 {
1624 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1625 						NULL, &fail_make_request);
1626 
1627 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1628 }
1629 
1630 late_initcall(fail_make_request_debugfs);
1631 
1632 #else /* CONFIG_FAIL_MAKE_REQUEST */
1633 
1634 static inline bool should_fail_request(struct hd_struct *part,
1635 					unsigned int bytes)
1636 {
1637 	return false;
1638 }
1639 
1640 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1641 
1642 /*
1643  * Check whether this bio extends beyond the end of the device.
1644  */
1645 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1646 {
1647 	sector_t maxsector;
1648 
1649 	if (!nr_sectors)
1650 		return 0;
1651 
1652 	/* Test device or partition size, when known. */
1653 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1654 	if (maxsector) {
1655 		sector_t sector = bio->bi_sector;
1656 
1657 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1658 			/*
1659 			 * This may well happen - the kernel calls bread()
1660 			 * without checking the size of the device, e.g., when
1661 			 * mounting a device.
1662 			 */
1663 			handle_bad_sector(bio);
1664 			return 1;
1665 		}
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static noinline_for_stack bool
1672 generic_make_request_checks(struct bio *bio)
1673 {
1674 	struct request_queue *q;
1675 	int nr_sectors = bio_sectors(bio);
1676 	int err = -EIO;
1677 	char b[BDEVNAME_SIZE];
1678 	struct hd_struct *part;
1679 
1680 	might_sleep();
1681 
1682 	if (bio_check_eod(bio, nr_sectors))
1683 		goto end_io;
1684 
1685 	q = bdev_get_queue(bio->bi_bdev);
1686 	if (unlikely(!q)) {
1687 		printk(KERN_ERR
1688 		       "generic_make_request: Trying to access "
1689 			"nonexistent block-device %s (%Lu)\n",
1690 			bdevname(bio->bi_bdev, b),
1691 			(long long) bio->bi_sector);
1692 		goto end_io;
1693 	}
1694 
1695 	if (likely(bio_is_rw(bio) &&
1696 		   nr_sectors > queue_max_hw_sectors(q))) {
1697 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1698 		       bdevname(bio->bi_bdev, b),
1699 		       bio_sectors(bio),
1700 		       queue_max_hw_sectors(q));
1701 		goto end_io;
1702 	}
1703 
1704 	part = bio->bi_bdev->bd_part;
1705 	if (should_fail_request(part, bio->bi_size) ||
1706 	    should_fail_request(&part_to_disk(part)->part0,
1707 				bio->bi_size))
1708 		goto end_io;
1709 
1710 	/*
1711 	 * If this device has partitions, remap block n
1712 	 * of partition p to block n+start(p) of the disk.
1713 	 */
1714 	blk_partition_remap(bio);
1715 
1716 	if (bio_check_eod(bio, nr_sectors))
1717 		goto end_io;
1718 
1719 	/*
1720 	 * Filter flush bio's early so that make_request based
1721 	 * drivers without flush support don't have to worry
1722 	 * about them.
1723 	 */
1724 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1725 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1726 		if (!nr_sectors) {
1727 			err = 0;
1728 			goto end_io;
1729 		}
1730 	}
1731 
1732 	if ((bio->bi_rw & REQ_DISCARD) &&
1733 	    (!blk_queue_discard(q) ||
1734 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1735 		err = -EOPNOTSUPP;
1736 		goto end_io;
1737 	}
1738 
1739 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1740 		err = -EOPNOTSUPP;
1741 		goto end_io;
1742 	}
1743 
1744 	/*
1745 	 * Various block parts want %current->io_context and lazy ioc
1746 	 * allocation ends up trading a lot of pain for a small amount of
1747 	 * memory.  Just allocate it upfront.  This may fail and block
1748 	 * layer knows how to live with it.
1749 	 */
1750 	create_io_context(GFP_ATOMIC, q->node);
1751 
1752 	if (blk_throtl_bio(q, bio))
1753 		return false;	/* throttled, will be resubmitted later */
1754 
1755 	trace_block_bio_queue(q, bio);
1756 	return true;
1757 
1758 end_io:
1759 	bio_endio(bio, err);
1760 	return false;
1761 }
1762 
1763 /**
1764  * generic_make_request - hand a buffer to its device driver for I/O
1765  * @bio:  The bio describing the location in memory and on the device.
1766  *
1767  * generic_make_request() is used to make I/O requests of block
1768  * devices. It is passed a &struct bio, which describes the I/O that needs
1769  * to be done.
1770  *
1771  * generic_make_request() does not return any status.  The
1772  * success/failure status of the request, along with notification of
1773  * completion, is delivered asynchronously through the bio->bi_end_io
1774  * function described (one day) else where.
1775  *
1776  * The caller of generic_make_request must make sure that bi_io_vec
1777  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1778  * set to describe the device address, and the
1779  * bi_end_io and optionally bi_private are set to describe how
1780  * completion notification should be signaled.
1781  *
1782  * generic_make_request and the drivers it calls may use bi_next if this
1783  * bio happens to be merged with someone else, and may resubmit the bio to
1784  * a lower device by calling into generic_make_request recursively, which
1785  * means the bio should NOT be touched after the call to ->make_request_fn.
1786  */
1787 void generic_make_request(struct bio *bio)
1788 {
1789 	struct bio_list bio_list_on_stack;
1790 
1791 	if (!generic_make_request_checks(bio))
1792 		return;
1793 
1794 	/*
1795 	 * We only want one ->make_request_fn to be active at a time, else
1796 	 * stack usage with stacked devices could be a problem.  So use
1797 	 * current->bio_list to keep a list of requests submited by a
1798 	 * make_request_fn function.  current->bio_list is also used as a
1799 	 * flag to say if generic_make_request is currently active in this
1800 	 * task or not.  If it is NULL, then no make_request is active.  If
1801 	 * it is non-NULL, then a make_request is active, and new requests
1802 	 * should be added at the tail
1803 	 */
1804 	if (current->bio_list) {
1805 		bio_list_add(current->bio_list, bio);
1806 		return;
1807 	}
1808 
1809 	/* following loop may be a bit non-obvious, and so deserves some
1810 	 * explanation.
1811 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1812 	 * ensure that) so we have a list with a single bio.
1813 	 * We pretend that we have just taken it off a longer list, so
1814 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1815 	 * thus initialising the bio_list of new bios to be
1816 	 * added.  ->make_request() may indeed add some more bios
1817 	 * through a recursive call to generic_make_request.  If it
1818 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1819 	 * from the top.  In this case we really did just take the bio
1820 	 * of the top of the list (no pretending) and so remove it from
1821 	 * bio_list, and call into ->make_request() again.
1822 	 */
1823 	BUG_ON(bio->bi_next);
1824 	bio_list_init(&bio_list_on_stack);
1825 	current->bio_list = &bio_list_on_stack;
1826 	do {
1827 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1828 
1829 		q->make_request_fn(q, bio);
1830 
1831 		bio = bio_list_pop(current->bio_list);
1832 	} while (bio);
1833 	current->bio_list = NULL; /* deactivate */
1834 }
1835 EXPORT_SYMBOL(generic_make_request);
1836 
1837 /**
1838  * submit_bio - submit a bio to the block device layer for I/O
1839  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1840  * @bio: The &struct bio which describes the I/O
1841  *
1842  * submit_bio() is very similar in purpose to generic_make_request(), and
1843  * uses that function to do most of the work. Both are fairly rough
1844  * interfaces; @bio must be presetup and ready for I/O.
1845  *
1846  */
1847 void submit_bio(int rw, struct bio *bio)
1848 {
1849 	bio->bi_rw |= rw;
1850 
1851 	/*
1852 	 * If it's a regular read/write or a barrier with data attached,
1853 	 * go through the normal accounting stuff before submission.
1854 	 */
1855 	if (bio_has_data(bio)) {
1856 		unsigned int count;
1857 
1858 		if (unlikely(rw & REQ_WRITE_SAME))
1859 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1860 		else
1861 			count = bio_sectors(bio);
1862 
1863 		if (rw & WRITE) {
1864 			count_vm_events(PGPGOUT, count);
1865 		} else {
1866 			task_io_account_read(bio->bi_size);
1867 			count_vm_events(PGPGIN, count);
1868 		}
1869 
1870 		if (unlikely(block_dump)) {
1871 			char b[BDEVNAME_SIZE];
1872 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1873 			current->comm, task_pid_nr(current),
1874 				(rw & WRITE) ? "WRITE" : "READ",
1875 				(unsigned long long)bio->bi_sector,
1876 				bdevname(bio->bi_bdev, b),
1877 				count);
1878 		}
1879 	}
1880 
1881 	generic_make_request(bio);
1882 }
1883 EXPORT_SYMBOL(submit_bio);
1884 
1885 /**
1886  * blk_rq_check_limits - Helper function to check a request for the queue limit
1887  * @q:  the queue
1888  * @rq: the request being checked
1889  *
1890  * Description:
1891  *    @rq may have been made based on weaker limitations of upper-level queues
1892  *    in request stacking drivers, and it may violate the limitation of @q.
1893  *    Since the block layer and the underlying device driver trust @rq
1894  *    after it is inserted to @q, it should be checked against @q before
1895  *    the insertion using this generic function.
1896  *
1897  *    This function should also be useful for request stacking drivers
1898  *    in some cases below, so export this function.
1899  *    Request stacking drivers like request-based dm may change the queue
1900  *    limits while requests are in the queue (e.g. dm's table swapping).
1901  *    Such request stacking drivers should check those requests agaist
1902  *    the new queue limits again when they dispatch those requests,
1903  *    although such checkings are also done against the old queue limits
1904  *    when submitting requests.
1905  */
1906 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1907 {
1908 	if (!rq_mergeable(rq))
1909 		return 0;
1910 
1911 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1912 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1913 		return -EIO;
1914 	}
1915 
1916 	/*
1917 	 * queue's settings related to segment counting like q->bounce_pfn
1918 	 * may differ from that of other stacking queues.
1919 	 * Recalculate it to check the request correctly on this queue's
1920 	 * limitation.
1921 	 */
1922 	blk_recalc_rq_segments(rq);
1923 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1924 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1925 		return -EIO;
1926 	}
1927 
1928 	return 0;
1929 }
1930 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1931 
1932 /**
1933  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1934  * @q:  the queue to submit the request
1935  * @rq: the request being queued
1936  */
1937 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1938 {
1939 	unsigned long flags;
1940 	int where = ELEVATOR_INSERT_BACK;
1941 
1942 	if (blk_rq_check_limits(q, rq))
1943 		return -EIO;
1944 
1945 	if (rq->rq_disk &&
1946 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1947 		return -EIO;
1948 
1949 	spin_lock_irqsave(q->queue_lock, flags);
1950 	if (unlikely(blk_queue_dying(q))) {
1951 		spin_unlock_irqrestore(q->queue_lock, flags);
1952 		return -ENODEV;
1953 	}
1954 
1955 	/*
1956 	 * Submitting request must be dequeued before calling this function
1957 	 * because it will be linked to another request_queue
1958 	 */
1959 	BUG_ON(blk_queued_rq(rq));
1960 
1961 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1962 		where = ELEVATOR_INSERT_FLUSH;
1963 
1964 	add_acct_request(q, rq, where);
1965 	if (where == ELEVATOR_INSERT_FLUSH)
1966 		__blk_run_queue(q);
1967 	spin_unlock_irqrestore(q->queue_lock, flags);
1968 
1969 	return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1972 
1973 /**
1974  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1975  * @rq: request to examine
1976  *
1977  * Description:
1978  *     A request could be merge of IOs which require different failure
1979  *     handling.  This function determines the number of bytes which
1980  *     can be failed from the beginning of the request without
1981  *     crossing into area which need to be retried further.
1982  *
1983  * Return:
1984  *     The number of bytes to fail.
1985  *
1986  * Context:
1987  *     queue_lock must be held.
1988  */
1989 unsigned int blk_rq_err_bytes(const struct request *rq)
1990 {
1991 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1992 	unsigned int bytes = 0;
1993 	struct bio *bio;
1994 
1995 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1996 		return blk_rq_bytes(rq);
1997 
1998 	/*
1999 	 * Currently the only 'mixing' which can happen is between
2000 	 * different fastfail types.  We can safely fail portions
2001 	 * which have all the failfast bits that the first one has -
2002 	 * the ones which are at least as eager to fail as the first
2003 	 * one.
2004 	 */
2005 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2006 		if ((bio->bi_rw & ff) != ff)
2007 			break;
2008 		bytes += bio->bi_size;
2009 	}
2010 
2011 	/* this could lead to infinite loop */
2012 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2013 	return bytes;
2014 }
2015 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2016 
2017 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2018 {
2019 	if (blk_do_io_stat(req)) {
2020 		const int rw = rq_data_dir(req);
2021 		struct hd_struct *part;
2022 		int cpu;
2023 
2024 		cpu = part_stat_lock();
2025 		part = req->part;
2026 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2027 		part_stat_unlock();
2028 	}
2029 }
2030 
2031 static void blk_account_io_done(struct request *req)
2032 {
2033 	/*
2034 	 * Account IO completion.  flush_rq isn't accounted as a
2035 	 * normal IO on queueing nor completion.  Accounting the
2036 	 * containing request is enough.
2037 	 */
2038 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2039 		unsigned long duration = jiffies - req->start_time;
2040 		const int rw = rq_data_dir(req);
2041 		struct hd_struct *part;
2042 		int cpu;
2043 
2044 		cpu = part_stat_lock();
2045 		part = req->part;
2046 
2047 		part_stat_inc(cpu, part, ios[rw]);
2048 		part_stat_add(cpu, part, ticks[rw], duration);
2049 		part_round_stats(cpu, part);
2050 		part_dec_in_flight(part, rw);
2051 
2052 		hd_struct_put(part);
2053 		part_stat_unlock();
2054 	}
2055 }
2056 
2057 #ifdef CONFIG_PM_RUNTIME
2058 /*
2059  * Don't process normal requests when queue is suspended
2060  * or in the process of suspending/resuming
2061  */
2062 static struct request *blk_pm_peek_request(struct request_queue *q,
2063 					   struct request *rq)
2064 {
2065 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2066 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2067 		return NULL;
2068 	else
2069 		return rq;
2070 }
2071 #else
2072 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2073 						  struct request *rq)
2074 {
2075 	return rq;
2076 }
2077 #endif
2078 
2079 /**
2080  * blk_peek_request - peek at the top of a request queue
2081  * @q: request queue to peek at
2082  *
2083  * Description:
2084  *     Return the request at the top of @q.  The returned request
2085  *     should be started using blk_start_request() before LLD starts
2086  *     processing it.
2087  *
2088  * Return:
2089  *     Pointer to the request at the top of @q if available.  Null
2090  *     otherwise.
2091  *
2092  * Context:
2093  *     queue_lock must be held.
2094  */
2095 struct request *blk_peek_request(struct request_queue *q)
2096 {
2097 	struct request *rq;
2098 	int ret;
2099 
2100 	while ((rq = __elv_next_request(q)) != NULL) {
2101 
2102 		rq = blk_pm_peek_request(q, rq);
2103 		if (!rq)
2104 			break;
2105 
2106 		if (!(rq->cmd_flags & REQ_STARTED)) {
2107 			/*
2108 			 * This is the first time the device driver
2109 			 * sees this request (possibly after
2110 			 * requeueing).  Notify IO scheduler.
2111 			 */
2112 			if (rq->cmd_flags & REQ_SORTED)
2113 				elv_activate_rq(q, rq);
2114 
2115 			/*
2116 			 * just mark as started even if we don't start
2117 			 * it, a request that has been delayed should
2118 			 * not be passed by new incoming requests
2119 			 */
2120 			rq->cmd_flags |= REQ_STARTED;
2121 			trace_block_rq_issue(q, rq);
2122 		}
2123 
2124 		if (!q->boundary_rq || q->boundary_rq == rq) {
2125 			q->end_sector = rq_end_sector(rq);
2126 			q->boundary_rq = NULL;
2127 		}
2128 
2129 		if (rq->cmd_flags & REQ_DONTPREP)
2130 			break;
2131 
2132 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2133 			/*
2134 			 * make sure space for the drain appears we
2135 			 * know we can do this because max_hw_segments
2136 			 * has been adjusted to be one fewer than the
2137 			 * device can handle
2138 			 */
2139 			rq->nr_phys_segments++;
2140 		}
2141 
2142 		if (!q->prep_rq_fn)
2143 			break;
2144 
2145 		ret = q->prep_rq_fn(q, rq);
2146 		if (ret == BLKPREP_OK) {
2147 			break;
2148 		} else if (ret == BLKPREP_DEFER) {
2149 			/*
2150 			 * the request may have been (partially) prepped.
2151 			 * we need to keep this request in the front to
2152 			 * avoid resource deadlock.  REQ_STARTED will
2153 			 * prevent other fs requests from passing this one.
2154 			 */
2155 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2156 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2157 				/*
2158 				 * remove the space for the drain we added
2159 				 * so that we don't add it again
2160 				 */
2161 				--rq->nr_phys_segments;
2162 			}
2163 
2164 			rq = NULL;
2165 			break;
2166 		} else if (ret == BLKPREP_KILL) {
2167 			rq->cmd_flags |= REQ_QUIET;
2168 			/*
2169 			 * Mark this request as started so we don't trigger
2170 			 * any debug logic in the end I/O path.
2171 			 */
2172 			blk_start_request(rq);
2173 			__blk_end_request_all(rq, -EIO);
2174 		} else {
2175 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2176 			break;
2177 		}
2178 	}
2179 
2180 	return rq;
2181 }
2182 EXPORT_SYMBOL(blk_peek_request);
2183 
2184 void blk_dequeue_request(struct request *rq)
2185 {
2186 	struct request_queue *q = rq->q;
2187 
2188 	BUG_ON(list_empty(&rq->queuelist));
2189 	BUG_ON(ELV_ON_HASH(rq));
2190 
2191 	list_del_init(&rq->queuelist);
2192 
2193 	/*
2194 	 * the time frame between a request being removed from the lists
2195 	 * and to it is freed is accounted as io that is in progress at
2196 	 * the driver side.
2197 	 */
2198 	if (blk_account_rq(rq)) {
2199 		q->in_flight[rq_is_sync(rq)]++;
2200 		set_io_start_time_ns(rq);
2201 	}
2202 }
2203 
2204 /**
2205  * blk_start_request - start request processing on the driver
2206  * @req: request to dequeue
2207  *
2208  * Description:
2209  *     Dequeue @req and start timeout timer on it.  This hands off the
2210  *     request to the driver.
2211  *
2212  *     Block internal functions which don't want to start timer should
2213  *     call blk_dequeue_request().
2214  *
2215  * Context:
2216  *     queue_lock must be held.
2217  */
2218 void blk_start_request(struct request *req)
2219 {
2220 	blk_dequeue_request(req);
2221 
2222 	/*
2223 	 * We are now handing the request to the hardware, initialize
2224 	 * resid_len to full count and add the timeout handler.
2225 	 */
2226 	req->resid_len = blk_rq_bytes(req);
2227 	if (unlikely(blk_bidi_rq(req)))
2228 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2229 
2230 	blk_add_timer(req);
2231 }
2232 EXPORT_SYMBOL(blk_start_request);
2233 
2234 /**
2235  * blk_fetch_request - fetch a request from a request queue
2236  * @q: request queue to fetch a request from
2237  *
2238  * Description:
2239  *     Return the request at the top of @q.  The request is started on
2240  *     return and LLD can start processing it immediately.
2241  *
2242  * Return:
2243  *     Pointer to the request at the top of @q if available.  Null
2244  *     otherwise.
2245  *
2246  * Context:
2247  *     queue_lock must be held.
2248  */
2249 struct request *blk_fetch_request(struct request_queue *q)
2250 {
2251 	struct request *rq;
2252 
2253 	rq = blk_peek_request(q);
2254 	if (rq)
2255 		blk_start_request(rq);
2256 	return rq;
2257 }
2258 EXPORT_SYMBOL(blk_fetch_request);
2259 
2260 /**
2261  * blk_update_request - Special helper function for request stacking drivers
2262  * @req:      the request being processed
2263  * @error:    %0 for success, < %0 for error
2264  * @nr_bytes: number of bytes to complete @req
2265  *
2266  * Description:
2267  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2268  *     the request structure even if @req doesn't have leftover.
2269  *     If @req has leftover, sets it up for the next range of segments.
2270  *
2271  *     This special helper function is only for request stacking drivers
2272  *     (e.g. request-based dm) so that they can handle partial completion.
2273  *     Actual device drivers should use blk_end_request instead.
2274  *
2275  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2276  *     %false return from this function.
2277  *
2278  * Return:
2279  *     %false - this request doesn't have any more data
2280  *     %true  - this request has more data
2281  **/
2282 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2283 {
2284 	int total_bytes;
2285 
2286 	if (!req->bio)
2287 		return false;
2288 
2289 	trace_block_rq_complete(req->q, req);
2290 
2291 	/*
2292 	 * For fs requests, rq is just carrier of independent bio's
2293 	 * and each partial completion should be handled separately.
2294 	 * Reset per-request error on each partial completion.
2295 	 *
2296 	 * TODO: tj: This is too subtle.  It would be better to let
2297 	 * low level drivers do what they see fit.
2298 	 */
2299 	if (req->cmd_type == REQ_TYPE_FS)
2300 		req->errors = 0;
2301 
2302 	if (error && req->cmd_type == REQ_TYPE_FS &&
2303 	    !(req->cmd_flags & REQ_QUIET)) {
2304 		char *error_type;
2305 
2306 		switch (error) {
2307 		case -ENOLINK:
2308 			error_type = "recoverable transport";
2309 			break;
2310 		case -EREMOTEIO:
2311 			error_type = "critical target";
2312 			break;
2313 		case -EBADE:
2314 			error_type = "critical nexus";
2315 			break;
2316 		case -ETIMEDOUT:
2317 			error_type = "timeout";
2318 			break;
2319 		case -ENOSPC:
2320 			error_type = "critical space allocation";
2321 			break;
2322 		case -ENODATA:
2323 			error_type = "critical medium";
2324 			break;
2325 		case -EIO:
2326 		default:
2327 			error_type = "I/O";
2328 			break;
2329 		}
2330 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2331 				   error_type, req->rq_disk ?
2332 				   req->rq_disk->disk_name : "?",
2333 				   (unsigned long long)blk_rq_pos(req));
2334 
2335 	}
2336 
2337 	blk_account_io_completion(req, nr_bytes);
2338 
2339 	total_bytes = 0;
2340 	while (req->bio) {
2341 		struct bio *bio = req->bio;
2342 		unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2343 
2344 		if (bio_bytes == bio->bi_size)
2345 			req->bio = bio->bi_next;
2346 
2347 		req_bio_endio(req, bio, bio_bytes, error);
2348 
2349 		total_bytes += bio_bytes;
2350 		nr_bytes -= bio_bytes;
2351 
2352 		if (!nr_bytes)
2353 			break;
2354 	}
2355 
2356 	/*
2357 	 * completely done
2358 	 */
2359 	if (!req->bio) {
2360 		/*
2361 		 * Reset counters so that the request stacking driver
2362 		 * can find how many bytes remain in the request
2363 		 * later.
2364 		 */
2365 		req->__data_len = 0;
2366 		return false;
2367 	}
2368 
2369 	req->__data_len -= total_bytes;
2370 	req->buffer = bio_data(req->bio);
2371 
2372 	/* update sector only for requests with clear definition of sector */
2373 	if (req->cmd_type == REQ_TYPE_FS)
2374 		req->__sector += total_bytes >> 9;
2375 
2376 	/* mixed attributes always follow the first bio */
2377 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2378 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2379 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2380 	}
2381 
2382 	/*
2383 	 * If total number of sectors is less than the first segment
2384 	 * size, something has gone terribly wrong.
2385 	 */
2386 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2387 		blk_dump_rq_flags(req, "request botched");
2388 		req->__data_len = blk_rq_cur_bytes(req);
2389 	}
2390 
2391 	/* recalculate the number of segments */
2392 	blk_recalc_rq_segments(req);
2393 
2394 	return true;
2395 }
2396 EXPORT_SYMBOL_GPL(blk_update_request);
2397 
2398 static bool blk_update_bidi_request(struct request *rq, int error,
2399 				    unsigned int nr_bytes,
2400 				    unsigned int bidi_bytes)
2401 {
2402 	if (blk_update_request(rq, error, nr_bytes))
2403 		return true;
2404 
2405 	/* Bidi request must be completed as a whole */
2406 	if (unlikely(blk_bidi_rq(rq)) &&
2407 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2408 		return true;
2409 
2410 	if (blk_queue_add_random(rq->q))
2411 		add_disk_randomness(rq->rq_disk);
2412 
2413 	return false;
2414 }
2415 
2416 /**
2417  * blk_unprep_request - unprepare a request
2418  * @req:	the request
2419  *
2420  * This function makes a request ready for complete resubmission (or
2421  * completion).  It happens only after all error handling is complete,
2422  * so represents the appropriate moment to deallocate any resources
2423  * that were allocated to the request in the prep_rq_fn.  The queue
2424  * lock is held when calling this.
2425  */
2426 void blk_unprep_request(struct request *req)
2427 {
2428 	struct request_queue *q = req->q;
2429 
2430 	req->cmd_flags &= ~REQ_DONTPREP;
2431 	if (q->unprep_rq_fn)
2432 		q->unprep_rq_fn(q, req);
2433 }
2434 EXPORT_SYMBOL_GPL(blk_unprep_request);
2435 
2436 /*
2437  * queue lock must be held
2438  */
2439 static void blk_finish_request(struct request *req, int error)
2440 {
2441 	if (blk_rq_tagged(req))
2442 		blk_queue_end_tag(req->q, req);
2443 
2444 	BUG_ON(blk_queued_rq(req));
2445 
2446 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2447 		laptop_io_completion(&req->q->backing_dev_info);
2448 
2449 	blk_delete_timer(req);
2450 
2451 	if (req->cmd_flags & REQ_DONTPREP)
2452 		blk_unprep_request(req);
2453 
2454 
2455 	blk_account_io_done(req);
2456 
2457 	if (req->end_io)
2458 		req->end_io(req, error);
2459 	else {
2460 		if (blk_bidi_rq(req))
2461 			__blk_put_request(req->next_rq->q, req->next_rq);
2462 
2463 		__blk_put_request(req->q, req);
2464 	}
2465 }
2466 
2467 /**
2468  * blk_end_bidi_request - Complete a bidi request
2469  * @rq:         the request to complete
2470  * @error:      %0 for success, < %0 for error
2471  * @nr_bytes:   number of bytes to complete @rq
2472  * @bidi_bytes: number of bytes to complete @rq->next_rq
2473  *
2474  * Description:
2475  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2476  *     Drivers that supports bidi can safely call this member for any
2477  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2478  *     just ignored.
2479  *
2480  * Return:
2481  *     %false - we are done with this request
2482  *     %true  - still buffers pending for this request
2483  **/
2484 static bool blk_end_bidi_request(struct request *rq, int error,
2485 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2486 {
2487 	struct request_queue *q = rq->q;
2488 	unsigned long flags;
2489 
2490 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2491 		return true;
2492 
2493 	spin_lock_irqsave(q->queue_lock, flags);
2494 	blk_finish_request(rq, error);
2495 	spin_unlock_irqrestore(q->queue_lock, flags);
2496 
2497 	return false;
2498 }
2499 
2500 /**
2501  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2502  * @rq:         the request to complete
2503  * @error:      %0 for success, < %0 for error
2504  * @nr_bytes:   number of bytes to complete @rq
2505  * @bidi_bytes: number of bytes to complete @rq->next_rq
2506  *
2507  * Description:
2508  *     Identical to blk_end_bidi_request() except that queue lock is
2509  *     assumed to be locked on entry and remains so on return.
2510  *
2511  * Return:
2512  *     %false - we are done with this request
2513  *     %true  - still buffers pending for this request
2514  **/
2515 bool __blk_end_bidi_request(struct request *rq, int error,
2516 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2517 {
2518 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2519 		return true;
2520 
2521 	blk_finish_request(rq, error);
2522 
2523 	return false;
2524 }
2525 
2526 /**
2527  * blk_end_request - Helper function for drivers to complete the request.
2528  * @rq:       the request being processed
2529  * @error:    %0 for success, < %0 for error
2530  * @nr_bytes: number of bytes to complete
2531  *
2532  * Description:
2533  *     Ends I/O on a number of bytes attached to @rq.
2534  *     If @rq has leftover, sets it up for the next range of segments.
2535  *
2536  * Return:
2537  *     %false - we are done with this request
2538  *     %true  - still buffers pending for this request
2539  **/
2540 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2541 {
2542 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2543 }
2544 EXPORT_SYMBOL(blk_end_request);
2545 
2546 /**
2547  * blk_end_request_all - Helper function for drives to finish the request.
2548  * @rq: the request to finish
2549  * @error: %0 for success, < %0 for error
2550  *
2551  * Description:
2552  *     Completely finish @rq.
2553  */
2554 void blk_end_request_all(struct request *rq, int error)
2555 {
2556 	bool pending;
2557 	unsigned int bidi_bytes = 0;
2558 
2559 	if (unlikely(blk_bidi_rq(rq)))
2560 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2561 
2562 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2563 	BUG_ON(pending);
2564 }
2565 EXPORT_SYMBOL(blk_end_request_all);
2566 
2567 /**
2568  * blk_end_request_cur - Helper function to finish the current request chunk.
2569  * @rq: the request to finish the current chunk for
2570  * @error: %0 for success, < %0 for error
2571  *
2572  * Description:
2573  *     Complete the current consecutively mapped chunk from @rq.
2574  *
2575  * Return:
2576  *     %false - we are done with this request
2577  *     %true  - still buffers pending for this request
2578  */
2579 bool blk_end_request_cur(struct request *rq, int error)
2580 {
2581 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2582 }
2583 EXPORT_SYMBOL(blk_end_request_cur);
2584 
2585 /**
2586  * blk_end_request_err - Finish a request till the next failure boundary.
2587  * @rq: the request to finish till the next failure boundary for
2588  * @error: must be negative errno
2589  *
2590  * Description:
2591  *     Complete @rq till the next failure boundary.
2592  *
2593  * Return:
2594  *     %false - we are done with this request
2595  *     %true  - still buffers pending for this request
2596  */
2597 bool blk_end_request_err(struct request *rq, int error)
2598 {
2599 	WARN_ON(error >= 0);
2600 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2601 }
2602 EXPORT_SYMBOL_GPL(blk_end_request_err);
2603 
2604 /**
2605  * __blk_end_request - Helper function for drivers to complete the request.
2606  * @rq:       the request being processed
2607  * @error:    %0 for success, < %0 for error
2608  * @nr_bytes: number of bytes to complete
2609  *
2610  * Description:
2611  *     Must be called with queue lock held unlike blk_end_request().
2612  *
2613  * Return:
2614  *     %false - we are done with this request
2615  *     %true  - still buffers pending for this request
2616  **/
2617 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2618 {
2619 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2620 }
2621 EXPORT_SYMBOL(__blk_end_request);
2622 
2623 /**
2624  * __blk_end_request_all - Helper function for drives to finish the request.
2625  * @rq: the request to finish
2626  * @error: %0 for success, < %0 for error
2627  *
2628  * Description:
2629  *     Completely finish @rq.  Must be called with queue lock held.
2630  */
2631 void __blk_end_request_all(struct request *rq, int error)
2632 {
2633 	bool pending;
2634 	unsigned int bidi_bytes = 0;
2635 
2636 	if (unlikely(blk_bidi_rq(rq)))
2637 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2638 
2639 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2640 	BUG_ON(pending);
2641 }
2642 EXPORT_SYMBOL(__blk_end_request_all);
2643 
2644 /**
2645  * __blk_end_request_cur - Helper function to finish the current request chunk.
2646  * @rq: the request to finish the current chunk for
2647  * @error: %0 for success, < %0 for error
2648  *
2649  * Description:
2650  *     Complete the current consecutively mapped chunk from @rq.  Must
2651  *     be called with queue lock held.
2652  *
2653  * Return:
2654  *     %false - we are done with this request
2655  *     %true  - still buffers pending for this request
2656  */
2657 bool __blk_end_request_cur(struct request *rq, int error)
2658 {
2659 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2660 }
2661 EXPORT_SYMBOL(__blk_end_request_cur);
2662 
2663 /**
2664  * __blk_end_request_err - Finish a request till the next failure boundary.
2665  * @rq: the request to finish till the next failure boundary for
2666  * @error: must be negative errno
2667  *
2668  * Description:
2669  *     Complete @rq till the next failure boundary.  Must be called
2670  *     with queue lock held.
2671  *
2672  * Return:
2673  *     %false - we are done with this request
2674  *     %true  - still buffers pending for this request
2675  */
2676 bool __blk_end_request_err(struct request *rq, int error)
2677 {
2678 	WARN_ON(error >= 0);
2679 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2680 }
2681 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2682 
2683 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2684 		     struct bio *bio)
2685 {
2686 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2687 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2688 
2689 	if (bio_has_data(bio)) {
2690 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2691 		rq->buffer = bio_data(bio);
2692 	}
2693 	rq->__data_len = bio->bi_size;
2694 	rq->bio = rq->biotail = bio;
2695 
2696 	if (bio->bi_bdev)
2697 		rq->rq_disk = bio->bi_bdev->bd_disk;
2698 }
2699 
2700 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2701 /**
2702  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2703  * @rq: the request to be flushed
2704  *
2705  * Description:
2706  *     Flush all pages in @rq.
2707  */
2708 void rq_flush_dcache_pages(struct request *rq)
2709 {
2710 	struct req_iterator iter;
2711 	struct bio_vec *bvec;
2712 
2713 	rq_for_each_segment(bvec, rq, iter)
2714 		flush_dcache_page(bvec->bv_page);
2715 }
2716 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2717 #endif
2718 
2719 /**
2720  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2721  * @q : the queue of the device being checked
2722  *
2723  * Description:
2724  *    Check if underlying low-level drivers of a device are busy.
2725  *    If the drivers want to export their busy state, they must set own
2726  *    exporting function using blk_queue_lld_busy() first.
2727  *
2728  *    Basically, this function is used only by request stacking drivers
2729  *    to stop dispatching requests to underlying devices when underlying
2730  *    devices are busy.  This behavior helps more I/O merging on the queue
2731  *    of the request stacking driver and prevents I/O throughput regression
2732  *    on burst I/O load.
2733  *
2734  * Return:
2735  *    0 - Not busy (The request stacking driver should dispatch request)
2736  *    1 - Busy (The request stacking driver should stop dispatching request)
2737  */
2738 int blk_lld_busy(struct request_queue *q)
2739 {
2740 	if (q->lld_busy_fn)
2741 		return q->lld_busy_fn(q);
2742 
2743 	return 0;
2744 }
2745 EXPORT_SYMBOL_GPL(blk_lld_busy);
2746 
2747 /**
2748  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2749  * @rq: the clone request to be cleaned up
2750  *
2751  * Description:
2752  *     Free all bios in @rq for a cloned request.
2753  */
2754 void blk_rq_unprep_clone(struct request *rq)
2755 {
2756 	struct bio *bio;
2757 
2758 	while ((bio = rq->bio) != NULL) {
2759 		rq->bio = bio->bi_next;
2760 
2761 		bio_put(bio);
2762 	}
2763 }
2764 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2765 
2766 /*
2767  * Copy attributes of the original request to the clone request.
2768  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2769  */
2770 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2771 {
2772 	dst->cpu = src->cpu;
2773 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2774 	dst->cmd_type = src->cmd_type;
2775 	dst->__sector = blk_rq_pos(src);
2776 	dst->__data_len = blk_rq_bytes(src);
2777 	dst->nr_phys_segments = src->nr_phys_segments;
2778 	dst->ioprio = src->ioprio;
2779 	dst->extra_len = src->extra_len;
2780 }
2781 
2782 /**
2783  * blk_rq_prep_clone - Helper function to setup clone request
2784  * @rq: the request to be setup
2785  * @rq_src: original request to be cloned
2786  * @bs: bio_set that bios for clone are allocated from
2787  * @gfp_mask: memory allocation mask for bio
2788  * @bio_ctr: setup function to be called for each clone bio.
2789  *           Returns %0 for success, non %0 for failure.
2790  * @data: private data to be passed to @bio_ctr
2791  *
2792  * Description:
2793  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2794  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2795  *     are not copied, and copying such parts is the caller's responsibility.
2796  *     Also, pages which the original bios are pointing to are not copied
2797  *     and the cloned bios just point same pages.
2798  *     So cloned bios must be completed before original bios, which means
2799  *     the caller must complete @rq before @rq_src.
2800  */
2801 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2802 		      struct bio_set *bs, gfp_t gfp_mask,
2803 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2804 		      void *data)
2805 {
2806 	struct bio *bio, *bio_src;
2807 
2808 	if (!bs)
2809 		bs = fs_bio_set;
2810 
2811 	blk_rq_init(NULL, rq);
2812 
2813 	__rq_for_each_bio(bio_src, rq_src) {
2814 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2815 		if (!bio)
2816 			goto free_and_out;
2817 
2818 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2819 			goto free_and_out;
2820 
2821 		if (rq->bio) {
2822 			rq->biotail->bi_next = bio;
2823 			rq->biotail = bio;
2824 		} else
2825 			rq->bio = rq->biotail = bio;
2826 	}
2827 
2828 	__blk_rq_prep_clone(rq, rq_src);
2829 
2830 	return 0;
2831 
2832 free_and_out:
2833 	if (bio)
2834 		bio_put(bio);
2835 	blk_rq_unprep_clone(rq);
2836 
2837 	return -ENOMEM;
2838 }
2839 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2840 
2841 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2842 {
2843 	return queue_work(kblockd_workqueue, work);
2844 }
2845 EXPORT_SYMBOL(kblockd_schedule_work);
2846 
2847 int kblockd_schedule_delayed_work(struct request_queue *q,
2848 			struct delayed_work *dwork, unsigned long delay)
2849 {
2850 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2851 }
2852 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2853 
2854 #define PLUG_MAGIC	0x91827364
2855 
2856 /**
2857  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2858  * @plug:	The &struct blk_plug that needs to be initialized
2859  *
2860  * Description:
2861  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2862  *   pending I/O should the task end up blocking between blk_start_plug() and
2863  *   blk_finish_plug(). This is important from a performance perspective, but
2864  *   also ensures that we don't deadlock. For instance, if the task is blocking
2865  *   for a memory allocation, memory reclaim could end up wanting to free a
2866  *   page belonging to that request that is currently residing in our private
2867  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2868  *   this kind of deadlock.
2869  */
2870 void blk_start_plug(struct blk_plug *plug)
2871 {
2872 	struct task_struct *tsk = current;
2873 
2874 	plug->magic = PLUG_MAGIC;
2875 	INIT_LIST_HEAD(&plug->list);
2876 	INIT_LIST_HEAD(&plug->cb_list);
2877 
2878 	/*
2879 	 * If this is a nested plug, don't actually assign it. It will be
2880 	 * flushed on its own.
2881 	 */
2882 	if (!tsk->plug) {
2883 		/*
2884 		 * Store ordering should not be needed here, since a potential
2885 		 * preempt will imply a full memory barrier
2886 		 */
2887 		tsk->plug = plug;
2888 	}
2889 }
2890 EXPORT_SYMBOL(blk_start_plug);
2891 
2892 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2893 {
2894 	struct request *rqa = container_of(a, struct request, queuelist);
2895 	struct request *rqb = container_of(b, struct request, queuelist);
2896 
2897 	return !(rqa->q < rqb->q ||
2898 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2899 }
2900 
2901 /*
2902  * If 'from_schedule' is true, then postpone the dispatch of requests
2903  * until a safe kblockd context. We due this to avoid accidental big
2904  * additional stack usage in driver dispatch, in places where the originally
2905  * plugger did not intend it.
2906  */
2907 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2908 			    bool from_schedule)
2909 	__releases(q->queue_lock)
2910 {
2911 	trace_block_unplug(q, depth, !from_schedule);
2912 
2913 	if (from_schedule)
2914 		blk_run_queue_async(q);
2915 	else
2916 		__blk_run_queue(q);
2917 	spin_unlock(q->queue_lock);
2918 }
2919 
2920 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2921 {
2922 	LIST_HEAD(callbacks);
2923 
2924 	while (!list_empty(&plug->cb_list)) {
2925 		list_splice_init(&plug->cb_list, &callbacks);
2926 
2927 		while (!list_empty(&callbacks)) {
2928 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2929 							  struct blk_plug_cb,
2930 							  list);
2931 			list_del(&cb->list);
2932 			cb->callback(cb, from_schedule);
2933 		}
2934 	}
2935 }
2936 
2937 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2938 				      int size)
2939 {
2940 	struct blk_plug *plug = current->plug;
2941 	struct blk_plug_cb *cb;
2942 
2943 	if (!plug)
2944 		return NULL;
2945 
2946 	list_for_each_entry(cb, &plug->cb_list, list)
2947 		if (cb->callback == unplug && cb->data == data)
2948 			return cb;
2949 
2950 	/* Not currently on the callback list */
2951 	BUG_ON(size < sizeof(*cb));
2952 	cb = kzalloc(size, GFP_ATOMIC);
2953 	if (cb) {
2954 		cb->data = data;
2955 		cb->callback = unplug;
2956 		list_add(&cb->list, &plug->cb_list);
2957 	}
2958 	return cb;
2959 }
2960 EXPORT_SYMBOL(blk_check_plugged);
2961 
2962 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2963 {
2964 	struct request_queue *q;
2965 	unsigned long flags;
2966 	struct request *rq;
2967 	LIST_HEAD(list);
2968 	unsigned int depth;
2969 
2970 	BUG_ON(plug->magic != PLUG_MAGIC);
2971 
2972 	flush_plug_callbacks(plug, from_schedule);
2973 	if (list_empty(&plug->list))
2974 		return;
2975 
2976 	list_splice_init(&plug->list, &list);
2977 
2978 	list_sort(NULL, &list, plug_rq_cmp);
2979 
2980 	q = NULL;
2981 	depth = 0;
2982 
2983 	/*
2984 	 * Save and disable interrupts here, to avoid doing it for every
2985 	 * queue lock we have to take.
2986 	 */
2987 	local_irq_save(flags);
2988 	while (!list_empty(&list)) {
2989 		rq = list_entry_rq(list.next);
2990 		list_del_init(&rq->queuelist);
2991 		BUG_ON(!rq->q);
2992 		if (rq->q != q) {
2993 			/*
2994 			 * This drops the queue lock
2995 			 */
2996 			if (q)
2997 				queue_unplugged(q, depth, from_schedule);
2998 			q = rq->q;
2999 			depth = 0;
3000 			spin_lock(q->queue_lock);
3001 		}
3002 
3003 		/*
3004 		 * Short-circuit if @q is dead
3005 		 */
3006 		if (unlikely(blk_queue_dying(q))) {
3007 			__blk_end_request_all(rq, -ENODEV);
3008 			continue;
3009 		}
3010 
3011 		/*
3012 		 * rq is already accounted, so use raw insert
3013 		 */
3014 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3015 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3016 		else
3017 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3018 
3019 		depth++;
3020 	}
3021 
3022 	/*
3023 	 * This drops the queue lock
3024 	 */
3025 	if (q)
3026 		queue_unplugged(q, depth, from_schedule);
3027 
3028 	local_irq_restore(flags);
3029 }
3030 
3031 void blk_finish_plug(struct blk_plug *plug)
3032 {
3033 	blk_flush_plug_list(plug, false);
3034 
3035 	if (plug == current->plug)
3036 		current->plug = NULL;
3037 }
3038 EXPORT_SYMBOL(blk_finish_plug);
3039 
3040 #ifdef CONFIG_PM_RUNTIME
3041 /**
3042  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3043  * @q: the queue of the device
3044  * @dev: the device the queue belongs to
3045  *
3046  * Description:
3047  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3048  *    @dev. Drivers that want to take advantage of request-based runtime PM
3049  *    should call this function after @dev has been initialized, and its
3050  *    request queue @q has been allocated, and runtime PM for it can not happen
3051  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3052  *    cases, driver should call this function before any I/O has taken place.
3053  *
3054  *    This function takes care of setting up using auto suspend for the device,
3055  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3056  *    until an updated value is either set by user or by driver. Drivers do
3057  *    not need to touch other autosuspend settings.
3058  *
3059  *    The block layer runtime PM is request based, so only works for drivers
3060  *    that use request as their IO unit instead of those directly use bio's.
3061  */
3062 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3063 {
3064 	q->dev = dev;
3065 	q->rpm_status = RPM_ACTIVE;
3066 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3067 	pm_runtime_use_autosuspend(q->dev);
3068 }
3069 EXPORT_SYMBOL(blk_pm_runtime_init);
3070 
3071 /**
3072  * blk_pre_runtime_suspend - Pre runtime suspend check
3073  * @q: the queue of the device
3074  *
3075  * Description:
3076  *    This function will check if runtime suspend is allowed for the device
3077  *    by examining if there are any requests pending in the queue. If there
3078  *    are requests pending, the device can not be runtime suspended; otherwise,
3079  *    the queue's status will be updated to SUSPENDING and the driver can
3080  *    proceed to suspend the device.
3081  *
3082  *    For the not allowed case, we mark last busy for the device so that
3083  *    runtime PM core will try to autosuspend it some time later.
3084  *
3085  *    This function should be called near the start of the device's
3086  *    runtime_suspend callback.
3087  *
3088  * Return:
3089  *    0		- OK to runtime suspend the device
3090  *    -EBUSY	- Device should not be runtime suspended
3091  */
3092 int blk_pre_runtime_suspend(struct request_queue *q)
3093 {
3094 	int ret = 0;
3095 
3096 	spin_lock_irq(q->queue_lock);
3097 	if (q->nr_pending) {
3098 		ret = -EBUSY;
3099 		pm_runtime_mark_last_busy(q->dev);
3100 	} else {
3101 		q->rpm_status = RPM_SUSPENDING;
3102 	}
3103 	spin_unlock_irq(q->queue_lock);
3104 	return ret;
3105 }
3106 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3107 
3108 /**
3109  * blk_post_runtime_suspend - Post runtime suspend processing
3110  * @q: the queue of the device
3111  * @err: return value of the device's runtime_suspend function
3112  *
3113  * Description:
3114  *    Update the queue's runtime status according to the return value of the
3115  *    device's runtime suspend function and mark last busy for the device so
3116  *    that PM core will try to auto suspend the device at a later time.
3117  *
3118  *    This function should be called near the end of the device's
3119  *    runtime_suspend callback.
3120  */
3121 void blk_post_runtime_suspend(struct request_queue *q, int err)
3122 {
3123 	spin_lock_irq(q->queue_lock);
3124 	if (!err) {
3125 		q->rpm_status = RPM_SUSPENDED;
3126 	} else {
3127 		q->rpm_status = RPM_ACTIVE;
3128 		pm_runtime_mark_last_busy(q->dev);
3129 	}
3130 	spin_unlock_irq(q->queue_lock);
3131 }
3132 EXPORT_SYMBOL(blk_post_runtime_suspend);
3133 
3134 /**
3135  * blk_pre_runtime_resume - Pre runtime resume processing
3136  * @q: the queue of the device
3137  *
3138  * Description:
3139  *    Update the queue's runtime status to RESUMING in preparation for the
3140  *    runtime resume of the device.
3141  *
3142  *    This function should be called near the start of the device's
3143  *    runtime_resume callback.
3144  */
3145 void blk_pre_runtime_resume(struct request_queue *q)
3146 {
3147 	spin_lock_irq(q->queue_lock);
3148 	q->rpm_status = RPM_RESUMING;
3149 	spin_unlock_irq(q->queue_lock);
3150 }
3151 EXPORT_SYMBOL(blk_pre_runtime_resume);
3152 
3153 /**
3154  * blk_post_runtime_resume - Post runtime resume processing
3155  * @q: the queue of the device
3156  * @err: return value of the device's runtime_resume function
3157  *
3158  * Description:
3159  *    Update the queue's runtime status according to the return value of the
3160  *    device's runtime_resume function. If it is successfully resumed, process
3161  *    the requests that are queued into the device's queue when it is resuming
3162  *    and then mark last busy and initiate autosuspend for it.
3163  *
3164  *    This function should be called near the end of the device's
3165  *    runtime_resume callback.
3166  */
3167 void blk_post_runtime_resume(struct request_queue *q, int err)
3168 {
3169 	spin_lock_irq(q->queue_lock);
3170 	if (!err) {
3171 		q->rpm_status = RPM_ACTIVE;
3172 		__blk_run_queue(q);
3173 		pm_runtime_mark_last_busy(q->dev);
3174 		pm_request_autosuspend(q->dev);
3175 	} else {
3176 		q->rpm_status = RPM_SUSPENDED;
3177 	}
3178 	spin_unlock_irq(q->queue_lock);
3179 }
3180 EXPORT_SYMBOL(blk_post_runtime_resume);
3181 #endif
3182 
3183 int __init blk_dev_init(void)
3184 {
3185 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3186 			sizeof(((struct request *)0)->cmd_flags));
3187 
3188 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3189 	kblockd_workqueue = alloc_workqueue("kblockd",
3190 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3191 					    WQ_POWER_EFFICIENT, 0);
3192 	if (!kblockd_workqueue)
3193 		panic("Failed to create kblockd\n");
3194 
3195 	request_cachep = kmem_cache_create("blkdev_requests",
3196 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3197 
3198 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3199 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3200 
3201 	return 0;
3202 }
3203